Почему форсунки льют на дизеле: Почему течет форсунка на двигателе: причины и ремонт

Содержание

Как определить какая форсунка не работает на дизеле

Многие владельцы подержанных дизельных машин, со временем сталкиваются с тем, что троит дизель и разумеется от такой неисправности следует избавляться. Так как отказ в работе одного из цилиндров мотора, не только существенно уменьшит мощность двигателя и повысит расход топлива, но и приведёт к другим неприятностям, если вовремя не устранить эту проблему. В этой статье мы рассмотрим основные причины троения дизельного мотора (отказа одного из цилиндров) и разумеется рассмотрим как определить и избавиться от этой неисправности своими силами, не прибегая к услугам автосервиса.

Как выявить, что дизель троит.

Для начала следует точно убедиться, что дизельный двигатель действительно троит, то есть один из цилиндров не работает. Сделать это сможет не только опытный водитель или механик, который может определить это даже по звуку, но и новичок.

Подтверждением того, что любой мотор троит (как дизельный, так и бензиновый), является повышенная вибрация при его работе.

Вибрация появляется из-за расбалансировки поршневой группы, ведь поршень неработающего цилиндра просто так ходит в верх-вниз, в то время как поршни исправных цилиндров работают под давлением сжатия воспламеняющегося топлива.

Но хочу отметить, что повышенная вибрация дизельного мотора может быть и не от того, что какой то цилиндр не работает и мотор троит, а даже когда все цилиндры работают. Но при повышении оборотов, мотор может начать трясти. Это может быть например после того, как ТНВД снимали, от неправильного опережения впрыска.

И стоит чуть ослабить гайки крепления фланца ТНВД к двигателю и повернуть с помощью монтажки насос высокого давления на небольшой угол (выявляем опытным путём, если нет заводских меток), то двигатель тут же перестаёт трясти. Но после этого следует добавить газ и проверить работу мотора на всех оборотах, возможно придётся ещё немного подкорректировать угол опережения впрыска.

Но многим новичкам, которые могут и не заметить повышенную вибрацию (особенно на многоцилиндровых моторах) гораздо легче будет убедиться в том, что дизельный мотор троит более простым способом. Следует подождать, когда двигатель и его выпускной коллектор хорошо остынет, затем заново завести его.

После этого открываем капот и начинаем ощупывать рукой и сравнивать трубы выпускного коллектора по очереди, в момент прогрева двигателя. И если три выпускные трубы горячие, а к примеру труба четвёртого цилиндра холодная или тёплая, то именно этот цилиндр и нерабочий, из-за которого мотор и троит.

Избавляться от такой неисправности как можно быстрей, следует не только от того, что теряется мощность мотора и повышается расход топлива. Но ещё и потому, что топливо не распыляется нормально в камеру сгорания и цилиндр, а льётся и масляная плёнка смывается со стенок цилиндра и от этого он быстро изнашивается.

Да и масло в поддоне мотора разбавляется топливом, и если в бензиновом моторе бензин попавший в масло потом испаряется после нагрева мотора, то в дизельном двигателе соляра может так и остаться в масле. Ну и ударные нагрузки, которые появляются при вибрации двигателя, разумеется не добавят ему здоровья. Поэтому добираемся до гаража (желательно не своим ходом на трёх цилиндрах, а с помощью буксировщика) и сразу начинаем избавляться от этой неисправности.

Чтобы точно выявить причину, почему и от чего троит дизель, следует обратить внимание на то, когда он начал троить. Ведь бывает что мотор троит сразу после запуска (на холодную), а по мере прогрева всё приходит в норму. Или бывает, что двигатель троит как на холодную, так и после прогрева мотора, то есть постоянно. И обратив внимание на эти нюансы, будет проще выявить виновника неисправности.

А неисправность эта может быть от нескольких причин, каждую из которых мы разберём подробнее ниже, а так же как от неё можно избавиться.

Троит дизель — причины.

Главных причин может быть только две: нет топлива в неработающем цилиндре (или оно нормально не распыляется — форсунка льёт) или нет требуемого давления сжатия для воспламенения топлива (примерно так же как и на бензиновом моторе — или нечему гореть или нечем поджечь).

Но всё же причин отказа в работе одного из цилиндров бывает несколько, и начнём с самой распространённой: отказ в работе одной из форсунок. При такой неисправности, дизельный мотор троит на всех режимах работы, как на холодную, так и после прогрева. Выявить неисправную форсунку не сложно и я об этом уже писал, например вот в этой статье, но мне нетрудно повторить и здесь.

Это можно сделать опять же дождавшись полного остывания мотора и притрагиваясь к выпускным трубам, как было описано выше. А когда нерабочий цилиндр будет выявлен, убедиться, что форсунка именно этого цилиндра неисправна можно если отсоединить трубопровод высокого давления от этой форсунки (просто ослабляем гайку крепления трубопровода к форсунке).

Если обороты не упадут (ничего не изменится) то это подтвердит, что форсунка неисправна и её требуется заменить или отремонтировать (как отремонтировать форсунку своими руками, я написал вот тут). Кстати, дизельные форсунки рассчитаны на определённый пробег (примерно 120 — 150 тысяч км) уточните его в мануале своего автомобиля) и если на одометре вашей машины примерно такой пробег, то значит причина того, что ваш дизель троит, именно в выходе из строя какой то форсунки (они как правило не выходят из строя все сразу).

Кстати, убедиться в том, что форсунка какого то цилиндра неисправна, без проверочного стенда можно если поменять местами форсунки. И если после этого уже другой цилиндр перестанет работать, то форсунку следует менять или ремонтировать.

Но на некоторых автомобилях (например дизельных Мерседесах) с рядным многоплунжерным ТНВД (сколько цилиндров столько и плунжеров) причина того, что мотор затроил, может быть не из-за форсунок, а из-за износа одного из плунжеров. От износа плунжер уже не развивает нужное давление топлива, способное открыть клапан форсунки и разумеется цилиндр в котором находится эта форсунка (и в который подавал топливо изношенный плунжер) уже не работает — дизель троит.

В таком случае избавиться от неисправности можно только отремонтировав ТНВД (о ремонте ТНВД своими руками я написал вот в этой статье). Ну а как определить неисправна форсунка или же ТНВД (один из его плунжеров). Это можно сделать только если установить форсунку с работающего цилиндра в неработающий (поменять местами) и если неисправный цилиндр так и не заработает, то форсунка здесь не причём и дело в неисправности ТНВД.

Ещё одна причина того, что мотор троит — это неисправность клапанного механизма неработающего цилиндра. Эта неисправность обычно подтверждается по стуку клапанов, но не всегда, так как компрессия теряется когда клапан наоборот пережат, тоесть зазор его уменьшен и клапан не закрывается до конца.

И эта причина разумеется бывает как на дизельных моторах, так и на бензиновых (ведь и там и там имеются клапана). Выявив неработающий цилиндр (например по выпускным трубам или поочерёдно отключая форсунки) следует дождаться полного остывания мотора (до 20 градусов).

После этого проверяем клапанные зазоры неработающего цилиндра и по необходимости регулируем их (как проверить и отрегулировать зазоры читаем тут). При недостаточном клапанном зазоре, дизель троит только на горячую. Так как при нагреве мотора, если зазор недостаточный, то клапан будет закрываться уже не полностью и нужной компрессии в этом цилиндре не будет.

А как мы знаем, без нужной компрессии не будет нужного сжатия топлива в форкамере до необходимого давления самовоспламенения соляры, и от этого этот цилиндр не будет работать. Подробнее о компрессии дизельного двигателя советую почитать вот в этой полезной статье.

Поэтому проверяем и регулируем клапана и надеюсь, что работа этого цилиндра восстановится. Бывает, что требуется притирка клапанов неработающего цилиндра (если регулировка зазоров не помогла), а как это правильно сделать читаем вот здесь.

Ещё одна причина, когда дизель троит, но только пока холодный (и в холодную погоду), это выход из строя одной из свечей накаливания. Так как свеча накаливания в форкамере дизельного мотора прогревает полость форкамеры и этим повышает температуру воспламенения топлива в ней, на холодном моторе и в холодную погоду.

И если свеча какого то цилиндра выйдет из строя (как проверить свечи подробно вот в этой статье), то температура воспламенения топлива в холодном моторе (да ещё и с пониженной компрессией) может быть недостаточной для воспламенения топлива в этом цилиндре (точнее в камере сгорания — форкамере). И этот цилиндр не будет работать (мотор будет троить), пока дизель не прогреется и пока температура в форкамере нерабочего цилиндра не повысится до требуемой (для воспламенения топлива).

К тому же, на современных дизелях, свечи накаливания после пуска мотора продолжают работать ещё несколько минут (так называемая вторая ступень накала, подробнее об этом в статье про реле свечей вот тут, там же я описал как проверить реле свечей накаливания). И от этого дизельный двигатель работает намного устойчивее (особенно в мороз), да и токсичность его выхлопа значительно меньше.

Ну а что касается компрессии, от понижения которой в каком то цилиндре дизельный двигатель будет троить, то это маловероятно, так как цилиндры (и поршни) двигателя как правило изнашиваются все равномерно и компрессия в них по мере износа тоже падает равномерно и почти одинаково во всех цилиндрах (бывают исключения, но как правило не от естественного износа, например лопнуло комперссионное поршневое кольцо).

И если обнаруживается, что компрессия в каком то цилиндре значительно ниже чем в других (разница более 1 кг/см) и этот цилиндр не работает (и дизель троит от этого), то скорей всего потеря компрессии произошла от неисправности клапанного механизма этого цилиндра. Ну или при выходе из строя прокладки между блоком цилиндров и головкой в районе этого цилиндра (как поменять прокладку читаем тут).

Двигатель может начать троить на холодную после замены прокладки между блоком и головкой (как грамотно поменять прокладку ссылка выше). Например если будет установлена неродная прокладка, которая немного толще штатной. В итоге степень сжатия (да и компрессия) уменьшится во всех цилиндрах мотора, но троить дизель начнёт от того, что в каком то цилиндре компрессия будет всего лишь на 1 кг меньше, чем в остальных цилиндрах.

Но этого будет достаточно, чтобы именно этот цилиндр перестал работать (пока мотор холодный), после смены прокладки. Поэтому будьте аккуратны при выборе прокладки и замеряйте её толщину микрометром.

И последнее: дизельный двигатель может троить, вибрировать или дымить и по другим причинам, и про эти причины и их устранение советую почитать в двух статьях, ссылки на которые чуть ниже.

Что ещё хотелось бы сказать: выше было описано как проводить диагностику более старых дизельных моторов, ну а что касается более современных дизелей с системой «Common Rail», то здесь не всё так просто, так как такие моторы напичканы электроникой и определить неисправность не так то просто, если не иметь соответствующих знаний.

И если кто то хочет научиться разбираться в самых современных дизелях и на этом не плохо зарабатывать, то советую обратить внимание на банер ниже. Перейдя по нему, вы попадёте на обучающий курс, который позволит изучить все тонкости самых современных дизелей разных фирм.

Ну вот вроде бы и всё. Надеюсь, что теперь многие начинающие дизелисты, или просто водители, смогут определить когда троит дизель и как устранить эту неисправность, успехов всем.

Источник suvorov-castom.ru

Как определить льющую форсунку?

Экономия склоняет многих автолюбителей приобрести машину с дизельным силовым агрегатом. Но вот новые системы питания дизелей могут испортить всё преимущество из-за своей дороговизны, ведь новые форсунки стоят немало.

Производители утверждают, что работа форсунки рассчитана на 100-150 тысяч километров пробега. Но на самом деле они могут работать даже больше, но тогда надо быть бдительным, чтобы не проморгать момент поломки форсунки.

Почему ломаются форсунки?

Как только двигатель начинает развивать недостаточную мощность, при увеличении нагрузки на мотор появляются провалы и рывки, а на малых оборотах работа силового агрегата становится неустойчивой, то следует сразу же задуматься о поездке в СТО для ремонта или в автомагазин, чтобы купить новые форсунки.

Чаще всего форсунки ломаются из-за различного рода загрязнений. Так как эти детали находятся под постоянным воздействием высоких температур, то на форсунке происходит закоксовывание смол, которые содержатся в горючем. Эти твёрдые отложения могут перекрыть отверстия распыла, что нарушает герметичность игольчатого клапана. Это может привести к тому, что даже качественные форсунки Denso начинают плохо распылять топливо или даже лить. Засорение системы топливоподачи может привести к тому, что засорятся другие элементы форсунки, такие как каналы или фильтр. Чаще всего, ремонт форсунок Common Rail производится при помощи ультразвуковой прочистки.

Первые признаки льющей форсунки

Льющая форсунка – это форсунка, которая плохо распыляет горючее или просто сливает его струйкой в камеру сгорания. Какие признаки того, что работа форсунки нарушена? Прежде всего можно ощущать подёргивания на холостом ходу или при режимах малой нагрузки. Когда мотор немного разогреется, то подёргивания уменьшатся, потому что в разогретом двигателе топливо гораздо лучше испаряется, даже если распыл нарушен.

Если автомобиль не заводится с первой попытки, а только со второй или третьей, а раньше он всегда нормально заводился даже с похожей температурой на улице, то это тоже признак льющей форсунки. Всё дело в том, что если форсунка льёт, она пропускает топливо даже в то время, когда двигатель не работает. В связи с этим, в рампе очень сильно падает давление. А из-за того, что топливный насос во время пуска работает всего лишь несколько секунд, а потом выключается на программном уровне, то этого не хватает, чтобы в топливной рампе было необходимое давление. Именно поэтому двигатель приходится запускать несколько раз, чтобы давление выровнялось до необходимой отметки.

Кроме того, если хотя бы одна из форсунок льёт, то это сильно обедняет топливовоздушную смесь. Как известно, что такая смесь горит значительно хуже и сильнее склонна к детонации. Это может заметить датчик детонаций, а многие автолюбители просто не обращают на это внимания, ошибочно считая, что сломан именно сам датчик.

Иногда происходит вспышка в двигателе, когда стартер ещё не работал. Это тоже один из признаков того, что из форсунок подтекает топливо. Этот хлопок чаще всего означает именно то, что холостая искра от зажигания зажгла протёкшее топливо.

Как определить, что форсунка льёт?

Если хотя бы одна из форсунок льёт, то у свечи цилиндра со сломанной деталью сильно закопчён изолятор. Можно проверить как прогреваются патрубки выпускного коллектора. У цилиндра, на котором установлена льющая форсунка, патрубок будет нагреваться намного медленнее.

Проверка форсунок может быть осуществлена и другим образом. Необходимо принудительно включить топливный насос (закоротив контакты или просто подав на него напряжение). После этого нужно достать рампу с форсунками и посмотреть подтекают они или нет. Кроме того, можно подсоединять поочерёдно к каждой форсунке минус и плюс, чтобы сразу убедится в правильном распыле.

А вот выявить среди других ту форсунку, которая подаёт бедную смесь, в домашних условиях достаточно сложно. Когда осуществляется проверка форсунок, под каждую нужно подставить одинаковые ёмкости (мензурки, колбы и т.п.). Самое главное – это не расплескать топливо из этих ёмкостей. После этого необходимо принудительно запускать каждую из них, подавая на них напряжение с одинаковым интервалом. Потом надо посмотреть на разницу распылённого топлива между форсунками. Разница не должна превышать десяти процентов. Измерение легче всего проверять при помощи медицинского шприца. Если разница больше, то необходимо произвести ремонт форсунок Common Rail или приобрести новые.

Если форсунка начинает лить, то не стоит отчаиваться. Даже качественные форсунки Denso спустя 150 тысяч километров пробега могут начать протекать. Просто надо это вовремя определить и отвезти автомобиль в СТО.

