Ванкель двигатель: Роторно-поршневой двигатель — Википедия – Принципы работы, плюсы и минусы роторного двигателя — особенности роторно-поршневого ДВС — журнал За рулем

Что случилось с двигателем Ванкеля и куда он исчез с авторынка: Движение: Ценности: Lenta.ru

В этом году отмечается полувековой юбилей сразу двух знаковых для истории автомобилестроения моделей. Немецкий NSU Ro 80 и «японка» Mazda Cosmo стали первыми автомобилями с роторным двигателем, подходившими под определение «массовые». Но, увы, изобретенному инженерами фирмы NSU Ванкелем и Фройде новому типу двигателя внутреннего сгорания так и не удалось завоевать мир.

После создания в конце XIX столетия поршневого двигателя внутреннего сгорания прогресс в этой области пошел по пути разработки уже имеющейся концепции. Инженеры создавали все более мощные и совершенные двигатели, но суть оставалась все той же — в цилиндрическую камеру тем или иным способом попадало топливо, образовывавшиеся после сгорания топлива газы толкали поршень. И только в конце 1950-х два немецких инженера, работавшие в известной тогда своими мотоциклами фирме NSU Феликс Ванкель и Вальтер Фройде, предложили принципиально новую конструкцию.

В их двигателе цилиндры отсутствовали как класс: установленный на валу трехгранный ротор был жестко соединен с зубчатым колесом, входившим в зацепление с неподвижной шестерней — статором. По сравнению с обычным поршневым мотором внутреннего сгорания, двигатель Ванкеля (как он стал известен по имени одного из создателей) имел меньшие в 1,5-2 раза габариты, большую удельную мощность, меньшее число деталей (два-три десятка вместо нескольких сотен), а также — за счет отсутствия коленвала и шатунов — более высокие динамические показатели. Впрочем, были и недостатки, с которыми так и не удалось справиться за все время выпуска автомобилей с роторными двигателями: довольно высокий расход топлива на низких оборотах, повышенное потребление масла и сложность в производстве (из-за необходимости точности геометрических форм деталей).

NSU Spider

NSU Spider

Фото: Science Museum / Globallookpress.com

Любопытно, что сам Ванкель не умел водить автомобиль и не имел водительских прав — поскольку с раннего детства страдал сильной близорукостью. Это, впрочем, не помешало ему доработать первоначально мотоциклетный движок под нужды автопрома, и в 1964 году NSU выпустила первый в мире серийный роторный автомобиль — кабриолет NSU Spider на базе заднеприводной модели Sport Prinz. Машина выпускалась ограниченной серией (за три года было собрано 2375 экземпляров) и была довольно дорога, в пересчете на нынешние деньги — около 22 тысяч долларов за двухместную малолитражку длиной 3,6 метра.

В 1967 году на рынок вышли сразу две модели с роторными двигателями, ставшие действительно массовыми. NSU представила топовый седан Ro 80, а японская фирма Mazda — спортивное купе Cosmo, первое в полувековой череде машин с двигателем Ванкеля в своей линейке. Немецкая машина, увы, оказалась довольно капризной и «сырой», хотя и была признана «автомобилем года-1968» в Европе. Постоянные рекламации и необходимость дорогостоящего ремонта уже проданных авто привели компанию практически к банкротству — в 1969 году она была куплена концерном Volkswagen и слита в одно подразделение с маркой Audi. Производство Ro 80 тем не менее продолжалось до 1977 года; всего было выпущено более 37 тысяч автомобилей. Передовой для конца 1960-х дизайн кузова, сперва не оцененный потребителями, оказал впоследствии влияние, в частности, на популярную модель Audi 100.

NSU Ro 80

NSU Ro 80

Фото: CPC Collection / Alamy / Diomedia

Кстати, лицензию на «ванкель» купил и СССР. 140-сильным роторным двигателем оборудовались версии вазовских «пятерок» и «семерок» для милиции и КГБ. Внешне они не отличались от серийных машин, но на дороге демонстрировали необходимую резвость. В 1990-е малой серией выпускались и «гражданские» 2108 и 21099 с роторным мотором ВАЗ-415, также абсолютно идентичные по дизайну кузова с «нормальными». Обманчивая внешность породила множество шоферских легенд: неприметная «девятка» вдруг срывалась с места и обгоняла солидный BMW (разгон до сотни у роторной версии занимал 9 секунд, а максимальная скорость достигала 190 километров в час).

Mazda Cosmo L10A

Экспериментировали с двигателем Ванкеля и французы из Citroen. Однако модель GS Birotor с двухроторным двигателем вышла на рынок в октябре 1973 года — точно в месяц начала крупнейшего нефтяного кризиса. Машина стоила на 70 процентов дороже стандартной модели GS с четырехцилиндровым мотором, а топлива потребляла больше, чем представительская DS. В результате удалось с большим трудом продать 847 экземпляров, после чего производство было свернуто.

