Блок цилиндров — это… Что такое Блок цилиндров?
«голый» блок цилиндровБлок цилиндров — основная деталь 2-х и более цилиндрового поршневого двигателя внутреннего сгорания. Является цельнолитой деталью, объединяющей собой цилиндры двигателя. Отливается как правило — из чугуна, реже — алюминия. На блоке цилиндров имеются опорные поверхности для установки коленчатого вала, к верхней части блока, как правило, крепится головка блока цилиндров, нижняя часть является частью картера. Таким образом, блок цилиндров является основой двигателя, на которую навешиваются остальные детали.
Сами цилиндры в блоке цилиндров могут являться как частью отливки блока цилиндров, так и быть отдельными сменными втулками, которые могут быть «мокрыми» или «сухими». Помимо образующей части двигателя, блок цилиндров несет дополнительные функции, такие как основа системы смазки — по отверстиям в блоке цилиндров масло под давлением подается к местам смазки, а в двигателях жидкостного охлаждения основа системы охлаждения — по аналогичным отверстиям жидкость циркулирует по блоку цилиндров.
Стенки внутренней полости цилиндра служат также направляющими для поршня при его перемещениях между крайними положениями. Поэтому длина образующих цилиндра предопределяется величиной хода поршня.
Цилиндр работает в условиях переменных давлений в надпоршневой полости. Внутренние стенки его соприкасаются с пламенем и горячими газами, раскаленными до температуры 1500—2500°С. К тому же средняя скорость скольжения поршневого комплекта по стенкам цилиндра в автомобильных двигателях достигает 12— 15 м/сек при недостаточной смазке. Поэтому материал, употребляемый для изготовления цилиндров, должен обладать большой механической прочностью, а сама конструкция стенок повышенной жесткостью. Стенки цилиндров должны хорошо противостоять истиранию при ограниченной смазке и обладать общей высокой стойкостью против других возможных видов износа (абразивного, коррозионного и некоторых разновидностей эрозии), уменьшающих срок службы цилиндров (Износ цилиндров автомобильных двигателей является следствием комплексного воздействия на стенки многочисленных физических и химических быстротекущих процессов, которые по характеру проявления разделяются на три основных вида износа: эрозивный, возникающий вследствие механического истирания, схватывания и других разрушающих процессов при непосредственном контакте металлических трущихся поверхностей; коррозионный, возникающий при всякого рода окислительных процессах на поверхностях трения; абразивный, вызывающий разрушение поверхностей трения при наличии между ними твердых или, как говорят, абразивных частичек, в том числе и продуктов износа). Материалы, применяемые для изготовления цилиндров, должны обладать хорошими литейными свойствами и легко обрабатываться на станках.
В соответствии с этими требованиями в качестве основного материала для цилиндров применяют перлитный серый чугун с небольшими добавками легирующих элементов (никель, хром и др.). Применяют также высоколегированный чугун, сталь, магниевые и алюминиевые сплавы. Блоки, изготовленные из этих материалов, отнюдь не равноценны по своим свойствам.
Так, чугунный блок наиболее жёсткий, а значит — при прочих равных выдерживает наиболее высокую степень форсировки и наименее чувствителен к перегреву. Теплоёмкость чугуна примерно вдвое ниже, чем алюминия, а значит двигатель с чугунным блоком быстрее прогревается до рабочей температуры. Однако, чугун весьма тяжёл (в 2,7 раза тяжелее алюминия), склонен к коррозии, а его теплопроводность примерно в 4 раза ниже, чем у алюминия, поэтому у двигателя с чугунным картером система охлаждения работает в более напряжённом режиме.
Алюминиевые блоки цилиндров лёгкие и лучше охлаждаются, однако в этом случае возникает проблема с материалом, из которого выполнены непосредственно стенки цилиндров. Если поршни двигателя с таким блоком сделать из чугуна или стали, то они очень быстро износят алюминиевые стенки цилиндров. Если же сделать поршни из мягкого алюминия, то они просто «схватятся» со стенками, и двигатель мгновенно заклинит.
Поэтому на первом поколении двигателей с алюминиевым блоком применяли вставленные в блок «мокрые» гильзы из серого чугуна, «плавающие» в охлаждающей жидкости и служащие непосредственно в качестве стенок цилиндров. Эта конструкция, разработанная в 1930-х годах, получила широкое распространение в 1950-х, причём только в СССР, не испытывавшем недостатка в лёгких металлах, она стала применяться практически на всех автомобилях, включая грузовики, что, помимо вышеуказанных преимуществ, давало возможность капитально ремонтировать блок цилиндров просто заменяя гильзы, давая большой экономический эффект. Тем не менее, у неё были и свои недостатки: алюминиевый блок с мокрыми гильзами получается намного менее жёстким, чем цельнолитой чугунный, и поэтому достаточно чувствителен к перегреву и хуже переносит форсировку. Кроме того, алюминий дорог и на большей части территории Земли дефицитен. Поэтому на большинстве двигателей до 80-х — 90-х годов блоки были всё же отлиты из чугуна, несмотря на явно избыточную массу. На высокофорсированных двигателях также часто использовались более прочные чугунные блоки.
В 1980-х годах стала получать всё большее распространение технология, при которой в алюминиевый блок запрессовывались тонкостенные «сухие» чугунные или композитные гильзы, со всех сторон окружённые алюминием. Такие двигатели сегодня достаточно распространены. Тем не менее, и они не лишены недостатков, так как коэффициенты температурного расширения чугуна и алюминия не совпадают, что требует особых мер для предотвращения отрыва гильзы от блока при прогреве мотора.
