Регулятор тока для зарядного устройства: Простое, автомобильное ЗУ на тиристоре с регулировкой тока 0…10 А

Содержание

Простое, автомобильное ЗУ на тиристоре с регулировкой тока 0…10 А

Сегодня нет недостатка в продаже зарядных устройств для свинцово-кислотных автомобильных аккумуляторов. Рынок наполнен различными моделями зарядных устройств от простых до сложных, автоматических и с ручным управлением.

Можно даже заказать готовые платы или DIY-наборы для самостоятельной сборки на Aliexpress, но результат может быть очень сомнителен.

Самостоятельное изготовление зарядного устройства, при наличии хотя бы базовых знаний по радиоэлектронике и основам пайки, не составляет особого труда. Большинство схем зарядных устройств просты в понимании и легки в настройке. Здесь вопрос можно поставить несколько иначе: целесообразность самостоятельного изготовления. Если говорить о схемах, где в качестве начального понижения напряжения питания используется силовой трансформатор, то именно от его наличия и зависит целесообразность сборки зарядного устройства.

Потому, как цены на трансформаторы промышленного изготовления мощностью от 100 Вт, довольно высоки и специально покупать его, дело сомнительное.

А вот если есть в наличии такой трансформатор или хотя бы железо подходящей мощности с первичной обмоткой, то здесь уже вопросов не возникает.

Конструкция зарядного устройства, которую я хочу предложить Вам для повторения, как раз основана на понижении сетевого напряжения с помощью силового трансформатора, напряжение на вторичной обмотке которого лежит в диапазоне от 18 до 22 В.

Естественно трансформатор должен иметь соответствующую мощность, чтобы обеспечить конечный зарядный ток для аккумуляторной батареи. Данная схема рассчитана на максимальный зарядный ток в 10 А. поэтому и трансформатор должен обеспечивать выходной ток вторичной обмотки от 10 А. Схема позволяет регулировать зарядный ток практически от нулевого значения до максимального (здесь от 0 до 10 А). Регулирующий элемент — мощный тиристор.

Форма зарядного тока для этой схемы — импульсы сетевого выпрямленного напряжения со вторичной обмотки трансформатора Т1. Регулировка зарядного тока осуществляется путём изменения ширины этих импульсов.

Существует мнение, что именно такой режим заряда аккумулятора позволяет продлить его срок службы, препятствуя образованию сульфата свинца на его пластинах.

Введите электронную почту и получайте письма с новыми поделками.

Глядя на схему, первое на что обращаешь внимание, это отсутствие сглаживающего конденсатора после диодного моста VD1. На самом деле, в этой схеме это принципиально важно. Сама схема зарядного устройства представляет собой не что иное, как регулятор мощности с фазоимпульсным управлением. VT1 и VT2 включены по схеме одно переходного транзистора. Время, за которое они переключаются определяется зарядом конденсатора С1. А время за которое конденсатор С1 зарядится, зависит от сопротивления резисторов, через которые он подключен к напряжению питания — в схеме это R1R2. Резистор R1 у нас переменный, значит этим временем можно управлять. Путём заряда-разряда, переключения VT1VT2 и формируется управляющий импульс на тиристоре VS1.

Длительность (ширина) управляющего импульса определяет время, в течении которого тиристор VS1 находится в активном режиме до перехода напряжения к нулю и на аккумуляторную батарею поступает зарядный ток. Средний зарядный ток на АКБ равен среднему времени длительности этих импульсов. Для наглядности ниже представлены три осциллограммы, соответствующие трём положениям движка резистора R1 — двум крайним и среднему. На осциллограммах представлены графики напряжений с управляющего электрода VS1 (управляющий импульс) и сетевого выпрямленного напряжения.

Если бы после диодного моста VD1 стояла сглаживающая ёмкость, то первый же управляющий импульс открыл бы тиристор, а т.к. напряжение всегда отличается от нуля, закрыть бы его было бы нечем.

Печатная плата (можно скачать) выполнена из фольгированного стеклотекстолита в одностороннем варианте.

Для контроля процесса заряда АКБ необходима стрелочная измерительная головка с соответствующим шунтом на ток 10-15 А. Цифровые индикаторы могут давать в таком режиме измерения погрешность. Тиристор VS1 вместе с платой крепят на радиаторе площадью 400 см2. При правильном монтаже и исправных деталях схема в наладке не нуждается.

схемы на самодельное зарядное устройство для АКБ

Видео «Пошаговая инструкция по сборке зарядного устройства»

Итог

Это только несколько видов зарядных устройств, которые можно изготовить в домашних условиях из подручных средств, хотя вариантов их значительно больше.

Особенно это касается зарядных устройств, которые изготавливаются из блоков питания компьютера.

Если у вас есть опыт в изготовлении таких устройств делитесь им в комментариях, многие буду очень признательны за это.

Как заряжать аккумулятор от самодельного устройства

Зарядка аккумулятора самодельным устройством ничем не отличается от зарядки промышленным прибором.

  1. Выводим регулятор тока в «0».
  2. Подключаем заряжаемый аккумулятор к клеммам ЗУ.
  3. Подаём питание на ЗУ.
  4. Устанавливаем необходимый ток зарядки.
  5. При напряжении 13,2–13,4 В на клеммах батареи уменьшаем ток вдвое.
  6. При напряжении на клеммах 13,8 В выводим регулятор тока в «0», выключаем питание ЗУ, отключаем аккумулятор.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

В двух последних конструкциях контролировать напряжение на батарее не нужно — как только аккумулятор зарядится, ток зарядки станет равным нулю.

Вот в принципе и всё о самодельных зарядных устройствах. Прочитав этот материал, мы без труда сможем подобрать наиболее подходящую схему зарядного устройства и повторить её.

Трансформаторные устройства

Простейшая схема устройства с трансформатором.

Рис.4

Ее недостатком является необходимость ограничения тока в выходной цепи и связанные с этим большие потери мощности и нагревание резисторов. Поэтому для регулировки тока используют конденсаторы.

Рис.5

Теоретически, рассчитав номинал конденсатора, можно не использовать силовой трансформатор, как показано на схеме.

Рис.6

При покупке конденсаторов следует выбирать соответствующий номинал с напряжением 400 В и более.

В практике большее применение получили устройства с регулированием тока.

Рис.7

Можно выбрать схемы импульсных самодельных зарядных устройств для автомобильного аккумулятора. Они более сложны схемотехнически, требуют определенных навыков при монтаже. Поэтому, если вы не обладаете специальными навыками, лучше купить заводской блок.

Ответы на 5 часто задаваемых вопросов

  1. Потребуется ли производить какие-то дополнительные меры, перед тем как приступать к зарядке аккумуляторной батареи на своём автомобиле?
    – Да, потребуется почистить клеммы, поскольку во время работы на них появляются кислотные отложения. Контакты очень хорошо нужно почистить, чтобы ток без трудностей поступал к батарее. Иногда автомобилисты используют смазку для обработки клемм, ее тоже следует убрать.
  2. Чем протереть клеммы зарядных устройств? — Специализированное средство можно купить в магазине или приготовить самостоятельно. В качестве самостоятельно изготовленного раствора используют воду и соду. Компоненты смешиваются и перемешиваются. Это отличный вариант для обработки всех поверхностей. Когда кислота соприкоснется с содой, то произойдет реакция и автомобилист обязательно ее заметит. Это место и потребуется тщательно протереть, чтобы избавиться от всей кислоты. Если клеммы ранее обрабатывались смазкой, то она убирается любой чистой тряпкой.
  3. Если на аккумуляторе стоят крышки, то их нужно вскрывать перед началом зарядки? — Если крышки имеются на корпусе, то их обязательно снимают.
  4. По какой причине необходимо откручивать крышечки с аккумуляторной батареи? — Это нужно, чтобы газы, образующиеся в процессе зарядки, беспрепятственно выходили из корпуса.
  5. Есть необходимость обращать внимание на уровень электролита в аккумуляторной батарее? – Это делается в обязательном порядке. Если уровень ниже требуемого, то необходимо добавить дистиллированную воду внутрь аккумулятора. Уровень определить не составит труда – пластины должны быть полностью покрыты жидкостью.

Топ-3 производителей зарядных устройств

Если нет желания или возможности своими руками собрать ЗУ, то обратите внимание на следующих производителей:

  1. Стек.
  2. Сонар.
  3. Hyundai.

Фирмы хорошо зарекомендовали себя на рынке, а потому о надежности и функциональности переживать при покупке не следует.