В конечном счете на рынке «ванкелей» осталась только Mazda, продолжавшая совершенствовать двигатель и выпустившая около 20 моделей с роторным двигателем. Инженерам японской компании удалось повысить экономичность и снизить объем токсичных выхлопов (еще одна «врожденная болезнь» роторных двигателей), но даже со всеми усовершенствованиями последняя выпускавшаяся роторная модель, RX-8, не соответствовала нормам Евросоюза. В 2010 году ее прекратили продавать в Европе, а в 2012-м было свернуто производство и для других рынков. Спортивные роторные модели Mazda, однако, за почти полвека производства успели завоевать поклонников во многих странах, включая нашу. Вот что рассказывает о своей RX-8 москвич Олег, автолюбитель со стажем:

«Приобрести RX-8 я решил вовсе не из-за роторного двигателя, а скорее вопреки ему. Но ничего похожего на рынке тогда не было: полноценное четырехместное купе с дверями, которые по старой памяти именуют suicide doors — разве что Rolls-Royce. А еще эти "надбровные дуги" над передними колесами... Однако все, с кем я делился идеей, крутили пальцем у виска: "больше 30 тысяч ротор не ходит", "масла жрет столько же, сколько и бензина", "а бензина — как американский грузовик", "ниже нуля не заводится" и так далее. "Зато не угонят", — решил я. Машина пришла зимой, и первые же недели показали, что перемещение по заснеженной Москве не то что бы совсем невозможно, но требует очень крепких нервов — машина норовила уйти в занос в каждом повороте или забуксовать там, где легко проезжала любая переднеприводная малолитражка. Но, как назло, даже в лютый мороз заводилась исправно. Да и сколько той зимы.

Mazda RX-8

Mazda RX-8

Фото: National Motor Museum / Heritage Images / Getty Images

Снег сошел, и Mazda, наконец, оказалась в своей стихии. Да, масло (каждую тысячу приходилось открывать капот и доливать до рисочки), да, расход (в особенно хорошие дни бывало и больше 20 литров на сотню), но все это компенсировалось возможностью обмануть слух окружающих и, раскрутив двигатель до 9000 оборотов, прикинуться гоночным мотоциклом. Точный руль, задний привод и 230 лошадиных сил превращали любую, еще не изобиловавшую тогда камерами дорогу, в гоночный трек практически без моего участия. Даже стоя под окном, машина, казалось, куда-то ехала. Из-под этого окна, разоблачив тем самым еще один миф, ее и угнали. К тому времени, несмотря на то, что роторного двигателя побаивались даже "официалы", машина прошла 70 тысяч километров без намеков на какие-либо неполадки.

Audi A1 E-Tron Concept

Audi A1 E-Tron Concept

Фото: Adrian Moser / Bloomberg / Getty Images

Хотя производство серийных автомобилей с роторным двигателем прекратилось еще пять лет назад, разработчики, похоже, не собираются навсегда расставаться с «ванкелем». Перспективными в этом смысле представляются гибридные силовые установки — благодаря малому размеру роторно-поршневого двигателя. Так, Audi в 2010 году продемонстрировала в Женеве гибридный прототип A1 e-tron concept с 60-сильным электромотором и двигателем Ванкеля рабочим объемом всего 250 кубических сантиметров, развивающим мощность 20 лошадиных сил и выполняющим фактически функцию генераторной установки.

Революционный роторно-поршневой двигатель Ванкеля: 9 преимуществ конструкции

Роторно-поршневой двигатель Ванкеля представляет собой тип ДВС с использованием эксцентричной поворотной конструкции для преобразования давления во вращательное движение.

Все части вращаются последовательно в одном направлении, в отличие от обычного поршневого двигателя, который сильно меняет направление движения поршня.

Революционный роторно-поршневой двигатель Ванкеля: 9 преимуществ конструкции

Содержание статьи

Преимущества перед другими конструкциями

В отличие от более распространённых поршневых конструкций, двигатель Ванкеля (Wankel) обеспечивает преимущества — простоту, плавность, компактность, высокие обороты в минуту и большое отношение мощности к весу. Это связано прежде всего с тем, что производятся три импульса мощности на один оборот ротора Ванкеля по сравнению с одним оборотом в двухтактном поршневом двигателе и по одному на два оборота в четырёхтактном двигателе.