Источник autodieseldv.ru

Когда троит дизельный двигатель, причины следует искать в нескольких местах, именно об этом и будет наш обзор. Вообще, следует обмолвиться, что такое троит. Это означает, что один из цилиндров двигателя перестал работать, то есть топливо к нему не поступает, и происходит неравномерная работа «сердца» автомобиля, оно судорожно трясется. После короткой преамбулы приступим к выяснению причин.

Как определить, троит ли двигатель?

Если вы решили определить самостоятельно, троит ли двигатель при работе, то стоит придерживаться определенных исходных данных. Для начала необходимо вспомнить, какой звук мотора был раньше во время поездки, попытаться найти различия в работе самого двигателя, посмотреть, «плавают» ли обороты, при разгоне автомобиля постараться определить, потерял ли он мощность или нет. Это, конечно, под силу только опытному автомобилисту, причем важно, чтобы на автомобиле, который под подозрением, он проездил значительное время.

Определить эту неисправность можно и на прогретом автомобиле. Вам предстоит встать около выхлопной трубы и прислушаться, нет ли равномерно различимых звуков «бу-бу-бу», которые означают, что двигатель троит. Это обязательно надо делать только на прогретом автомобиле, так как характерный звук могут издавать и просто замерзшие рабочие части машины.

При заведенной машине необходимо почувствовать, как автомобиль будет работать на холостом ходу. Если его работа неравномерна, он периодически дёргается, то это может означать, что у вас есть неполадки с одним из цилиндров. Если вы все же сомневаетесь, троит ли двигатель или нет, то необходимо обратиться к опытному специалисту или же на СТО. Нужно знать, что эта поломка очень серьезная и требует срочного ремонта.

Почему троит дизельный двигатель – основные причины

Причин троения дизельного двигателя не так уж и много. Одна из них – это низкая компрессия (давление), при которой внутри цилиндра не достигается необходимая температура для воспламенения топлива. Виновницей может быть и не работающая форсунка, которая должна распылять топливо по стенкам цилиндра. И последним объяснением данной неисправности может быть поломка ТНВД (топливный насос высокого давления), к примеру, отказала плунжерная пара.

Если вы эксплуатируете двигатель на трех цилиндрах вместо четырех, то это может привести к очень серьезным поломкам. Из-за малого количества оставшихся в строю цилиндров проблемы дадут знать о себе быстрее. Они возникают за счет очень быстрого изнашивания основных деталей в моторе, а также их большого перегрева. Но несмотря на это, вы все же можете доехать до ближайшего автосервиса, конечно же, если он не находится за 1000 километров от вас.

Заметив проблему на разогретом моторе, следует проверить также тот факт, троит дизельный двигатель на холодную или нет. Любой размерный дефект, даже погрешность в толщине прокладки блока, приводит к небольшому отклонению работы мотора, и это видно только в холодном его состоянии. После разогрева компрессия (которая и страдает из-за несовершенств соприкасания деталей) уже приходит в норму, биение пропадает. Холодный мотор может троить из-за плохой работы свечей зажигания, после разогрева этот дефект тоже пропадает, но так как все же он проявил себя, есть смысл проверить и состояние свечей.


Чем можно помочь двигателю, если он троит?

Каждому автовладельцу хотелось бы помочь автомобилю самостоятельно, ведь это его верный «железный конь». Однако эта система машины довольно чувствительна к ошибкам, поэтому взвесьте все «за» и «против», особенно, если у вас мало опыта. Стоит заметить, что если вы плохо разбираетесь в автомобиле, или же вы просто не уверены в том, что двигатель на самом деле троит, то стоит обязательно заехать на станцию технического осмотра или же в сервисный центр. Первым делом вам необходимо произвести диагностику двигателя, выяснить, проблема в моторе или же нет.

Если проблема все же в нем, то стоит определить, какой же цилиндр оказался не рабочим (по нагреванию входа в коллектор).

Следующим шагом будет выяснение причины, по которой этот цилиндр вышел из строя. Основными виновниками бывают неисправные форсунки. Часто распылитель, находящийся внутри них, изнашивается и выходит из строя. Еще причиной неработающей форсунки может быть низкое давление, которое создается внутри нее, или же просто забиты каналы различными видами загрязнений из-за некачественного топлива. Распылитель можно поменять, подобрав его соответственно модели форсунки. Но иногда это невозможно, например, редкая модель или в магазинах нет в наличии в данный момент этой детали.

В таких случаях есть альтернативы, чтобы исправить нерабочий распылитель, можно попробовать его прочистить, например, ультразвуком. Результат может быть далеким от совершенства, но работать механизм все же начнет. В дизельных авто этот метод может привести к порче деталей и ускорению их износа, поэтому УЗ чистку для них применяют все реже. Если полностью удалить нагар и грязь не получилось, можно попробовать отмочить деталь в растворителе, а потом опять обработать УЗ. Когда заниматься очисткой не хочется, а подходящих по модели распылителей нет в продаже, можно попробовать купить очень близкий по размерам и заняться его притиркой.

Применение полировки пастами должно привести к уменьшению геометрии, и размер должен стать подходящим под вашу модель. Но этот метод несовершенен тем, что идеально подогнать деталь не получится, а значит, работа будет все же дефектна. Форсунки для дизелей бывают различного типа, и отремонтировать своими силами возможно далеко не все. К примеру, если у вас форсунки от КамАЗа, то вы можете избавиться от вышеперечисленных неисправностей самостоятельно, но если же у вас стоят пъезоэлектрические форсунки Common Rail, тогда не стоит заниматься ремонтом, потому что даже далеко не все автосервисы способны их отремонтировать.

Источник carnovato.ru

Как определить льющую форсунку?

Как определить льющую форсунку?

Экономия склоняет многих автолюбителей приобрести машину с дизельным силовым агрегатом. Но вот новые системы питания дизелей могут испортить всё преимущество из-за своей дороговизны, ведь новые форсунки стоят немало.

Производители утверждают, что работа форсунки рассчитана на 100-150 тысяч километров пробега. Но на самом деле они могут работать даже больше, но тогда надо быть бдительным, чтобы не проморгать момент поломки форсунки.

 

Почему ломаются форсунки?

Как только двигатель начинает развивать недостаточную мощность, при увеличении нагрузки на мотор появляются провалы и рывки, а на малых оборотах работа силового агрегата становится неустойчивой, то следует сразу же задуматься о поездке в СТО для ремонта или в автомагазин, чтобы купить новые форсунки.

Чаще всего форсунки ломаются из-за различного рода загрязнений. Так как эти детали находятся под постоянным воздействием высоких температур, то на форсунке происходит закоксовывание смол, которые содержатся в горючем. Эти твёрдые отложения могут перекрыть отверстия распыла, что нарушает герметичность игольчатого клапана. Это может привести к тому, что даже качественные форсунки Denso начинают плохо распылять топливо или даже лить. Засорение системы топливоподачи может привести к тому, что засорятся другие элементы форсунки, такие как каналы или фильтр. Чаще всего, ремонт форсунок Common Rail производится при помощи ультразвуковой прочистки.

Первые признаки льющей форсунки

Льющая форсунка – это форсунка, которая плохо распыляет горючее или просто сливает его струйкой в камеру сгорания. Какие признаки того, что работа форсунки нарушена? Прежде всего можно ощущать подёргивания на холостом ходу или при режимах малой нагрузки. Когда мотор немного разогреется, то подёргивания уменьшатся, потому что в разогретом двигателе топливо гораздо лучше испаряется, даже если распыл нарушен.

 

Если автомобиль не заводится с первой попытки, а только со второй или третьей, а раньше он всегда нормально заводился даже с похожей температурой на улице, то это тоже признак льющей форсунки. Всё дело в том, что если форсунка льёт, она пропускает топливо даже в то время, когда двигатель не работает. В связи с этим, в рампе очень сильно падает давление. А из-за того, что топливный насос во время пуска работает всего лишь несколько секунд, а потом выключается на программном уровне, то этого не хватает, чтобы в топливной рампе было необходимое давление. Именно поэтому двигатель приходится запускать несколько раз, чтобы давление выровнялось до необходимой отметки.

Кроме того, если хотя бы одна из форсунок льёт, то это сильно обедняет топливовоздушную смесь. Как известно, что такая смесь горит значительно хуже и сильнее склонна к детонации. Это может заметить датчик детонаций, а многие автолюбители просто не обращают на это внимания, ошибочно считая, что сломан именно сам датчик.

Иногда происходит вспышка в двигателе, когда стартер ещё не работал. Это тоже один из признаков того, что из форсунок подтекает топливо. Этот хлопок чаще всего означает именно то, что холостая искра от зажигания зажгла протёкшее топливо.

Как определить, что форсунка льёт?

Если хотя бы одна из форсунок льёт, то у свечи цилиндра со сломанной деталью сильно закопчён изолятор. Можно проверить как прогреваются патрубки выпускного коллектора. У цилиндра, на котором установлена льющая форсунка, патрубок будет нагреваться намного медленнее.

Проверка форсунок может быть осуществлена и другим образом. Необходимо принудительно включить топливный насос (закоротив контакты или просто подав на него напряжение). После этого нужно достать рампу с форсунками и посмотреть подтекают они или нет. Кроме того, можно подсоединять поочерёдно к каждой форсунке минус и плюс, чтобы сразу убедится в правильном распыле.

А вот выявить среди других ту форсунку, которая подаёт бедную смесь, в домашних условиях достаточно сложно. Когда осуществляется проверка форсунок, под каждую нужно подставить одинаковые ёмкости (мензурки, колбы и т.п.). Самое главное – это не расплескать топливо из этих ёмкостей. После этого необходимо принудительно запускать каждую из них, подавая на них напряжение с одинаковым интервалом. Потом надо посмотреть на разницу распылённого топлива между форсунками. Разница не должна превышать десяти процентов. Измерение легче всего проверять при помощи медицинского шприца. Если разница больше, то необходимо произвести ремонт форсунок Common Rail или приобрести новые.

Если форсунка начинает лить, то не стоит отчаиваться. Даже качественные форсунки Denso спустя 150 тысяч километров пробега могут начать протекать. Просто надо это вовремя определить и отвезти автомобиль в СТО.

 

Неисправные форсунки и их влияние на работу дизельного двигателя / Дизоника

Как известно, любая деталь автомобиля имеет свой ресурс, и дизельные форсунки так же не являются исключением. Даже при условии использования качественного дизельного топлива и своевременной замены фильтров распылитель и форсунка в целом рано или поздно выйдет из строя. В большей мере это обуславливается крайне жесткими условиями работы – высокая температура, высокое давление (в современных двигателях давление впрыска достигает 2000 и более бар) и механические нагрузки. Так, к примеру, при частоте вращения двигателя с механической системой впрыска 2000 об/мин игла распылителя поднимается и с ударом садится на свое посадочное место около 17 раз в секунду (для электронной системы впрыска Common Rail имеющей дробный впрыск это значение может вырасти в разы). Как следствие, на запорном конусе распылителя наблюдается усталость металла, сопровождающаяся износом и выкрашиванием.

В свою очередь это приводит к таким дефекта распылителя: падение рабочего давления впрыска; ухудшение качества распыла (распылитель «льет»), потеря герметичности распылителя; зависание иглы распылителя; потеря герметичности по направляющей цилиндрической части иглы распылителя.

Рассмотрим подробнее, что из себя представляет каждый из этих дефектов, и какое влияние на работу двигателя в целом они оказывают.

  1. 1.     Падение рабочего давления впрыска.

Давление начала впрыска форсунки настраивается на определенное значение для каждой конкретной модели дизельного двигателя. В процессе эксплуатации величина этого давления неизбежно снижается по причине износа запирающего конуса, хвостовика иглы распылителя, упора иглы, торцов крайних витков пружины форсунки, упора регулировочного винта или пакета регулировочных шайб, а так же просадки пружины.

 Наиболее интенсивное уменьшение давления происходит в течение первых 1000 моточасов  работы новой форсунки. В дальнейшем наблюдается более замедленное падение давления начала впрыскивания топлива. В результате экспериментальных исследований установлено, что при отклонении давления начала впрыскивания от номинального значения на 6,0-7,0 МПа расход топлива возрастает на 20-25 %.

Причин этому может быть несколько.

При  снижении давления впрыска уменьшается общее гидравлическое сопротивление системы плунжер-нагнетательный клапан-линия высокого давления- форсунка-распылитель в следствии этого возрастает цикловая подача секции – немного увеличивается количество топлива, подаваемого в цилиндр двигателя.

Так же пониженное давление приводит к небольшому смещению угла опережения впрыска топлива (УОВТ) в сторону более раннего, что так же негативно сказывается на работе дизеля и при очень сильно заниженном давлении может вызвать детонационный эффект.

Данных дефект так же изменяет форму факела распыла – это приводит к ухудшению смесеобразования и сгорания топлива в цилиндре двигателя (капли топлива становятся более крупными, а мощности струй не хватает для качественного перемешивания с воздухом в камере сгорания). Это приводит к снижению мощности двигателя, увеличению расхода топлива и появлению токсичного черного или сизого выхлопа.

При появлении подобных симптомов форсунки необходимо проверить и ели надо отрегулировать на нужное давление при помощи регулировочного винта или пакета регулировочных шайб. Проверка и регулировка форсунок осуществляется при помощи специального стенда.

Во время эксплуатации допустимо падение давления не более чем на 10% от величины правильно настроенного давления впрыска для данного конкретного двигателя.

                           

  1. 2.     Нарушена герметичность по запирающему конусу (распылитель «льет»).

При значительной степени износа запирающего конуса теряется герметичность распылителя, в этом случае часто говорят что распылитель «льет». При этом распыление на столько ухудшается, что вместо факелов туманообразного топлива наблюдаются ярко выраженные струи. Ни о каком нормальном смесеобразовании и сгорании топлива в цилиндре двигателя в этом случае не может идти речи. Так же отсутствует четкое окончание впрыска, топливо подтекает из распылителя, когда температура и давление в цилиндре уже значительно снижены.

В этом случае двигатель сильно теряет в мощности, расход растет катастрофически, наблюдается густой черный дым на выхлопе, возникают проблемы с запуском двигателя. Так же может начать расти уровень масла в поддоне двигателя из-за протекания в него несгоревшего топлива.

Исправить этот дефект можно только заменой распылителя на новый. Никакая промывка и прочистка в этом случае не поможет, а притирка и восстановление никогда не вернет распылителю качества заводского.

 

  1. 3.     Зависание иглы распылителя.

При загрязнении дизельного топлива водой, механическими или иными примесями игла распылителя форсунки может «зависнуть», то есть заклинить в открытом или закрытом положении.

При зависании в открытом положении топливо попадает в цилиндр двигателя в большом количестве, причем в совершенно ненадлежащем качестве и не в нужный момент. Из-за этого оно не сгорает, двигатель работает неровно, троит, из выхлопной трубы выбрасываются клубы черного и белого дыма. Может наблюдаться стук и детонация. Уровень масла в поддоне обычно растет за счет протечки несгоревшего толпива.

Если распылитель зависает в закрытом положении, топливо не может через него попасть в цилиндр. Двигатель при этом троит и наблюдается ярко выраженный стук гидроудара. Нагрузки на привод ТНВД возрастают, дальнейшая эксплуатация может привести к выходу из строя ТНВД (поломка привода, плунжера или толкателя), отрыву носика распылителя или повреждению трубки высокого давления.

В этом случае так же необходима замена распылителя на новый.

 

  1. 4.     Потеря герметичности по цилиндрической направляющей иглы распылителя.

Пара игла-корпус распылителя хоть и является прецизионным изделием, в ней все таки имеется зазор, необходимый для обеспечения нормальной подвижности иглы. В процессе работы форсунки через этот зазор происходит утечка небольшого количества топлива, отводимого через «обратку» в дренажную систему.