Альтернативный подход предполагает цельноалюминиевый блок, стенки цилиндров которого специально упрочняют. Например, на пионере этого направления — двигателе Chevrolet Vega 1971 года — блок отливался из сплава с содержанием до 17 % кремния (фирменное название Silumal), а специальная обработки стенок цилиндров обогащала их кристаллами кремния (химическим травлением — специально подобранного состава кислота вымывает алюминий с поверхности стенки, не трогая кремний), доводя до требуемой твёрдости (кремний намного твёрже чугуна). Тем не менее, опыт оказался неудачным: мотор оказался очень чувствителен к качеству смазочных материалов и перегреву, имел неудовлетворительный ресурс и часто полностью выходил из строя из-за износа стенок цилиндра, восстановление которых вне заводских условий оказалось, в отличие от привычных в то время чугунных блоков, невозможно. Это повлекло за собой громкий скандал и миллионные убытки для компании GM. Впоследствии данная технология была доведена до совершенства европейскими производителями — Mercedes-Benz, BMW, Porsche, Audi, и в 80-х — 90-х годах была применена на их серийных моделях. Такой блок можно даже в ограниченных пределах растачивать, так как толщина упрочненного слоя алюминия составляет порядка нескольких микрон. Тем не менее, чувствительность цельноалюминиевых блоков к перегреву и качеству смазочных материалов никуда не делась — такие двигатели требуют высокой культуры обслуживания, а за их температурным режимом зорко следит управляющая электроника.
Сравнительно недавно немецкая фирма Kolbenschmidt разработала и технологию, при которой в обычный алюминиевый блок запрессовываются готовые алюминий-кремниевые гильзы с повышенным (до 27 %) содержанием кремния упрочненными стенками (технология Locasil), — это позволяет снизить стоимость.
Альтернативной является технология Nicasil — никелевое покрытие на алюминиевых стенках цилиндров с напылением кристаллов карбида кремния, её цель всё та же — повышение твёрдости. Её ограниченно применяли ещё в 60-е — 70-е годы для двигателей очень дорогих спортивных автомобилей, в частности — используемых в Formula 1. Из современных двигателей, такие блоки имели М60 и М52 фирмы BMW, причём их продажи в некоторых странах сопровождались скандалом — «никасил» разрушался от реакции с некоторыми видами топлива с высоким содержанием серы (что характерно, в частности, для некоторых регионов США и России). Главный же недостаток «никасила» — тонкое никелевое покрытие легко повреждается например при обрыве шатуна или прогаре поршня, и уже не подлежит восстановлению. Капремонт также невозможен — только замена блока (поршней ремонтного размера для таких моторов не делают).
Блоки из магниевого сплава сочетают твёрдость чугунных и лёгкость алюминиевых. К сожалению, магний редок и дорог, поэтому используется крайне редко, обычно на спортивных моторах. Некоторое исключение — двигатель «Запорожца» с картером из авиационного магниевого сплава МЛ-5 (и отдельными чугунными цилиндрами).
Ссылки
Цилиндр (двигатель) — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 7 января 2019; проверки требуют 2 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 7 января 2019; проверки требуют 2 правки. Цилиндр и головка цилиндра двигателя воздушного охлаждения (мотоцикл «Москва» М1А).Цили́ндр поршневого двигателя внутреннего сгорания представляет собой рабочую камеру объемного вытеснения.
Работа двигателя внутреннего сгорания. Цилиндр в сборе с головкой и шатунно-поршневой группой.Внутренние и наружные части цилиндров испытывают различный нагрев и обычно выполняются отдельно:
- внутренняя — рабочая втулка или гильза цилиндра
- наружная — рубашка (у двигателей воздушного охлаждения рубашка имеет рёбра для эффективного отвода тепла)
Пространство между ними называется зарубашечным, в двигателе с водяным охлаждением тут циркулирует охлаждающая жидкость.
В подавляющем большинстве случаев рубашки цилиндров выполняются в виде одной отливки для всего ряда цилиндров и называются блоком цилиндров. Рубашки и корпус блока цилиндров изготавливают обычно из того же материала, что и станина двигателя.[1] Блоки цилиндров в большинстве случаев не имеют вставных гильз, отливаются целиком.[2]
Внутренняя поверхность втулки или гильзы цилиндра является рабочей и называется зеркало цилиндра. Она подвергается специальной обработке (хонингование, хромирование, азотирование)[3] с высокой точностью и имеет очень высокую чистоту. Иногда на зеркало цилиндра наносят специальный микрорельеф, высота которого составляет доли микрометров. Такая поверхность хорошо удерживает масло и способствует снижению трения боковой поверхности поршня и колец о зеркало цилиндра
Гильзы отливают[7] из чугуна высокой прочности или специальных сталей. Существует варианты гальванического покрытия хромом или никосилом алюминиевого цилиндра (объединённого конструктивно с головкой) на двигателях небольшой размерности.[8][9]
Цилиндры двухтактных двигателей отличаются по конструкции от цилиндров 4-х тактных двигателей наличием выпускных и продувочных окон[10]. Кроме того, у цилиндров двухтактных двигателей двойного действия имеется в наличии нижняя крышка для образования рабочей полости под поршнем[11].
Виды блоков цилиндров (разновидности конструкций)
У алюминиевых блоков цилиндров различные концепции и способы изготовления конкурируют друг с другом. При определении параметров блоков
цилиндров соответствующие технические и экономические преимущества и недостатки должны тщательно взвешиваться друг относительно друга.
Нижеследующие главы дают обзор различных видов конструкций блоков цилиндров.
Монолитные блоки
Под монолитными блоками понимаются конструкции блоков цилиндров, которые не имеют ни мокрых гильз, ни привёрнутых основных плит в форме корпуса коренных подшипников — опорной плиты (Bedplate) (изобр. 1). Для получения определённых поверхностей или прочности монолитные блоки могут иметь, однако, соответствующие заливаемые части в зоне отверстий цилиндров (вставки из серого чугуна, LOKASIL®-Preforms), а также заливаемые части из серого или ковкого чугуна и усиления волокном в зоне отверстий под коренные подшипники. Последние, однако, не отражают ещё состояния техники.