РПД обычно называют вращающимся двигателем. Хотя это название также относится и к другим конструкциям, прежде всего к авиационным двигателям с их цилиндрами, расположенными вокруг коленчатого вала. Четырёхступенчатый цикл впуска, сжатия, зажигания и выхлопа происходит в каждый оборот на каждом из трёх наконечников ротора, перемещающихся внутри овально — подобранного корпуса с перфорацией, что позволяет использовать в три раза больше импульсов на один оборот ротора. Ротор похож по форме на треугольник Реуле, а стороны его более плоские.

Революционный роторно-поршневой двигатель Ванкеля: 9 преимуществ конструкции

Конструктивные особенности двигателя Ванкеля

Теоретическая форма ротора РПД Ванкеля между фиксированными углами является итогом уменьшения объёма геометрической камеры сгорания и увеличения степени сжатия. Симметричная кривая, соединяющая две произвольные вершины ротора, максимальна в направлении внутренней формы корпуса.

Центральный приводной вал, называемый «эксцентриковый» или «E-вал», проходит через центр ротора и поддерживается неподвижными подшипниками. Ролики движутся на эксцентриках (аналогично шатунам), встроенным в эксцентриковый вал (аналогично коленчатому). Роторы вращаются вокруг эксцентриков и совершают орбитальные обороты вокруг эксцентрикового вала.

Вращательное движение каждого ротора на собственной оси вызвано и регулируется парой синхронизирующих передач. Фиксированная шестерня, установленная на одной стороне корпуса ротора, входит в кольцевую шестерню, прикреплённую к ротору, и обеспечивает то, что ротор движется ровно на 1/3 оборота для каждого оборота эксцентрикового вала. Выходная мощность двигателя не передаётся через синхронизаторы. Сила давления газа на роторе (в первом приближении) идёт прямо в центр эксцентриковой части выходного вала.

РПД Ванкеля фактически представляет собой систему прогрессивных полостей переменного объёма. Таким образом, на корпусе имеется три полости, все повторяющие один и тот же цикл. Когда ротор вращается орбитально, каждая его сторона приближается, а затем удаляется от стенки корпуса, сжимая и расширяя камеру сгорания, подобно ходу поршня в двигателе. Вектор мощности ступени сгорания проходит через центр смещённой лопасти.

Двигатели Wankel, как правило, способны достичь гораздо более высоких оборотов, чем те, что с аналогичной выходной мощностью. Это связано с гладкостью, присущей круговому движению, и отсутствием сильно напряжённых частей, таких, как коленчатые и распределительные валы, или шатуны. Эксцентриковые валы не имеют ориентированных по напряжению контуров коленчатых.

Проблемы устройства и их устранение

Феликсу Ванкелю удалось преодолеть большинство проблем, из-за которых предыдущие роторные устройства терпели неудачу:

  1. У вращающихся РПД есть проблема, не встречающаяся в четырёхтактных устройствах с поршнями, в которых корпус блока имеет впуск, сжатие, сгорание и выхлопные газы, проходящие в фиксированных местах вокруг корпуса. Использование тепловых труб в воздушном охлаждении роторного двигателя Ванкеля было предложено Университетом Флориды для преодоления неравномерного нагрева блока корпуса. Предварительный нагрев некоторых корпусных секций выхлопными газами улучшил производительность и экономию топлива, а также уменьшил износ и выбросы.
  2. Проблемы также возникли во время исследований в 50-х и 60-х годах. Некоторое время инженеры сталкивались с тем, что они называли «царапиной дьявола» на внутренней поверхности эпитрохоиды. Они обнаружили, что причиной были точечные уплотнения, достигающие резонансной вибрации. Эта проблема была решена за счёт уменьшения толщины и веса торцевых уплотнений. Царапины исчезли после введения более совместимых материалов для уплотнений и покрытий.
  3. Ещё одна ранняя проблема заключалась в наращивании трещин на поверхности статора вблизи отверстия пробки, которое было устранено путём установки свечей зажигания в отдельной металлической вставке, медной втулке в корпусе вместо вилки, ввинчиваемой непосредственно в корпус блока.
  4. Четырёхтактные поршневые устройства не очень подходят для использования с водородным топливом. Другая проблема связана с гидратацией на смазочной плёнке в поршневых конструкциях. В ДВС Ванкеля эту проблему можно обойти, используя керамическое торцевое уплотнение на такой же поверхности, так что нет никакой масляной плёнки, чтобы страдать от гидратации. Поршневую раковину необходимо смазать и охладить маслом. Это существенно увеличивает расход смазочного масла в четырёхтактном водородном ДВС.

Революционный роторно-поршневой двигатель Ванкеля: 9 преимуществ конструкции

Материалы для изготовления ДВС

В отличие от поршневого агрегата, в котором цилиндр нагревается процессом горения, а затем охлаждается входящим зарядом, корпуса ротора Wankel постоянно накаляются с одной стороны и остывают с другой, что приводит к высоким локальным температурам и неравному тепловому расширению. Хотя это предъявляет большие требования к используемым материалам, простота Ванкеля облегчает употребление в изготовлении таких веществ, как экзотические сплавы и керамика.