Схема ЗУ Рассвет 2

Схема ЗУ Рассвет 2

Посмотрите на картинке на схему зарядного устройства Рассвет 2. Она составлена по оригинальному ЗУ. Если освоить эту схему, то самостоятельно получится создать качественную копию, ничем не отличающуюся от оригинального образца. Конструктивно устройство представляет собой отдельный блок, закрывающийся корпусом, чтобы защитить электронику от влаги и воздействия плохих погодных условий. На основание корпуса необходимо подсоединить трансформатор и тиристоры на радиаторах. Потребуется плата, что будет стабилизировать заряд тока и управлять тиристорами и клеммы.

1 схема промышленного ЗУ

Посмотрите на схему промышленного зарядного устройства от оборудования Барс 8А. Трансформаторы используются с одной силовой обмоткой на 16 Вольт, добавляется несколько диодов vd-7 и vd-8. Это необходимо для того, чтобы обеспечить мостовую схему выпрямителя от одной обмотки.

1 схема инверторного устройства

Инверторный вид

Посмотрите на картинке схему инверторного зарядного устройства. Это приспособление перед началом зарядки разряжает аккумуляторную батарею до 10,5 Вольт. Ток используется с величиной С/20:  «C» обозначает ёмкость установленного аккумулятора. После этого процесса напряжение повышается до 14,5 Вольт, при помощи разрядно-зарядного цикла. Соотношение величины заряда и разряда составляет десять к одному.

1 схема мощного ЗУ

Мощное ЗУ

Посмотрите на картинке на схему мощного зарядного устройства для автомобильного аккумулятора. Приспособление применяется для кислотных АКБ, имеющих высокую емкость. Устройство с легкостью заряжает автомобильный аккумулятор, имеющий емкость в 120 А. Выходное напряжение устройство регулируется самостоятельно. Оно составляет от 0 до 24 вольт. Схема примечательна тем, что в ней установлено мало компонентов, но дополнительные настройки при работе она не требует.

2 схемы советского ЗУ

Советское ЗУ

Многие уже могли видеть советское зарядное устройство. Оно похоже на небольшую коробку из металла, и может показаться совсем ненадежной. Но это вовсе не так. Главное отличие советского образца от современных моделей — надежность. Оборудование обладает конструктивной мощностью. В том случае, если к старому устройству подсоединить электронный контроллер, то зарядник получится оживить. Но если под рукой такого уже нет, но есть желание его собрать, необходимо изучить схему.

К особенностям их оборудования относят мощный трансформатор и выпрямитель, с помощью которых получается быстро зарядить даже сильно разряженную батарею. Многие современные аппараты не смогут повторить этот эффект.

Топ 4 схем импульсных ЗУ

Импульсные ЗУ

1 упрощенная схема с сайта Паяльник

Схема

1 схема на интеллектуальное ЗУ

Интеллектуальное ЗУ

4 подробные схемы защиты для ЗУ

Защита

Особенности функционирования аккумуляторов

Не все водители знают о том, что в автомобилях используются свинцово-кислотные аккумуляторы. Такие АКБ отличаются своей выносливостью, поэтому способны служить до 5 лет.

Для зарядки свинцовых АКБ используется ток, который равняется 10% от общей ёмкости аккумулятора. Это значит, что для зарядки аккумулятора, ёмкость которого составляет 55 А/ч, требуется зарядный ток в 5,5 А. Если подать очень большой ток, то это может привести к закипанию электролита, что, в свою очередь, приведёт к снижению срока службы устройства. Маленький ток зарядки не продлевает срок службы АКБ, однако он не способен негативно отражаться на целостности устройства.

Это интересно! При подаче тока 25 А происходит быстрая подзарядка аккумулятора, поэтому уже через 5-10 минут после подключения ЗУ с таким номиналом можно запускать двигатель. Такой большой ток выдают современные инверторные зарядные устройства, только он негативно сказывается на сроке службы аккумулятора.

При зарядке АКБ происходит протекание зарядного тока обратно рабочему. Напряжение для каждой банки не должно быть выше 2,7 В. В АКБ на 12 В установлено 6 банок, которые между собой не связаны. В зависимости от напряжения аккумулятора, отличается количество банок, а также необходимое напряжение для каждой банки. Если напряжение будет больше, то это приведёт к возникновению процесса разложения электролита и пластин, что способствует выходу из строя АКБ. Чтобы исключить возникновение процесса закипания электролита, напряжение ограничивают на 0,1 В.

Батарея считается разряженной, если при подключении вольтметра или мультиметра, приборы показывают напряжение 11,9-12,1 В. Такой аккумулятор следует немедленно подзарядить. Заряженный аккумулятор имеет напряжение на клеммах 12,5-12,7 В.

Пример напряжения на клеммах заряженного аккумулятора

Процесс заряда представляет собой восстановление израсходованной ёмкости. Зарядка аккумуляторов может выполняться двумя способами:

  1. Постоянный ток. При этом регулируется зарядный ток, значение которого составляет 10% от ёмкости устройства. Время заряда составляет 10 часов. Напряжение заряда при этом изменяется от 13,8 В до 12,8 В за всю длительность зарядки. Недостаток такого способа заключается в том, что необходимо контролировать процесс зарядки, и вовремя отключить зарядное устройство до закипания электролита. Такой способ является щадящим для АКБ и нейтрально влияет на их срок службы. Для воплощения такого способа используются трансформаторные зарядные аппараты.
  2. Постоянное напряжение. При этом на клеммы АКБ подаётся напряжение величиной 14,4 В, а ток изменяется от больших значений к меньшим автоматически. Причём это изменение тока зависит от такого параметра, как время. Чем дольше заряжается АКБ, тем ниже становится величина тока. Перезаряд АКБ получить не сможет, если только не забыть выключить аппарат и оставить его несколько суток. Преимущество такого способа в том, что уже через 5-7 часов аккумулятор зарядится на 90-95%. АКБ можно также оставлять без присмотра, поэтому такой способ пользуется популярностью. Однако мало кому из автовладельцев известно о том, что такой метод зарядки является «экстренным». При его использовании существенно снижается срок службы АКБ. Кроме того, чем чаще осуществлять зарядку таким способом, тем быстрее будет разряжаться устройство.

Теперь даже неопытный водитель может понять, что если нет необходимости торопиться с зарядкой АКБ, то лучше отдать предпочтение первому варианту (по току). При ускоренном восстановлении заряда снижается срок службы устройства, поэтому высока вероятность того, что уже в ближайшее время понадобится покупать новый аккумулятор. Исходя из вышесказанного, в материале будут рассматриваться варианты изготовления зарядных устройств по току и напряжению. Для изготовления можно использовать любые подручные устройства, о которых поговорим далее.

Требования к зарядке АКБ

Перед проведением процедуры изготовления самодельного зарядного для АКБ необходимо обратить внимание на следующие требования:

  1. Обеспечение стабильного напряжения 14,4 В.
  2. Автономность устройства. Это означает, что самодельное устройство не должно требовать присмотра за ним, так как зачастую АКБ заряжается ночью.
  3. Обеспечение отключения зарядного устройства при увеличении зарядного тока или напряжения.
  4. Защита от переполюсовки. Если устройство будет подключено к АКБ неправильно, то должна срабатывать защита. Для реализации в цепь включается предохранитель.

Переполюсовка представляет собой опасный процесс, в результате которого АКБ может взорваться или закипеть. Если аккумулятор исправен и лишь слегка разряжен, то при неправильном подключении зарядного  устройства произойдёт повышение тока заряда выше номинального. Если же АКБ разряжена, то при переполюсовке наблюдается увеличение напряжения выше заданного значения и как итог — электролит закипает.

Как заряжать аккумулятор от самодельного устройства

Отдельно следует разобраться в вопросе о том, как же правильно заряжать аккумулятор самодельным зарядным устройством. Для этого рекомендуется придерживаться следующих рекомендаций:

  1. Соблюдение полярности. Лучше лишний раз проверить полярность самодельного устройства мультиметром, нежели «кусать локти», потому что причиной выхода из строя АКБ стала ошибка с проводами.
  2. Не проверять АКБ при помощи замыкания контактов. Такой способ только «убивает» устройство, а не оживляет его, как указывается во многих источниках.
  3. Включать устройство в сеть 220 В следует только после того, как выводные клеммы будут подключены к аккумулятору. Аналогичным образом осуществляется и отключение устройства.
  4. Соблюдение техники безопасности, так как работа осуществляется не только с электричеством, но и с аккумуляторной кислотой.
  5. Процесс зарядки АКБ необходимо контролировать. Малейшая неисправность может стать причиной серьёзных последствий.

Исходя из вышеуказанных рекомендаций, следует сделать вывод о том, что самодельные устройства хоть и являются приемлемыми, но всё же не способны заменить заводские. Изготавливать самодельную зарядку не безопасно, особенно если вы не уверены в том, что сможете это правильно сделать. В материале представлены самые простые схемы реализации зарядных устройств для автомобильных аккумуляторов, которые всегда будут полезны в хозяйстве.