Изображение 1 |
Блоки из двух частей (с опорной плитой)
У данной конструкции крышки коренных подшипников коленчатого вала размещены совместно в отдельной опорной плите (изобр. 2). Опорная плита соединена резьбовыми соединениями с картером и усилена залитым в алюминий шаровидным графитом с целью уменьшения люфта в коренных подшипниках, соответственно, чтобы компенсировать большее удельное температурное расширение алюминия. Таким путём достигаются чрезвычайно жёсткие конструкции блоков цилиндров. Как и у монолитных блоков цилиндров, здесь в зоне отверстий цилиндров могут также быть предусмотрены заливаемые части.
Изображение 2 |
Конструкция «Open-Deck» с отдельными, свободно стоящими цилиндрами
У данной конструкции рубашка охлаждения открыта к плоскости разъёма головки блока цилиндров, и цилиндры стоят свободно в блоке цилиндров (изобр. 3). Перенос тепла от цилиндров к охлаждающему веществу, благодаря омыванию со всех сторон, равномерный и выгодный. Относительно большое расстояние между цилиндрами влияет, однако, у многоцилиндровых двигателей отрицательно на их конструктивную длину. Благодаря открытой кверху, относительно просто сконструированной полости для охлаждающего вещества, при изготовлении можно отказаться от применения песчаных стержней. Поэтому блоки цилиндров могут изготавливаться как методом литья под низким давлением, так и литьём под давлением.
Конструкция «Open-Deck» с вместе отлитыми цилиндрами
Логическим выводом для уменьшения конструктивной длины блоков цилиндров со свободно стоящими цилиндрами является уменьшение расстояния между цилиндрами. Из-за сдвигания цилиндров они должны быть, однако, исполнены в совместной отливке (изобр. 4). Это положительно влияет не только на конструктивную длину двигателей, но при этом увеличивается и жёсткость в верхней части цилиндров. Таким путём, можно, напр., у шестицилиндрового рядного двигателя сэкономить 60-70 мм на конструктивной длине. Перемычка между цилиндрами может быть при этом уменьшена на 7-9 мм. Данные преимущества перевешивают тот недостаток, что при охлаждении рубашка охлаждения между цилиндрами получается меньше.
Изображение 4 |
Конструкция «Closed-Deck»
При данной концепции блока цилиндров, в противоположность конструкции «Open-Deck», верх цилиндров до отверстий для входа воды со стороны головки блока цилиндров закрыт (изобр. 1). Это влияет особенно положительно на уплотнение головки блока цилиндров. Преимущества данной конструкции имеются, в особенности, и тогда, если существующий блок цилиндров из серого чугуна должен быть переведён в алюминий. Из-за сравнимой конструкции (уплотняемая поверхность головки блока цилиндров) головка блока цилиндров и уплотнение головки блока цилиндров не должны претерпеть никаких изменений, соотв., только незначительные.
По отношению к конструкции «OpenDeck» исполнение «Closed-Deck», естественно, труднее изготовить. Причиной является закрытая рубашка охлаждения и из-за этого необходимый песчаный стержень рубашки охлаждения. Также выдерживание узких полей допусков толщины стенок цилиндров усложняется при применении песчаных стержней. Блоки цилиндров «ClosedDeck» могут изготавливаться как методом свободного литья в формы, так и методом литья под низким давлением.
По причине соместно отливаемых цилиндров и возникающей благодаря этому более высокой жёсткости в верхней части цилиндров данная конструкция имеет, по сравнению с конструкцией «Open-Deck», большие резервы нагрузки.
Изображение 1 |
Алюминиевые блоки цилиндров с мокрыми гильзами
Данные блоки цилиндров изготавливаются большей частью литьём из более дешёвого алюминиевого сплава и оснащаются мокрыми гильзами цилиндров из серого чугуна. Предпосылкой применения данной концепции является овладение конструкцией «Open-Deck» со связанной с ней проблематикой уплотнения. При этом речь идёт о конструкции, которая больше не применяется при серийном изготовлении двигателей легковых автомобилей. Типичным представителем производства KS был V6- блок PRV (Peugeot/Renault/Volvo) двигателя (изобр. 2).
Такие блоки цилиндров применяются в настоящее время только в спортивном и гоночном двигателестроении, где проблема затрат отступает, скорее, на второй план. Там применяются, однако, гильзы не из серого чугуна, а высокопрочные мокрые алюминиевые гильзы с рабочими поверхностями цилиндров, покрытыми никелем.
Изображение 2 |
Исполнения рубашки охлаждения
При переходе от блоков цилиндров из серого чугуна к блокам из алюминия стремились ранее к тем же конструктивным размерам при исполнении из алюминия, которые уже существовали в исполнении из серого чугуна. По этой причине глубина рубашки охлаждения (размер «X»), окружающей цилиндр, соответствовала у первых алюминиевых блоков вначале только до 95% длины отверстий цилиндров (изобр. 3).
Благодаря хорошей теплопроводности алюминия как рабочего материала глубина рубашки охлаждения (размер «X») смог быть выгодно уменьшен до величины от 35 до 65 % (изобр. 4). Благодаря этому был уменьшен не только объём воды, и, тем самым, вес двигателя, но и также был достигнут более быстрый нагрев воды для охлаждения. Благодаря укороченному, сберегающему мотор времени нагрева сокращается также время нагрева катализатора, что особенно благоприятно влияет на выделение вредных веществ.
В производственно-техническом отношении уменьшенные глубины рубашки охлаждения также принесли преимущества. Чем короче стальные литейные стержни для рубашки охлаждения, тем меньше тепла воспринимают они в процессе литья. Это сказывается как в большей стойкости формы, так и в увеличении производительности, благодаря уменьшению такта выпуска.
Изображение 3
Изображение 4
Болтовое соединение головки блока цилиндров
1. Усилие болта болтов крепления головки блока цилиндров /2. Уплотняющее усилие между головкой блока цилиндров и её уплотнением / 3. Деформация цилиндра (представлено очень утрированно) / 4. Находящаяся вверху резьба болта /5. Глубоко лежащая резьба болта
Для того, чтобы деформацию цилиндра при монтаже головки блока цилиндров поддерживать по возможности малой, бобышки под болты — утолщения для резьбовых отверстий болтов крепления головки блока цилиндров — связаны с наружной стенкой цилиндра. Прямой контакт со стенкой цилиндра вызвал бы несравненно большие деформации при затяжке болтов. Дальнейшие улучшения даёт также глубоко лежащая резьба. На изображениях 1 и 2 показаны различия деформаций цилиндров, получающиеся при находящейся вверху и глубоко лежащей резьбе болта.