Среди сплавов, предназначенных для использования в Ванкеле, используются A-132, Inconel 625 и 356 с твердостью Т6. Для покрытия рабочей поверхности корпуса используется несколько высокопрочных материалов. Для вала предпочтительны стальные сплавы с малой деформацией при нагрузке, для этого предложено использование массивной стали.

Преимущества двигателя

Основными преимуществами РПД Ванкеля являются:

  1. Более высокое отношение мощности к весу, чем у поршневого двигателя.
  2. Легче размещать в небольших машинных пространствах, чем эквивалентный двигательный механизм.
  3. Нет поршневых деталей.
  4. Способность достигать более высоких оборотов в минуту, чем обычный двигатель.
  5. Работа практически без вибрации.
  6. Не подвержен двигательному удару.
  7. Дешевле в производстве, потому что двигатель содержит меньше деталей
  8. Широкий диапазон скоростей, обеспечивающий большую адаптивность.
  9. Он может использовать топливо с более высоким октановым числом.

ДВС Ванкеля значительно легче и проще, с гораздо меньшим количеством движущихся частей, чем поршневые двигатели эквивалентной выходной мощности. Поскольку ротор перемещается непосредственно на большой подшипник на выходном валу, нет шатунов и коленчатого вала. Устранение возвратно-поступательной силы и наиболее сильно нагруженных и разрушаемых деталей обеспечивает высокую надёжность Wankel.

В дополнение к удалению внутренних возвратно-поступательных напряжений при полном удалении возвратно-поступательных внутренних деталей, учтановленных в поршневом двигателе, двигатель Ванкеля выполнен с железным ротором в корпусе из алюминия, который имеет больший коэффициент теплового расширения. Это гарантирует, что даже сильно перегретый агрегат Ванкеля не может «захватить», как это может произойти в аналогичном поршневом устройстве. Это существенное преимущество в плане безопасности при использовании в самолётах. Кроме того, отсутствие клапанов повышает безопасность.

Дополнительным преимуществом РПД Ванкеля для использования в самолётах является то, что он обычно имеет меньшую фронтальную область, чем поршневые агрегаты эквивалентной мощности, что позволяет создать более аэродинамический конус вокруг двигателя. Каскадное преимущество заключается в том, что меньший размер и вес ДВС Ванкеля позволяет сэкономить затраты на строительство летательного аппарата по сравнению с поршневыми двигателями сопоставимой мощности.

Роторно-поршневые ДВС Ванкеля, работающие в соответствии с их первоначальными проектными параметрами, почти не подвержены катастрофическим отказам. РПД Ванкеля, который теряет компрессию, или охлаждение, или давление масла, потеряет большое количество, но всё-таки будет продолжать производить некоторую мощность, позволяя более безопасную посадку при использовании в самолётах. Поршневые устройства при тех же обстоятельствах подвержены захвату или разрушению деталей, что почти наверняка приведёт к катастрофическому сбою двигателя и мгновенной потере всей мощности.

По этой причине роторно-поршневые двигатели Ванкеля очень хорошо подходят для снегоходов, которые часто используются в отдалённых местах, где отказ двигателя может привести к обморожению или смерти, а также к самолётам, где резкий сбой может привести к крушению или вынужденной посадке в удалённых местах.

Революционный роторно-поршневой двигатель Ванкеля: 9 преимуществ конструкции

Конструкционные недостатки

Хотя многие из недостатков являются предметом текущих исследований, нынешние недочёты устройства Ванкеля в производстве заключаются в следующем:

  1. Уплотнение ротора. Это всё ещё незначительная проблема, так как корпус двигателя имеет очень разные температуры в каждой отдельной секции камеры. Различные коэффициенты расширения материалов приводят к несовершенной герметизации. Кроме того, обе стороны уплотнений подвергаются воздействию топлива, и конструкция не позволяет точно контролировать смазку роторов. Роторные агрегаты, как правило, смазываются при всех оборотах и нагрузках двигателя и имеют относительно высокий расход масла и другие проблемы, возникающие в результате избыточного количества смазки в зонах сгорания двигателя, таких, как образование углерода и чрезмерные выбросы от сжигания масла.
  2. Для преодоления проблемы различий в температурах между различными областями корпуса и боковых и промежуточных пластин, а также связанных с ними неравновесных температурных дилатаций, тепловая труба используется для транспортировки нагретого газа от горячей к холодной части двигателя. «Тепловые трубы» эффективно направляют горячий выхлопной газ на более холодные части двигателя, что приводит к снижению эффективности и производительности.
  3. Медленное горение. Сжигание топлива происходит медленно, поскольку камера сгорания длинная, тонкая и движущаяся. Движение пламени происходит почти исключительно в направлении движения ротора, и завершается тушением, которое является основным источником несгоревших углеводородов при высоких оборотах. Задняя сторона камеры сгорания, естественно, создаёт «сжатый поток», который препятствует достижению пламени к задней кромке камеры. Впрыск топлива, при котором оно поступает к передней кромке камеры сгорания, может минимизировать количество несгоревшего горючего в выхлопе.
  4. Плохая экономия топлива. Это связано с утечками уплотнений и формой камеры сгорания. Это приводит к плохому сгоранию и среднему эффективному давлению при частичной нагрузке, малой скорости вращения. В соответствии с требованиями, предъявляемыми по выбросам, иногда требуется соотношение топлива и воздуха, которое не способствует хорошей экономии топлива. Ускорение и замедление в средних условиях движения также влияют на экономию топлива. Однако работа двигателя с постоянной скоростью и нагрузкой исключает избыточный расход топлива.