  • Автор: Андрей
  • Распечатать
Оцените статью:

(40 голосов, среднее: 4.1 из 5)

Обсуждения закрыты для данной страницы

Принцип работы автомобильного аккумулятора

Аккумулятор автомобиля подает питание к электронике, за счёт чего и происходят автоматизированные процессы во время езды.

Стандартный аккумулятор оснащен шестью элементами, каждый из которых имеет номинально значение 2,2 вольт. Элементы идут последовательно один за другим и представляют собой непрерывное звено.

Специальный раствор электролита принимает участие в их работе. Он устойчив к низким и высоким температурам.

Во время работы аккумулятора происходят сложные химические и физические реакции, которые и приводят в действие всю механику в машине.

Рейтинг зарядных устройств

Вашему вниманию представлен рейтинг зарядных устройств для автомобильных аккумуляторов.

Aurora Sprint 6

Aurora Sprint 6 – довольно известная марка немецкого производства. Изготовитель уверяет, что это качественная продукция. Она имеет микропроцессорное управление, которое позволяет избежать резких скачков энергии, а также обеспечивает надёжный контакт с электропроводами.

На СТО диагностика такого зарядного происходит быстро, и в случае поломки, вам не придётся отдавать большие деньги за ремонт.

FUBAG MICRO 80/12

FUBAG MICRO 80/12 – популярный шведский бренд среди автолюбителей. В своей стране оно считается лучшим зарядным устройством для автомобильного аккумулятора. Диапазон ёмкости составляет от 3 до 75 ампер-часов.

Устройством крайне легко управлять с помощью одной кнопки MODE. Зарядное устройство удобно в использовании и непременно станет незаменимой вещью для дальней поездки.

CTEK MXS 3.8

CTEK MXS 3.8 – его главной особенностью является влагозащита, а также крепкий корпус, который способен выдержать сильные удары и нагрузки.

Следует отметить, что это аккумулятор малой ёмкости и поэтому хватать его будет на небольшое количество времени. Но как показывает практика, даже такая мелочь никак не влияет на его работу и популярность.

Заключение

В заключении хотим сказать, что зарядное устройство для автомобильного аккумулятора эта та вещь, с которой работать надо максимально осторожно.

Нарушение элементарной техники безопасности может привести к удару тока под высоким напряжением, сильным ожогам и другим неприятным последствиям. Будьте предельно осторожны и следите за состоянием своего автомобиля.

Фото зарядного устройства для автомобильного аккумулятора своими руками

Заметки для мастера — Зарядные устройства для АКБ

        Компактное зарядное устройство на тиристоре

На рис.1 показана схема простого зарядного устройства для автомобильного аккумулятора.

Рис.1
При достижении некоторого значения напряжения (задается цепью R2,V1,V2), зарядное уст-во на тринисторе отключает его от аккумулятора. Образцовое напряжение на аккумулятора сравнивается при каждом положительном полупериоде пока тиристор закрыт. Когда аккумулятор разряжен тиристор открывается в моменты каждого положительного полупериода с некоторой задержкой, но только как аккумулятор будет близок к полной зарядке тиристор будет открывать с большей задержкой и при достижении определенного значения когда аккумулятор полностью зарядится, тиристор перестанет открываться. Сравнение напряжений происходит в цепи управляющего электрода тиристора.
Напряжение на выходе тиристора зависит от его параметров, поэтому возможно подборка тиристора если напряжение 13,5В окажется немного заниженным.
Трансформатор любой на напряжение во вторичной обмотке 20В исходя из значения зарядного тока.

Борноволоков Э.П.,Флоров В.В. Радиолюбительские схемы — 3-е издание, перераб. и доп. — К. :Технiка, 1985

На рисунке 2, показана схема автоматического зарядного уст-ва, которое позволяет заряжать автомобильный аккумулятор при разряде и прекращать зарядку при полном заряде аккумулятора. Такое уст-во желательно использовать для аккумуляторов которые находятся при длительном хранении.

Переключение в режим заряда производится путем измерения напряжения на клеммах аккумулятора. Заряд начинается когда напряжение на клеммах аккумулятора становится ниже 11,5 В и прекращается при достижении 14 В.

ОУ в схеме служит как прецизионный компаратор напряжения, который контролирует уровень напряжения батареи. Его инвертирующий вход получает опорное напряжение 1,8 В, а на неинвертирующий вход через делитель подается напряжение аккумулятора около 2В (при полном заряде аккумулятора). В этом случае реле отключено, так как выход ОУ имеет высокий уровень напряжения. При падении напряжения на клеммах аккумулятора, напряжение на неинвертирующем входе ОУ становится 1,8 В, компаратор переключается, это приводит к включению реле, аккумулятор начинает заряжаться.


После сборки зарядного уст-ва его необходимо отрегулировать:

    1. Разрядите аккумулятор до напряжения 11,5 В
    2. Подключите зарядное уст-во к аккумулятору
    3. Отрегулируйте R6 до срабатывания реле
    4. При заряде аккумулятора проведите замеры напряжения на его клеммах, при достижении 14 В отрегулируйте потенциометр R5 до отключения реле
    При необходимости повторите процесс настройки

На основе стабилизатора LM317 можно сделать простое и эффективное зарядное уст-во. Предложенное уст-во предназначено для зарядки аккумуляторов 12 В. Максимальный ток зарядки 1,5А. Ток зарядки можно регулировать при помощи потенциометра R5. По мере зарядки аккумулятора зарядное уст-во снижает ток зарядки. Стабилизатор LM317 должен быть установлен на радиатор.

         Узел индикации тока заряда


        Если зарядное устройство для автомобильных аккумуляторов не имеет амперметра, трудно гарантировать их надежную зарядку. Возможно ухудшение (пропадание) контакта на батареи, обнаружить которое достаточно трудно. Вместо амперметра на рис.4 предлагается простой индикатор. Он включается в разрыв «плюсового» провода от зарядного устройства к АКБ.


Рис.4

        Схема представляет собой транзисторный ключ VT1, включающий светодиод HL1, когда через R1 протекает зарядный ток. В этом случае падение напряжения на резисторе R1 (более 0,6В) достаточно для открывания транзистора VT1 для зажигания HL1. Для конкретного аккумулятора номинал R1 подбирается так, чтобы светодиод зажигался при требуемом зарядном токе. По яркости его свечения можно приблизительно оценить зарядный ток. Резистор R1 – проволочный, изготавливается из 6…12 витков обмоточного провода диаметром 1мм. Можно использовать проволоку с высоким удельным сопротивлением (нихром) или резистор промышленного изготовления, например, ПЭВР-10.  

 

          Зарядное устройство с автомобильным регулятором напряжения

 

        Простое зарядное устройство, показанное на рис.5, послужит для зарядки аккумулятора, и его долгосрочным хранением в рабочем состоянии.

 

Рис.5

        Со вторичной обмотки трансформатора Т1, ток в которой ограничен включением последовательно с первичной обмоткой балластного конденсатора (С1 или С1+С2), ток подается на диодно – тиристорный мост, нагрузкой которого является аккумуляторная батарея (GB1). В качестве регулирующего элемента применен автомобильный регулятор напряжения генератора (РНГ) на 14 В любого типа, предназначенный для генераторов с заземленной щеткой. Таким образом на аккумуляторной батарее поддерживается напряжение 14 В при зарядном токе, определяемом емкостью конденсатора С2, которая ориентировочно рассчитывается по формуле:

                    3200 .Iз .U2

С (мкФ) = ———————— ,

                           U1 2  

где Iз – зарядный ток (А), U2 – напряжение вторичной обмотки при «нормальном»включении трансформатора (В), U1 – напряжение сети.

        Настройки устройство практически не требует. Возможно, придется уточнить емкость конденсатора, контролируя ток амперметром. При этом необходимо замкнуть накоротко выводы 15 и 67 (Б, В и Ш).

 

Из ж.(РЛ 5-99)


 

          Реверсирующая приставка к зарядному устройству

 

        Эта приставка, схема которого показана на рис.6, выполнена на мощном составном транзисторе и предназначена для зарядки автомобильной аккумуляторной батареи напряжением 12В переменным асимметричным током. При этом обеспечивается автоматическая тренировка батареи, что уменьшает склонность ее к сульфатации и продляет срок службы. Приставка может работать совместно практически с любым двуполупериодным импульсным зарядным устройством, обеспечивающим необходимый ток зарядки.

 

Рис.6

        При соединении выхода приставки с батареей (зарядное устройство не подключено), когда конденсатор С1 еще разряжен, начинает течь начальный зарядный ток конденсатора через резистор R1, эмиттерный переход транзистора VT1 и резистор R2. Транзистор VT1 открывается, и через него протекает значительный разрядный ток батареи, быстро заряжающий конденсатор С1. С увеличением напряжения на конденсаторе ток разрядки батареи уменьшается практически до нуля.