Дальнейшие возможности — в применении заливаемых стальных гаек вместо обычных резьбовых отверстий, с целью избежать проблем перекоса и прочности (особенно у дизельных двигателей прямого впрыска). У некоторых конструкций применяются длинные стяжные болты,практически провёрнутые через плиту блока цилиндров (изобр. 3) или прямо соединённые с опорой подшипников (изобр. 4).
1. Подкладная шайба
2. Болт крепления головки блока цилиндров
3. Стальная резьбовая вставка
4. Стяжной болт
5. Крышка коренных подшипников
Изображение 3 |
Изображение 4
1. Подкладная шайба
2. Стяжной болт
3. Опора подшипников
4. Крышка коренных подшипников
Монтажные отверстия поршневого пальца в стенке цилиндра
У оппозитных двигателей возникают, в силу их конструктивных особенностей, при монтаже проблемы сборки поршневых пальцев одного ряда цилиндров. Причиной этого является то, что обе половины картера должны быть соединены болтами для того, чтобы смонтировать поршни второго ряда цилиндров, соотв., соединить шатуны с соответствующими шатунными шейками. Поскольку после соединения болтами обеих половин картера не будет больше доступа к коленчатому валу, шатуны без поршней приворачиваются к соответствующим шатунным шейкам, а поршни монтируются после соединения болтами обеих половин картера. Недостающие ещё поршневые пальцы вдвигаются после этого через поперечные отверстия в нижней части цилиндра (изобр. 5) для соединения поршней с шатунами. Монтажные отверстия пересекают рабочие поверхности цилиндров в зоне, которую не проходят поршневые кольца.
Вентиляционные отверстия картера
Изображение 1 |
Изображение 2 |
Более новые картеры снабжаются вентиляционными отверстиями поверх коленчатого вала и под цилиндрами (изобр. 1 и 2).
Вентиляции в зоне кривошипов при вытянутых вниз боковых стенках и связанных с ними элементами жёсткости коренных подшипников препятствуется. Благодаря вентиляционным отверстиям вытесненный воздух, который при движении поршня от верхней мёртвой точки в направлении нижней мёртвой точки находится под поршнем, может уйти в сторону и, тем самым, вытесняется туда, где поршень как раз движется в направлении верхней мёртвой точки. Тем самым воздухообмен осуществляется быстрее и эффективнее, поскольку воздуху больше не нужно проходить длинного пути вокруг коленчатого вала. Благодаря уменьшившемуся сопротивлению воздуха достигается, кроме того, значительное увеличение мощности. В зависимости от расстояния цилиндров до коленчатого вала, вентиляционные отверстия находятся либо в зоне прилегания коренных подшипников ниже рабочих поверхностей цилиндров, либо в зоне рабочих поверхностей цилиндров или где-либо между данными зонами.
;
Блок цилиндров — Вики
«Голый» блок цилиндров. Материал — алюминиевый сплав с добавлением кремния и локально упроченными стенками цилиндров. У современного автомобиля блок цилиндров представляет собой единую деталь с картером двигателя. Старинный двигатель с отдельным от картера блоком цилиндров. Цельнолитой чугунный блок американского двигателя конфигурации V8. Блок цилиндров с впрессованными в него «мокрыми» гильзами, имеющими нижнюю фиксацию. Разобранный блок двигателя производства Porsche с «мокрыми» гильзами. Алюминиевый блок двигателя Rover V8 с установленными в него чугунными мокрыми гильзами с верхней фиксацией.Блок цили́ндров — основная деталь кривошипно-шатунного механизма (КШМ) двух- и более цилиндрового поршневого двигателя внутреннего сгорания. Является цельнолитой деталью, объединяющей собой цилиндры двигателя. Отливается как правило из чугуна, реже — литейных алюминиевых или магниевых сплавов[1]. На блоке цилиндров имеются опорные поверхности для установки коленчатого вала. К верхней части блока крепится головка блока цилиндров, нижняя часть образует верхнюю часть картера. Таким образом, блок цилиндров является основной корпусной деталью двигателя, к которой так или иначе крепятся остальные его агрегаты и узлы[2]. Картер сцепления на некоторых двигателях идёт в комплекте и обрабатывается совместно, и в таком случае (как и крышки коренных подшипников) не должен обезличиваться при ремонте[3].
Блок цилиндров используют в двигателях с жидкостным охлаждением, причём полости блока образуют рубашку охлаждения. В двигателях с воздушным охлаждением, изготовление цилиндров в одном блоке весомых преимуществ не даёт, и потому почти не применяется.
После появления поршневых двигателей, в целях улучшения равномерности вращения, массогабаритных показателей, увеличения КПД (искровые) и снижения вибрации, были созданы многоцилиндровые конструкции[4]. На ранних двигателях, ввиду технологических трудностей, картер кривошипного механизма присоединялся на болтах, часто были отдельными цилиндры, рубашки охлаждения, водяные и масляные трубки.
По мере развития технологий литья и станочной обработки (то есть, уменьшения вероятности брака столь сложной детали) блок цилиндров объединил в себе верхнюю часть картера и все цилиндры. Это уменьшило количество деталей, их суммарный вес, и увеличило жёсткость (что позволяет, например, форсировать двигатели по наддуву). Сейчас такие названия как «блок двигателя», «блок цилиндров», «блок» можно услышать в сервисе или среди водителей, и все они относятся именно к этой единой детали. Блок-картером является деталь, объединяющую в себе блок и все стенки картера (часто это туннельный блок-картер), но и её обычно называют так же[5].