Таким образом, у этого вида двигателя есть свои недостатки и преимущества.

Двигатель Ванкеля Википедия

Ро́торный дви́гатель (РД, РДВС, двигатель Ва́нкеля) — (не нужно путать Роторный двигатель (не имеющий поршней) и Роторно-Поршневой) роторный двигатель внутреннего сгорания, конструкция которого разработана в 1957 году инженером компании NSU Вальтером Фройде. Ему же принадлежала идея этой конструкции. Двигатель разрабатывался в соавторстве с Феликсом Ванкелем, работавшим над другой конструкцией роторно-поршневого двигателя[1].

Особенность двигателя — применение трёхгранного ротора (поршня), имеющего вид треугольника Рёло, вращающегося внутри цилиндра специального профиля, поверхность которого выполнена по эпитрохоиде (возможны и другие формы ротора и цилиндра[2]).

Конструкция[ | ]

Wankel engine scheme.svg Цикл двигателя Ванкеля: впуск (голубой), сжатие (зелёный), рабочий ход (красный), выпуск (жёлтый) Wankel engine scheme.svg Роторно-поршневой двигатель

Установленный на валу ротор жёстко соединён с зубчатым колесом, которое входит в зацепление с неподвижной шестернёй — статором. Диаметр ротора намного превышает диаметр статора, несмотря на это ротор с зубчатым колесом обкатывается вокруг шестерни. Каждая из вершин трёхгранного ротора совершает движение по эпитрохоидальной поверхности цилиндра и отсекают переменные объёмы камер в цилиндре с помощью трёх радиальных уплотнений.

Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. Герметизация камер обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаемыми к цилиндру центробежными силами, давлением газа и ленточными пружинами. Отсутствие механизма газораспределения делает двигатель значительно проще четырехтактного поршневого, а отсутствие сопряжения (картерное пространство, коленвал и шатуны) между отдельными рабочими камерами обеспечивают необычайную компактность и высокую удельную мощность. За один оборот эксцентрикового вала двигатель выполняет один рабочий цикл, что эквивалентно работе двухцилиндрового поршневого двигателя. За один оборот ротора эксцентриковый вал выполняет 3 оборота и 9 рабочих ходов, что приводит к ошибочным сравнениям роторного двигателя с шестицилиндровым поршневым двигателем.

Смесеобразование, зажигание, смазка, охлаждение, запуск принципиально такие же, как и у обычного поршневого двигателя внутреннего сгорания.

Практическое применение получили двигатели с трёхгранными роторами, с отношением радиусов шестерни и зубчатого колеса: R:r = 2:3, которые устанавливают на автомобилях, лодках

что это такое и как работает

На большинстве современных автомобилей сейчас используются ДВС, устроенные по поршневой схеме. Но, существуют двигатели внутреннего сгорания, которые имеют совершенно другую конструкцию. Об одном из таких двигателей мы и расскажем в данной статье. 

Что такое двигатель Ванкеля?

как выглядит двигатель Ванкеля

Как выглядит двигатель Ванкеля в разрезе.

Из курса физики средней школы все прекрасно помнят, что работа четырёхтактного двигателя внутреннего сгорания состоит из:

  • впуска топлива/воздуха;
  • сжатия, где их смесь становится единым целым, а затем воспламенения искрой свечи зажигания;
  • рабочего хода: поршень движется в обратном направлении, совершая полезную работу;
  • выпуска: остатки отработанной смеси выбрасываются из мотора.

И всё помнят наглядное учебное пособие: цилиндр бензинового мотора в разрезе, на котором отлично видно все стадии при вращении ручки. Но, не все существующие/используемые в настоящее время двигатели имеют одинаковое устройство. Кроме всем известного классического ДВС есть и другие варианты конструкции.