В процессе эксплуатации в результате износа этот зазор увеличивается, количество отводимого в дренаж топлива так же растет, и однажды достигнет настолько большой величины, что особенно на холостых оборотах двигателя значительная часть цикловой подачи ТНВД будет попадать не в цилиндр двигателя, а в «обратку» форсунки.

Это выражается в пропусках воспламенения в цилиндре и «троении» двигателя.

Выявить этот дефект так же можно только на специальном стенде для проверки форсунок, а устранить заменой распылителя в сборе.

Диагностика, промывка и регулировка дизельных форсунок

Качественный распыл топлива напрямую влияет на эффективность сгорания топливно-воздушной смеси в цилиндре бензинового или дизельного двигателя. Если горючее подается неравномерно или не в заданный момент времени, тогда дизель теряет мощность на разных режимах работы, выхлоп дизеля становится черным, мотор начинает троить и т.д. Дизельный двигатель плохо заводится «на холодную», неустойчиво работает «на горячую».

Такие неисправности в системе питания дизельного двигателя могут привести к дорогостоящему ремонту. Несвоевременная подача топлива в цилиндры приводит к повышенному расходу горючего, перегреву и разрушению поршня, прогару клапанов, выходу из строя сажевого фильтра.  Одной из частых причин неисправной работы ДВС является нарушение впрыска по вине топливных инжекторов. Чтобы избежать подобных неприятностей может потребоваться диагностика, промывка и/или ремонт дизельных форсунок.

Содержание статьи

Проверка форсунок дизельного двигателя своими руками

Для определения неисправной необходимо на заведенном двигателе довести обороты коленвала до такой частоты, когда сбои в работе дизеля заметны наиболее отчетливо. Далее каждую из форсунок последовательно отключают путем ослабления накидной гайки в месте крепления магистралей высокого давления к соответствующим штуцерам насоса. Если отключается «рабочая» деталь, тогда работа двигателя меняется. В момент отключения топливной форсунки, которая заведомо неисправна, никаких явных изменений в работе двигателя не произойдет.

Забитый инжектор можно выявить путем прощупывания топливопровода на предмет толчков, которые возникают в результате пульсации нагнетаемого ТНВД горючего при полной невозможности или только частичной его прокачке через сопло. Следует обратить внимание на штуцер вызывающей подозрение секции. Температура элемента будет выше сравнительно с остальными.

Помните, в процессе проверки  и регулировки дизельных форсунок необходимо соблюдать  повышенную осторожность! Струя топлива подается под большим давлением. При попадании такой струи на открытые участки кожи возможны глубокие и серьезные раны. Одежда также не является эффективной защитой от струи топлива под высоким давлением!

Экономичность дизеля и эффективность его работы сильно зависит от типа установленных распылителей, которые периодически меняют в процессе чистки, регулировки или ремонта топливной системы дизельного двигателя. Перед монтажом дизельной форсунки на мотор нужно убедиться в подходящей маркировке распылителя. Распылители на всех инжекторах должны быть одинаковыми, пропускная способность не должна отличаться.

Проверка форсунок на давление в момент впрыска, а также анализ эффективности распыла осуществляется при помощи специального прибора под названием максиметр. Максиметр является контрольным образцом в виде специальной форсунки. Такой  элемент имеет тарировочную пружину и шкалу, которая нанесена на корпус и колпак. При помощи указанной шкалы становится возможным установить давление начала впрыска солярки.

Вторым способом является наличие контрольной образцовой рабочей форсунки, с которой сравниваются остальные. Данные проверки производят на заведенном дизельном двигателе. Чтобы проверить качество распыла и давление впрыска потребуется демонтаж форсунки и топливопровода с дизельного ДВС. Далее на свободный штуцер топливного насоса высокого давления монтируется специальный тройник, к которому подключают тестируемую деталь параллельно с заведомо исправной контрольной.

Контрольный инжектор предварительно регулируют на оптимальный показатель давления начала топливного впрыска, проверяют на качество распыла. Также необходимо осуществить ослабление затяжки накидных гаек на оставшихся штуцерах ТНВД. Это позволит прервать топливоподачу к другим дизельным форсункам. Последним шагом становится активация декомпрессионного механизма, выставляется максимальная подача горючего. После этого можно начинать  вращение коленвала двигателя. 

Обе форсунки (контрольная и тестируемая) должны демонстрировать одновременное начало впрыска топлива. Если тестируемый инжектор отклоняется от нормы сравнительно с контрольным образцом, тогда потребуется регулировка дизельной форсунки.  Необходимо отрегулировать давление пружины тестируемой детали.

Для регулировки потребуется отвинтить колпак форсунки и ослабить контргайку. Далее при помощи регулировочного винта нужно установить такую степень затяжки пружины,  чтобы оба инжектора в итоге осуществляли впрыск одновременно. Для определения эффективности и качества распыла тестируемой детали необходимо сравнить результат с показателями контрольного образца.

Проверка дизельных форсунок на давление впрыска и качество распыла при помощи контрольного образца займет больше времени по сравнению с использованием заранее подготовленного максиметра. Кроме проверки на двигателе с использованием ТНВД эффективность работы инжектора можно протестировать при помощи специального проверочного (регулировочного) стенда.

Очистка форсунок дизельного ДВС

В том случае, если потребовалась промывка дизельных форсунок своими руками, неисправную деталь снимают для осмотра и регулировки. Прежде чем ответить на вопрос, как очистить форсунки дизельного двигателя, следует отметить, что разбор инжектора необходимо осуществлять в условиях максимальной чистоты и освещенности.

Самостоятельно промыть дизельную форсунку можно керосином или качественным дизтопливом без примесей. Далее элементы детали аккуратно обдувают сжатым воздухом, после чего можно осуществить сборку в обратном порядке.

Для того чтобы избежать возможного смешивания составных элементов от разных форсунок, разборку и сборку каждого инжектора лучше производить отдельно или разбирать и собирать детали в порядке очереди. Составные элементы обтираются исключительно чистыми батистовыми салфетками, а также салфетками из бязи.

Если конструктивно предусматривается возможность регулировки подъема иглы, тогда регулировочный винт затягивают до упора. Далее указанный винт немного отпускают, тем самым обеспечивая нужный подъем иглы. Параметры касательно высоты подъема обычно указываются в руководстве по эксплуатации конкретного двигателя.

Качество распыла дизтоплива

Нормально работающая форсунка в момент подачи топлива производит одиночный, короткий и «кучный» впрыск, который сопровождается резким звуком. Распространенной ситуацией является то, что отверстия сопла форсунок (распылителя) могут быть частично забиты или изношены. Тогда сопло требует чистки или замены.

В этом случае деталь необходимо закрепить на проверочном стенде и направить соплом в специально подготовленное место. В это место нужно положить чистую бумагу для того, чтобы упростить процесс диагностики. Далее осуществляется резкий впрыск топлива. После этого на бумаге можно увидеть следы или прорывы листа от струй солярки. Общее количество таких следов после впрыска должно быть идентичным сравнительно с общим количеством отверстий  в конструкции распылителя. Если следов на бумаге меньше, тогда некоторые отверстия забиты и требуется очистка сопла (распылителя) дизельной форсунки.

Следы солярки на бумаге должны иметь одинаковую сгущенность, а также располагаться на равном удалении от центра. Важной функцией инжектора является не только подача, но и обеспечение максимально равномерного распыла дизтоплива по окружности.

Отверстия прочищают после разбора инжектора. Осуществлять чистку без разбора элемента не рекомендуется по причине того, что грязь и отложения останутся внутри. Распылитель и остальные детали необходимо тщательно промывать в керосине. Образовавшийся нагар, который находится снаружи составных элементов, аккуратно удаляется деревянным скребком. Сами отверстия прочищаются небольшим куском тонкой и мягкой стальной проволоки.

Обратите внимание, что диаметр проволоки обязательно должен быть меньше диаметра отверстий сопла минимум на 0,1 мм. Если сопловые отверстия получат увеличение их суммарного сечения или будет нарушена правильная форма отверстий, это приведет к снижению скорости выхода топлива из форсунки. Качество распыла автоматически ухудшится.

Распылитель подлежит замене, если диаметр отверстий сопла увеличен всего на 10% от максимально допустимого. Также поводом для замены сопла выступает и разница в диаметрах отверстий на 5%. После чистки или замены распылителя осуществляется обратная сборка форсунки.

Диагностика и регулировка дизельных форсунок

Частой проблемой является нарушение плотности посадки иглы форсунки в направляющей втулке. Если плотность уменьшена, тогда существенно больше топлива протекает через образовавшийся зазор между иглой и втулкой. Для исправного инжектора допускается протечка горючего не более 4% от общего количества топлива, которое подается в цилиндр двигателя. Общее количество топлива, которое сливается из разных форсунок за каждый отдельный промежуток времени, не должно существенно отличаться. Выявить отклонения от нормы можно при помощи следующих действий:

  • необходимо затянуть пружину форсунки так, чтобы параметр давления открытия иглы совпадал с тем, который указан в технической литературе по эксплуатации конкретного дизельного двигателя;
  • следующим шагом становится создание заведомо большего давления топлива, чем указанное в документации по эксплуатации ДВС. Затем нужно замерить при помощи секундомера время, за которое давление упадет на 50 кгс/см2 от рекомендуемого;

Оптимальное время падения давления указано в технической документации по эксплуатации мотора. Зачастую требуется не менее 15 секунд для полностью новых форсунок. Для детали с пробегом данный показатель находится в рамках 5 секунд.

Если наклонить направляющую иглы на угол около 45 градусов, тогда игла должна выйти из нее не более чем на треть от длины направляющей. Игла должна выходить свободно, под  собственным весом и при учете любого поворота вокруг оси. Указанную  пару втулка-игла меняют в случае существенных отклонений в работе. Отдельная замена иглы без замены направляющей втулки не рекомендуется, так как данные элементы подгоняются друг к другу с высокой точностью.

Регулировка давления подъема иглы форсунки достигается путем изменения силы натяжения пружины. Максимально допустимое отклонение находится в рамках до 10 кгс/см2. Показатель величины такого давления указан в инструкции по эксплуатации ДВС.

Течи горючего из топливной форсунки

Также дизельные инжекторы могут давать как незначительную, так и обильную течь. В первом случае потребуется ремонт, во втором можно обойтись способом притирки иглы к седлу. Форсунки текут по причине нарушения уплотнения в области торца иглы, который еще называется уплотняющим конусом.

Проверку плотности притирки торца можно проверить путем плавного и поэтапного наращивания давления горючего. Конец распылителя  должен оставаться полностью сухим при достижении такого показателя, который составляет до 10 кгс/см2 меньше, чем необходимое давление впрыска.

В том случае, если замечено подтекание дизельной форсунки, тогда осуществляется аккуратная притирка иглы к седлу. Для этого используется тонкая шлифовальная паста ГОИ, которую дополнительно разводят с керосином. В процессе притирки необходимо избегать попадания пасты в зазор, который присутствует между иглой и направляющей втулкой. По окончании все элементы промываются в керосине или чистой солярке, затем их обтирают соответствующими салфетками. Далее необходимо обдуть все части сжатым воздухом и произвести повторную проверку на наличие течи.

Читайте также

Очищаем форсунки дизельного двигателя

Несмотря на сложную конструкцию, дизельный двигатель пользуется у водителей немалой популярностью. Это обусловлено долговечностью, надёжностью и практичностью в эксплуатации. При грамотном уходе дизельный мотор способен проработать значительно дольше бензинового.

Однако, они очень капризны в отношении топлива, что связано со сложностью конструкции системы, подающей горючее к камерам сгорания. Использование некачественного дизтоплива существенно отражается на эффективности работы форсунок, заметно её снижая, что отражается на деятельности всей топливной системы.

Что собой представляют форсунки

Специальная конструкция, выполняющая распыление горючего внутрь двигателя, называется форсунками. Они имеют вид маленьких отверстий, сквозь которые осуществляется впрыскивание топлива. Завершается конструкция игольчатым клапаном.

Благодаря непрерывному термическому воздействию и проведению, иногда сомнительного топлива, форсунки быстро засоряются. Обрастая налётом, игла не справляется с обязанностями, происходит разгерметизация, влекущая проникновение горючего внутрь цилиндра.

Почему форсунки загрязняются

Активная эксплуатация дизельного автомобиля вынуждает к частым заправкам. Но, качество топлива не всегда соответствует необходимым требованиям. Искусственное увеличение объёмов дизтоплива недобросовестными автозаправщиками, отражается не только на его качестве, но и на функциональности свей топливной системы. При эксплуатации, форсункам приходится испытывать немалые нагрузки от действующих на них давления, а также высоких температур.

Сгорающее дизтопливо способствует образованию нагара, который благополучно оседает на форсунках, нарушая их функциональность и препятствуя подаче топлива. Когда промывка форсунок дизельного двигателя выполняется редко, может произойти деформация отдельных элементов. Это заметно снижает способность к подаче топлива, что влечёт снижение работоспособности мотора и завышенный расход дизтоплива.

Признаки, подтверждающие загрязнение форсунок

Определить засорение форсунок на глаз, практически невозможно. Однако существуют определённые признаки, позволяющие насторожиться и принимать меры по срочной диагностике. К ним относятся:

  • завышенная потребляемость дизтоплива;
  • сложности при запуске движка;
  • выхлопная труба выдаёт густой шлейф чёрного дыма;
  • неравномерная работа агрегата;
  • снижение мощности или динамики разгона;
  • повышенная токсичность отработанных газов;
  • под нагрузкой движок издаёт посторонние звуки.

Каждый отдельный или несколько сразу признаков должны насторожить автолюбителя, подтолкнув к обращению в сервис. Именно там установится точный диагноз образовавшейся проблемы. Затягивание с очисткой форсунок дизельного двигателя чревато серьёзными нарушениями функций топливной системы.

Варианты прочистки форсунок

Следует понимать, что эффективная прочистка форсунок самостоятельно невозможна. Для этого необходимо воспользоваться специальным оборудованием.

Известно несколько способов очистки форсунок от мусора, содержащегося в топливе.

Ручная прочистка

Сегодня существует огромное количество всевозможных средств, позволяющих очистить форсунки от грязи. Они отличаются только эффективностью результата и стоимостью. Каждый препарат содержит пошаговую инструкцию проведения работ. Правда, этот вариант очистки относится к наименее эффективным и считается профилактическим.

Залитая непосредственно к горючему, жидкость перемещается по топливным каналам, очищая не только форсунки, но и все магистрали. Результатом становится скопление на цилиндрах отложений, препятствующих полноценному отходу тепла от мотора.

Механическая чистка

Промыть дизельные форсунки можно и при помощи более совершенного способа. Для него применяется то же средство, что и в первом случае. Но, теперь топливная система подключается к специальной установке, заставляющей очиститель циркулировать.

Правда этот вариант не позволяет жидкости перемещаться по топливным магистралям, что исключает накопление отложений. Эффективность от этого невелика, однако результат несколько лучше, чем при ручной чистке.

Подобная процедура позволяет значительно эффективнее использовать ресурсы очистителя, заставляя его работать на определённых участках, то есть выполнять очищение форсунок и поверхностей клапанов. Благодаря этому, отложения будут отслаиваться только с данных элементов, что исключает загрязнение цилиндров.

Данный метод не предусматривает применение диагностических стендов, что исключает полноценное проведение проверки качества выполнения чистки.

Ультразвуковая промывка

Относится к наиболее эффективному способу чистки на сегодня. Загрязнения с форсунок удаляется без использования жидкостей. Основой данного варианта является метод кавитации, выполняемый с использованием специального оборудования.

Самостоятельная чистка форсунок

Этот метод, может и не самый эффективный, но наиболее любимый у автолюбителей, так как исключает материальные расходы. Правда, если выполнять такую процедур регулярно, можно избежать крупных неприятностей.

Необходимые приспособления для самостоятельной очистки

Для проведения данной процедуры придётся приготовить всё, что может потребоваться:

  • промывочная жидкость;
  • два куска провода, желательно одинаковых;
  • силиконовая трубка, имеющая диаметр внутри до 5 мм;
  • аккумулятор;
  • кнопка;
  • изолирующая лента;
  • стандартные инструменты (пассатижи, отвёртка).

Демонтаж пошагово

Для более качественного очищения, форсунки потребуется изъять из топливной системы. Это выполняется следующим образом:

  • скручивают гайки, удерживающие топливную рейку на впускном коллекторе;
  • открепляют топливный регулятор, контролирующий давление;
  • рейку удаляют с форсунками;
  • извлекают из гнёзд форсунки для последующей чистки.

Работы рекомендуется выполнять на автомобиле, простоявшем без выезда несколько часов, что необходимо для снижения давления в ТС (топливной системе).

Процесс промывания

Самостоятельная прочистка форсунок требует выполнения целого ряда соответствующих предписаний. Прежде всего, производятся подготовительные работы:

  • организация герметичности соединения между промываемым элементом и ёмкостью с чистящей жидкостью, пользуясь силиконовой трубкой либо шлангом, прикреплённым к баллону изолентой;
  • противоположный конец трубки насаживается на форсунку;
  • с помощью аккумулятора, а также двух проводов, подводится электропитание;
  • кнопкой, подведённой к разрыву любого из проводов, замыкается цепь;
  • другой провод оставляют неразрывным.

Не следует на форсунки продолжительное время подавать электричество, так как попытка очистки закончится оплавлением деталей.

Перед самим процессом очистки с детали снимаются все фильтры, а также резиновые уплотнители, во избежание деформации под воздействием очистителя. Сама процедура чистки полностью имитирует функции форсунок. Нажатие на кнопку провоцирует впрыскивание очищающей жидкости, побуждая форсунку к работе. Процедуру продолжают, пока очиститель не начнёт равномерно распыляться, на это уйдёт около трёх минут.

Учитывая, что проблему предотвратить значительно легче, чем устранять, профилактику топливной системы нужно проводить регулярно. Это позволит предотвратить множество неприятностей.

 

Почему дизельные форсунки выходят из строя

Дизельные форсунки выходят из строя по двум основным причинам. Первый связан с механической прочностью конструкции инжектора, а второй — с качеством топлива, проходящего через инжектор. Чтобы понять, как работает инжектор (и что на самом деле приводит к его отказу), мы связались с Exergy Engineering. Компания предоставила нам множество изображений неисправных форсунок, которые вы видите здесь, сделанных с помощью микроскопа, чтобы помочь вам избежать повреждения вашего дизельного топлива.

Фото 2/14 | Так выглядит размытое седло шара форсунки Common Rail. Без гладкой поверхности для уплотнения форсунка не отключится, что обычно приводит к повреждению поршня. Обычно виной всему агрессивная настройка и мусор в топливе. Все эти примеры взяты из реальных форсунок, которые Exergy Engineering использовала для тестирования.

Чтобы узнать как можно больше о топливной стороне уравнения, мы связались с Afton Chemical, компанией, которая специализируется на добавках к топливу.Afton имеет 85-летний опыт работы с OEM-производителями и топливными компаниями. Используя опыт обеих этих компаний, мы надеемся, что проблемы с топливными форсунками останутся в прошлом.

Проблема с топливной форсункой?
Если выполняется надлежащее техническое обслуживание и избегаются проблемные методы работы, подавляющее большинство владельцев дизельных двигателей без проблем преодолеют тысячи миль. Если вы владелец дизельного топлива со старым двигателем (до Common Rail), большая часть этой статьи (помимо общих советов по обслуживанию, таких как регулярная замена топливного фильтра) к вам не относится.Это связано с тем, что более старые системы впрыска дизельного топлива используют только около 1⁄2 давления топлива в современных двигателях, а более старые форсунки направляют топливо через гораздо большие каналы.

Почему такая разница с форсунками common-rail? Современные дизельные форсунки с общей топливной магистралью могут срабатывать два или три раза за цикл двигателя — это вдвое увеличивает износ форсунки по сравнению с дизелями прошлого. Чтобы определить, есть ли проблема с системами впрыска Common-Rail, работающими на дизельном топливе со сверхнизким содержанием серы (ULSD), нам нужно знать, сколько форсунок вышли из строя с момента его внедрения.Отзывы, которые мы получаем от наших читателей, и онлайн-отчеты о сбоях, говорят о том, что всегда есть возможности для улучшения нашего топлива.

Механические отказы
Согласно Exergy Engineering, форсунки выходят из строя по пяти основным причинам. Мы перечислили их здесь вместе с индикаторами проблемы, причинами и способами ее предотвращения.

Фото 3/14 | Помните, все эти снимки сделаны под микроскопом. Невооруженным глазом инжектор может показаться нормальным, хотя на самом деле это не так.Прокладка справа, вероятно, была повреждена при сборке форсунки.

Отказ: высокая внутренняя утечка или обратный поток
Индикаторы:
1. Двигатель запускается с трудом (для запуска требуется увеличенное время проворачивания)

2. Коды низкого давления в Common-Rail

Причины:
Изношенное седло шара форсунки

Негерметичные трубы поперечной подачи (Cummins)

Выдувное внутреннее уплотнение высокого давления

Неправильный зазор иглы сопла

Трещина на корпусе форсунки

Трещина в корпусе форсунки

Профилактика:
Содержите топливную систему в чистоте, меняйте топливные фильтры, покупайте топливо из надежных источников, избегайте заправки из переносных строительных топливных баков

Избегайте чрезмерно агрессивной настройки, которая увеличивает давление в рампе и ширину импульсов форсунок, и не удаляет ограничивающие давление устройства из системы

Запрещается использовать восстановленные или неоригинальные компоненты впрыска, которые не были должным образом разработаны или изготовлены.

Отказаться от всех запасных частей топливной системы с металлическими заусенцами

Используйте только форсунки Bosch, так как они обладают превосходной стойкостью к растрескиванию.

Не смешивайте иглы с соплами, так как они подходят к корпусу и перемещение одной из них может привести к чрезмерному зазору или неправильному подъему иглы.

Неисправность: впрыск отсутствует
Индикаторы:
Показатели баланса высокие (положительные), что указывает на добавление топлива в цилиндр, поскольку компьютер считает, что топливная форсунка недостаточно протекает.Компьютер принимает это решение, основываясь на двух известных ему вещах: скорости вращения коленчатого вала и количестве подаваемого топлива. Если коленчатый вал не вращается так быстро, как полагает компьютер (или вращается быстрее, чем должен), топливо (с помощью ширины импульса) добавляется или забирается, чтобы выровнять ускорение коленчатого вала от каждого срабатывания форсунки.

Фото 4/14 | Вот выдувное уплотнение высокого давления внутри форсунки Common Rail.

Низкий показатель доли цилиндра (проверка вклада цилиндра выполняется путем отключения одной форсунки за раз с учетом падения оборотов двигателя)

Коды неисправностей ЭБУ

Причины:
Мусор или ржавчина в форсунке забивают форсунку

Заклинило якорь и / или игла сопла

Неисправность статора (редко)

Потеря компрессии цилиндра или другая механическая проблема

Профилактика:
Содержите топливную систему в чистоте, меняйте фильтры, покупайте топливо из надежных источников и избегайте заправки из переносных строительных топливных баков или сомнительных источников

Не используйте восстановленные или неоригинальные компоненты, которые не были должным образом спроектированы или произведены.

Отказаться от всех запасных частей топливной системы с металлическими заусенцами

Избегайте привязки возврата от нескольких комплектов насосов высокого давления и форсунок к одной обратной линии; чрезмерное давление возврата, действующее на статоры форсунок, может поднять их (и в крайнем случае сдувать), отключив форсунку

Если предполагается длительное хранение транспортного средства, время от времени принимайте меры для предотвращения внутреннего лакирования и коррозии внутренних компонентов; Также необходимо добавить присадки к топливу, специально разработанные для стабилизации дизельного топлива

Отказ: чрезмерный впрыск
Индикаторы:
Чрезмерный дым на холостом ходу, плохая работа и стук

Фото 5/14 | Это повреждение корпуса из-за неправильной сборки.

Высокий уровень баланса (отрицательный), что указывает на то, что компьютер удаляет топливо из форсунки

Тест на вклад цилиндра высокий, это означает, что при активации каждой форсунки частота вращения двигателя увеличивается больше, чем обычно.

Чрезмерная температура выхлопных газов

Повреждение двигателя из-за чрезмерного нагрева или гидравлической блокировки из-за чрезмерного количества топлива в цилиндре

Причины:
Изношено седло шара в форсунке или плохой конец отсечки впрыска

Седло иглы сопла изношено или повреждено

Загрязнения в системе управления форсункой, которая удерживает ее в открытом состоянии

Мусор в седле иглы сопла, удерживающий его открытым

Трещина на форсунке из-за избыточного давления или перегрев форсунки из-за неправильной установки форсунки

Профилактика:
Заменить изношенные форсунки и форсунки с большим пробегом; не используйте эти форсунки в качестве основы для создания высокопроизводительного блока форсунок

Заменить изношенные форсунки

Содержите топливную систему в чистоте, меняйте фильтры, покупайте топливо из надежных источников и избегайте заправки из переносных строительных топливных баков или из сомнительных источников

Отказаться от всех запасных частей топливной системы с металлическими заусенцами

Не используйте восстановленные или неоригинальные компоненты, которые не были должным образом спроектированы или произведены.

Отказ: неправильная скорость впрыска
Индикаторы:
Неровная работа и плохая балансировка цилиндров

Фото 9/14 | Восстановление форсунок требует хирургической чистоты.Даже кусок микроскопического ворса в контрольном отверстии может создать инжектор, который не сможет отключиться. Это одна из причин, по которой немногие компании могут ремонтировать форсунки Common Rail.

Большое изменение температуры выхлопных газов от цилиндра к цилиндру

Причины:
Плохой баланс потока через сопло

Неправильный подъем иглы сопла (детали смешаны или отсутствуют)

Форсунка частично забита

Сопла с проволочной щеткой

Профилактика:
Содержите топливную систему в чистоте, меняйте фильтры, покупайте топливо из надежных источников и избегайте заправки из переносных строительных топливных баков или сомнительных источников

Отказаться от всех запасных частей топливной системы с металлическими заусенцами

Не используйте восстановленные или неоригинальные компоненты, которые не были должным образом спроектированы или произведены.

Убедитесь, что форсунки обслуживаются или приобретаются у надежных поставщиков

Не чистить сопла металлической щеткой

Отказ: неправильное время и продолжительность впрыска

Показатели:
Неровная работа, плохая балансировка цилиндра и стук

Повреждение поршня

Большое изменение температуры выхлопных газов от цилиндра к цилиндру

Причины:
Износ седла шара

Неправильная сборка форсунки, детали смешаны или детали отсутствуют

Подъем иглы форсунки увеличен для увеличения производительности

Профилактика:
Заменить изношенные форсунки

Убедитесь, что форсунки обслуживаются, тестируются и приобретаются у надежных поставщиков

Неисправности дизельного топлива
По словам Дэвида Кливера, менеджера по маркетингу Afton Chemical в Северной Америке, есть три основные причины отказа форсунок, связанные со свойствами самого топлива: чрезмерный износ, истирание и отложения.

Фото 10/14 | Вот форсунка не Bosch, со сдутым наконечником. Создавать детали, чтобы выжить в этих ролях, сложно, и некоторым компаниям на вторичном рынке трудно соответствовать материалам и процессам термообработки Bosch.

Чрезмерный износ
Одна из причин отказа форсунок — чрезмерный износ. До 2006 года дизельное топливо в США содержало относительно большое количество серы. Эта сера содержится в сырой нефти, которая перерабатывается в дизельное топливо.Сера в топливе использовалась в качестве естественной смазки для топливной системы. Дизельное топливо со сверхнизким содержанием серы (ULSD) постепенно внедрялось в США, поскольку сера разрушает сажевые фильтры (DPF). Дизельное топливо со сверхнизким содержанием серы теперь требуется во всех сегментах дизельного топлива, в том числе для автомобильных дорог, внедорожников и железных дорог. Дизельное топливо со сверхнизким содержанием серы имеет максимально допустимое содержание серы 15 частей на миллион (ppm). Поскольку нефтепереработчики удалили эту серу, исчезли и преимущества смазки. В результате заводы по переработке дизельного топлива теперь добавляют в топливо присадки для восстановления смазывающей способности.

Фото 11/14 | Это еще один пример плохого качества сопла из-за плохих материалов.

Стандарт для измерения этой смазывающей способности называется тестом высокочастотного поршневого двигателя (HFRR), ASTM D-6079, который измеряет размер пятна износа между двумя металлическими поверхностями, смазываемыми топливом. Чем меньше смазки обеспечивает топливо, тем больше след от износа. Максимально допустимый след износа в США составляет 520 мкм (460 мкм в Канаде). Многие дистрибьюторы топлива добавляют в топливо дополнительные присадки, улучшающие смазывающую способность, чтобы ограничить преждевременный износ.

Истирание
Хотя смазывающая способность топлива является важным фактором при определении характеристик износа системы впрыска топлива, это не единственная причина чрезмерного износа, связанная с топливом. Другая потенциальная причина преждевременного выхода из строя форсунок (из-за износа) связана с истиранием. Все виды топлива содержат небольшое количество примесей, даже самое качественное дизельное топливо. Некоторые из этих примесей включают очень маленькие (размером несколько микрон) частицы, которые могут проходить даже через самые жесткие бортовые фильтры автомобиля.Если топливо содержит большое количество этих мелких нерастворимых частиц, со временем они могут истирать форсунки при прохождении через них при нормальной работе двигателя. В крайних случаях это истирание может значительно изменить форму распыления топлива, что приведет к снижению производительности двигателя. В тяжелых случаях может даже выйти из строя форсунка. Надлежащая уборка, осуществляемая поставщиком топлива, и хорошая фильтрация топлива могут уменьшить ущерб, причиненный этим истиранием.

Фото 12/14 | Мы видели, как выглядит хороший и ровный рисунок распыления; вот пример того, чего вы не хотите.

Отложения
Хотя чрезмерный износ (вызванный плохой смазывающей способностью топлива или истиранием) важно учитывать при обсуждении причины отказа форсунок, Afton Chemical заявляет, что основная причина неисправности форсунок сегодня связана с чрезмерным накоплением отложений. Есть два основных типа этих отложений: внешние отложения в инжекторах и внутренние отложения в инжекторах.

Фото 13/14 | Иглы форсунок также могут изнашиваться. Этот выходил из строя из-за большого пробега.

Отложения на внешней форсунке обычно возникают из-за не полностью сгоревшего топлива, которое скапливается вокруг отверстий форсунки. Эти отложения называются коксующимися. Хотя в большинстве случаев эти отложения не могут привести к отказу форсунки, их может накапливаться достаточно, чтобы нарушить распыление топлива, что приводит к менее эффективному сгоранию топлива. Оператор транспортного средства часто отмечает это как заметную потерю мощности или потерю топлива. Моющие присадки использовались довольно успешно, чтобы помочь контролировать эти внешние отложения и восстановить наиболее эффективную работу инжектора — восстановить как потерянную мощность, так и потерянную экономию топлива, вызванную накоплением этих внешних отложений.