Однако трудности транспортного характера всё ещё вынуждают изготавливать крупноразмерные судовые двигатели с отдельным картером, отдельными цилиндрами, отдельными головками. Судовые дизели столь велики, что перевозятся по железной дороге
Виды и технологии рабочих поверхностей блоков цилиндров
Основной момент каждой концепции алюминиевых блоков цилиндров — точное определение профиля требований. Основной структурный элемент каждой концепции — рабочая поверхность цилиндра. Поскольку при применении обычных литейных алюминиевых материалов невозможно в достаточной степени реализовать свойства трения и износа, то подбирается подходящий метод для данного случая применения, оптимальный как по сроку службы рабочих поверхностей цилиндров, так и по изготовлению, а также экономически.
Большие различия имеются, как всегда, в концепциях рабочих поверхностей бензиновых и дизельных двигателей. В то время, как развитие алюминиевых рабочих поверхностей у бензиновых двигателей продвинулось очень далеко и метод ALUSIL® широко применяется в изготовлении двигателей, он до сих пор не смог пробить себе дорогу у дизельных двигателей. Поэтому заливаемые гильзы цилиндров из серого чугуна ещё регулярно применяются у дизельных двигателей. Развитие рабочих поверхностей идёт в настоящий момент в направлении покрытия данных поверхностей железом. Это производится либо способом термонапыления (плазменное покрытие), либо дуговым методом напыления проволоки, либо способом PVD. Эти новые методы освещены подробнее в последующих главах.
Обзор различных технологий рабочих поверхностей
ALUSIL®-paбочие поверхности цилиндров
При методе ALUSIL® весь блок цилиндров состоит из заэвтектического алюминиево-кремниевого сплава. Для такого заэвтектического сплава характерно повышенное содержание кремния; у наиболее часто применяемого ALUSIL®- сплава (AISi17Cu4Mg) содержание кремния — 17%.
В противоположность заэвтектическому сплаву, эвтектический алюминиево-кремниевый сплав содержит только 12-13 % кремния. При такой доле кремния степень насыщения алюминия достигнута. Более высокая доля кремния приводит к тому, что при застывании расплава образуются первичные кристаллы кремния. Это означает, что та часть кремния, которая из-за насыщения алюминия кремнием не может войти в соединение с алюминием,выкристаллизовывается и откладывается среди (насыщенного) алюминиево-кремниевого сплава (эвтектика). Для облегчения выкристаллизования кремния в расплав добавляется небольшое количество фосфора. Кристаллы кремния растут вокруг гетерогенного алюминиево-фосфидного зародыша. Величина кристаллов кремния находится в пределах от 20 до 70 |jm. Данные первичные кристаллы кремния, соответствующим образом обработанные и раскрытые, без дополнительного армирования, образуют устойчивую к износу внутреннюю поверхность цилиндра для поршня и поршневых колец. Изображение 1: речь идёт о съёмке прозрачной плёнкой1 — здесь показана с увеличением окончательно обработанная АШЗИ®-рабочая поверхность цилиндра (механическое шлифование для раскрытия). Отчётливо видны раскрытые кристаллы, выпукло лежащие в кристаллической решётке алюминия. Кристаллы кремния вырастают тем больше, чем дольше длится процесс застывания. Благодаря различной скорости охлаждения в блоке цилиндров в нижней части цилиндров образуются несколько большие кристаллы кремния, чем в верхней части, которая, в силу конструкционных особенностей, быстрее охлаждается. На изображении 2 показана трёхмерная картина шероховатости одной окончательно обработанной .
Изображение 1 |
Изображение 2 |
0axfilm — тонкая прозрачная плёнка для прямой съёмки структур поверхностей.
На изображении 3 представлены различия строения между доэвтектическим, эвтектическим и заэвтектическим алюминиево-кремниевыми сплавами
Из-за гомогенного распределения первичного кремния во всей отливке получаются в целом худшие свойства обрабатываемости со снятием стружки и меньшая стойкость инструментов, чем у стандартных алюминиевых сплавов. Меньшая скорость резания увеличивает к тому же время обработки, что негативно влияет на производственный такт выпуска.
Данная проблема при обработке может быть решена применением режущих инструментов (PKD), оснащённых алмазами. Только для изготовления отверстий в цельном материале и при нарезании резьбы не имеется инструментов, оснащённых алмазами.
Обработка рабочих поверхностей цилиндров подробно описана, начиная от главы 3.3 под названием «Обработка алюминиевых рабочих поверхностей цилиндров».
Изображения 3
а) эвтектический
б) доэвтектический с зернистой структурой
в) доэвтектический с улучшенной структурой
г) заэвтектический
Рабочие поверхности цилиндров LOKASIL®
При методе LOKASIL® стандартный сплав для литья под давлением (напр., AISi9Cu3) обогащается локально кремнием в зоне рабочих поверхностей цилиндров. Это достигается благодаря высокопористым цилиндрическим фасонным частицам из кремния, которые вкладываются в литейную форму и при методе литья прессованием (Squeeze Casting, см. такж главу «2.2.5. Прессование») под высоким давлением заливаются в блок цилиндров. Находящийся под высоким давлением (900-1000 бар) алюминиевый сплав во время процесса литья продавливается (инфильтрируется) сквозь поры кремниевых фасонных частиц (Preform).
Необходимые для армирования рабочей поверхности цилиндра кристаллы кремния имеются, таким образом, только в зоне рабочих поверхностей цилиндров. Благодаря такому местному обогащению кремнием получают свойства рабочих поверхностей, эквивалентные ALUSIL®-MeTOfly. Благодаря меньшей доле кремния в алюминиевом сплаве получают блоки цилиндров, которые, в противоположность ALUSIL -методу, до рабочих поверхностей цилиндров очень хорошо обрабатываются резанием. На изображении 1 показывается с 20-ти, соотв., 50-кратным увеличением под микроскопом разрез блока цилиндров, изготовленного LOKASIL®-Meтодом. Отчётливо видно обогащение кремнием в зоне рабочих поверхностей цилиндров (более тёмная зона).
Изображение 1 |
Кремний-Preforms (изобр. 2) имеется в двух различных исполнениях. Различают между LOKASIL®-! и LOKASIL®-!!. Оба исполнения перед заливкой в блок цилиндров вначале ещё обжигаются в печи. При этом выгорает связка из органической смолы и активируется неорганическая связка, связывающая кристаллы кремния вплоть до заливки.
отовая комбинация материалов содержит после заливки в блок цилиндров при LOKASIL®-! примерно 5-7% волокна и 15 % кремния. При LOKASIL®-!! — это 25 % кремния и ровно 1% неорганической связки. Размеры частиц кремния при LOKASIL®-! состаляют от 30 до 70 |JM, при LOKASIL -II — от 30 до 120 |jm. На изображении 3 показана структура LOKASIL®-!, увеличенная под микроскопом. Отчётливо видны волокна, находящиеся между кристаллами кремния. На изображении 4 показана структура LOKASIL®-!!.
Изображение 2 |
Рабочие поверхности цилиндров, покрытые нитридом титана
Сранительно новый метод, не применяемый ещё в серийном производстве, представляет собой покрытие рабочих поверхностей цилиндров нитридом титана (TiN) или нитридом титана и алюминия (TiAIN). Для достижения нужной износостойкости хонингованные алюминиевые рабочие поверхности цилиндров покрываются PVD-методом («Physical Vapour Deposition»: физическое отделение газообразной фазы). Толщина покрытия относительно невелика, так что структура хонингования при покрытии остаётся. Сравнительно высокие затраты и недостаточная надёжность процесса стоят, однако, на пути широкого применения данного метода.
При применении PVD-метода испаряется в вакууме существующий в твёрдой форме материал-донор. Это происходит либо путём ионной бомбардировки, либо в форме электрической дуги. На изображении 5 схематически показано, как ионизированные ионы газа аргона выбивают из материала-донора мельчайшие частицы. Испарённые или выбитые металлические частицы движутся по баллистическим орбитам через вакуумную камеру или откладываются на покрываемых поверхностях. Длительность процесса покрытия определяет требуемую толщину покрытия. Если подвести в PVD-камеру реагирующие газы, такие, как кислород, азот, или углеводороды, то могут быть отделены также оксиды, нитриды или карбиды.
Изображение 5 |
Покрытые никелем рабочие поверхности цилиндров
С целью достижения необходимой износостойкости рабочие поверхности цилиндров покрывались в прошлом в течение некоторого времени дисперсионным слоем никеля и карбида кремния : Ni-SiC), который наносился гальваническим способом на тонко обработанную рабочую поверхность цилиндра. В качестве названий марок стали известными оба понятия — Galnikal® и Nikasil®. Толщина никелевого слоя в среднем — от 10 до 50 |jm. В данный слой интегрированы для улучшения износостойкости твёрдые фазы из карбида кремния (7-10 объёмных %). Величина зерна интегрированного карбида кремния — 1-3 рм. В качестве основного материала блока цилиндров применимы выгодные алюминиевые сплавы, такие, как Silumin® (напр., AISi9Cu3). На изображении 2 виден разрез в увеличении под микроскопом покрытой никелем рабочей поверхности цилиндра.
Из-за неравномерной толщины никелевого слоя, возникающего при гальваническом покрытии, рабочие поверхности цилиндров после нанесения никелевого покрытия должны быть выглажены обычным хонингованием и структурированы. По сравнению с гильзой из серого чугуна никелевый слой сравнительно гладок и не имеет графитовых жил, в которых может отлагаться смазочное масло. Заключительная операция хонингования особенно важна для создания каналов распределения масла и оптимизации объёма масла, остающегося на рабочей поверхности цилиндра.
Никелевые покрытия требуют больших инвестиций в гальванические установки и устройства дезактивирования ядовитых веществ ванн предварительной подготовки.
Не в последнюю очередь также удаление образующихся никелевых шлаков негативно сказывается на стоимости производства. Покрытие никелем нашло применение, главным образом, в серийном производстве одноцилиндровых двигателей. Многоцилиндровые блоки, напротив, находят применение в серийном производстве только в единичных случаях. Были проблемы при изготовлении с пористостью чугуна на поверхности цилиндра, что имело следствием отделение слоя. Проблемы проявлялись в прошлом также при частой эксплуатации на коротких участках, во взаимосвязи с серосодержащим горючим. У двигателей, которые или вообще не достигали своей рабочей температуры, или достигали её редко, эксплуатация на коротких участках приводила к образованию конденсата, который, совместно с образующейся от сжигания серой, вёл к возникновению сернистой кислоты. Данные кислотосодержащие продукты сгорания вели к коррозии, к упомянутому отделению слоя и, в конечном счёте, к отказу от покрываемых никелем рабочих поверхностей цилиндров при серийном изготовлении двигателей для легковых автомобилей.
В противоположность к ALUSiL®-MeTOду, восстановление отверстий цилиндров в ходе среднего или капитального ремонта — включая новое никелевое покрытие — возможно только при высокой трудоёмкости и с большими трудностями. Из-за недостатка подходящих специальных предприятий это практически едва ли выполнимо. На изображении 1 показан алюминиевый ребристый цилиндр мотоциклетного двигателя с Galnikal®- покрытием.
Слои плазменного напыления на железной основе
Данный метод применяется в серии уже несколько лет. При плазменном покрытии в плазменной горелке возбуждается электрическая дуга. Подводимый плазменный газ (водород или аргон) ионизируется до состояния плазмы и покидает сопло горелки с высокой скоростью. Посредством газаносителя материал покрытия (напр., в составе 50% легированной стали и 50% молибдена) в виде порошка наносится в плазменном луче с температурой 15000-20000° С. Материал покрытия расплавляется и в жидком состоянии напрыскивается со скоростью от 80 до 100 м/с на покрываемую поверхность. В плазменный напрыскиваемый слой из железа при необходимости могут быть дополнительно интегрированы керамические материалы. Процесс происходит при атмосферном давлении. На Изображении 3 показан схематически процесс покрытия.
Полученная при плазменном покрытии толщина слоя составляет 0,18-0,22 мм. Покрытие обрабатывается окончательно хонингованием. Остающаяся после хонингования толщина слоя составляет приблизительно 0,11-0,13 мм.
На изображении 4 показан в увеличении под микроскопом разрез рабочей поверхности цилиндра с плазменным покрытием. На изображении 5 видна увеличенная рабочая поверхность готовой обработанной рабочей поверхности цилиндра. Отчётливо распознаваемы углубления в рабочей поверхности, получающиеся из пористого плазменного слоя. В углублениях может отлагаться моторное масло, что улучшает свойства трения и износа рабочей поверхности.
Благодаря плазменному покрытию увеличивается срок службы двигателя, а благодаря меньшему потреблению горючего и масла уменьшаются вредные выбросы. Благодаря малой толщине слоя плазменного покрытия можно реализовать, по отношению к заливаемым гильзам цилиндров из серого чугуна, ещё меньшие расстояния между цилиндрами, что позитивно отражается на конструктивной длине двигателя.
Изображение 3 |
1. Водяное охлаждение 2. Подвод горючего газа 3. Выходное сопло 4. Подвод порошка 5. Плазменный луч 6. Плазменное покрытие |
Лазерное легирование рабочих поверхностей цилиндров
Изображение 1
1. Лазерный луч
2. Струя порошка
3. Вращающееся лазерное оптическое устройство
4. Легированный слой
5. Оплавляемая зона
Лазерное легирование представляет собой дальнейший метод армирования кремнием рабочих поверхностей цилиндров. При лазерном легировании рабочая поверхность цилиндра изготовленного из стандартного алюминиево-кремниевого сплава (напр., AISi9Cu3) блока цилиндров с помощью вращающегося лазерного оптического устройства оплавляется и металлургически легируется параллельным подводом порошка (кремний и т.д.) (изобр. 1). Тем самым получают тонкий слой с очень тонко отделённой твёрдой фазой (в основном кремнием) в зоне внутренней поверхности цилиндра. Отверстия цилиндров после лазерного легирования должны ещё хонинговаться, и частицы кремния должны быть раскрыты. Т. к. размеры частиц малы (в пределах нескольких цм), раскрытие интегрированных кремниевых кристаллов целесообразно производится химическим травлением. Процесс раскрытия химическим травлением подробнее описан в главе «3.6.2.Различные методы раскрытия кремния».
Гильзы из серого чугуна Мокрые гильзы из серого чугуна
Данный вид конструкции находит на сегодняшний день лишь относительно редко применение в двигателях для легковых втомобилей. Причиной этого является различное поведение алюминиевого блока цилиндров и гильзы цилиндра из серого чугуна при тепловом расширении. Особенно это требует выдерживания жёстких полей допусков по длине гильзы цилиндра при изготовлении с тем, чтобы наверняка избежать проблем с уплотнением головки блока цилиндров (по данному вопросу см. также главу «2.3.1. Различные виды конструкций блоков цилиндров»).
Заливаемые гильзы цилиндров из серого чугуна
Данная концепция объединяет в значительной степени весовые преимущества материала алюминия и отсутствие проблем свойств скольжения рабочих поверхностей цилиндров из серого чугуна. Изготовление производится, чаще всего, выгодным методом литья под давлением (конструкция Open-Deck). При изготовлении методом литья под давлением получаются сравнительно малые зазоры между гильзой и окружающим литьём, а также, в целом, хорошие показатели теплопроводности. Для обеспечения глухой посадки гильзы из серого чугуна в блоке применяются различные методы. Простейшим методом является изготовление с канавками по наружному диаметру (изобр. 2). Несмотря на применяемый метод литья под давлением, здесь могут быть, однако, проблемы с механическою связью и, тем самым, с глухой посадкой гильзы в блоке. Причиной этого являются оставшиеся между гильзой и алюминиевым блоком, хотя и очень маленькие, воздушные зазоры. Поэтому перешли к использованию так называемых гильз шероховатого литья (изобр. 3). Благодаря сильно изборождённой внешней наружной поверхности при заливке происходит истинное защемление гильзы материалом блока
Дальнейшее улучшение — хотя и за счёт более высоких расходов — приносит альфинирование или плазменное покрытие гильз перед заливкой. При альфинировании гильзы покрываются вначале алюминием в ванне с чистым алюминием. Тем самым возникает особая внутренняя, металлургическая связь алюминия с гильзой из серого чугуна. При данном методе речь идёт об относительно высокозатратном методе подготовки литья. Поэтому перешли — когда это необходимо, — к тому, чтобы гильзы из серого чугуна вначале с наружной стороны сделать струйной обработкой шероховатыми, а затем покрыть напыляемым плазменным слоем из алюминия. В противоположность альфинированию, при плазменном покрытии всё же не возникает металлургической связи серого чугуна с алюминием.
Нанесённые таким способом на гильзы алюминиевые слои при заливке в блок цилиндров вновь немного оплавляются и лучше соединяются с материалом блока по сравнению с гильзами без алюминиевого покрытия. Проблемы связи, которые при известных условиях могли бы появиться, можно таким способом уменьшить или их избежать.
Заливаемые алюминиевые гильзы (ALUSIL®, Silitec®)
Наряду с изготовлением монолитных блоков цилиндров из ALUSIL — материала возможно также изготовление блоков цилиндров с заливаемыми алюминиевыми гильзами с высоким содержанием кремния (ALUSIL®, Silitec®). Необходимое для армирования цилиндра обогащение кремнием существует при данном методе только в зоне рабочей поверхности цилиндра. Остальной блок цилиндров состоит из стандартного алюминиево-кремниевого сплава (напр., AISi9Cu3).