Яркий пример — роторно-поршневой двигатель Ванкеля. Данная конструкция ДВС была разработана в 1957 году сотрудником компании NSU Вальтером Фройде в соавторстве с Феликсом Ванкелем.

Отличительная черта этого двигателя — использование трёхгранного ротора, имеющего форму треугольника Рёло, вращающегося внутри цилиндра особого профиля, поверхность которого выполнена по эпитрохоиде.

Принцип работы двигателя Ванкеля

В двигателе Ванкеля цикл работы точно такой же, как в классическом четырёхтактном агрегате внутреннего сгорания: впуск, сжатие, рабочий ход и выпуск. Вот только за него не поршень совершает два хода вверх-вниз (вперёд-назад), а вал делает всего один оборот трёхгранного ротора внутри эпитрохоидальной камеры цилиндра, являющейся сердцем двигателя.

принцип работы двигателя Ванкеля

Принцип работы двигателя Ванкеля: 1 — впуск топливо-воздушной смеси; 2 — сжатие смеси; 3 — зажигание и рабочий ход; 4 — выпуск отработанных газов;

Несмотря на кажущуюся сложность, принцип работы двигателя Ванкеля достаточно прост.

  • На первом этапе цикла смесь из бензина и воздуха поступает в камеру мотора.
  • Затем ротор проворачивается на 45 градусов, сжимая её: таком виде происходит поджиг смеси искрой от свечи зажигания.
  • После чего следует рабочая фаза: сгоревшая топливно-воздушная смесь давит на ротор, обеспечивая тем самым его вращение.
  • Наконец, на заключительном этапе ротор проворачивается и отработанные газы через выпускную систему попадают в выхлопную систему.

И так раз за разом. Но в отличие от классического ДВС, где 2-3 тысячи оборотов в минуту – рабочий режим, для двигателя Ванкеля даже 10 тысяч оборотов – не предел.

Эксцентриковое вращение вала обеспечивает его форма – с внутренним отверстием и зубцами, ротор вращается вокруг неподвижного вала с ответными зубьями. Именно они не дают ему проскользнуть и заклинить даже при особенно интенсивном вращении. 

Преимущества и недостатки двигателя Ванкеля

У вас может возникнуть простой и предсказуемый вопрос, а почему под капотом большинства автомобилей находится не двигатель Ванкеля, а классический четырехтактный ДВС. Чтобы ответить на данный вопрос рассмотрим преимущества и недостатки двигателя Ванкеля. Так, двигатель Ванкеля:

  • меньше весит и занимает меньше места в сравнении с аналогичными по характеристикам агрегатами;
  • работает заметно тише, на холостых оборотах двигатель вообще почти не слышно;
  • лучше сбалансирован, конструкция с одним вращающимся валом, лишённая шатунов с их возвратно-поступательными движениями, даёт отличные результаты;
  • обеспечивает лучшую динамику и высокую максимальную скорость;
  • может длительное время работать на высоких оборотах;
  • может работать на низкооктановом топливе;

Но, недостатков у двигателя Ванкеля также немало, например:

  • высокий, часто даже чрезмерный (до 20 литров на 100 км), аппетит;
  • повышенный, в сравнении с обычными четырёхтактными моторами, расход масла;
  • эксплуатация на низких оборотах: расход топлива возрастает, а ресурс мотора, напротив, падает;
  • невозможно движение в натяг, низкий уровень инерции, тормозить мотором не получается;
  • низкий ресурс агрегата;
  • сложности в ремонте;

Как видно недостатки очень серьезные и их немало. Как результат, сейчас в производственной гамме легковых серийных машин нет моделей, оснащённых двигателем Ванкеля. Последнее серийное авто, под капотом которой устанавливался этот агрегат, Mazda RX-8, перестала сходить с конвейера ещё в 2012 году.

В то же время на уже выпущенные автомобили с двигателем Ванкеля все чаще устанавливают обычные ДВС. Агрегат считается неремонтопригодным, мотористов, которые в состоянии произвести его качественное восстановление, можно пересчитать по пальцам, большинство считают их попросту «одноразовыми». Поэтому под капотами RX-8, а также не менее популярной предшественницы, RX-7, появляются турбированные или атмосферные рядные четвёрки. 

Видео на тему

Похожие статьи

Ванкель, Феликс — Википедия

Материал из Википедии — свободной энциклопедии

В Википедии есть статьи о других людях с фамилией Ванкель.

Феликс Генрих Ванкель (нем. Felix Heinrich Wankel) — соавтор изобретения роторно-поршневого двигателя (так называемого двигателя Ванкеля), конструкция которого была впервые показана в 1957 году, вместе с инженером компании NSU Вальтером Фройде, которому и принадлежала идея данной конструкции двигателя. Ванкель всю жизнь работал над созданием другого мотора с простым вращением взаимодействующих роторов.