        После подключения зарядного устройства к входу приставки появляется зарядный ток батареи, а также небольшой ток через резистор R1 и диод VD1. При этом транзистор VT1 закрыт, поскольку падения напряжения на открытом диоде VD1 недостаточно для открывания транзистора. Диод VD3 также закрыт, так как к нему через диод VD2 приложено обратное напряжение заряжаемого конденсатора С1.

        В начале полупериода выходное напряжение зарядного устройства складывается с напряжением на конденсаторе, и зарядка батареи происходит через диод VD2, что приводит к возврату энергии, накопленной конденсатором, в батарею. Далее конденсатор полностью разряжается и открывается диод VD3, через который теперь продолжается зарядка батареи. Снижение выходного напряжения зарядного устройства в конце полупериода до уровня ЭДС батареи и ниже приводит к смене полярности напряжения на диоде VD3, его закрыванию и прекращению зарядного тока.

        При этом вновь открывается транзистор VT1 и происходит новый импульс разрядки батареи и зарядки конденсатора. С началом нового полупериода выходного напряжения зарядного устройства начинается очередной цикл зарядки батареи.

        Амплитуда и длительность разрядного импульса батареи зависят от номиналов резистора R2 и конденсатора С1. Они выбраны в соответствии с рекомендациями.

        Транзистор и диоды размещают на отдельных теплоотводах площадью не менее 120 см2  каждый.

        Кроме указанного на схеме транзистора КТ827А, можно использовать КТ827Б, КТ827В. В приставке могут быть применены транзисторы КТ825Г – КТ825Е и диоды КД206А, но при этом полярность включения диодов, конденсатора, а также входных и выходных зажимов приставки нужно изменить на противоположную.

 

Фомин.В

г. Нижний Новгород 


 

          Простое автоматическое зарядное устройство

 

        Обычное зарядное устройство для зарядки стартерных батарей состоит из трансформатора, обмотка которого имеет отводы, диодного однополупериодного выпрямителя и амперметра, измеряющего зарядный ток. Такое зарядное устройство не может контролировать процесс зарядки и не умеет восстанавливать засульфатированные аккумуляторы.

 

Рис.7

        Если на выходе такого зарядного устройства включить узел, схема которого показана на рис.7, то устройство станет автоматическим и научится восстанавливать аккумуляторы тренировочным током.

        При подключении аккумулятора тиристор открывается только на положительных полупериодах пульсирующего напряжения. На отрицательных (когда выпрямительный диод ЗУ закрыт) тиристор закрыт и происходит тренировочная разрядка аккумулятора через резистор R3.

        В начале каждого полупериода, еще до открывания тиристора, происходит измерение напряжения на аккумуляторе. Если это напряжение полностью заряженного аккумулятора (13,5 В), то стабилитрон открывается и не дает открываться тиристору.

        По мере заряда батареи открывание тиристора происходит ближе к вершине пульсирующего напряжения. Закрывание тиристора происходит на спаде полуволны пульсирующего напряжения, когда это напряжение становится ниже напряжения на аккумуляторе.

 

Каравкин В.

Литература:

Васильев В.

«Зарядное устройство»

ж. Радио №3 1976 г.   


 

          Устройство дозарядки аккумулятора автомобиля

 

        В том случае, если автомобиль длительное время простаивает без движения, происходит постепенный разряд его аккумулятора. Особенно это ощущается при хранении автомобиля в неотапливаемых гаражах в зимнее время – при отрицательных температурах. Запуск двигателя сопряжен с поисками пускового устройства у знакомых автолюбителей или попыткой получить от них заряженный аккумулятор во временное пользование. Избежать эту проблему помогает устройство дозарядки аккумулятора автомобиля. Простота схемы и отсутствие дефицитных радиокомпонентов делают ее доступной для повторения.

        Общеизвестно, что все химические источники тока подвержены саморазряду. Степень саморазряда зависит от ряда причин. Причины обусловленные конструктивными особенностями аккумуляторов, в данной статье не рассматриваются – автомобилистам приходится эксплуатировать те аккумуляторы, которые имеются на их транспортных средствах. Технологическая (для автомобилей) причина разряда аккумулятора обусловлена условиями хранения аккумулятора. От этого будет зависеть как срок службы аккумулятора, так и степень его готовности к работе в электрооборудовании автомобиля.

        Ток саморазряда автомобильных аккумуляторов во многом зависит от «возраста» аккумулятора. Приблизительно можно считать, что ток саморазряда аккумулятора при хранении в неотапливаемом помещении или на открытом воздухе составляет до 180 мА. Приблизительно такой ток подзаряда аккумулятора обеспечит его постоянную готовность к работе.

        В схеме (рис.8) маломощный трансформатор TR1 понижает напряжение 220 В примерно до 12 В.

 

Рис.8

Переменное напряжение выпрямляется мостовым выпрямителем D1 и через резистор R3 подается на выход «OUT». Возможно использовать автомобильный штекер XR1, который можно вставить в гнездо прикуривателя автомобиля. При подаче питания на схему зажигается зеленый (GREEN) светодиод D2.

        При протекании тока подзаряда аккумулятора автомобиля на резисторе R3 создается падение напряжения. Будучи приложенным к базе транзистора Т1 через резистор R4 это напряжение вызывает насыщение транзистора и зажигание светодиода D3 (RED).

 

Яковлев Е.Л.

г. Ужгород

(«Радиоаматор» №12, 2009)


 

          Зарядное  устройство для АКБ

 

        При отсутствии полноценного зарядного устройства довольно простой выпрямитель можно изготовить по простой схеме на рис.9.

 

Рис.9

        Заменить полноценное зарядное устройство он не может, так как сила зарядного тока составляет всего 0,4 … 0,5 А, но вполне пригоден для того, чтобы, например, за 2…3 суток довести аккумуляторную батарею до того работоспособного состояния, которое было утрачено за месяцы зимнего бездействия. Выпрямитель собран на четырех кремниевых диодах. Последовательно с ними включена лампа на 220В мощностью 70…100 Вт, ограничивающая зарядный ток. В схеме могут быть использованы диоды, имеющие максимально допустимое обратное напряжение не менее 400 В и средний выпрямительный ток не менее 0,4 А. Подходят диоды Д7Ж, Д226, Д226Д, Д237Б, Д231, Д231Б, Д232 или другие с аналогичными характеристиками.

       При работе с выпрямителем следует соблюдать осторожность, так как все его детали через лампу соединены непосредственно с электросетью и поэтому прикосновение к ним опасно. Если выпрямитель подключен к сети, то не следует прикасаться даже к корпусу аккумуляторной батареи, так как он может быть покрыт тончайшей пленкой электролита – проводника электрического тока. При необходимости измерить напряжение или плотность электролита в аккумуляторной батарее выпрямитель обязательно следует отключить от сети.

 

Горнушкин Ю.

«Практические советы владельцу автомобиля»


 

          Простое подзарядное устройство

 

        Схема представляет собой простой безтрансформаторный источник питания, выдающий постоянное напряжение 14,4 В, при токе до 0,4 А. (рис.10)

 

Рис.10

        Конструкция простая и используется для подзарядки аккумуляторной батареи, которая хранилась длительное время.

       Как показывает практика для восстановления требуется небольшой ток, около 0,1- 0,3 А  (для 6СТ-55). Если хранящийся аккумулятор, периодически, примерно раз в месяц, ставить на такую подзарядку на 2-3 дня, то можно быть уверенным в том, что в любой момент будет готов к эксплуатации, даже через несколько лет такого хранения (проверенно практически).

       Источник построен по схеме параметрического стабилизатора с емкостным балластным сопротивлением. Напряжение от электросети поступает на мостовой выпрямитель VD1…VD4 через конденсатор C1. На выходе выпрямителя включен стабилитрон VD5 на 14,4 В. Конденсатор C1 гасит избыток напряжения  и ограничивает ток до величины не более 0,4 А. Конденсатор C2 сглаживает пульсации выпрямленного напряжения. Аккумуляторная батарея подключается параллельно VD5 .

        Устройство работает следующим образом. При саморазрядке батареи до напряжения ниже 14,4 В начинается её «мягкая» зарядка слабым током, причем величина этого тока находиться в обратной зависимости от напряжения на аккумуляторе. Но в любом случае (даже, при коротком замыкании) не привышает 0,4 А. При зарядке батареи до напряжения 14,4 В зарядный ток прекращается вовсе.