Внутренние отложения дизельных форсунок
По данным Afton Chemical, за последние пять лет начали появляться новые отложения на форсунках. Этот отложение образуется не на внешних концах форсунок, а на внутренних частях, таких как иглы форсунок и пилотные клапаны. Эти отложения часто похожи на коксующиеся отложения (темно-коричневого цвета), но также могут быть очень светлыми, от почти сероватого до не совсем белого цвета. Хотя они могут образовываться практически в любом типе дизельного двигателя, они обычно вызывают эксплуатационные проблемы только в новых двигателях с системами точного впрыска.

Фото 14/14 | Эта форсунка вышла из строя из-за мусора и ржавчины в топливной системе.

Производители двигателей теперь предлагают системы впрыска, которые работают при очень высоких давлениях впрыска (в некоторых случаях более 30 000 фунтов на квадратный дюйм), которые подают топливо ко всем форсункам через общую топливную рампу. Эти двигатели часто называют двигателями с общей топливораспределительной рампой высокого давления (HPCR). Они были разработаны, чтобы удовлетворить спрос на более мощные дизели, при этом соблюдая постоянно ужесточающиеся нормы выбросов.

Давление впрыска около 30 000 фунтов на квадратный дюйм создает очень мелкую струю топливного тумана в камере сгорания, что приводит к более полному сгоранию топлива. Это более полное сжигание топлива приводит к снижению выбросов и может также улучшить экономию топлива. Чтобы поддерживать такое высокое давление впрыска, узлы инжекторов были тщательно спроектированы и имеют очень жесткие допуски зазоров, иногда от 1 до 3 микрон (толщина человеческого волоса обычно составляет от 70 до 100 микрон). Таким образом, вы можете себе представить, что на этих деталях не потребуется много материала, чтобы вызвать плохое срабатывание иглы форсунки, что приведет к снижению производительности двигателя.В крайних случаях эти отложения могут привести к полному заеданию или заеданию игл форсунок, особенно после того, как автомобиль был остановлен и двигатель остыл.

По мере того, как эти внутренние отложения накапливаются, они могут вызывать те же симптомы, что и более традиционные внешние отложения кокса, а именно потерю мощности и снижение экономии топлива. В крайних случаях, когда форсунки начинают полностью заедать, это может привести к чрезмерному простою автомобиля и высоким затратам на техническое обслуживание.

Диагностика дизельного двигателя малой мощности

Дизельные двигатели очень скупы, когда дело касается расхода топлива. Они также известны своим тяговым усилием и прочностью. Вот почему дизели по-прежнему остаются популярным вариантом во многих пикапах. Но дизели также известны своим грохотом на холостом ходу, черным дымом и трудностями при запуске в холодную погоду.

Когда температура падает, происходит несколько вещей, которые могут затруднить запуск дизеля. Сначала загустевает масло в картере.В то же время мощность батареи падает, уменьшая количество ампер, доступных для запуска двигателя. Мультивязкое моторное масло 15W-40, популярное в теплые дни среди владельцев дизельных двигателей в наши дни, может стать слишком густым, когда температура опускается ниже нуля или падает до нуля или ниже. Обычные масла весом 30 или 40 определенно будут слишком густыми. Повышенное сопротивление, создаваемое холодным маслом, может снизить частоту вращения коленчатого вала до точки, при которой двигатель может не генерировать достаточную компрессию при запуске и / или давление топлива, чтобы зажечь огонь.

Таким образом, первое, что вы должны проверить при диагностировании жалобы на «затрудненный запуск», — это щуп. Если масло густое и густое, возможно, его вязкость не подходит для зимней езды. Спросите клиента, какое масло он использовал и когда его в последний раз меняли. Переход на более легкое масло, такое как 10W-30 (никогда не бывает легче в обычном масле!), Может быть всем, что нужно для улучшения холодного запуска. Для действительно холодной погоды вы можете порекомендовать синтетическое моторное масло класса CG-4.

Следующее, что нужно проверить, — это минимальная частота вращения коленчатого вала. Скорость вращения, необходимая для зажигания огня, будет варьироваться в зависимости от области применения, но General Motors заявляет, что ее дизельные двигатели объемом 6,2 и 6,5 л с роторными инжекторными насосами Stanadyne требуют как минимум 100 об / мин в холодном состоянии и 180 об / мин в горячем состоянии.

Если двигатель запускается недостаточно быстро, проверьте заряд и состояние аккумуляторной батареи, а также соединения кабелей и потребляемую мощность стартера. Проблемы в любой из этих областей могут затруднить запуск любого двигателя.Если аккумулятор разряжен, зарядите его и также проверьте мощность системы зарядки.


Неисправная свеча накаливания может привести к пропуску зажигания в цилиндре после
холодный старт. Обычно пропуски зажигания проходят через несколько минут.

ПРОБЛЕМЫ ЗАПУСКА ДИЗЕЛЬНЫХ СВЕЧЕЙ И ПРОБЛЕМЫ

Если проблема не в медленном запуске, возможно, что-то не так с системой свечей накаливания. Большинство дизелей для легковых автомобилей и легких грузовиков имеют свечи накаливания для облегчения холодного запуска.Свечи накаливания получают питание от реле и таймера, которые направляют напряжение на свечи в течение заданного количества секунд. Когда таймер закончится, реле должно отключить напряжение. Но реле иногда залипает и продолжает подавать напряжение на свечи накаливания, вызывая их перегорание.

Одна или две неисправные свечи накаливания на двигателе V8 могут не вызывать заметных проблем с запуском в теплую погоду, но могут при падении температуры.

Свечи накаливания

можно проверить, измерив их сопротивление или целостность.Чрезмерное сопротивление или отсутствие непрерывности говорят о неисправности вилки.

Если одна или несколько свечей накаливания перегорели, сильно покрыты углеродом или не получают свою обычную дозу пускового напряжения, двигатель будет все труднее запускаться по мере падения температуры, он будет грубо работать на холостом ходу и выделять белый дым выхлоп на несколько минут после того, как он, наконец, начнется. Если все свечи накаливания сгорели на конце, вам лучше проверить время впрыска, потому что оно, вероятно, завышено.

Чтобы проверить, подает ли модуль свечи накаливания питание на свечи накаливания, с помощью вольтметра проверьте каждую свечу на указанное напряжение при включении ключа зажигания. Нет напряжения? Проверьте соединения модуля управления свечами накаливания, массу и жгут проводов. Сами свечи накаливания можно проверить, измерив их сопротивление. Замените все свечи, которые не соответствуют техническим характеристикам.

Трудный запуск иногда может быть вызван модулем свечи накаливания, который не включает свечи накаливания или не держит свечи включенными достаточно долго в холодную погоду.На дизелях GM 6.2 / 6.5L поступали сообщения о перегреве еще теплого двигателя, из-за которого блокирующий переключатель на 125 градусов внутри контроллера отключался, что затрудняло запуск двигателя. Лекарство здесь — переместить модуль управления подальше от двигателя. На дизелях Ford 7.3L модуль управления может отключиться раньше, если неисправны две или более свечи накаливания. Мы также слышали о модулях управления, которые не удерживают свечи накаливания достаточно долго для облегчения запуска в холодную погоду. Времени достаточно для теплой погоды, но не для холода.


Топливо впрыскивается непосредственно в камеру сгорания под высоким давлением.
Утечки давления в насосе высокого давления, топливном контуре или форсунках
может вызвать затруднения при запуске и пропуски зажигания.

ПРОБЛЕМЫ С ДИЗЕЛЬНЫМ ТОПЛИВОМ

В отличие от бензина, на дизельное топливо отрицательно влияют низкие температуры. Дизель состоит из более тяжелых углеводородов, которые при понижении температуры превращаются в парафин. «Точка помутнения» или точка начала образования парафина для обыкновенного летнего сорта No.2 солярки может составлять от 10 до 40 градусов. Если в топливном баке находится летнее топливо и температура падает, в водоотделителе могут образовываться кристаллы парафина, вызывая закупорку.

Лекарство здесь — загнать автомобиль в теплый гараж, чтобы он мог оттаять, при необходимости заменить водоотделитель / топливный сепаратор, а затем добавить одобренную присадку для кондиционирования топлива в бак (некоторые производители не одобряют никаких добавок или запрещают использование определенных ингредиентов, таких как спирт, который содержится в некоторых добавках), или слейте воду из бака и снова наполните ее No.1 дизельное топливо. Чтобы то же самое не повторилось, вы можете порекомендовать установку подогревателя топлива.

Вода в топливе — еще одна проблема, которая может вызвать проблемы с запуском и производительностью. Конденсат, образующийся в холодную погоду, является основным источником загрязнения. Вода, которая попадает в топливный бак, обычно оседает на дно, потому что вода и масло не смешиваются. Вода всасывается в топливопровод и поступает в фильтр или водоотделитель (если он есть в автомобиле).Здесь он может замерзнуть, вызывая закупорку, которая останавливает подачу топлива к двигателю. Поэтому, если фильтр или сепаратор покрылся льдом, необходимо слить топливо из топливного бака, чтобы избавиться от воды.

ЗАГРЯЗНЕНИЕ ДИЗЕЛЬНОГО ТОПЛИВА

Еще одно отличие дизельного топлива состоит в том, что оно приятно на вкус определенным микробам, особенно если в баке есть вода. Некоторые бактерии действительно могут размножаться внутри дизельного топливного бака, образуя слизь, кислоты и другие жуткие вещества, которые могут забивать топливопроводы, фильтры, топливные насосы и форсунки.Зараженное топливо часто имеет запах «тухлого яйца» и оставляет черный или зеленый налет на внутренней стороне компонентов топливной системы. Скорость роста большинства организмов увеличивается с повышением температуры, но некоторые могут развиваться и до отрицательных температур.


Важной частью обслуживания дизеля является
периодически сливайте воду из корпуса топливного фильтра.

Чтобы избавиться от насекомых, необходимо слить и очистить топливный бак. Биоцид, одобренный для этого типа использования, также следует использовать для уничтожения организмов и предотвращения их повторного появления.За процессом очистки следует поставить свежий топливный бак, обработанный профилактической дозой биоцида. Если топливные магистрали и ТНВД также были загрязнены, их также необходимо очистить.

ПРОБЛЕМЫ ПОДАЧИ ДИЗЕЛЬНОГО ТОПЛИВА

Для правильного запуска и работы инжектор должен быть точным. Быстрый визуальный осмотр покажет, совпадают ли метки времени. Обратитесь к процедуре синхронизации производителя транспортного средства, если вы подозреваете, что синхронизация не работает или насос был недавно заменен.На более новых дизелях с электронными насосами впрыска или прямым впрыском вам понадобится диагностический прибор, чтобы внести какие-либо изменения.

Воздух в топливе также может быть причиной затрудненного запуска или отсутствия запуска. Воздух может заставить двигатель заглохнуть после запуска и затруднить повторный запуск. Воздух может попасть в систему через любой разрыв в топливной магистрали или через состояние обратной утечки.

Чтобы определить, является ли проблема с воздухом, установите прозрачный возвратный шланг на обратной стороне топливного насоса.Проверните двигатель и посмотрите на линию. Пузырьки воздуха в топливе говорят о том, что воздух попадает во входную сторону насоса. Сам по себе топливный насос обычно не является источником утечки воздуха, поэтому проверьте топливопроводы и насос.

Изношенный или забитый насос также может затруднить запуск двигателя. Если состояние постоянно ухудшается, что сопровождается потерей мощности, а двигатель пробегает много миль (более 75 000 км), основной причиной может быть насос, который необходимо заменить.

Однако, прежде чем отказываться от насоса, проверьте топливные фильтры. Засоренные фильтры могут привести к ограничению подачи топлива, что мешает насосу выполнять свою работу должным образом. Первичный водоотделитель / топливный фильтр обычно необходимо менять каждые 30 000-40 000 миль, а вторичный фильтр — каждые 20 000 — 30 000 миль. Более новые топливные системы с одним фильтром обычно требуют обслуживания примерно раз в год. Если фильтр не использовался, есть вероятность, что он заблокирован или забит.

ДИЗЕЛЬНЫЙ ДВИГАТЕЛЬ НЕ ЗАПУСКАЕТСЯ

Дизельный двигатель, который проворачивается нормально, но не запускается независимо от наружной температуры, либо имеет низкую компрессию, либо проблемы с подачей топлива. Если компрессия в порядке, проверьте указатель уровня топлива (нет топлива?). Затем проверьте топливные фильтры и трубопроводы на предмет засорения.

Если ТНВД не проталкивает топливо по линиям к форсункам, возможно, в нем неисправен соленоид. Прослушайте «щелчок» внутри насоса при включении зажигания.Отсутствие щелчка означает, что соленоид и / или насос необходимо заменить. Если он щелкает, но топливо не поступает по линиям форсунок (а фильтр и трубопроводы не забиты), вероятно, насос неисправен и его необходимо заменить.

ПРОБЛЕМЫ ДИЗЕЛЬНОЙ ИНЖЕКТОРА

Дизельные форсунки могут страдать от тех же недугов, что и бензиновые форсунки, включая отложения лака, засорение, износ и утечки. Сегодняшнее дизельное топливо с низким содержанием серы с большей вероятностью оставляет на форсунках отложения лака и смолы, а также обеспечивает меньшую смазку, поэтому вы можете порекомендовать присадку для обеспечения плавности хода.

Дизельные форсунки работают при гораздо более высоком давлении, чем бензиновые форсунки. Со временем их давление открытия может упасть. Давление до 300 фунтов на квадратный дюйм считается приемлемым для более старых механических форсунок, но более 300 фунтов на квадратный дюйм означает, что форсунки следует заменить или вернуть к исходным рабочим характеристикам. Если вы подозреваете, что проблема такого рода, вам понадобится какой-нибудь тестер для проверки давления открытия форсунок. На более новых дизелях давление открытия форсунок будет зависеть от системы впрыска.Например, на Ford Powerstroke минимальное давление в трубопроводе, необходимое для открытия форсунок, составляет 500 фунтов на квадратный дюйм. На грузовике Dodge последней модели с дизельным двигателем Cummins и системой впрыска Common Rail давление открытия составляет 5000 фунтов на квадратный дюйм.

Грязные форсунки выводят топливно-воздушную смесь, вызывая потерю мощности, резкий холостой ход, а иногда и белый дым в выхлопе. Негерметичные форсунки обогатят топливно-воздушную смесь и вызовут черный дым.

Есть несколько способов найти неисправный инжектор на дизельном двигателе.Один из них — использовать цифровой пирометр для проверки рабочей температуры каждого цилиндра. Значение температуры ниже остальных значений указывает на слабый цилиндр. Если компрессия в порядке, проблема в подаче топлива. Еще одна быстрая проверка — использовать омметр, показывающий десятые доли Ом, чтобы измерить сопротивление свечей накаливания при работающем двигателе. Сопротивление свечи растет с температурой, поэтому, если показания одного или двух цилиндров низкие, проблема обнаружена. Например, если свеча накаливания обычно показывает 1.8–3,4 Ом на горячем работающем двигателе, значение 1,2–1,3 Ом на свече накаливания говорит о том, что цилиндр не нагревается.

УСТРАНЕНИЕ НЕПОЛАДОК ДИЗЕЛЯ ЧЕРНЫЙ ДЫМ

Черный дым обычно является сигналом о том, что слишком много топлива, недостаточно воздуха или что время насоса форсунки нарушено. Одна из наиболее частых причин этого состояния — ограничение притока воздуха. Причиной может быть грязный воздушный фильтр, сломанный всасывающий шланг или даже засорение выхлопа. Дизели не дросселируются, поэтому нет необходимости измерять всасываемый вакуум.

УСТРАНЕНИЕ НЕПОЛАДОК ДИЗЕЛЯ БЕЛЫЙ ДЫМ

Белый дым обычно возникает, когда недостаточно тепла для сжигания топлива. Несгоревшие частицы топлива выходят из выхлопной трубы и обычно производят сильный запах топлива. Нередко можно увидеть белый дым в выхлопе в холодную погоду, пока двигатель не прогреется.

Как упоминалось ранее, неисправные свечи накаливания или неисправный модуль управления свечами накаливания могут вызвать появление белого дыма при запуске двигателя. Низкая частота вращения коленчатого вала двигателя также может вызывать образование белого дыма.

Если белый дым все еще виден после прогрева двигателя, возможно, в двигателе неисправны одна или несколько форсунок, задержка впрыска или изношенный топливный насос. Низкое сжатие также может быть источником белого дыма. Воздух в топливной системе также может вызвать появление белого дыма.

ПРОБЛЕМЫ ЗАГРУЗКИ ДИЗЕЛЯ

Если дизельное топливо глохнет при замедлении, это может указывать на проблему со смазкой в ​​насосе форсунки. Первое, что следует проверить, это обороты холостого хода.Если он низкий, это может помешать регулятору насоса достаточно быстро восстановиться во время замедления, чтобы предотвратить остановку двигателя.

Вода в топливе также может вызвать остановку из-за заедания дозирующего клапана или поршней внутри насоса. Использование смазочной присадки может помочь вылечить это состояние. Если добавка не помогает, возможно, насос придется очистить или заменить.




Другие статьи о дизельном топливе:

Обработка дизельного топлива

Загрязнение топлива: что делать, если вы залили НЕПРАВИЛЬНОЕ топливо в свой дизель

Диагностика повреждения поршня дизеля

Проблемы с гарантией GM Duramax Diesel

Технология чистого дизельного топлива

Что лучше? Дизельный двигатель или бензиновый / электрический гибрид?

Щелкните здесь, чтобы увидеть больше технических статей Carley Automotive

4 причины, по которым двигатель автомобиля заводится, но не запускается (и способы устранения)

Последнее обновление 2 декабря 2020 г.

Любой владелец автомобиля наверняка испытал неприятную проблему с автомобилем, который заводится, но не заводится даже после многократного поворота ключа в замке зажигания.Однако не позволяйте отчаянию помешать вам логически понять, почему ваш автомобиль заводится, но не заводится нормально.

Ищете хорошее онлайн-руководство по ремонту? Щелкните здесь, чтобы увидеть 5 лучших вариантов.

Связано: что делать, если ваш автомобиль сломался

Причины, по которым автомобиль заводится, но не крутится

При проворачивании двигателя запускается стартер для запуска двигателя. Стартер заставляет вращаться маховик, который вращает коленчатый вал, когда все работает правильно.Иногда этот процесс прерывается, когда в системе возникает заминка, и двигатель автомобиля перестает работать после того, как он «перевернется» или проворачивается.

Для нормального запуска двигателя требуется достаточное давление топлива, правильно рассчитанная искра и нормальное сжатие. Когда он не запускается, проблема обычно связана с одной из этих систем, хотя стартерная система также может быть виновата. Ниже приведены некоторые распространенные причины, по которым двигатель проворачивается, но не запускается, и несколько советов по устранению неполадок, чтобы определить причину.

См. Также: Что делать, если ваш автомобиль выключается во время движения

# 1 — Проблемы с искрами

Отсутствие искры может возникнуть из-за поврежденного модуля зажигания, неисправного датчика положения коленвала, залитого двигателя ( иногда случается в старых автомобилях или автомобилях с большим пробегом), неисправными свечами зажигания или проблемой в цепи зажигания, такой как проводка, система безопасности (подача топлива могла быть перекрыта для предотвращения кражи, либо чип в ключе мог быть поврежден. неисправен) или неисправен переключатель зажигания.

Искра, не рассчитанная по времени, может возникнуть, если есть проблема с системой синхронизации. Это может быть сложно диагностировать, но индикатор времени — полезный инструмент для проверки того, что все цилиндры работают именно тогда, когда они должны.

Чтобы определить, есть ли проблема с искрой, визуально проверьте крышку распределителя (если она есть в вашем автомобиле) и провода свечей зажигания, поскольку они могут ухудшиться с возрастом. Для проверки наличия надлежащей дуги от каждого провода или катушки свечи зажигания следует использовать искровой тестер.

Если вы подозреваете, что двигатель может быть залит после неоднократных попыток завести автомобиль, снимите свечи зажигания и дайте им высохнуть, затем замените их и повторите попытку.

# 2 — Отсутствие потока топлива

Проблемы с потоком топлива могут быть вызваны повреждением предохранителя топливного насоса, неисправным топливным насосом, загрязненным или неподходящим топливом в баке, неисправным или забитым топливным фильтром или форсункой , или просто пустой топливный бак (указатель уровня топлива не всегда точен).

Наличие соответствующего давления топлива важно для запуска или работы двигателя вашего автомобиля, особенно для двигателей с впрыском топлива.Послушайте, как в течение нескольких секунд услышите гудение топливного насоса, когда вы поворачиваете зажигание в положение «включено».

Если не слышно гудения изнутри автомобиля или сзади топливного бака, возможно, насос не работает и топливо не достигает двигателя.

Обратите внимание, что некоторые топливные насосы работают только при запуске двигателя, поэтому в некоторых автомобилях нет слышимого гудения. Для получения дополнительной информации о вашей конкретной модели обратитесь в Интернет или к руководству пользователя.

Если вы слышите гудение топливного насоса, вы можете попробовать положить отвертку с плоской головкой на каждую форсунку (с ручкой рядом с ухом), пока автомобиль заводится.Если форсунки работают, вы услышите слабый тикающий звук из каждой форсунки, передаваемый валом отвертки.

В некоторых автомобилях есть функция безопасности, называемая инерционным выключателем, которая автоматически перекрывает подачу топлива после удара. Если ваш автомобиль недавно подвергся удару, обратитесь к руководству пользователя, чтобы узнать, присутствует ли эта функция в вашем автомобиле, и узнайте, как вручную переключить ее, чтобы топливо снова текло.

# 3 — Низкое сжатие

Каждый цилиндр нуждается в сжатии для правильной работы двигателя.Степень сжатия сравнивает максимальный объем цилиндра с минимальным объемом цилиндра во время каждого хода поршня. Если один или несколько цилиндров имеют низкую степень сжатия, воздух из цикла сгорания проходит мимо поршневых колец, что ограничивает объем работы, которую цилиндр может выполнить для вращения коленчатого вала.

Проблемы с компрессией могут быть вызваны обрывом или ослаблением ремня или цепи привода ГРМ или защелкиванием верхнего распределительного вала. Перегретый двигатель — еще одна серьезная проблема, которая может помешать запуску вашего автомобиля.

Попробуйте использовать датчик компрессии или тестер, чтобы проверить, есть ли у вас проблемы со сжатием в вашем автомобиле. В таком случае проверка на утечку является вторичной проверкой утечек в цилиндре. Профессиональный механик может провести эти тесты и осмотреть цилиндры, если вам неудобно проверять себя.

# 4 — Проблемы с источником питания

Другая возможная проблема — слабый стартер, который использует много ампер для проворачивания двигателя, а затем не остается много сока для включения топливных форсунок и системы зажигания.В этом случае вы, вероятно, заметите, что стартер издает необычный шум, когда вы пытаетесь запустить двигатель, или он вообще не вращается.

Слабые или корродированные кабели аккумулятора или разряженный аккумулятор также могут способствовать возникновению проблемы. Проверяйте напряжение аккумулятора мультиметром, проворачивая двигатель. Он должен показывать более 10 вольт.

Проверьте, нет ли перегоревших предохранителей, сняв визуально и осмотрев проводку каждого предохранителя, когда автомобиль выключен. Если кажется, что они в хорошем состоянии, вставьте их обратно, затем попробуйте включить зажигание автомобиля и с помощью контрольной лампы проверить каждый предохранитель на наличие электрического тока.Замените все поврежденные предохранители на новые из автомагазина.

Рекомендации по поиску и устранению неисправностей

Если двигатель заводится, но не запускается, выключите автомобиль и снимите воздухозаборную трубку, прикрепленную к корпусу дроссельной заслонки. Затем распылите небольшое количество пусковой жидкости в двигатель, осторожно нажав на дроссельную заслонку. После этого попробуйте запустить двигатель еще раз.

Если двигатель запускается, но через несколько секунд заглохнет, это означает, что в нем нет топлива, но с искрой и сжатием все в порядке.Однако, если двигатель не запускается, ему почти наверняка не хватает искры.

Избегайте многократного проворачивания двигателя автомобиля, чтобы попытаться запустить его, так как это может привести к износу стартера или разрядке аккумулятора.

Если вам нужно попробовать несколько раз, подождите несколько минут после каждых 15 секунд запуска, чтобы дать стартеру остыть. На каждую попытку вы узнаете, решили ли вы проблему, не больше пары секунд.

Проверка датчиков и исполнительных механизмов на наличие проблем имеет решающее значение, поскольку современные автомобили имеют множество электрических компонентов, которые могут вызвать сбой в процессе запуска двигателя.

Лучший способ сделать это — проверить компьютер автомобиля на наличие кодов (неисправностей в электрической системе) с помощью диагностического прибора, который можно найти в большинстве магазинов автозапчастей. Большинство из этих проблем также приводят к тому, что загорается индикатор проверки двигателя, но не все из них.

Мониторинг сигналов форсунок дизельного двигателя в режиме реального времени для точного измерения и контроля топлива легко откалибровать для различных платформ двигателя, а затем передать соответствующее количество топлива в компьютер в реальном времени в контроллере с обратной связью на стенде (CIL) для достижения оптимальной заправки.В этом исследовании используются программируемые вентильные матрицы (FPGA) и возможность передачи данных с прямым доступом к памяти (DMA) для достижения высокой скорости сбора и доставки данных. Эта работа проводится в два этапа: первый этап заключается в изучении изменчивости количества впрыскиваемого топлива от импульса к импульсу, от инжектора к инжектору, между реальными статорами инжектора и тензодатчиками индуктора и в различных условиях эксплуатации. Для определения наилучшего порогового значения начала впрыска (SOI) и порога конца впрыска (EOI) использовались различные пороговые значения, которые позволяют фиксировать «вовремя» инжектора с максимальной надежностью и точностью.Второй этап включает разработку системы, которая преобразует импульс форсунки в количество топлива. Систему легко калибровать для различных платформ. Наконец, было замечено, что использование результирующей таблицы поправок позволяет фиксировать количество топлива с максимальной точностью.

1. Введение

Для дальнейшего повышения топливной экономичности дизельного двигателя крайне важно использовать оптимальное количество впрыска топлива, которое будет обеспечивать требуемую мощность при соблюдении требований по выбросам.Поэтому большинство производителей дизельных двигателей, таких как Cummins, Inc., используют испытание с обратной связью на стенде аппаратного обеспечения (HIL), что является очень важным этапом при тестировании производительности дизельных двигателей. Для проведения анализа производительности системы модель двигателя и всех других компонентов транспортного средства запускается на компьютере в реальном времени, который имитирует реальное транспортное средство. В ECM в реальном времени поступают все сигналы датчиков, которые он ожидает от реальных автомобилей, от эмулируемых датчиков с использованием необходимого оборудования.Однако модель в реальном времени не может правильно запустить моделирование в реальном времени с обратной связью без точной информации о количестве нагнетаемого топлива. Контроллер ЭСУД вычисляет желаемое количество топлива с помощью алгоритма управления, который учитывает все необходимые сигналы обратной связи датчиков на каждом временном шаге. Наконец, «вовремя» форсунки, количество времени, в течение которого форсунка должна впрыснуть топливо в цилиндр, ищется в таблице своевременности подачи топлива, соответствующей количеству топлива, которое должно быть впрыснуто, и работающей общей топливной магистрали. давление.Соответствующий электрический импульс посылается на статоры форсунок или тензодатчики индуктора, имитирующие форсунки. В этом исследовании выясняется, подходят ли индукторы вместо инжекторов для использования на стенде с замкнутым контуром, если могут быть приняты необходимые корректирующие меры для принятия этого более дешевого решения. Он также исследует различные пороговые значения, чтобы определить тот, который лучше всего подходит для точного определения «своевременности». Результаты экспериментов показывают, что схема с двойным порогом, с началом впрыска при 0.1 В и конец впрыска при 3 В, фиксирует время включения с наименьшим количеством ошибок.

Эта работа включает использование системы сбора данных на основе ПЛИС, имеющей различные подходы к пороговым значениям с различными конфигурациями схемотехники ПЛИС. Аппаратное обеспечение FPGA позволяет использовать свои предварительно созданные логические блоки и программируемые ресурсы маршрутизации для настройки кремниевых микросхем для реализации пользовательских аппаратных функций [1], обеспечивая скорость и надежность с аппаратной синхронизацией. Моделирование HIL в реальном времени требует скорости и надежности с аппаратной синхронизацией, что является причиной выбора оборудования FPGA.Reyneri et al. [2] представили свою работу с полным испытательным стендом HIL для системы впрыска Common Rail, где они продемонстрировали методику кодирования, которая объединяет кодовую схему и совместное моделирование оборудования (HW) и программного обеспечения (SW), составляющих стенд HIL. В испытательном стенде они использовали восемь процессоров FPGA, один ПК, одну аналого-цифровую (A / D), цифро-аналоговую (D / A) плату и плату сбора данных в дополнение к тесту Common Rail. стенд и совместное моделирование в среде CodeSimulink.Предварительно заданная форма волны напряжения, вычисленная на основе требуемой формы волны тока и электрической модели форсунки, была отправлена ​​на форсунки. Их работа была сосредоточена на тестировании характеристик ECM, что требует определения количества впрыскиваемого топлива и обратной связи с программным моделированием, работающим в RT, что отличается от работы, которую мы ей представляем. Авторы [2] использовали специальный аппаратный генератор сигналов на основе FPGA, который питал H-мосты для инжекторов. Они использовали генерацию сигнала тока без обратной связи.Тем не менее, они настроили датчики веса индуктора, то есть цепи R-L, с расчетными значениями R и L. Они использовали нейро-нечеткие методики, которые характеризовали форсунки, то есть электрические параметры, чтобы настроить индуктивные датчики нагрузки, которые позволили им взвешивать впрыскиваемое топливо с помощью более дешевых датчиков нагрузки и при этом получать желаемую точность. Аппаратные средства FPGA и 8-канальный аналого-цифровой преобразователь с частотой дискретизации около 20 кГц использовались в процессе определения характеристик инжектора.

Saldaña-González et al.В [3] представлена ​​аппаратная реализация на основе ПЛИС, которая принимает оцифрованные сигналы напряжения, создаваемые электроникой сбора данных фотоэлектронных умножителей, и обрабатывает их, чтобы позволить идентифицировать события. Затем данные использовались для определения силы и положения взаимодействий на основе логики Гнева, чтобы сформировать планарное изображение, которое позволяет реконструировать 2D-изображение для медицинской диагностики в гамма-камере в реальном времени. Позняк [4] представил применение ПЛИС — основанных на многоканальных распределенных синхронных системах измерения для запуска и сбора данных, используемых в экспериментах по физике высоких энергий (HEP).Turqueti et al. [5] представили дизайн и реализацию массива MEMS из 52 микрофонов, встроенного в платформу FPGA с возможностями обработки в реальном времени.

Целью этого исследования является изучение изменчивости и неточности, присущих процессу мониторинга форсунок с использованием различных подходов, и заключение наиболее рентабельной и достаточно точной системы. В ходе исследования изучается изменчивость системы измерения расхода топлива, используемой для замыкания контура между моделями завода и ECM на стенде CIL.Мы также исследуем, подходят ли датчики нагрузки индуктора, которые имитируют форсунки, для использования на стенде CIL, и какой компромисс необходим для использования более дешевых индукторов вместо форсунок, и показывают ли датчики нагрузки индуктора или форсунки определенное смещение, которое может корректироваться на скамейках путем правильной настройки. Другая цель — определить, насколько вариативны от импульса к импульсу, от инжектора к инжектору и в различных рабочих условиях. Наконец, систему необходимо легко калибровать для использования с различными платформами.Следовательно, последовательность испытаний необходима для создания таблицы поправок, которая сможет зафиксировать количество заправленного топлива с максимально возможной точностью в пределах ограничений аппаратного обеспечения. Это исследование также направлено на сокращение задержки при доставке данных и повышение надежности системы CIL.

2. Экспериментальная установка

Производительность дизельного двигателя, как с точки зрения топливной экономичности, так и с точки зрения выбросов, сильно зависит от топливной системы, которая подает топливо в цилиндр двигателя, которая заботится о точном контроле момента впрыска, корректируя давление впрыска для обеспечения надлежащего смешивания воздуха и топлива с учетом правильного распыления топлива и других критических параметров.Двигатели Cummins контролируются для обеспечения точного управления впрыском топлива в цилиндр с помощью усовершенствованной топливной системы, которая состоит из Common Rail, насоса и высокоточных форсунок. Необходимость снижения расхода топлива, выбросов выхлопных газов и шума двигателя привела к использованию передовых технологий в топливных системах, заменяющих механическую систему впрыска.

Как правило, в архитектуре Common Rail используется общий аккумулятор давления или накопитель высокого давления, называемый Rail.Эта рейка питается от топливного насоса высокого давления, который может приводиться в действие с частотой вращения коленчатого вала (частота вращения двигателя или удвоенная частота вращения распределительного вала). Иногда радиальный насос высокого давления, независимо от мощности двигателя, создает высокое давление в рампе. Линии впрыска высокого давления соединяют общую топливную рампу с топливными форсунками. ECM контролирует давление в рампе через впускной дозирующий клапан (IMV). Контроллер ЭСУД генерирует импульс впрыска, который управляет открытием форсунок с помощью электромеханических приводов.Контроллер ЭСУД рассчитывает необходимое количество топлива на основе заранее заданной характеристической кривой, модели двигателя, намерений водителя через положение акселератора, скорость двигателя, крутящий момент, температуру, ускорение и так далее. Электронное управление обеспечивает гибкость в регулировке времени впрыска и дозирования, уменьшает изменчивость от цикла к циклу и от цилиндра к цилиндру, а также обеспечивает более жесткие допуски управления и повышенную точность в течение очень длительных периодов работы. На рисунке 1 показана схема архитектуры Common-Rail системы впрыска топлива [6].


Система Common Rail включает в себя следующие компоненты (Рисунок 1): (i) топливный насос высокого давления, (ii) рейка для хранения и распределения топлива, (iii) форсунки, (iv) электронный блок управления (ECM).

Рейка служит топливным аккумулятором для поддержания относительно постоянного давления при всех скоростях подачи топлива, используемых двигателем. Объем топлива в рампе также гасит колебания давления, вызванные насосом высокого давления и процессом впрыска. Из рампы топливо под постоянным давлением подается в форсунки по трубкам высокого давления.Контроллер ЭСУД генерирует импульсы тока, которые последовательно активируют каждый электромагнитный клапан форсунки и определяют начало и конец каждого события впрыска за цикл двигателя. Система Common Rail может производить более одного впрыска за цикл двигателя и обеспечивать более гибкое управление скоростью впрыска по сравнению с другими конструкциями систем впрыска.

Это исследование обращается к самому важному атрибуту системы впрыска топлива, то есть к дозированию правильного количества топлива в цилиндр, при применении HIL-тестирования алгоритма управления.Система управления разработана для расчета правильного количества топлива, которое будет впрыскиваться топливной системой с точки зрения количества топлива, которое реализуется топливной системой путем преобразования количества топлива в продолжительность во времени для впрыска топлива с заданным общим значением. давление в рампе. Чтобы выполнить аппаратное обеспечение в моделировании контура, имитационной модели необходимо точное измерение впрыскиваемого топлива, чтобы выполнить точный расчет для имитации работы двигателя. Контроллер ЭСУД генерирует сигнал заправки в виде электрического импульса, подаваемого на форсунки.Форма волны напряжения представляет собой высокое начальное повышающее напряжение для преодоления инерции механики инжектора, за которым следует более низкое постоянное напряжение, которое удерживает сопло инжектора в открытом положении в течение желаемого периода времени. Аппаратное обеспечение, используемое в этом исследовании, воспринимает этот электрический импульс, и система в реальном времени, которая использует индивидуальные особенности FPGA, а передача прямого доступа к памяти преобразует импульс обратно в количество топлива. Электрический сигнал, регистрируемый датчиками, не указывает четко на начало и конец впрыска, что является критическим параметром, который необходимо выяснить в этом исследовании, чтобы рассчитать наиболее точное измерение времени включения инжектора.Время включения форсунки, то есть период времени, в течение которого форсунка остается открытой для впрыска топлива. Захваченный импульс впрыска показан на Рисунке 2. В идеале время включения впрыска соответствует промежутку времени между моментом, когда сигнал инжектора начинает расти с нулевого значения, и моментом, когда он начинает падать от постоянного значения напряжения, которое удерживается. в период инъекции. На рисунке 2 четко обозначена проблема, связанная с определением начала и конца инъекции.


Начало впрыска можно определить по значению напряжения более 0 В; однако связанный с этим шум вызывает ошибку в идентификации. С другой стороны, постоянное значение напряжения, поддерживаемое во время открытия форсунки, заметно зашумлено, и подходы, принятые для определения конца впрыска, заключались в рассмотрении крутизны падения напряжения или определении порогового значения. Последний подход оказался более подходящим в сочетании с определением порога, позволяющего также различать начало закачки.

Еще одним важным параметром, исследуемым в данном исследовании, является изменчивость импульсов инжектора, захваченных предлагаемым методом. Важность доставки правильного количества топлива и единообразия очень важна при тестировании аппаратного обеспечения в цикле, поскольку целью использования моделирования вместо реального двигателя и оборудования в значительной степени является повторяемость тестов в дополнение к снижению затрат. Для определения повторяемости системы мониторинга импульсов впрыска в качестве индикатора использовалось стандартное отклонение зафиксированного времени.Количество топлива, впрыскиваемого контроллером ЭСУД, было переопределено через шину CAN, а система зафиксировала его. Ожидается, что идентифицируемое количество топлива будет точно таким же, как и замещаемое значение. Однако присущая изменчивость была рассчитана по стандартному отклонению. На более позднем этапе исследований время своевременного впрыска было напрямую изменено вместо количества топлива. Своевременность поддерживалась на стабильном уровне, и система регистрировала своевременность, зафиксированную предложенной системой.Различная вариабельность была получена при разных подходах к своевременному улавливанию закачки.

Исследование было направлено на определение оптимального подхода с точки зрения затрат на реализацию, точности, повторяемости и вариативности для определения правильного количества топлива, впрыскиваемого форсункой.

Модуль аналогового ввода NI-9205 вместе с аппаратным обеспечением программируемых вентильных матриц (FPGA) Xilinx Virtex-5 и возможностью передачи прямого доступа к памяти (DMA) в компактном реконфигурируемом контроллере ввода-вывода (CRIO) в реальном времени (RT) , был использован для захвата сигнала напряжения форсунки, генерируемого контроллером ЭСУД.Поскольку модуль аналогового ввода имеет спецификацию ± 10 В, а пиковое напряжение сигнала инжектора составляет 12 В, для захвата сигналов использовались делители напряжения с соотношением 2 В: 1 В. Аналоговые сигналы регистрировались с разной скоростью сбора данных, а сигналы напряжения подвергались постобработке в MATLAB для получения своевременности с различными подходами к пороговой обработке на первом этапе исследования. Изменчивость от выстрела к выстрелу, то есть изменение количества захваченного топлива от импульса к импульсу, сравнивали со стандартным отклонением в различных подходах к пороговой обработке, а также в различных рабочих условиях.Разные рабочие условия включают разные обороты двигателя, давление в общем распределителе, количество топлива и датчики нагрузки инжектора или индуктора на всех шести инжекторах или индукторах. На втором этапе приложение реального времени вместе с потоком битов FPGA, которое импринтировало желаемую схему в аппаратное обеспечение, было построено, скомпилировано и развернуто на целевом объекте реального времени, который мог интерпретировать количество заправки по аналоговым сигналам. Схема FPGA позволяла генерировать сигнал частоты вращения двигателя (ESS) и сигнал положения двигателя (EPS) для имитации частоты вращения двигателя.

Так как сигнал форсунки, генерируемый контроллером ЭСУД, важен в этом исследовании, а весь стенд HIL для тестирования замкнутого контура не требуется, для этого исследования был разработан отдельный стенд для проведения тестов в различных статических рабочих точках с разными переменными в среда тестирования без обратной связи. На рис. 3 показана схема стенда, разработанного для данного исследования. Главный компьютер с Windows запускает тестовую последовательность, чтобы просмотреть различные значения различных рассматриваемых переменных.Программное обеспечение TestStand от National Instrument использовалось для выполнения последовательности испытаний. Вначале последовательность тестирования устанавливает сеанс через CUTY (программный интерфейс), который позволяет главному компьютеру Windows обмениваться данными по CAN-каналу. Программное обеспечение Cummins под названием Calterm использовалось для контроля параметров, которые были отменены на шине CAN.


Электрический импульс, генерируемый контроллером ЭСУД, проходит через нагрузку, будь то настоящие статоры форсунок или индукторы, имитирующие форсунки в стенде CIL.В этом исследовании основное внимание уделяется интерпретации электрического сигнала, генерируемого блоком управления двигателем для форсунки, и предоставлению количества впрыскиваемого топлива для моделирования RT. Следовательно, ключевой задачей этого исследования является захват импульса инжектора с максимальной точностью по разумной цене. В ходе исследования выясняется, может ли система продолжать фиксировать правильное количество топлива, если ЕСМ дает команду на заправку в течение длительного периода времени. Сигнал аналогового инжектора можно преобразовать несколькими способами; однако исследование определило самый простой и эффективный способ его зафиксировать.Количество впрыскиваемого топлива или время включения форсунки было отменено с помощью программного обеспечения CUTY и шины CAN. Таким образом, компьютером реального времени, использованным в этом проекте, был Compact Reconfigurable Input Output (CRIO) National Instrument. CRIO содержит процессор реального времени с шасси со встроенными элементарными функциями ввода-вывода, такими как функция чтения / записи FPGA, которая обеспечивает интерфейс связи с высокооптимизированной реконфигурируемой схемой FPGA. Шасси содержало один модуль аналогового вывода для генерации эмулированного сигнала датчика давления в общей топливной рампе, модуль аналогового ввода для захвата сигнала напряжения форсунки и модуль цифрового вывода для генерации сигналов EPS и ESS.Главный компьютер Windows связывается с CRIO через соединение Ethernet. Для проведения тестов использовались National Instruments TestStand и LabVIEW. Приложения реального времени были скомпилированы, построены и развернуты в CRIO, включая битовые файлы FPGA, в которых запечатлена необходимая индивидуальность FPGA. Автоматическая последовательность испытаний на NI Teststand устанавливает соединение с ECM через шину CAN с программным обеспечением CUTY для ECM. CUTY — это проприетарное программное обеспечение Cummins, которое использовалось для доступа к значениям параметров на шине CAN, а также для отмены значений требуемых параметров.Последовательность Teststand игнорирует значение количества топлива, которое необходимо впрыснуть, или время включения инжектора по каналу данных. Последовательность также обменивается данными по Ethernet-соединению с приложением реального времени, работающим на CRIO, для изменения моделируемой скорости двигателя с помощью сетевых переменных. Сигналы EPS / ESS, соответствующие смоделированным оборотам двигателя, генерируются персоналом FPGA в соответствии с углом поворота коленчатого вала двигателя. Контроллер ЭСУД требует сигнала давления в общей топливной рампе и сигналов EPS / ESS на соответствующих контактах для генерации сигнала форсунки.Давление в общей топливной рампе варьируется в зависимости от различных значений с помощью последовательности испытаний, выполняемой на NI Teststand на главном ПК, через соединение Ethernet для изменения значений в приложении реального времени, запущенном на CRIO. Соответствующий сигнал датчика давления генерируется модулем аналогового вывода путем имитации датчика. На разных этапах эксперимента были разработаны разные тестовые последовательности. Приложение реального времени содержало индивидуальные данные FPGA, которые генерировали желаемый сигнал EPS / ESS, соответствующий частоте вращения двигателя; приложение RT переключало разные каналы аналоговых модулей, поскольку аналоговый модуль имел только один аналого-цифровой преобразователь, выполняющий передачу DMA (прямой доступ к памяти) из модуля FPGA в память компьютера RT.Он создавал отдельные файлы для каждого штата. «Разные состояния» относятся к разным оборотам двигателя, разному давлению в общей топливной рампе, разному количеству топлива или «времени работы», которое игнорируется в ECM, в случае статоров форсунок или индукторов.

На рисунке 4 показаны форсунки, индукторы и аппаратное обеспечение FPGA. В ходе исследования выяснилось, подходят ли катушки индуктивности для испытаний с обратной связью, и было обнаружено, что это не так. Статоры форсунок использовались от серийных форсунок двигателей Cummins.Стендовое оборудование, изготовленное Cummins, обеспечивало электрическую защиту и необходимые системы для преобразования сетевого напряжения в низкое напряжение постоянного тока для питания электронных схем и источников питания высокой мощности, а также для управления электрическими форсунками или тензодатчиками. NI CRIO-9014 [7] вместе с шасси NI 9111, имеющим платы аналогового вывода, аналогового ввода и цифрового ввода / вывода, показан справа от оборудования в [8]. Модуль аналогового ввода NI 9205 [9] был ключевой особенностью этого исследования. Особенности NI 9205: 32 несимметричных или 16 дифференциальных аналоговых входов, разрешение 16 бит и максимальная частота дискретизации 250 кГц / с.Каждый канал имеет программируемые входные диапазоны ± 200 мВ, ± 1, ± 5 и ± 10 В. Для защиты от переходных процессов сигнала NI 9205 включает защиту от перенапряжения до 60 В между входными каналами и общим (COM). Кроме того, NI 9205 также включает двойной изолирующий барьер канал-земля-земля для обеспечения безопасности, помехоустойчивости и высокого диапазона синфазного напряжения. В 4-слотовом шасси CRIO-9111 [8] установлено ядро ​​ПЛИС с перенастраиваемым вводом / выводом Xilinx Virtex-5, способное автоматически синтезировать настраиваемые схемы управления и обработки сигналов с помощью LabVIEW.В исследовании использовался модуль аналогового вывода NI 9264 [10] для генерации сигнала давления, имитирующего датчик давления. Контроллер ЭСУД требует сигнал давления для расчета времени включения форсунки (мс) для впрыска определенного количества топлива. В исследовании также использовался 8-канальный высокоскоростной двунаправленный цифровой модуль ввода-вывода NI 9401 [11], 5 В / TTL, для генерации сигнала положения двигателя (EPS) и сигнала частоты вращения двигателя (ESS) для подачи в ECM смоделированной частоты вращения двигателя. Испытательная установка включает шесть делителей напряжения для подвода напряжения, поступающего от оборудования, в модуль NI 9205 [9].Другое оборудование, используемое на стенде, — это внутренний источник питания для ECM и электрического оборудования, осциллограф Tektronix TDS 2024B, адаптер PEAK для преобразования сообщений CAN и их передачи в компьютер, терминаторы CAN для установления шины CAN и т. Д.