Вместе с Вальтером Фройде и своей группой он провел обширные исследования механических уплотнений вращающихся клапанов (золотников). Они сформулировали также требования к эффективным подвижным уплотнениям.

Ванкель никогда не имел водительских прав, так как с детства страдал крайней близорукостью. Он не владел основами высшей математики, полагаясь на своё исключительное чувство пространства.

Родился 13 августа 1902 года в Ларе в семье Герти Ванкель (урождённой Хайдлауфф) и Рудольфа Ванкеля. Рудольф Ванкель погиб во время Первой мировой войны в 1914 году. В следующем году семья переехала в Гейдельберг.

Феликс Ванкель не смог ни поступить в университет, ни получить рабочую специальность. Самостоятельно изучая технические дисциплины, Ванкель в 1924 году пришёл к идее роторно-поршневого двигателя (РПД).

В 1921 году Ванкель вступил в НСДАП, но в 1933 году оказался среди противников Гитлера и провёл полгода в тюрьме.

В 1936 году прототип его роторного двигателя заинтересовал BMW; Ванкель получил финансирование и собственную мастерскую в Линдау для разработки опытных авиадвигателей под патронажем геринговского министерства авиации.

В 1936 году Ванкель женился на Эмме Кирн, детей у них не было.

В 1945 году оборудование Ванкеля было вывезено во Францию по репарациям. В 1951 году с помощью фирмы «Гётце» Ванкель возобновил исследования/

В 1954 году он, наконец, нашёл оптимальную конфигурацию камеры сгорания РПД.

В 1958 году NSU выпустило первый автомобиль с упрощённым вариантом РПД, однако самого конструктора эта реализация не удовлетворила.

С 1960 года Ванкель работал в новом исследовательском центре в Линдау.

В 1964 году в фирме NSU появился двигатель оригинальной конструкции Ванкеля Ro 80 (всего было выпущено около 40 000 таких машин). В 1959—1970 патент Ванкеля приобрели все крупнейшие автопроизводители западного мира, однако в 2007—2008 годах машины с роторно-двигателем конструкции Ванкеля и Фройда производятся только под маркой Mazda и ВАЗ.

Умер 9 октября 1988 года Гейдельберге.

Роторный двигатель — Википедия

Материал из Википедии — свободной энциклопедии

Роторный двигатель — наименование семейства близких по конструкции тепловых двигателей, объединённых ведущим признаком — типом движения главного рабочего элемента. Роторный двигатель внутреннего сгорания (ДВС) — тепловой двигатель, в котором главный подвижный рабочий элемент двигателя — ротор — совершает вращательное движение.

Двигатели должны давать на выходе вращательное движение главного вала. Именно этим роторные ДВС отличаются от наиболее распространенных сегодня поршневых ДВС, в которых главный подвижный рабочий элемент (поршень) совершает возвратно-поступательные движения. В роторных моторах, где главный рабочий элемент и так вращается, не требуется дополнительных механизмов для получения вращательного движения. В поршневых же моторах приходится применять громоздкие и сложные кривошипно-шатунные механизмы для преобразования возвратно-поступательного движения поршня во вращательное движение коленчатого вала.

С древности известны колеса ветряных и водяных мельниц, которые можно отнести к примитивным роторным двигательным механизмам. Самый первый тепловой двигатель в истории — эолипил Герона Александрийского (I в. н. э) также относится к роторным двигателям. В XIX веке, вместе с массовым появлением поршневых паровых машин, начинают создаваться и активно использоваться и роторные паровые двигатели. К ним можно отнести как паровые роторные машины с непрерывно открытыми в атмосферу камерами расширения — это паровые турбины, так и паровые машины с герметично запираемыми камерами расширения: к ним, например, можно отнести «коловратную машину» Н. Н. Тверского, которая успешно эксплуатировалась во многих экземплярах в конце XIX века в России.

С началом массового применения ДВС в первые десятилетия XX века начались и работы по попыткам создать эффективный роторный ДВС. Однако эта задача оказалась большой инженерной трудностью, и лишь в 1930-х годах была создана работоспособная дизельная турбина, которая по классификации относится к роторным ДВС с непрерывно открытой в атмосферу камерой сгорания.

Работоспособный роторный ДВС с герметично запираемой камерой сгорания удалось создать лишь в конце 1950-х годов группе исследователей из немецкой фирмы NSU, где Вальтер Фройде и Феликс Ванкель разработали схему роторно-поршневого двигателя.