Компактное набрызгивание заливаемых гильз
Здесь речь идёт об относительно новом методе для изготовления алюминиевых гильз с высоким содержанием кремния (Silitec ). Требуемый материал гильз для заливки изготавливается так называемым методом компактного набрызгивания. Ради простоты и понятности в последующем тексте применяется понятие Silitec®. Здесь в одной камере металлический расплав алюминия с помощью распыляющего газа (азот) мельчайше распыляется, и, таким образом, слой за слоем образует заготовку (изобр. 1). Форма конуса распыления обуславливает позднейшую форму полуфабриката. Принципиально с помощью данного метода возможно изготовление труб, шайб, штанг или листов непосредственно в ходе одного рабочего процесса. По технике изготовления компактное набрызгивание находится между спеканием и классическим формообразующим литьём По сравнению с обычными литейными материалами создается возможность, похоже, как и при спекании, производить материалы необычного состава. Содержание кремния при данном методе может доходить до 25%. Получают очень тонкую структуру с гомогенным распределением элементов и фаз и хорошими возможностями формоизменения.
Таким способом полученный сырой материал в форме болта перерабатывается методом непрерывного выдавливания в трубы, которые затем, распиленные на куски, применяются как заливаемые детали для блока цилиндров (изобр. 3). Для улучшения связи перед заливкой делают струйным способом наружную поверхность гильз шероховатой. Из-за опасности расплавления вНН©й’®-гильз заливка производится более быстрым методом литья под давлением.
Обработка цилиндров производится как и у прочих алюминиево-кремниевых рабочих поверхностях цилиндров. Кристаллы кремния очень тонко распределены в структуре и имеют величину 4 — 10 рм (изобр. 2). Из-за очень малых размеров частиц раскрытие кристаллов кремния при окончательной обработке рабочих поверхностей цилиндров предъявляет особые требования. У изготовленных данным методом блоков цилиндров используется поэтому в серийном производстве преимущественно раскрытие обработкой едким натром.
Изображение 1 |
1. Литейный тигель
2. Расплав
3. Кольцевое сопло
4. Камера набрызгивания
5. Конус набрызгивания
6. Заготовка
7. Вращающаяся тарелка
Изображение 2 Равномерное распределение кристаллов кремния |
;
Блок цилиндров Википедия
«Голый» блок цилиндров. Материал — алюминиевый сплав с добавлением кремния и локально упроченными стенками цилиндров. У современного автомобиля блок цилиндров представляет собой единую деталь с картером двигателя. Старинный двигатель с отдельным от картера блоком цилиндров. Цельнолитой чугунный блок американского двигателя конфигурации V8. Блок цилиндров с впрессованными в него «мокрыми» гильзами, имеющими нижнюю фиксацию. Разобранный блок двигателя производства Porsche с «мокрыми» гильзами. Алюминиевый блок двигателя Rover V8 с установленными в него чугунными мокрыми гильзами с верхней фиксацией.Блок цили́ндров — основная деталь кривошипно-шатунного механизма (КШМ) двух- и более цилиндрового поршневого двигателя внутреннего сгорания. Является цельнолитой деталью, объединяющей собой цилиндры двигателя. Отливается как правило из чугуна, реже — литейных алюминиевых или магниевых сплавов[1]. На блоке цилиндров имеются опорные поверхности для установки коленчатого вала. К верхней части блока крепится головка блока цилиндров, нижняя часть образует верхнюю часть картера. Таким образом, блок цилиндров является основной корпусной деталью двигателя, к которой так или иначе крепятся остальные его агрегаты и узлы[2]. Картер сцепления на некоторых двигателях идёт в комплекте и обрабатывается совместно, и в таком случае (как и крышки коренных подшипников) не должен обезличиваться при ремонте[3].
Блок цилиндров используют в двигателях с жидкостным охлаждением, причём полости блока образуют рубашку охлаждения. В двигателях с воздушным охлаждением, изготовление цилиндров в одном блоке весомых преимуществ не даёт, и потому почти не применяется.
История
После появления поршневых двигателей, в целях улучшения равномерности вращения, массогабаритных показателей, увеличения КПД (искровые) и снижения вибрации, были созданы многоцилиндровые конструкции[4]. На ранних двигателях, ввиду технологических трудностей, картер кривошипного механизма присоединялся на болтах, часто были отдельными цилиндры, рубашки охлаждения, водяные и масляные трубки.
По мере развития технологий литья и станочной обработки (то есть, уменьшения вероятности брака столь сложной детали) блок цилиндров объединил в себе верхнюю часть картера и все цилиндры. Это уменьшило количество деталей, их сумм
Блок цилиндров Википедия
«Голый» блок цилиндров. Материал — алюминиевый сплав с добавлением кремния и локально упроченными стенками цилиндров. У современного автомобиля блок цилиндров представляет собой единую деталь с картером двигателя. Старинный двигатель с отдельным от картера блоком цилиндров. Цельнолитой чугунный блок американского двигателя конфигурации V8. Блок цилиндров с впрессованными в него «мокрыми» гильзами, имеющими нижнюю фиксацию. Разобранный блок двигателя производства Porsche с «мокрыми» гильзами. Алюминиевый блок двигателя Rover V8 с установленными в него чугунными мокрыми гильзами с верхней фиксацией.Блок цили́ндров — основная деталь кривошипно-шатунного механизма (КШМ) двух- и более цилиндрового поршневого двигателя внутреннего сгорания. Является цельнолитой деталью, объединяющей собой цилиндры двигателя. Отливается как правило из чугуна, реже — литейных алюминиевых или магниевых сплавов[1]. На блоке цилиндров имеются опорные поверхности для установки коленчатого вала. К верхней части блока крепится головка блока цилиндров, нижняя часть образует верхнюю часть картера. Таким образом, блок цилиндров является основной корпусной деталью двигателя, к которой так или иначе крепятся остальные его агрегаты и узлы[2]. Картер сцепления на некоторых двигателях идёт в комплекте и обрабатывается совместно, и в таком случае (как и крышки коренных подшипников) не должен обезличиваться при ремонте[3].
Блок цилиндров используют в двигателях с жидкостным охлаждением, причём полости блока образуют рубашку охлаждения. В двигателях с воздушным охлаждением, изготовление цилиндров в одном блоке весомых преимуществ не даёт, и потому почти не применяется.