В данном исследовании используется система CRIO, предлагаемая National Instruments. Он содержит интегрированный контроллер реального времени и шасси с коммуникационным интерфейсом с высоко оптимизированной реконфигурируемой схемой FPGA, которая содержит слоты для различных используемых модулей.National Instruments помогает пользователям, участвующим в разработке мехатронных систем управления, предоставляя аппаратные и программные решения, чтобы ускорить разработку и тестирование таких систем. Это поддерживает создание приложений реального времени в LabVIEW, создание и развертывание файлов в системе RT для реализации среды реального времени для любой пользовательской HIL Bench, которая попадает под целевые критерии ввода-вывода. Система CRIO, используемая в этом исследовании, представляет собой систему реального времени для выполнения быстрого прототипирования функций.CRIO-9014 запускает модуль реального времени NI LabVIEW в операционной системе реального времени VxWorks (RTOS) для обеспечения максимальной надежности и детерминизма. С контроллером реального времени CRIO-9014 можно использовать передовую технологию VxWorks RTOS для быстрого проектирования, создания прототипа и развертывания настраиваемой коммерчески доступной встроенной системы (COTS) с использованием инструментов графического программирования LabVIEW.

3. Экспериментальные результаты

Эксперименты проводились на экспериментальном стенде, чтобы найти наиболее экономичное, эффективное, перекалибруемое и воспроизводимое решение проблемы контроля форсунок со следующими рассматриваемыми переменными параметрами: (i) количество топлива или время включения форсунки (мс), (ii) частота вращения двигателя, (iii) давление в общей топливной рампе, (iv) две разные нагрузки, то есть форсунки или экономичные индукторы для имитации форсунок, (v) шесть разных форсунок или индукторов, (vi) разные пороги.Чтобы реализовать систему мониторинга форсунок в системе аппаратного обеспечения, система должна поддерживать хорошую точность при регистрации правильного количества топлива в большом диапазоне заправки топливом, оборотов двигателя и давления в общей магистрали. с минимальными вариациями. Исследование также исследует, изменяется ли точность от инжектора к инжектору. Поскольку система, если она удовлетворяет требованиям, будет реализована на большом количестве стендов аппаратного обеспечения в цикле, стоимость внедрения также является важным фактором, который следует учитывать.

Исследование начинается с изменения всех переменных и последовательного исключения некоторых вариаций, если будет обнаружено, что они имеют незначительное влияние на точность системы. Оборудование для сбора данных, доступное от NI, имело ограничение по частоте дискретизации. Поэтому изначально для всех шести каналов рассматривался только один модуль NI-9205 с частотой дискретизации 20,8 кГц на каждом канале.

Чтобы определить начало и конец нагнетания, были рассмотрены разные пороговые значения, сужаясь до наиболее эффективного подхода.Первоначально конец инжекции определялся по наклону импульса инжекции, что было не очень удачно из-за шума, присутствующего в захваченном сигнале. Поэтому для идентификации SOI и EOI использовались пороги, имеющие только один порог для обоих концов или два порога. Первоначальные эксперименты показывают, что влияние изменения давления в общей топливной рампе сравнительно невелико. Поэтому испытания проводились при различных оборотах двигателя и количествах топлива с разными подходами к пороговым значениям для обоих видов нагрузок.Частота дискретизации оказалась наиболее важным фактором в точности системы. Поскольку время включения форсунки остается неизменным с постоянным количеством топлива при различных оборотах двигателя, ожидалось, что она будет иметь такую ​​же точность. Однако экспериментальные результаты показывают, что точность варьируется в зависимости от частоты вращения двигателя.

Первоначально испытания показали, что точность системы не сильно зависит от давления в общей топливной рампе; поэтому испытания проводились при давлении в общей топливной рампе 1200 бар при различных оборотах двигателя и количествах топлива как для статоров форсунок, так и для индукторов, по шесть каждый.Импульсы инжекции регистрировались в виде дискретных значений напряжения с частотой дискретизации 20,8 кГц на каждом канале инжектора с точностью до 1 В, которая позже была увеличена до значения точности 0,0156 В. Значения напряжения впрыска регистрировались в формате .tdms. Сценарий DIAdem для анализа данных National Instrument был использован для преобразования файлов .tdms в файлы .mat с целью постобработки данных в MATLAB. «Своевременность» заправки извлекалась с использованием различных одиночных или двойных пороговых значений в MATLAB.Подход с одним порогом использует одно и то же пороговое значение как для начала закачки (SOI), так и для конца закачки (EOI). Пороговое значение SOI — это значение, определяющее, когда началось впрыскивание; то есть, как только значение напряжения превысит порог SOI, впрыск считается начавшимся. Точно так же порог EOI — это значение, которое определяет, когда инъекция закончилась, то есть, как только значение напряжения опускается ниже порога EOI, инъекция считается завершенной.На первом этапе эксперимента подход с двойным порогом рассматривал EOI в точке, где значение напряжения начинает падать от постоянного значения; то есть вместо использования порога для идентификации EOI код считал пять последовательных точек данных, и если значение напряжения продолжало падать через пять точек, третья точка считалась точкой EOI. Последовательность проверки включает различные значения частоты вращения двигателя и количества топлива, которое необходимо впрыскивать. Длина извлеченных импульсов измеряется в миллисекундах.Среднее значение всех длин импульсов вычисляется для каждого канала инжектора в каждом состоянии, как для инжекторов, так и для индукторов. Ожидаемое «вовремя» заправки — это значение, переопределенное в ECM. Следовательно, ошибка количества заправляемого топлива рассчитывалась в каждом из состояний по средним значениям с использованием следующего уравнения. Двойной порог и единичный порог при 2 В показали меньшие отклонения от импульса к импульсу; однако это изменение заметно при оборотах двигателя 1500 и 3000 об / мин.Среднее значение процентных ошибок в каждом состоянии было рассчитано и нанесено на график для сравнения производительности системы с инжекторами или индукторами, используемыми в качестве нагрузки. Следующие графики показывают сравнение с различными пороговыми подходами. Рисунки 5 (a), 5 (b) и 6 показывают, что погрешности индукторов намного больше, чем ошибок инжекторов. Они означают тот факт, что если более дешевое решение, то есть индукторы, используются в качестве нагрузок, вместо использования шести производственных инжекторов для каждого стенда, единый порог на 2 В является лучшим вариантом.Однако форсунки показывают лучшие результаты при подходе с двойным порогом. Эти экспериментальные результаты открывают путь для дальнейших экспериментов по исследованию производительности системы с более высокой точностью и более высокой частотой дискретизации. Эти графики дают нам представление о том, сколько ошибок можно ожидать, если мы их реализуем. Однако процент ошибки неприемлем для приложения CIL, поскольку приложение CIL требует более высокой точности при таком низком количестве топлива, как 10 мг / стк при более низком давлении ниже 1200 бар, что, безусловно, приведет к гораздо большей ошибке.


Из предыдущего экспериментального результата очевидно, что использование наивысшей доступной частоты дискретизации с двойным порогом обеспечивает наилучшую оценку рассчитанного количества топлива с помощью контроллера ЭСУД; однако в этом процессе есть вариативность. Чтобы внедрить эту систему в стенд HIL, важно знать вовлеченную изменчивость и факторы, которые способствуют изменчивости, чтобы быть уверенным в системе. И в будущем можно будет искать модель коррекции, чтобы сделать систему максимально точной во всем рабочем диапазоне.Были идентифицированы три фиксированных фактора, то есть частота вращения двигателя, давление в общем распределителе и количество топлива на различных уровнях в таблице 1. Пятьдесят повторов, то есть импульсы были собраны по рандомизированной последовательности уровней факторов, были собраны с использованием двойного порога с SOI 0,5 В и EOI на 2 В, с шестью инжекторами, а также шестью индукторами.

905 905 905 905 905 905 905 905 905 905 905 905 также показали различия в производительности, однако шесть форсунок / индукторов были сочтены случайным фактором, поскольку ожидается, что они будут идентичными, и только изменчивость, связанная с производственным процессом форсунок, способствует изменчивости в точности топлива

Пять мифов о дизельных двигателях

Аргоннский инженер-механик Стив Чиатти развенчивает некоторые из наиболее стойких мифов, связанных с технологией дизельных двигателей.Предоставлено: Аргоннская национальная лаборатория.

(PhysOrg.com) — Дизельные двигатели, которые давно используются в грузовиках и кораблях, вызывают больший интерес из-за их топливной эффективности и снижения выбросов углекислого газа по сравнению с бензиновыми двигателями. Аргоннский инженер-механик Стив Чиатти развенчивает некоторые из наиболее устойчивых мифов, связанных с этой технологией.

Миф №1: Дизель грязный.

«У всех нас есть этот образ грузовиков, извергающих грязный черный дым», — сказал Чиатти. Этот дым представляет собой твердые частицы выхлопных газов дизельного двигателя: сажу и небольшие количества других химикатов, производимых двигателем.

Но требования EPA по выбросам значительно ужесточились, и теперь дизельные двигатели должны соответствовать тем же критериям, что и бензиновые двигатели. Они делают это, добавляя дизельный сажевый фильтр (DPF), который удаляет видимый дым. «DPF очень эффективны», — сказал Чиатти. «Они удаляют 95 с лишним процентов дыма.«

Дым, заключенный в керамической матрице, накапливается до тех пор, пока компьютер автомобиля не определит, что пора его очистить в процессе, называемом «циклом регенерации».

При работе в камеры сгорания двигателя добавляется небольшое количество дополнительного топлива; образующееся тепло и кислород активируют катализатор в сажевом фильтре, чтобы сжечь накопившуюся сажу. Это снижает расход топлива.

«Видимый дым практически исчез, согласно правилам 2007-2010 годов», — сказал Чиатти.«Если вы покупаете дизельный автомобиль 2007 года выпуска или позже, он не грязнее бензинового».

И в невидимом диапазоне — дизельные двигатели действительно выделяют меньше углекислого газа, чем бензиновые.

Миф №2: Дизельные двигатели зимой не заводятся.

«Современные технологии холодного пуска очень эффективны, — сказал Чиатти. «Современные дизельные двигатели запускаются в холодную погоду с минимальными усилиями».

Проблема в том, что дизельное топливо загустевает при низких температурах.При температуре ниже 40 ° F некоторые углеводороды в дизельном топливе становятся гелеобразными. «Поскольку двигатель зависит от аэрозольного топлива, вам не нужно липкое топливо», — пояснил Чиатти.

Часто это устраняется с помощью свечей накаливания, которые нагреваются аккумулятором и помогают подогреть топливо, чтобы оно могло испаряться.

Низкие температуры не являются проблемой для бензиновых двигателей, потому что бензин гораздо горюче, чем дизельное топливо.Даже при комнатной температуре и давлении бензин частично является паром. «Бросьте спичку в лужу с бензином, и она никогда не коснется поверхности жидкости; она воспламенит слой пара над бассейном», — сказал Чиатти. «Вот почему с бензином нужно обращаться с особой осторожностью в районе любого источника возгорания. Дизель не такой летучий; если бы вы бросили эту спичку в лужу с дизельным топливом, она бы погасла».

Свечи накаливания и другие средства эффективно испаряют дизельное топливо, чтобы подготовить его к сгоранию.

Миф № 3: Дизельные автомобили не работают.

Поскольку дизельные двигатели по-прежнему наиболее распространены в грузовиках, многие люди предполагают, что автомобили с дизельным двигателем будут вести себя так же, как грузовик: медленные и вялые. «Но имейте в виду, что этот грузовик, вероятно, будет перевозить около 50 тонн», — сказал Чиатти. «Фактически, в некоторой степени, некоторые люди, которые водят дизельные двигатели, обнаруживают, что они работают лучше, чем бензиновые двигатели».

Это потому, что дизельные двигатели получают максимальную мощность при низких оборотах двигателя в минуту (об / мин), то есть на скоростях ниже 65 миль в час, где чаще всего приходится ездить.Бензиновые двигатели, напротив, достигают максимальной мощности за счет очень высокой и быстрой работы двигателя; бензиновый автомобиль достигает максимальной мощности только тогда, когда педаль акселератора опущена в пол, а двигатель работает со скоростью 5000 об / мин.

«Характеристики дизельного автомобиля намного лучше, чем предполагаемая мощность в лошадиных силах, потому что вы получаете всю эту мощность на скоростях, на которых вы действительно ведете автомобиль», — сказал Чиатти. «У вас больше тягового усилия и больше ускорения на этих скоростях».

Миф №4: Вы не можете найти дизельное топливо на заправке.

Пикапы и автомобили с дизельным двигателем достаточно популярны, чтобы заинтересовать рынок; на большинстве соседних заправок теперь есть автомобильные дизельные насосы.

«Я сам водил дизельный автомобиль в течение 10 лет. Я могу сосчитать по одной руке, сколько раз мне приходилось искать насос», — сказал Чиатти.

Миф № 5: Дизельное топливо дороже бензина.

Хотя цены на дизельное топливо в Чикаго, как правило, выше, чем на бензин, в большинстве регионов страны цены на дизельное топливо и бензин сопоставимы.Сегодня в Иллинойсе налог на дизельное топливо выше, чем на бензин.

«Производство дизельного топлива не дороже бензина», — пояснил Чиатти. «Его цена обычно связана с местной налоговой структурой».

Бонус: одна вещь, которую вы можете не знать о дизеле!

Дизельные двигатели работают лучше на больших высотах, чем бензиновые.

Почему? Бензиновые двигатели работают с очень специфическим соотношением топлива и воздуха. На больших высотах воздух тоньше — буквально: на кубический фут меньше молекул воздуха.Таким образом, в горах бензиновые двигатели должны добавлять меньше топлива, чтобы поддерживать идеальное соотношение, что влияет на производительность.

«Но дизельный двигатель работает на обедненном топливе; вам не нужно поддерживать идеальное соотношение», — сказал Чиатти. Дизельные двигатели имеют турбонагнетатели — насосы, приводимые в действие выхлопными газами. Они добавляют больше воздуха в камеру сгорания, и больше воздуха означает, что можно добавить больше топлива. На высоте он может втянуть больше воздуха и топлива и, таким образом, получить больше мощности, чем бензиновые двигатели. Турбокомпрессоры не потребляют лишнюю энергию; они отводят термодинамически «свободную» энергию, которая, если ее не использовать, теряется в виде выхлопа.

«Управляйте дизелем на высоте, и вы увидите, как другие машины борются, пока вы проноситесь мимо», — сказал Чиатти. «Эффект очень заметен».


Сочетание бензиновых и дизельных двигателей может дать лучшее из обоих миров.
Предоставлено Аргоннская национальная лаборатория

Ссылка : Пять мифов о дизельных двигателях (2011, 14 июня) получено 14 декабря 2020 с https: // физ.org / news / 2011-06-migs-diesel.html

Этот документ защищен авторским правом. За исключением честных сделок с целью частного изучения или исследования, нет часть может быть воспроизведена без письменного разрешения. Контент предоставляется только в информационных целях.

Аварийные дизельные генераторы | Генератор звездного света

  • Дом
  • Продукты
  • О нас
  • Приложения
  • Поддерживает
  • Новости
  • Свяжитесь с нами
  • Генератор
  • Дом
  • Продукция
      Генераторная установка
      • Cummins
      • Volvo
      • Perkins
      • Deutz
      • Рикардо
      • Doosan Daewoo
      • Ючай
      • Уси
      • Шанхай
      • Вэйчай
    • Тип генератора
      • Контейнерная генераторная установка
      • Прицеп Genset
      • Бесшумный генератор
      • Портативный генератор
    • Генераторы
      • Марафон
      • Стэмфорд
      • Звездный свет
      • Engga
      • Леруа-Сомер
      • Бензиновый генератор
    • Контроллеры
      • Smartgen
      • Глубокое море
      • Шкаф контроллера
.

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *


Факторы Уровни

Скорость двигателя (об / мин) 750600 1200 1800
Количество топлива (мг / шт.) 10 50 100 150