    В устройстве использованы: конденсатор C1 – бумажный БМТ или любой неполярный на 3…5 мкф и напряжение не ниже 300 В, С2 – К50-3 или любой электролитический на 100…500 мкф, на напряжение не ниже 25 В; диоды выпрямителя VD1…VD4 – Д226, КД105, КД208, КД209 и т.п.; стабитрон Д815Е или другие на напряжение 14 -14,5 В при токе не ниже 0,7 А. Смонтировать стабилитрон желательно на теплоотводящей пластине.

      При эксплуатации устройств подобного типа необходимо соблюдать правила безопасности при работе с электроустановками. 

Зарядные устройства

Для аккумуляторов определены условия зарядки: это ток 0,1Q (Q — номинальная ёмкость аккумулятора) в течение 15 ч (напряжение на каждом аккумуляторе в конце зарядки — 1,5 В). Следить за этим, как правило, не получается, возникает необходимость в автоматическом зарядном устройстве (АЗУ), не требующем никакого внимания, работающем по принципу «включил и забыл». Для этого зарядное устройство должно обеспечить указанный режим зарядки до достижения на каждом аккумуляторе напряжения 1,5 В, затем уменьшить зарядный ток до значения 0,01…0,02Q и оставаться в таком состоянии неограниченное время, поддерживая аккумуляторную батарею (АКБ) всегда готовой к работе [1]. Будет удобно, если режим работы АЗУ будет отображаться световой индикацией. Исходя из этой задачи, было разработано автоматическое устройство (рис. 1), содержащее минимум деталей широкого применения — всего потребовались четыре транзистора, которые уже в то время были устаревшими, но подходящими по параметрам для работы в данном устройстве.

Устройство работает по сей день, причём постоянно включённое, по крайней мере, около 20 последних лет. Радиоприёмник уже с перестроенным УКВ-диапазоном используется ежедневно как радиоточка на кухне. Практикой подтверждается высокая надёжность полупроводниковых приборов, если только они не работают в запредельных режимах и не имеют заводского брака или подделки. Однако при сборке устройства необходимо проверить и измерить параметры каждого элемента, особенно оксидных конденсаторов, которые оказываются самыми ненадёжными элементами. При повторении этого устройства можно применить множество других транзисторов и диодов, чьи предельно допустимые параметры превышают величины, действующие в устройстве.

Питание АЗУ от сети осуществляется через понижающий трансформатор, чем обеспечивается электробезопасность, далее следует выпрямительный мост VD1 -VD4. Если АЗУ будет использоваться для питания радиоприёмника, то для устранения так называемого мультипликативного фона диоды следует шунтировать керамическими конденсаторами. Конденсатор С1 сглаживает пульсации выпрямленного напряжения, его ёмкость должна быть не менее 1000 мкФ на каждые 100 мА потребляемого тока. Образцовое напряжение (9 В) снимается с прецизионного стабилитрона VD5. Резистор R1 определяет его номинальный ток стабилизации (10 мА). Ограничение напряжения на аккумуляторной батарее (АКБ) при достижении полной зарядки осуществляется дифференциальным каскадом VT1VT2 следующим образом. Заданное напряжение, при котором требуется ограничить ток зарядки, определяется делителем напряжения R2R3 и подаётся на базу транзистора VT1, а на базу VT2 поступает напряжение с АКБ, с учётом падения напряжения на диоде VD7, который отключает АЗУ от АКБ при пропадании напряжения в сети. Пока АКБ не зарядилась, напряжение на базе VT2 меньше, чем на базе VT1, и, следовательно, VT2 закрыт и светодиод HL2 не светится. Светится HL1, поскольку VT1 находится в активном режиме. Величина тока определяется сопротивлением резистора R5 и напряжением на базе VT1 и не зависит от напряжения на его коллекторе. Такая схема известна как источник тока (ИТ) [2]. Следовательно, и падение напряжения на резисторе R4 будет стабильным, при этом будет светиться HL1, указывая, что идёт процесс зарядки АКБ. Ток её зарядки стабилен и не зависит от напряжения на АКБ, поскольку транзисторы VT3 и VT4 образуют ИТ.

Особая точность поддержания зарядного тока не требуется, решающее значение имеет ограничение напряжения АКБ при достижении полной зарядки. Точности дифференциального каскада и параметрического стабилизатора напряжения вполне достаточно для решения этой задачи. При достижении напряжения на АКБ, соответствующего полной зарядке, транзистор VT2 переходит в активный режим, появляется его коллекторный ток, начинает светиться светодиод HL2, указывая, что АКБ зарядилась, соответственно ток через VT1 уменьшится, соответственно уменьшится и ток зарядки до величины 0,01…0,02Q, что исключает перезарядку и порчу АКБ. Конденсатор С2 устраняет возможное самовозбуждение, резистор R6 снижает напряжение на коллекторе VT2, а следовательно, и рассеиваемую на нём мощность. Диод VD6 обеспечивает надёжное закрывание транзистора VT4.

Транзистор VT4 можно заменить любым из серий КТ973, КТ814, КТ816 и другими (учитывая ток зарядки и рассеиваемую при этом мощность), VT3 — любым транзистором из серий КТ3102, КТ315, КТ503, а VT1, VT2 — любыми из серий КТ203, КТ208, КТ209, КТ502. Коэффициент передачи тока базы транзисторов — не менее 50.

Если потребуется заряжать АКБ больших ёмкости и (или) напряжения, то можно собрать АЗУ по схеме, изображённой на рис. 2, с применением транзисторов другой структуры как более распространённых. Образцовое и сравниваемое с ним напряжение подают на базы транзисторов дифференциального каскада через делители или непосредственно, в зависимости от напряжения АКБ. Так, если её напряжение меньше 9 В (напряжение стабилизации Д818 = 9 В), то исключают резисторы R9, R11, на базу VT2 напряжение подают через резистор R8, а требуемое значение напряжения окончания зарядки АКБ устанавливают делителем R3R4R5.

Если же напряжение АКБ более 9 В, то исключают резисторы R4, R5, а напряжение окончания зарядки устанавливают делителем R8R9R1 1. Ток делителей выбирают в интервале 0,5…1 мА. Резистором R6 выставляется ток зарядки около 10 мА после определения напряжения на базе транзистора VT1. Подбором резистора R1 устанавливают номинальный ток стабилизации стабилитрона VD5 — 10 мА. Диод VD6 ограничивает обратное напряжение на эмиттерном переходе VT2, что может произойти при коротком замыкании в цепи АКБ.

Транзисторы VT3, VT4, VT5 образуют мощный источник тока [2]. Благодаря первому из них падение напряжения на резисторах R7, R12 можно задать порядка 1 В, что может потребоваться, если напряжение АКБ соизмеримо с напряжением на выходе выпрямителя. При напряжении на АКБ менее 9 В можно исключить транзистор VT3, а падение напряжения на резисторах R7, R12 выбрать равным нескольким вольтам, при этом уменьшится мощность, рассеиваемая на транзисторе VT5, но потребуется резистор R12 соответственно с большей мощностью рассеяния.

Мощность и напряжение на вторичной обмотке понижающего трансформатора Т1, электрические параметры диодов VD1-VD4, VD7, транзистора VT5 определяются ёмкостью и напряжением АКБ. Для обеспечения длительной безотказной работы устройства предельные значения параметров полупроводниковых приборов и резисторов должны превосходить действующие в устройстве значения в 2…3 раза. Если предполагается, что устройство будет работать круглосуточно без надзора, особое внимание следует уделить пожарной безопасности. Трансформатор должен быть достаточной мощности, с надёжной изоляцией и небольшим током холостого хода, свидетельствующем об отсутствии насыщения магнитопровода и достаточном числе витков первичной обмотки. Для определения максимально допустимого сетевого напряжения и выявления короткозамкнутых витков полезно снять характеристику намагничивания трансформатора (зависимость тока холостого хода от напряжения на сетевой обмотке). Резкий рост тока холостого хода допустим только при напряжении на обмотке, превышающем номинальное сетевое на 10% (при номинальном 230 В — это 253 В), что свидетельствует о достаточном числе витков первичной обмотки. Корпус АЗУ также должен удовлетворять требованиям пожарной и электробезопасности.

При налаживании следует нагрузить выпрямитель АЗУ током 0,01…0,02Q и установить подбором резистора R6 номинальный ток зарядки (примерно 10 мА), поскольку именно при таком режиме должно происходить ограничение зарядного тока. Затем, в зависимости от напряжения АКБ, выбирают конфигурацию схемы устройства и устанавливают предварительно напряжение ограничения зарядки АКБ. Если это напряжение более 9 В, то, согласно вышеизложенному, базу транзистора VT1 подключают к стабилитрону VD5 через резистор R3, в этом случае напряжение на его эмиттере будет меньше примерно на 0,65 В, т. е. около 8,4 В. Следовательно, при токе около 10 мА ближайший номинал резистора R6 — 820 Ом. Затем определяют номиналы резисторов R7, R12 и необходимость в транзисторе VT3 для достижения требуемого тока зарядки. При измерении тока зарядки светодиод HL1 не должен гореть. Для выполнения этой работы АЗУ нагружают цепью по схеме на рис. 3. Далее подстроечным резистором R11 устанавливают ток 0,01 …0,2Q при напряжении на выходе АЗУ, соответствующем 1,5 В на каждый аккумулятор АКБ.