В отличие от газовых турбин, которые широко и массово применяются уже более 50 лет, роторный двигатель Ванкеля и Фреде не показал очевидных преимуществ перед поршневыми ДВС, а также имел заметные недостатки, которые и сдерживают массовое применение этих моторов в промышленности. Но потенциально широкий набор возможных конструктивных решений создают широкое поле для инженерных поисков, которые уже привели к появлению таких конструкций, как роторно-лопастной двигатель Вигриянова, трёхтактный и пятитактный роторные двигатели Исаева и 2-тактный роторно-поршневой двигатель

Главное деление роторных двигателей происходит по типу работы камеры сгорания — запирается она на время герметично, или имеет постоянную связь с атмосферой. К последнему типу относятся газовые турбины, камеры охлаждения которых отделены от выхлопного сопла (от атмосферы) лишь густым «частоколом» лопастей роторной крыльчатки.

В свою очередь, роторные ДВС с герметично запираемыми камерами сгорания делятся на 7 различных конструкционных компоновок:

  1. роторные двигатели с неравномерным разнонаправленным (возвратно-вращательным) движением главного рабочего элемента;
  2. роторные двигатели с неравномерным однонаправленным (пульсирующе-вращательным) движением главного рабочего элемента;
  3. роторные двигатели с простым и равномерным вращательным движением главного рабочего элемента и с уплотнительными заслонками-лопастями, движущимися в роторе. Частный случай — с заслонками-лопастями, отклоняющимися на шарнирах на роторе;
  4. роторные двигатели с простым и равномерным вращательным движением главного рабочего элемента и с уплотнительными заслонками, движущимися в корпусе;
  5. роторные двигатели с простым и равномерным вращательным движением главного рабочего элемента и с использованием такого же простого вращательного движения уплотнительных элементов;
  6. роторные двигатели с простым вращательным движением главного рабочего элемента, без применения отдельных уплотнительных элементов и спиральной организацией формы рабочих камер;
  7. роторные двигатели с планетарным вращательным движением главного рабочего элемента и без применения отдельных уплотнительных элементов.

Роторные двигатели Фройде и Ванкеля,и 2-тактный роторно-поршневой двигатель, которые не вполне корректно с технической точки зрения называют «роторно-поршневыми», относятся к 7-й классификационной группе.

  • Н. Ханин, С. Чистозвонов. Автомобильные роторно-поршневые двигатели. — М., 1964.
  • Е. Акатов, В. Бологов и др. Судовые роторные двигатели. — Л., 1967.

Двигатель Ванкеля с двенадцатью роторами — e-fee.ru

Двигатель Ванкеля с двенадцатью роторами
Изобретатель Тайсон Гэрвин мечтает изменить мир гонок. Для начала — гонок на воде. Его роторный мотор с 12 секциями, размещёнными в три ряда, предназначен для скоростных катеров.

Но автомобили-монстры мы держим в уме: уж очень необычные получаются характеристики у двигателя, названного R12. Строго говоря, исходный образец был готов ещё год назад. Но он служил лишь для проверки работоспособности идеи и был оснащён карбюратором. Теперь же новатор сделал то, на что рассчитывал с самого начала, — снабдил своё чудище распределённым впрыском.

Основные детали те же, что у простых двигателей Ванкеля, – треугольные роторы, эксцентриковые валы, корпуса секций. Но здесь всё соединено в диковинную систему. Набор шестерён на одном конце общего блока сводит тягу с трёх эксцентриковых валов на общий выходной вал (нижний центральный на правом снимке).
Гэрвин, участник трансокеанских гонок на катерах, мечтал получить компактный и мощный агрегат, который примерно вписывался бы в габариты джиэмовских биг-блоков. За несколько лет работы изобретатель рассмотрел и отверг 100 вариантов, пока не пришёл к схеме с тремя рядами по четыре ротора, хотя и тут пришлось поломать голову над размещением впускных и выпускных патрубков.
В итоге длина двигателя составляет 76 см, ширина — 79 см, высота — 61 см, рабочий объём — 15,7 л, вес — 377 кг. Полагаете, это много? Учтите, что в атмосферном варианте он выдаёт 1140 л.с. И американец намерен поставить сюда турбонаддув. В зависимости от его давления с R12 можно будет снять от 2400 до 5400 л.с. 
Последняя цифра достижима только с топливом с октановым числом 116, и при этом ресурс будет ограничен несколькими гонками. Крутящий момент тоже неплох. На прошлогоднем образце испытатель получал на стенде 1105 Н•м, не поднимая обороты выше 3200 об/мин. А ведь конструкция рассчитана на 9000 в нормальном режиме и 11 000 оборотов — в гоночном. Теперь Гэрвину предстоит проверить агрегат в новом варианте с электронным впрыском топлива, а потом добавить турбокомпрессор.

Author:

Отправить ответ

avatar
  Подписаться  
Уведомление о