Если напряжение АКБ менее 9 В, то исключают R9, R11, с помощью делителей R3R4R5 устанавливают предварительно напряжение, соответствующее заряженной АКБ плюс падение напряжения на диоде VD7, затем, согласно вышеизложенному, определяют сопротивление резисторов R6, R7, R12 и окончательно устанавливают напряжение ограничения зарядки АКБ подстроечным резистором R5.

Литература

  1. Немного о зарядке никель-кадмиевых аккумуляторов. — Радио, 1996, № 7, с. 48.
  2. Семушин С. Источники тока и их применение. — Радио, 1978, №1, с. 39; №2, с. 44.

 

Зарядное устройство для автомобильного (кислотного) АКБ

Есть у меня такое зарядное устройство, ничего общего с BOSH я так понимаю оно не имеет, потому, что даже для зарядного это очень громко сказано. Однако со своей функцией оно кое как справляется — что-то заряжает. Внутри этого «устройства» находится хилинький трансформатор, в обмотку которого внедрен самовостанавливающийся термопредохранитель, амперметр, который показывает ОЧЕНЬ приближенное значение, потому как трансформатор который там стоит в принципе не может выдать не способен выдать более 2-х ампер — размер маловат, и да, там есть еще обыкновенный предохранитель, который находится в нижней части корпуса. Но есть интересный нюанс, тот самый предохранитель никуда не подключен, просто в колечко, сам на себя, видимо защищает от каких-то аномальных флуктуационных токов)) По этой причине задумался я или как-то его усовершенствовать или сделать что-то другое, в хозяйстве без зарядного нельзя.

Пойдем от простого к сложному.

1. Простое зарядное устройство

Объяснять особо тут нечего, одна проблема — мощный резистор, он будет греть вселенную ограничивая собой ток заряда

2. Можно поступить по другому: Ограничить напряжение на входе трансформатора и тем самым ограничить ток на заряжаемом АКБ.

Схема тоже очень простая и легкая в повторении. Но это уже устройство, которое может автоматически отключить ваш АКБ от зарядного после достижения определенного напряжения на нем. При всей своей простоте такое зарядное с лихвой удовлетворит запросы подавляющего большинства автолюбителей. Подключаем АКБ (обязательно с правильной полярностью), нажимаем кнопку «Пуск», галетным переключателем выбираем необходимый нам ток заряда и наслаждаемся. С помощью переменного резистора R4 можно выставить напряжение при котором сработает реле К2 и отключит зарядное от сети. И вот это самый классный момент, отключение именно от сети!

3. Еще одно простое зарядное устройство, но уже с плавной регулировкой тока:

Это зарядное устройство дает возможность плавной регулировки тока заряда, если его еще и дополнить частью схемы предыдущего устройства, оно научится отключатся от сети по завершению заряда. Нужно иметь ввиду, что можно использовать террорист рабочий ток которого попадает в пределы тока заряда.
Можно немного усовершенствовать схему регулируя напряжение сети до трансформатора, тем самым уменьшить бесполезно рассеиваемую мощность на трансформаторе когда ток ограничен. К примеру так:

К стати часть схемы до трансформатора можно с успехом использовать для регулировки мощности различных устройств, к примеру обычного паяльника.

В место тиристора и диодного моста можно использовать симистор



4. Еще одно довольно простое автоматическое зарядное устройство:

В схеме присутствует ошибка, а именно: отсутствует кнопка «Пуск», она должна стоять параллельно контактам реле и иметь нормально разомкнутые контакты.
Тут отсутствует регулировка тока. Работает это устройство так: компаратор сравнивает напряжение со стабилитрона на одном входе и напряжение с резистивного делителя на другом, и при достижении второго напряжения (выставленного резистором R2) закрывает транзистор , который обесточит реле.


5. Теристорно-семисторная схема:

Тут известная уже нам схема в первичной цепи трансформатора регулирует ток, а а схема на теристоре, во вторичной цепи помогает отключить устройство от АКБ по окончании заряда. Работает это так: при включении сразу открывается теристор, через резистор R7, по мере заряда, на АКБ растет напряжение и делится резистивным делителем R10, R11 в определенный момент , когда напряжение на R10 достигает напряжения пробоя стабилитрона VD5 открывается транзистор VT2 и закрывает теристор — АКБ обесточен.

В обоих схемах встречается дефицитный сейчас уже транзистор КТ117 (хотя в эпоху моей молодости он был не особо распространен), но это не беда, его можно заменить эквивалентом по следующей схеме:



Благодаря замечанию Михаила, нашлась ошибка на схеме выше — на схеме перепутаны обозначения База1 и База2, кто будет собирать имейте это ввиду!

В следующем своем опусе я постараюсь рассмотреть более сложные зарядные устройства с возможностью десульфатации пластин акб и т.д.

Всем свежей канифоли! Жду ваших комментариев.

Еще записи по теме

ТИРИСТОРНОЕ ЗАРЯДНОЕ УСТРОЙСТВО 12В

Целью проекта было создание выпрямителя для зарядки больших свинцово-кислотных аккумуляторов 12 В с током 15 А. Но схема настолько универсальна, что в принципе может использоваться даже для управления сварочным током и т. д. Величина тока здесь зависит от мощности трансформатора, тиристоров и выпрямительных диодов. Мощность также может быть 100 A на 24 В и так далее. Вообще идея самостоятельного изготовления ЗУ возникла из-за того, что в наличии были самые дорогие элементы с разборки: 

  • неизвестный огромный трансформатор 380 / 24 В 20 A (который при подключении к 220V дает 18,5 В на выходе) 
  • 2 тиристора 50 A 1200 В 
  • 3 диода 40 A 300 В 
  • 2 больших радиатора
  • вентилятор от ПК 
  • амперметр, вольтметр 
  • предохранитель на 25 А. 

Схема зарядного на 12 вольт 20 ампер

Схема управления питается от той же обмотки трансформатора, что и заряжаемая батарея. Транзистор Q1 является детектором пересечения нуля и управляет моностабильным триггером U1B, задачей которого является генерация импульса длительности, регулируемого потенциометром P1. Конец этого импульса, в свою очередь, запускает U1A, который генерирует импульсы с фиксированной длиной около 200 мкс (это рекомендуемая длина для тиристоров). Этот импульс после преобразования управляет тиристорами.

Импульсный трансформатор выполняет здесь две функции: гальваническое разделение управляющих электродов и катодов обоих тиристоров друг от друга и гальваническое разделение схемы управления от тиристоров. Благодаря этому оба тиристора могут быть установлены на одном и том же радиаторе без изолирующих прокладок, и схема управления может питаться тем же напряжением, что и тиристоры. Кроме того, 3 силовых выпрямительных диода также могут быть привинчены к обычному радиатору без изолирующих прокладок. Это значительно упростило сборку и уменьшило количество радиаторов до двух. А транзистор Q2, управляемый короткими импульсами, даже не нагревается — радиатор который установили оказался ненужным. 

Трансформатор имеет 3×200 витков 0,3 мм на ферритовом сердечнике. Количество катушек и толщина провода не особенно критичны и могут зависеть от напряжения и типа тиристоров. 

От схемы контроллера перейдем к общей схеме зарядки: 

Поскольку тиристоры имеют монтажный винт на аноде и диоды на катоде, они могут быть привинчены к соединительным радиаторам без изолирующих прокладок (то есть диоды к одному, тиристоры к другому). 

Диод D3 и L1 не являются обязательными элементами, но настоятельно рекомендуется их поставить. Если используем дроссель, также должны использовать диод D3. Он закрывает поток индуцированного тока и позволяет отключать тиристоры. D3 и L1 здесь выполняют ту же роль, что и в понижающем преобразователе, в котором тиристор является ключевым элементом. 

Дроссель был намотан на сердечник старого трансформатора сетевого мощностью около 150 Вт проводом 2 мм, намотано до заполнения. Он должен иметь воздушный зазор 0,5-1 мм, который легко внедрить, потому что это сердечник в форме 2U. Как правило, этот дроссель не является обязательным элементом, и вы можете не ставить его вообще. Но если что, у него должен быть зазор, вот как на картинке у трансформатора мощностью 100 Вт: 

Сердечник разобрать, намотать проволоку диаметром около 2 мм. Затем, где есть красные линии, сунуть прокладку из пластика толщиной 2 мм между элементами сердечника. Затем прикрутить винты там, где зеленая отметка.

Теперь корпус самого зарядного устройства — он был сделано из негорючих пластиковых пластин, скрученных с помощью уголков и болтов. Естественно там должны быть предохранители. Как предохранитель на вторичной стороне, так и классический сетевой предохранитель.

Другие варианты схем ЗУ на тиристорах

Вот ещё три варианта аналогичных схем, которые возможно кому-то более подойдут для повторения. Все они вполне достойно работают и рекомендуются для сборки даже малоопытными радиолюбителями в силу своей простоты. Плюс можете заглянуть ещё по теме тиристорных ЗУ сюда.

Тесты зарядного устройства в работе

Это зарядное устройство после нескольких месяцев использования (как правило зимой, чтобы помочь запускать автомобили в холодное время года) удостоилось очень хороших оценок от пользователей. Даже несмотря на полностью разряженную батарею, стартер хорошо включился и зарядное устройство не было повреждено. Похоже можно получить от него гораздо больше тока и оно достаточно устойчиво к экстремальным условиям работы. Скачать файлы и платы

   Форум по зарядному устройству

Цепи зарядного устройства постоянного тока

В этом посте мы изучаем метод создания трех простых схем зарядного устройства постоянного тока, в первой из которых используется всего один резистор, во второй схеме используется один биполярный транзистор Дарлингтона, а в третьей схеме используется микросхема LM317. для реализации предлагаемой зарядки подключенных аккумуляторов с управлением по току

На схеме ниже показан простой способ зарядки любой аккумуляторной батареи от более высокого напряжения.

Предположим, что 4 большие батареи необходимо зарядить на ток 500 мА от 12-вольтовой батареи, необходимый резистор вполне может быть 12 — (4 x 1,25) / 0,3 = 23,3 Ом, или, возможно, 22 Ом будет более подходящим.
Для обеспечения заданного зарядного тока необходим только один резистор, который определяется простым делением разницы в напряжении батареи от тока, необходимого для зарядки.

Номинальная мощность вашего резистора может быть определена путем вычисления квадрата силы тока на сопротивление или (0.3) ² x 22 = 2 Вт, но на самом деле настоятельно рекомендуется значение 5 Вт или выше.
Следующая схема ниже демонстрирует источник постоянного тока, привыкший заряжать группу от 1 до 10 никель-кадмиевых батарей.

Напряжение эмиттера TIP32, вероятно, будет примерно на полтора вольта выше напряжения на слайдере потенциометра. В полной ситуации потенциометра транзисторы будут отключены, а также ток будет в непосредственной близости от 0 В.
Поток применяется для установления напряжения на эмиттере TIP32, которое обеспечивает ток на выходе и резисторе 10 Ом.
Транзистор TIP 32, вероятно, будет терять около 7 Вт, когда выход перегружен и требует установки на большом радиаторе.

Он генерирует около 7 Вт температуры с нагрузкой, использующей максимальный ток через резистор 10 Ом, поэтому может потребоваться мощность 10 Вт или более.

В случае, если подключено более 4 ячеек, максимальный доступный ток может сократить и ограничить регулировку тока примерно до СОТНИ миллиампер для TEN ячеек.Типичная скорость заряда для ячеек «D» большой емкости (4 Ач) будет составлять от ТРИ СТО до ЧЕТЫРЕХ СТО миллиампер в течение 13 часов и ОДНА СТО миллиампер, предназначенных для (1,2 Ач) элементов типа «C» или «D». Что касается меньших батарейных блоков на девять вольт, скорость заряда может составлять семь миллиампер, поэтому вы можете уменьшить диапазон до 0-20 мА, просто используя резистор на 750 Ом вместо TEN. Ток заряда можно зафиксировать, подключив амперметр вдоль выхода (убедившись, что все батареи отсоединены), после чего настройте потенциометр в сторону идеального тока, или отслеживая напряжение на резисторе TEN Ом (1 вольт = ОДИН СТО мА) или (Один вольт = 1.33 мА с резистором 750 Ом).

Простая схема зарядного устройства постоянного тока, приведенная выше, показывает, как использовать регулируемый регулятор напряжения LM317 в качестве источника постоянного тока. Напряжение в середине порта стеклоочистителя и конечной клеммы фактически составляет 1,25 В, поэтому просто соединив клемму стеклоочистителя с нагрузкой и вставив резистор (R) где-то между нагрузкой и конечной клеммой, получится постоянный ток 1,25 / R можно настроить.

В результате вам может потребоваться резистор ДВЕНАДЦАТЬ Ом (R) для получения зарядного тока 100 мА, а также 1.2 Ом, резистор 2 Вт с учетом силы тока в один ампер. Диод может использоваться последовательно со входом, чтобы избежать того, чтобы аккумуляторные блоки создавали противоположное напряжение по отношению к микросхеме регулятора в случае отключения питания, в то время как аккумуляторный блок продолжает подключаться.

Почти наверняка рекомендуется удалить аккумуляторные батареи перед отключением напряжения питания.

10 лучших зарядных устройств по оптимальной цене в 2020 году

]]]]>]]>

Все мы знаем, что автомобильные аккумуляторы имеют тенденцию терять заряд после длительного использования.Но когда пришло время зарядить автомобильный аккумулятор, вы должны знать, что более быстрая зарядка — не лучший вариант. Поскольку зарядка аккумулятора при высокой силе тока может повредить аккумулятор или даже привести к взрыву аккумулятора.

К счастью, вам больше не нужно беспокоиться об этой ситуации, так как в настоящее время у нас есть зарядное устройство с постоянным током — спаситель для экономии автомобильных аккумуляторов. Давайте ознакомимся с этой статьей, чтобы узнать, что такое капельное зарядное устройство для автомобиля , и 10 лучших обзоров лучших зарядных устройств , составленных автомобильными экспертами.

Сравнительная таблица лучших капельных зарядных устройств

Что такое капельное зарядное устройство?

Прежде всего, следует знать о непрерывной подзарядке. Капельная зарядка — это метод, используемый для зарядки полностью заряженного аккумулятора со скоростью, равной скорости его саморазряда, что позволяет аккумулятору оставаться на полностью заряженном уровне. Это состояние возникает только тогда, когда автомобильный аккумулятор не заряжен, поскольку непрерывная зарядка не заряжает аккумулятор, если через нагрузку проходит ток.

Батарея, находящаяся под постоянным постоянным напряжением (напряжение, которое поддерживается аккумуляторной батареей после полной зарядки), называется плавающей зарядкой. По мнению автомобильных экспертов, капельная зарядка является наиболее идеальным вариантом для легковых и грузовых автомобилей, которые хранятся вдали от дома зимой, или для любого автомобиля, предназначенного для использования в чрезвычайных ситуациях. В качестве постоянного зарядного устройства предотвращает расход энергии автомобильного аккумулятора, даже если автомобильный аккумулятор используется редко.

Чтобы использовать метод непрерывной зарядки, нам необходимо использовать зарядное устройство.Постоянная подзарядка для автомобиля — это электрическое зарядное устройство, которое работает с очень медленной и постоянной скоростью. Из-за низкой силы тока зарядное устройство будет постепенно заряжать автомобильный аккумулятор по мере того, как аккумулятор разряжается.

Кроме того, некоторые варианты капельного зарядного устройства предназначены для подключения к автомобильному аккумулятору на длительное время (например, зимой), что снижает риск повреждения аккумулятора или взрыва аккумулятора до минимального уровня.

Что такое капельное зарядное устройство?

Различные типы капельного зарядного устройства

Когда мы говорим о трюковых зарядных устройствах, мы часто думаем, что у нас есть только один тип — Smart style.Но на самом деле вы должны знать, что у нас есть 2 двух типа зарядных устройств:

1. Тупой

Это традиционный тип зарядного устройства, в котором имеется множество кабелей, подключаемых к розетке. Мы можем легко купить глупое зарядное устройство по очень низкой цене. Дешево, но не означает низкого качества. Тупые зарядные устройства довольно мощные, они всегда могут зарядить любую батарею любого размера.

2. Умный

Smart style — это высокотехнологичный дизайн, поэтому умный стиль дороже, чем традиционный дизайн, тупой стиль.В настоящее время, благодаря быстрому развитию технологий, цена на интеллектуальные зарядные устройства с подачей заряда резко падает.

Эта конструкция имеет возможность автоматического включения и выключения в зависимости от уровня заряда батареи. Это делает их намного безопаснее, чем стиль Dumb, особенно для длительного использования.

В приведенном ниже списке 10 лучших зарядных устройств постоянного тока для покупки мы фокусируемся только на зарядных устройствах «умного стиля», поэтому, откровенно говоря, мы просто не видим такой большой выгоды в «глупом» зарядном устройстве.

Использование традиционных зарядных устройств представляет небольшую опасность, поскольку им не хватает возможности мониторинга, что может привести к серьезному перегреву аккумулятора, если вы не будете внимательно следить за ним.

Зарядные устройства капельного типа Vs. Зарядные устройства для обычных автомобильных аккумуляторов

Основная цель использования постоянного зарядного устройства — это медленная зарядка аккумулятора и предотвращение его перезарядки — хотя мы можем достичь того же результата, используя стандартное зарядное устройство.

Если вы регулярно храните аккумуляторы в течение определенного периода времени, капельное зарядное устройство станет для вас хорошей инвестицией.

Но в ситуации, когда первоочередной задачей ваших действий по зарядке является быстрая зарядка для быстрого спроса, и вам иногда нужно хранить аккумулятор, автомобильные эксперты рекомендуют вам покупать обычное зарядное устройство и просто планировать зарядку сохраненного аккумулятора каждые 30 — 40 дн.

Таким образом, просто убедитесь, что перед тем, как убрать аккумулятор, он должен быть полностью заряжен, и тогда вы сможете поддерживать его заряд без каких-либо проблем.

Top 10 Best Trickle Charger Отзывы

Если вы ищете лучшее зарядное устройство для покупки, обратите внимание на эти продукты: Battery Tender Plus, Schumacher 12 amp SpeedCharge, Stanley 25 Amp High Frequency Bench, Black & Decker Waterproof, Diehard Automatic, Battery Tender Junior, Genius UltraSafe Smart Charger, Black and Decker Charger / Maintainer, Schumacher MC-1, переносное зарядное устройство Aurelio Tech,…

1.Battery Tender Plus 021-0128, зарядное устройство 1,25 А

Battery Tender Plus — лучшее зарядное устройство с функцией капельного орошения

Проверить цену и отзывы!

Спецификация:

  • Бренд: Battery Tender
  • Модель: 021-0128
  • Вес изделия: 2,3 фунта
  • Размеры продукта: 11 x 4 x 11 дюймов
  • Рейтинг: 4,7 / 5,0

Почему мы выбрали это?
Аккумулятор Tender Plus имеет на 50% большую мощность, чем их младшая модель (Battery Tender Junior).Это быстрое и простое решение для вашей зарядки. Полностью автоматизированный блок снабжен температурной компенсацией для обеспечения оптимального входного напряжения и защищен от обратной полярности для повышения безопасности. Он также автоматически переключается из режима полной зарядки в режим плавающей зарядки и имеет красный и зеленый индикаторы.

Плюсы:

  • Простота подключения
  • Соединения адаптера шнура тугие
  • Все зажимы типа «крокодил» изготовлены из меди и имеют хорошее натяжение пружины.
  • Блок металлический
  • Провода прочные
  • Деньги потрачены не зря

Минусы:

  • Не предназначен для зарядки полностью разряженного аккумулятора

Обладая множеством вышеупомянутых преимуществ, легко понять, почему Batter Tender Plus — это лучшее зарядное устройство для капельного орошения , которое можно купить в 2018 году.

2. Настольное зарядное устройство STANLEY BC25BS на 25 ампер

STANLEY BC25BS Настольное зарядное устройство на 25 А с запуском двигателя на 75 А и генератором Проверить

Проверить цену и отзывы!

Спецификация

  • Бренд: STANLEY
  • Модель: BC25BS
  • Вес изделия: 8,5 фунтов
  • Размеры продукта: 15,2 x 11,8 x 10,5 дюймов
  • Рейтинг: 4.0 / 5.0

Почему мы выбрали это?

Еще одно лучшее зарядное устройство для автомобиля , на которое мы должны обратить внимание, это настольное зарядное устройство STANLEY BC25BS на 25 ампер.Это зарядное устройство специально разработано для продления срока службы батарей, продления срока службы изношенных и поврежденных батарей. Дополнительно заряд

CN3153FA 1S1A 3in1 Regulator / Charger / Booster LiIon от Burgduino на Tindie

Что это?

CN3153FA — это компактное устройство на одной печатной плате, предназначенное для зарядки одной литиевой батареи (LiIon / Lipo) от источника microUSB или постоянного тока, включая солнечную батарею, и может питать нагрузку либо непосредственно от батареи, либо через встроенный повышающий преобразователь

Почему ты это сделал?

CN3153FA является заменой предыдущего модуля TP4056FlexAdv и любого модуля 4056, доступного на рынке, что экономит ваше время и делает ваши собственные проекты намного компактнее и проще в сборке.

Я уверен, что все, кто начинает работать с литиевыми батареями, сталкиваются с той же проблемой .. как их безопасно заряжать. Большинство людей находят зарядные устройства 4056 дешевыми и простыми в использовании, но в них не всегда используются качественные детали, существует множество вариантов и они подвержены повреждению из-за того, что разъемы micro USB легко отрываются от печатных плат, и необходимость припаять к ним провода не всегда является проблемой. легкая задача. Если вам нужно использовать более высокое напряжение для зарядки батареи в руке, вам также понадобится отдельный регулятор напряжения, и если ваши приложения требуют чего-либо, кроме напряжений уровня заряда батареи (3-4.2V) вам также понадобится повышающий преобразователь.

Что делает его особенным?

CN3153FA обозначает зарядное устройство CN3153, которое является гибким и продвинутым.

Все подключения к модулю выполняются либо через разъемы, либо через винтовые клеммы — больше не нужно паять кучу проводов на крошечные печатные платы.

Входное напряжение может составлять 5 В USB или 8-25 В от различных источников, включая солнечную! — Вы можете без проблем использовать свой старый роутер, ноутбук или телефон. Вы даже можете подключить его к небольшой солнечной панели, и она будет заряжать ваши батареи.- Не нужно покупать другой модуль для понижения напряжения большинства доступных источников питания!

Аккумулятор или аккумуляторы заряжаются безопасно и защищены от короткого замыкания, перезаряда и недозарядки!

Вы получаете доступ к напряжению батареи (нагрузка питается непосредственно от батареи с защитой — безопасно потреблять до 2 А напрямую от батареи — может подавать более высокие токи — зависит от батареи — но это небезопасно делать это в течение длительных периодов времени) Вы также получаете схему повышения напряжения до 12 В.ИС бустера (MT3608) претендует на выходную мощность 2 А … при реальных испытаниях, хотя при падении напряжения не более 10% она будет выдавать 1 А при 5 В 0,5 А при 12 В. по-прежнему способен питать самые разные нагрузки, и нет необходимости покупать другой модуль для повышения напряжения батареи!

TP4056FlexAdv имеет размер всего 49×49 мм и подходит для небольших корпусов. Вы можете создать автономный источник питания со старыми или новыми батареями для мобильных телефонов, есть много аккумуляторов Nokia, Sony и т. Д., Которые прекрасно впишутся под печатную плату, что сэкономит место и позволит вашим проектам работать часами!

Как и модуль TP4056FlexAdv, он приходит на замену, это еще не все! В типичных модулях TP4056 зарядный ток устанавливается через фиксированный резистор SMD на 1 А…. это слишком большой ток для небольших батарей, которые могут вам понадобиться в ваших проектах. CN3153FA, будучи гибким, предлагает возможность изменять зарядный ток с помощью перемычки, выбирая от 60 мА до 1 А (60-120-250-500-750-1000 мА)! Больше не нужно заменять крошечные резисторы SMD!

И если всего этого мало, CN3153FA, как и его предшественник, тоже шустрый! Вы можете активировать / деактивировать повышающий преобразователь вручную с помощью переключателя на плате или с помощью внешнего источника, такого как микроконтроллер, Arduino, с которым вы его используете, датчик и т. Д.. Внешнее управление доступно при выключенном переключателе. Обратите внимание, что, хотя повышающий преобразователь может быть отключен, на выходе все еще есть напряжение (уровень заряда батареи). CN32153FA даже умнее этого! На плате есть два дополнительных разъема, один из которых является вспомогательным источником питания макс. 5 В / 500 мА (доступен только при наличии внешнего источника питания — может выдавать более 1,5 А, когда аккумулятор не заряжается) Другой 4-контактный разъем — это точка измерения, где можно измерить напряжение аккумулятора и повышающего преобразователя, а также зарядный ток (необходимо рассчитать).Эту функцию можно использовать сразу же, как есть, но она предназначена для подключения к модулю Burgduino Logic Shield, который имеет atmega328 / RTC и ЖК-дисплей или OLED-дисплей (вы можете увидеть прототипы, объединенные на последней фотографии)

ПРОСМОТРЕТЬ ДОСТУПНЫЕ ОБРАЗЦЫ — СВЯЗАТЬСЯ СО МНОЙ ДЛЯ ПОДРОБНОСТИ

.

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *