Калькулятор стабилизатора напряжения и тока LM317
Тип разработки:
Регистрационный номер в ФАП:
Дата регистрации в ФАП:
Тематическая направленность:
Схемотехника, радиоэлектроника, конструирование и проектирование радиоаппаратуры
Разработчики программы (базы данных):
Аннотация:
Назначение: Программа предназначена для расчёта сопротивления резистивного делителя напряжения, определяющего выходные параметры стабилизатора напряжения, собранного на основе интегральной микросхемы (ИМС) LM317 (скриншот 1).
Так же программа позволяет рассчитывать параметры ограничительного резистора в схеме стабилизатора тока, построенного на той же ИМС (скриншот 2).
Область применения: Программа предназначенна для применения при расчётах электрических схем, содержащих интегральную микросхему стабилизатора напряжения\тока LM317.
Функциональные особенности:
Программа способна определять требуемую мощность резисторов, входящих в схему.
Отличительной особенностью программы является наличие в её составе библиотеки стандартных номиналов резисторов. Бибилиотека содержит данные о стандартных рядах сопротивлений Е12, Е24, Е48, Е96, Е192.
Присутствует возможность сохранения результатов расчёта в формате .TXT.
Среда разработки: Программа разработанна в среде Borland Delphi 7.
Версия регистрируемой программы (базы данных):
Использованные при разработке материалы:
Признак доступности программы (базы данных):
доступ по запросу
Требования к аппаратным и программным средствам:
Процессор: Pentium III с тактовой частотой 800 МГц и выше.Операционная система:
Windows XP SP1-SP3;
Windows 7 x86 & x64.
Оперативная память: 512 Мб.
Видеокарта: Nvidia FX5200 и выше, 128 Мб.
Контактная информация:
Вложение | Размер |
---|---|
lm317_1.png | 43.8 КБ |
lm317_2.png | 42.73 КБ |
Мощный стабилизатор на lm317 и транзисторе
В последнее время интерес к схемам стабилизаторов тока значительно вырос. И в первую очередь это связано с выходом на лидирующие позиции источников искусственного освещения на основе светодиодов, для которых жизненно важным моментом является именно стабильное питание по току. Наиболее простой, дешевый, но в то же время мощный и надежный токовый стабилизатор можно построить на базе одной из интегральных микросхем (ИМ): lm317, lm338 или lm350.
Datasheet по lm317, lm350, lm338
Прежде чем перейти непосредственно к схемам, рассмотрим особенности и технические характеристики вышеприведенных линейных интегральных стабилизаторов (ЛИС).
Все три ИМ имеют схожую архитектуру и разработаны с целью построения на их основе не сложных схем стабилизаторов тока или напряжения, в том числе применяемых и со светодиодами. Различия между микросхемами кроются в технических параметрах, которые представлены в сравнительной таблице ниже.
LM317 | LM350 | LM338 | |
---|---|---|---|
Диапазон значений регулируемого выходного напряжения | 1,2…37В | 1,2…33В | 1,2…33В |
Максимальный показатель токовой нагрузки | 1,5А | 3А | 5А |
Максимальное допустимое входное напряжение | 40В | 35В | 35В |
Показатель возможной погрешности стабилизации |
0,1%
* — зависит от производителя ИМ.
Во всех трех микросхемах присутствует встроенная защита от перегрева, перегрузки и возможного короткого замыкания.
Lm317, самая распространенная ИМ, имеет полный отечественный аналог — КР142ЕН12А.
Выпускаются интегральные стабилизаторы (ИС) в монолитном корпусе нескольких вариантов, самым распространенным является TO-220. Микросхема имеет три вывода:
- ADJUST. Вывод для задания (регулировки) выходного напряжения. В режиме стабилизации тока соединяется с плюсом выходного контакта.
- OUTPUT. Вывод с низким внутренним сопротивлением для формирования выходного напряжения.
- INPUT. Вывод для подачи напряжения питания.
Схемы и расчеты
Наибольшее применение ИС нашли в источниках питания светодиодов. Рассмотрим простейшую схему стабилизатора тока (драйвера), состоящую всего из двух компонентов: микросхемы и резистора. На вход ИМ подается напряжение источника питания, управляющий контакт соединяется с выходным через резистор (R), а выходной контакт микросхемы подключается к аноду светодиода.
Если рассматривать самую популярную ИМ, Lm317t, то сопротивление резистора рассчитывают по формуле: R=1,25/I (1), где I – выходной ток стабилизатора, значение которого регламентируется паспортными данными на LM317 и должно быть в диапазоне 0,01-1,5 А. Отсюда следует, что сопротивление резистора может быть в диапазоне 0,8-120 Ом. Мощность, рассеиваемая на резисторе, рассчитывается по формуле: PR=I 2 ×R (2). Включение и расчеты ИМ lm350, lm338 полностью аналогичны.
Полученные расчетные данные для резистора округляют в большую сторону, согласно номинальному ряду.
Постоянные резисторы производятся с небольшим разбросом значения сопротивления, поэтому получить нужное значение выходного тока не всегда возможно. Для этой цели в схему устанавливается дополнительный подстроечный резистор соответствующей мощности. Это немного увеличивает цену сборки стабилизатора, но гарантирует получение необходимого тока для питания светодиода. При стабилизации выходного тока более 20% от максимального значения, на микросхеме выделяется много тепла, поэтому ее необходимо снабдить радиатором.
Онлайн калькулятор lm317, lm350 и lm338
Допустим, необходимо подключить мощный светодиод с током потребления 700 миллиампер. Согласно формуле (1) R=1,25/0,7= 1.786 Ом (ближайшее значение из ряда E2—1,8 Ом). Рассеиваемая мощность по формуле (2) будет составлять: 0.7×0.7×1.8 = 0,882 Ватт (ближайшее стандартное значение 1 Ватт).
На практике, для предотвращения нагрева, мощность рассеивания резистора лучше увеличить примерно на 30%, а в корпусе с низкой конвекцией на 50%.
Кроме множества плюсов, стабилизаторы для светодиодов на основе lm317, lm350 и lm338 имеют несколько значительных недостатков – это низкий КПД и необходимость отвода тепла от ИМ при стабилизации тока более 20% от максимального допустимого значения. Избежать этого недостатка поможет применение импульсного стабилизатора, например, на основе ИМ PT4115.
На рисунке 1 приведены две простых схемы стабилизаторов тока. Первая схема имеет стабилизацию тока на уровне одного ампера, а вторая, с дополнительным транзистором – 3 ампера.
И в том и в другом случае все полупроводниковые элементы должны быть установлены на радиаторы с площадью охлаждения соответствующей мощности, выделяемой на этих элементах. Если, например, через стабилизатор с дополнительным транзистором протекает ток величиной три ампера и при этом вольтметр, подключенный к точкам 1 и 2 схемы, показывает падение напряжения четыре вольта, то общая мощность, выделяемая в виде тепла на транзисторе КТ818 и микросхеме LM317, будет равна Р = I •U; P = 3•4 = 12Вт. Площадь радиатора для отведения такой мощности можно определить по диаграмме. Транзистор и микросхему можно установить на один радиатор без прокладок.
Интегральный, регулируемый линейный стабилизатор напряжения LM317 как никогда подходит для проектирования несложных регулируемых источников и блоков питания, для электронной аппаратуры, с различными выходными характеристиками, как с регулируемым выходным напряжением, так и с заданным напряжением и током нагрузки.
Для облегчения расчета необходимых выходных параметров существует специализированный LM317 калькулятор, скачать который можно по ссылке в конце статьи вместе с datasheet LM317.
Технические характеристики стабилизатора LM317:
- Обеспечения выходного напряжения от 1,2 до 37 В.
- Ток нагрузки до 1,5 A.
- Наличие защиты от возможного короткого замыкания.
- Надежная защита микросхемы от перегрева.
- Погрешность выходного напряжения 0,1%.
Эта не дорогая интегральная микросхема выпускается в корпусе TO-220, ISOWATT220, TO-3, а так же D2PAK.
Назначение выводов микросхемы:
Онлайн калькулятор LM317
Ниже представлен онлайн калькулятор для расчета стабилизатора напряжения на основе LM317. В первом случае, на основе необходимого выходного напряжения и сопротивления резистора R1, производится расчет резистора R2. Во втором случае, зная сопротивления обоих резисторов (R1 и R2), можно вычислить напряжение на выходе стабилизатора.
Калькулятор для расчета стабилизатора тока на LM317 смотрите здесь.
Примеры применения стабилизатора LM317 (схемы включения)
Стабилизатор тока
Данный стабилизатор тока можно применить в схемах различных зарядных устройств для аккумуляторных батарей или регулируемых источников питания. Стандартная схема зарядного устройства приведена ниже.
В данной схеме включения применяется способ заряда постоянным током. Как видно из схемы, ток заряда зависит от сопротивления резистора R1. Величина данного сопротивления находится в пределах от 0,8 Ом до 120 Ом, что соответствует зарядному току от 10 мА до 1,56 A:
Источник питания на 5 Вольт с электронным включением
Ниже приведена схема блока питания на 15 вольт с плавным запуском. Необходимая плавность включения стабилизатора задается емкостью конденсатора С2:
Регулируемый стабилизатор напряжения на LM317
Схема включения с регулируемым выходным напряжением
lm317 калькулятор
Для упрощения расчета номинала резистора можно использовать несложный калькулятор, который поможет рассчитать необходимые номиналы не только для LM317, но и для L200, стабилитрона TL431, M5237, 78xx.
Скачать datasheet и калькулятор для LM317 (319,9 Kb, скачано: 39 764)
Аналог LM317
К аналогам стабилизатора LM317 можно отнести следующие стабилизаторы:
- GL317
- SG31
- SG317
- UC317T
- ECG1900
- LM31MDT
- SP900
- КР142ЕН12 (отечественный аналог)
- КР1157ЕН1 (отечественный аналог)
28 комментариев
Интересная статья! Спасибо!
Спасибо. Только ноги перепутали. У 317 1н-ADJ, 3н-INP, 2н — OUTP.
Смотреть мордой к себе, счет слева направо.
Ничего не попутано.На схеме всё правильно.Учите технический английский язык. 1-управляющий, 2-выход, 3-вход
На схеме всё правильно.
Регулируемый стабилизатор напряжения на LM317- схемка работает , только выводы 2 и 3 попутаны местами в схеме.
С какого перепугу они перепутаны? На схеме всё правильно.Внимательнее смотрите даташит на стабилизатор.
А в схеме Регулируемый стабилизатор напряжения на LM317 какой нужен трансформатор? На вторичной обмотке сколько вольт надо?
Разница между входным и выходным напряжением должна составлять 3,2 вольта, то есть, если тебе необходимо 12 вольт на выходе, то на вход нужно подать 15,2 вольта
Подскажите за что отвечает резистор (200 Ом — 240 Ом) между первой и второй ногой микросхемы ?
Сейчас собрал простейший стабилизатор на 5,15 V , резистор между 1 и 2 ногой — 680 Ом , между второй и третьей 220 Ом = на выходе сила тока всего 0,45 А . Для зарядки смартфона мне нужна сила тока 1 А .
Резисторы R1 и R2 — делитель напряжения. Подключите 220 Ом (R1) к 1 и 2 выводу, 680 Ом (R2) к 1 выводу и минусу питания.
Резисторы R1 и R2 можно подобрать и другого номинала?
да, рассчитать можно здесь
можно ли совместить на одной lm317, регулировку тока и напряжения,
Можно,я так делал.Сначала собираем регулятор напряжения,потом между adj и out ставим переменный резистор только большой мощности вата на 2. мультиметром настраиваеш всю поделку.а лучше использовать две 317 . 1-я как регулятор напр. 2-я как рег.тока. и вперед. Если собирать на 317-х лабораторник то можно парралельно их ставить (с ограничительными резисторами на выходе по 0.2 ом )например три или пять штук 317-х,только собирать с защитами (диоды )по полноценной схеме .у меня таких два штуки есть один на одной ,для маломощных нагрузок ,второй на двух .главное что б транс был нормальный мощью ват 30-50.и хватит за глаза .не варить же им !
Евгений, может скинешь схемку (или ссылку)на параллельное включение ЛМ 317 для ПБ? Я собрал, 5 штук поставил, греются не равномерно. Попробую поставлю выравнивающие резисторы по 0,2 Ома. Транс 150 Ватт, до 30В. Можно, конечно, купить БП на Али. Да решил молодость вспомнить (мне 68).
Большое Спасибо за статью.
Здравствуйте! Под рукой стабилизаторы 7812 и 7912.
Можно их применить для понижения напряжения с учетом вышеуказанного расчета и схемы?
Можно лишь изловчиться на напряжение более высокое, чем номинальное (для 7812 — больше 12 В). Для этого в цепь 2-го вывода включают N число диодов, тогда приблизительно получится Uвых=12+0,65N; вместо диодов можно подобрать резистор. При этом корпус микросхемы должен быть изолирован от общего провода вопреки стандартному включению.
Я так понимаю-если стабилизатор не 317 ,а на рассчитанное своё напряжение например 7812,то меньше чем 12 никак не получить,а вот больше по этой методике пожалуйста.
Сделал, работает хорошо.Регулирует от 1,2 В до 35В. После 0,5 А греется. Поставил на радиатор. Решил добавить два транзистора кт 819, поставил уравнивающие резисторы по 0,5 Ом. Регулировка от 0 до 10В — нормально. Если до 20В, то регулировка начинается от 10 и до 20, при 30В — от 20 до 30В, т.е. не от 1,3В. Может поможете? Может ещё кто посоветует. Хотелось бы сделать БП на ЛМ317 + транзисторы. Вам спасибо большое. А может сделать как советует jenya900?
Спасибо за схему,а как увеличить ток до10А?
Как ограничить напряжение на выходе максим. 9вольт, при переменном резисторе 8кОм. Спасибо
Каков температурный диапазон эксплуатации LM317T?
Купил гравёр. Сразу не запустился. Разобрал. Стоит линейный стабилизатор напряжения на LM317T. R1=100 Om, R2= последовательно 150 Om и переменное 1кОм. Между выходом и входом LM317T стоит конденсатор. Все компоненты нано. При включении заряжается ёмкость и когда напряжение достигает около 3В включается. Это где-то пол минуты. Зачем стоит ёмкость? Питание usb 5B. На выходе около 2В. Как всё это исправить? Мне нужно на выходе 3В. Менять переменное R нельзя. Можно менять R1, R2, C1.
Кто-нибудь пробовал параллелить микросхемы?
Ну пока сам не сделаешь, никто не пошевелится рассказать.
Соединил в параллель вчистую (т.е. ножка к ножке без всяких уравнивающих сопротивлений) 5 штук. Нагрузил на 3,8А (больше не требовалось), напряжение на выходе просело с 14В до 13,8В. Приемлемо.
Так что годится такой вариант.
Помогите чайнику. Если в стабилизаторе напряжения на вход подать напряжение меньше, чем установленное на выход, что будет на выходе? Нужно, чтобы схема начала пропускать ток при росте напряжения, начиная с 12 вольт.
Lm317 регулятор напряжения схема
Интегральный, регулируемый линейный стабилизатор напряжения LM317 как никогда подходит для проектирования несложных регулируемых источников и блоков питания, для электронной аппаратуры, с различными выходными характеристиками, как с регулируемым выходным напряжением, так и с заданным напряжением и током нагрузки.
Для облегчения расчета необходимых выходных параметров существует специализированный LM317 калькулятор, скачать который можно по ссылке в конце статьи вместе с datasheet LM317.
Технические характеристики стабилизатора LM317:
- Обеспечения выходного напряжения от 1,2 до 37 В.
- Ток нагрузки до 1,5 A.
- Наличие защиты от возможного короткого замыкания.
- Надежная защита микросхемы от перегрева.
- Погрешность выходного напряжения 0,1%.
Эта не дорогая интегральная микросхема выпускается в корпусе TO-220, ISOWATT220, TO-3, а так же D2PAK.
Назначение выводов микросхемы:
Онлайн калькулятор LM317
Ниже представлен онлайн калькулятор для расчета стабилизатора напряжения на основе LM317. В первом случае, на основе необходимого выходного напряжения и сопротивления резистора R1, производится расчет резистора R2. Во втором случае, зная сопротивления обоих резисторов (R1 и R2), можно вычислить напряжение на выходе стабилизатора.
Калькулятор для расчета стабилизатора тока на LM317 смотрите здесь.
Примеры применения стабилизатора LM317 (схемы включения)
Стабилизатор тока
Данный стабилизатор тока
можно применить в схемах различных зарядных устройств для аккумуляторных батарей или регулируемых источников питания. Стандартная схема зарядного устройства приведена ниже.В данной схеме включения применяется способ заряда постоянным током. Как видно из схемы, ток заряда зависит от сопротивления резистора R1. Величина данного сопротивления находится в пределах от 0,8 Ом до 120 Ом, что соответствует зарядному току от 10 мА до 1,56 A:
Источник питания на 5 Вольт с электронным включением
Ниже приведена схема блока питания на 15 вольт с плавным запуском. Необходимая плавность включения стабилизатора задается емкостью конденсатора С2:
Регулируемый стабилизатор напряжения на LM317
Схема включения с регулируемым выходным напряжением
lm317 калькулятор
Для упрощения расчета номинала резистора можно использовать несложный калькулятор, который поможет рассчитать необходимые номиналы не только для LM317, но и для L200, стабилитрона TL431, M5237, 78xx.
Скачать datasheet и калькулятор для LM317
Аналог LM317
К аналогам стабилизатора LM317 можно отнести следующие стабилизаторы:
- GL317
- SG31
- SG317
- UC317T
- ECG1900
- LM31MDT
- SP900
- КР142ЕН12 (отечественный аналог)
- КР1157ЕН1 (отечественный аналог)
30 комментариев
Интересная статья! Спасибо!
Спасибо. Только ноги перепутали. У 317 1н-ADJ, 3н-INP, 2н — OUTP.
Смотреть мордой к себе, счет слева направо.
Ничего не попутано.На схеме всё правильно.Учите технический английский язык. 1-управляющий, 2-выход, 3-вход
На схеме всё правильно.
Регулируемый стабилизатор напряжения на LM317- схемка работает , только выводы 2 и 3 попутаны местами в схеме.
С какого перепугу они перепутаны? На схеме всё правильно.Внимательнее смотрите даташит на стабилизатор.
А в схеме Регулируемый стабилизатор напряжения на LM317 какой нужен трансформатор? На вторичной обмотке сколько вольт надо?
Разница между входным и выходным напряжением должна составлять 3,2 вольта, то есть, если тебе необходимо 12 вольт на выходе, то на вход нужно подать 15,2 вольта
Подскажите за что отвечает резистор (200 Ом — 240 Ом) между первой и второй ногой микросхемы ?
Сейчас собрал простейший стабилизатор на 5,15 V , резистор между 1 и 2 ногой — 680 Ом , между второй и третьей 220 Ом = на выходе сила тока всего 0,45 А . Для зарядки смартфона мне нужна сила тока 1 А .
Резисторы R1 и R2 — делитель напряжения. Подключите 220 Ом (R1) к 1 и 2 выводу, 680 Ом (R2) к 1 выводу и минусу питания.
Резисторы R1 и R2 можно подобрать и другого номинала?
да, рассчитать можно здесь
можно ли совместить на одной lm317, регулировку тока и напряжения,
Можно,я так делал.Сначала собираем регулятор напряжения,потом между adj и out ставим переменный резистор только большой мощности вата на 2. мультиметром настраиваеш всю поделку.а лучше использовать две 317 . 1-я как регулятор напр. 2-я как рег.тока. и вперед. Если собирать на 317-х лабораторник то можно парралельно их ставить (с ограничительными резисторами на выходе по 0.2 ом )например три или пять штук 317-х,только собирать с защитами (диоды )по полноценной схеме .у меня таких два штуки есть один на одной ,для маломощных нагрузок ,второй на двух .главное что б транс был нормальный мощью ват 30-50.и хватит за глаза .не варить же им !
Евгений, может скинешь схемку (или ссылку)на параллельное включение ЛМ 317 для ПБ? Я собрал, 5 штук поставил, греются не равномерно. Попробую поставлю выравнивающие резисторы по 0,2 Ома. Транс 150 Ватт, до 30В. Можно, конечно, купить БП на Али. Да решил молодость вспомнить (мне 68).
Большое Спасибо за статью.
Здравствуйте! Под рукой стабилизаторы 7812 и 7912.
Можно их применить для понижения напряжения с учетом вышеуказанного расчета и схемы?
Можно лишь изловчиться на напряжение более высокое, чем номинальное (для 7812 — больше 12 В). Для этого в цепь 2-го вывода включают N число диодов, тогда приблизительно получится Uвых=12+0,65N; вместо диодов можно подобрать резистор. При этом корпус микросхемы должен быть изолирован от общего провода вопреки стандартному включению.
Я так понимаю-если стабилизатор не 317 ,а на рассчитанное своё напряжение например 7812,то меньше чем 12 никак не получить,а вот больше по этой методике пожалуйста.
Сделал, работает хорошо.Регулирует от 1,2 В до 35В. После 0,5 А греется. Поставил на радиатор. Решил добавить два транзистора кт 819, поставил уравнивающие резисторы по 0,5 Ом. Регулировка от 0 до 10В — нормально. Если до 20В, то регулировка начинается от 10 и до 20, при 30В — от 20 до 30В, т.е. не от 1,3В. Может поможете? Может ещё кто посоветует. Хотелось бы сделать БП на ЛМ317 + транзисторы. Вам спасибо большое. А может сделать как советует jenya900?
Спасибо за схему,а как увеличить ток до10А?
Как ограничить напряжение на выходе максим. 9вольт, при переменном резисторе 8кОм. Спасибо
Каков температурный диапазон эксплуатации LM317T?
Купил гравёр. Сразу не запустился. Разобрал. Стоит линейный стабилизатор напряжения на LM317T. R1=100 Om, R2= последовательно 150 Om и переменное 1кОм. Между выходом и входом LM317T стоит конденсатор. Все компоненты нано. При включении заряжается ёмкость и когда напряжение достигает около 3В включается. Это где-то пол минуты. Зачем стоит ёмкость? Питание usb 5B. На выходе около 2В. Как всё это исправить? Мне нужно на выходе 3В. Менять переменное R нельзя. Можно менять R1, R2, C1.
Кто-нибудь пробовал параллелить микросхемы?
Ну пока сам не сделаешь, никто не пошевелится рассказать.
Соединил в параллель вчистую (т.е. ножка к ножке без всяких уравнивающих сопротивлений) 5 штук. Нагрузил на 3,8А (больше не требовалось), напряжение на выходе просело с 14В до 13,8В. Приемлемо.
Так что годится такой вариант.
Я всегда паралелю, чтоб запас был, если нагрузка большая. Всё хорошо работает.
Помогите чайнику. Если в стабилизаторе напряжения на вход подать напряжение меньше, чем установленное на выход, что будет на выходе? Нужно, чтобы схема начала пропускать ток при росте напряжения, начиная с 12 вольт.
Микросхема ни работает как «клапан»! Она ни откроется резко после превышения напряжения на входе микросхемы. Если на выходе у тебя настроено 12в, а на вход подать 9. То на выходе стабилизированного тока ни будет, выйдут те же твои 9 вольт примерно, даже меньше ( минус опорное напряжение микросхемы)
Ток на выходе блока питания может увеличиться вследствие уменьшения сопротивления нагрузки (простой пример, короткое замыкание), также изменение тока нагрузки происходит из-за изменения напряжения питания её. Стабилизатор тока на lm317 обеспечивает стабильность тока (ограничение тока) на выходе в случаях описанных выше.
Данный стабилизатор может быть применён в схемах питания светодиодов, зарядных устройствах (ЗУ), лабораторных источников питания и так далее.
Если, к примеру, рассматривать светодиоды, то необходимо учитывать тот факт, что для них нужно ограничивать ток, а не напряжение. На кристалл можно подать 12В и он не сгорит, при условии, что ток будет ограничен до номинального (в зависимости от маркировки и типа светодиода).
Основные технические характеристики LM317
Максимальный выходной ток 1.5А
Максимальное входное напряжение 40В
Выходное напряжение от 1.2В до 37В
Более подробные характеристики и графики можно посмотреть в даташите на стабилизатор.
Схема стабилизатора тока на lm317
Плюс данного стабилизатора в том, что он является линейным и не вносит высокочастотные помехи, например как некоторые импульсные стабилизаторы. Минусом является низкий КПД (в счёт своей линейности), и поэтому происходит значительный нагрев кристалла микросхемы. Как вы уже поняли, микросхему необходимо обеспечить хорошим радиатором.
За величину тока стабилизации (ограничения) отвечает резистор R1. С помощью данного резистора можно выставить ток стабилизации, например 100мА, тогда даже при коротком замыкании на выходе схемы будет протекать ток, равный 100мА.
Сопротивление резистора R1 рассчитывается по формуле:
R1=1,2/Iнагрузки
Изначально необходимо определиться с величиной тока стабилизации. Например, мне необходимо ограничить ток потребления светодиодов равный 100мА. Тогда,
R1=1,2/0,1A=12 Ом.
То есть, для ограничения тока 0,1A необходимо установить резистор R1=12 Ом. Проверим на железе… Для проверки собрал схему на макетной плате. Резистор на 12 Ом искать было лень, зацепил в параллель два по 22 Ома (были под рукой).
Выставил напряжение холостого хода, равное 12В (можно выставить любое). После чего, я замкнул выход на землю, и стабилизатор LM317 ограничил ток 0,1А. Расчеты подтвердились.
При увеличении или уменьшении напряжения ток остается стабильным.
Резистор можно припаять на выводы микросхемы, но не стоит забывать, что через резистор протекает весь ток нагрузки, поэтому при больших токах нужен резистор повышенной мощности.
Если использовать данный стабилизатор тока на LM317 в лабораторном блоке питания, то необходимо устанавливать переменный резистор проволочного типа, простой переменный резистор не выдержит токи нагрузки протекающие через него.
Для ленивых представляю таблицу значений резистора R1 в зависимости от нужного тока стабилизации.
Ток | R1 (стандарт) |
0.025 | 51 Ом |
0.05 | 24 Ом |
0.075 | 16 Ом |
0.1 | 13 Ом |
0.15 | 8.2 Ом |
0.2 | 6.2 Ом |
0.25 | 5.1 Ом |
0.3 | 4.3 Ом |
0.35 | 3.6 Ом |
0.4 | 3 Ома |
0.45 | 2.7 Ома |
0.5 | 2.4 Ома |
0.55 | 2.2 Ома |
0.6 | 2 Ома |
0.65 | 2 Ома |
0.7 | 1.8 Ома |
0.75 | 1.6 Ома |
0.8 | 1.6 Ома |
0.85 | 1.5 Ома |
0.9 | 1.3 Ома |
0.95 | 1.3 Ома |
1 | 1.3 Ома |
Таким образом, применив галетный переключатель и несколько резисторов, можно собрать схему регулируемого стабилизатора тока с фиксированными значениями.
Опубликовано: Август 18, 2012 • Рубрика: Блоки питания
В радиолюбительской практике широкое применение находят микросхемы регулируемых стабилизаторов LM317 и LM337. Свою популярность они заслужили благодаря низкой стоимости, доступности, удобного для монтажа исполнению, хорошим параметрам. При минимальном наборе дополнительных деталей эти микросхемы позволяют построить стабилизированный блок питания с регулируемым выходным напряжением от 1,2 до 37 В при максимальном токе нагрузки до 1,5А.
Но! Часто бывает, при неграмотном или неумелом подходе радиолюбителям не удаётся добиться качественной работы микросхем, получить заявленные производителем параметры. Некоторые умудряются вогнать микросхемы в генерацию.
Как получить от этих микросхем максимум и избежать типовых ошибок?
Об этом по-порядку:
Микросхема LM317 является регулируемым стабилизатором ПОЛОЖИТЕЛЬНОГО напряжения, а микросхема LM337 – регулируемым стабилизатором ОТРИЦАТЕЛЬНОГО напряжения.
Обращаю особое внимание, что цоколёвки у этих микросхем различные!
Даташит производителя: datasheet LM317 (pdf-формат 1041 кб), datasheet lm337 (pdf-формат 43кб).
Цоколёвка LM317 и LM337:
Типовая схема включения LM317:
Увеличение по клику
Выходное напряжение схемы зависит от номинала резистора R1 и рассчитывается по формуле:
Uвых=1,25*(1+R1/R2)+Iadj*R1
где Iadj ток управляющего вывода. По даташиту составляет 100мкА, как показывает практика реальное значение 500 мкА.
Для микросхемы LM337 нужно изменить полярность выпрямителя, конденсаторов и выходного разъёма.
Но скудное даташитовское описание не раскрывает всех тонкостей применения данных микросхем.
Итак, что нужно знать радиолюбителю, чтобы получить от этих микросхем МАКСИМУМ!
1. Чтобы получить максимальное подавление пульсаций входного напряжения необходимо:
- Увеличить (в разумных пределах, но минимум до 1000 мкФ) емкость входного конденсатора C1. Максимально подавив пульсации на входе, мы получим минимум пульсаций на выходе.
- Зашунтировать управляющий вывод микросхемы конденсатором на 10мкФ . Это увеличивает подавление пульсаций на 15-20дБ. Установка емкости больше указанного значения ощутимого эффекта не даёт.
Увеличение по клику
увеличение по клику
Важно: для микросхем LM337 полярность включения диодов следует поменять!
3. Для защиты от высокочастотных помех электролитические конденсаторы в схеме необходимо зашунтировать плёночными конденсаторами небольшой ёмкости.
Получаем итоговый вариант схемы:
Увеличение по клику
4. Если посмотреть внутреннюю структуру микросхем, можно увидеть, что внутри в некоторых узлах применены стабилитроны на 6,3В. Так что нормальная работа микросхемы возможна при входном напряжении не ниже 8В!
Хотя в даташите и написано, что разница между входным и выходным напряжениями должна составлять минимум 2,5-3 В, как происходит стабилизация при входном напряжении менее 8В, остаётся только догадываться.
5. Особое внимание следует уделить монтажу микросхемы. Ниже приведена схема с учётом разводки проводников:
Увеличение по клику
Пояснения к схеме:
- длинна проводников (проводов) от входного конденсатора C1 до входа микросхемы (А-В) не должна превышать 5-7 см. Если по каким-то причинам конденсатор удалён от платы стабилизатора, в непосредственной близости от микросхемы рекомендуется установить конденсатор на 100 мкФ.
- для снижения влияния выходного тока на выходное напряжение (повышение стабильности по току) резистор R2 (точка D) необходимо подсоединять непосредственно к выходному выводу микросхемы или отдельной дорожкой/проводником ( участок C-D). Подсоединение резистора R2 (точка D) к нагрузке (точка Е) снижает стабильность выходного напряжения.
- проводники до выходного конденсатора (С-E) также не следует делать слишком длинными. Если нагрузка удалена от стабилизатора, то на стороне нагрузки необходимо подключить байпасный конденсатор (электролит на 100-200 мкФ).
- так же с целью снижения влияния тока нагрузки на стабильность выходного напряжения «земляной» (общий) провод необходимо развести «звездой» от общего вывода входного конденсатора (точка F).
Выполнив эти нехитрые рекомендации, Вы получите стабильно работающее устройство, с теми параметрами, которые ожидались.
Понравилась статья? Расскажи друзьям:
Похожие статьи:
Следите за новостями портала:
14 комментариев к “Регулируемые стабилизаторы LM317 и LM337. Особенности применения”
Отечественные аналоги микросхем:
Микросхема 142ЕН12 выпускалась с разными вариантами цоколёвки, так что будьте внимательны при их использовании!
В связи с широкой доступностью и низкой стоимостью оригинальных микросхем
лучше не тратить время, деньги и нервы.
Используйте LM317 и LM337.
Здравствуйте, уважаемый Главный Редактор! Я у Вас зарегистрирован и мне тоже очень хочется прочесть всю статью, изучить Ваши рекомендации по применению LM317. Но, к сожалению, что-то не могу просмотреть всю статью. Что мне необходимо сделать? Порадуйте меня, пожалуйста, полной статьей.
С уважением Сергей Храбан
Я Вам очень благодарен, спасибо большое! Всех благ!
Уважаемый главный редактор! Собрал двух полярник на lm317 и lm337. Все прекрасно работает за исключением разности напряжений в плечах. Разница не велика, но осадок имеется. Не могли бы Вы подсказать, как добиться равных напряжений, а главное причина подобного перекоса в чем. Заранее благодарен Вам за ответ. С пожеланием творческих успехов Олег.
Уважаемый Олег, разница напряжений в плечах обусловлена:
1. разницей опорных напряжений микросхем. То что в паспорте указано 1,25В — это идеальный случай (или усреднённое значение). Подробнее здесь: radiopages.ru/accurate_lm317.html
2. отклонение значений задающих резисторов. Следует помнить, что резисторы имеют допуски 1%, 5%, 10% и даже 20%. То есть, если на резисторе написано 2кОм, его реально сопротивление может быть в районе 1800—2200 Ом (при допуске 10%)
Даже если Вы поставите многооборотные резисторы в цепи управления и с их помощью точно выставите необходимые значения, то. при изменении температуры окружающей среды напряжения всё равно уплывут. Так как резисторы не факт что прогреются (остынут) одинаково или изменяться на одинаковую величину.
Решить Вашу проблему можно, используя схемы с операционными усилителями, которые отслеживают сигнал ошибки (разницу выходных напряжений) и производят необходимую корректировку.
Рассмотрение таких схем выходит за рамки данной статьи. Гугл в помощь.
Уважаемый редактор!Благодарю Вас за подробный ответ, который вызвал уточнения- насколько критично для унч, предварительных каскадов, питание с разностью в плечах в 0,5- 1 вольт? С уважением Олег
Разность напряжений в плечах чревата в первую очередь несимметричным ограничением сигнала (на больших уровнях) и появлением на выходе постоянной составляющей и др.
Если тракт не имеет разделительных конденсаторов, то даже незначительное постоянное напряжение, появившееся на выходе первых каскадов, будет многократно усилено последующими каскадами и на выходе станет существенной величиной.
Для усилителей мощности с питанием (обычно) 33-55В разница напряжений в плечах может быть 0,5-1В, для предварительных усилителей лучше уложиться в 0,2В.
Уважаемый редактор! Благодарю вас за подробные, обстоятельные ответы. И, если позволите, еще вопрос: Без нагрузки разность напряжений в плечах составляет 0,02- 0,06 вольт. При подключении нагрузки положительное плечо +12 вольт, отрицательное -10,5 вольт. С чем связан такой перекос? Можно ли подстроить равенство выходных напряжений не на холостом ходу, а под нагрузкой. С уважением Олег
Если делать всё правильно, то стабилизаторы надо настраивать под нагрузкой. МИНИМАЛЬНЫЙ ток нагрузки указан в даташите. Хотя, как показывает практика, получается и на холостом ходу.
А вот то, что отрицательное плечо проседает аж на 2В, это неправильно. Нагрузка одинаковая?
Тут либо ошибки в монтаже, либо левая (китайская) микросхема, либо что-то ещё. Ни один доктор не будет ставить диагноз по телефону или переписке. Я тоже на расстоянии лечить не умею!
А Вы обратили внимание что у LM317 и LM337 разное расположение выводов! Может в этом проблема?
Благодарю Вас за ответ и терпение. Я не прошу детального ответа. Речь идет о возможных причинах, не более. Стабилизаторы нужно настраивать под нагрузкой: то есть, условно, я подключаю к стабилизатору схему, которая будет от него запитываться и выставляю в плечах равенство напряжений. Я правильно понимаю процесс настройки стабилизатора? С уважением Олег
Олег, не очень! Так можно схему спалить. На выход стабилизатора нужно прицепить резисторы (нужной мощности и номинала), настроить выходные напряжения и лишь после этого подключать питаемую схему.
По даташиту у LM317 минимальный выходной ток 10мА. Тогда при выходном напряжении 12В на выход надо повесить резистор на 1кОм и отрегулировать напряжение. На входе стабилизатора при этом должно быть минимум 15В!
Кстати, как запитаны стабилизаторы? От одного трансформатора/обмотки или разных? При подключении нагрузки минус проседает на 2В -а как дела на входе этого плеча?
Доброго здоровья, уважаемый редактор! Транс мотал сам, одновременно две обмотки двумя проводами. На выходе на обоих обмотках по 15,2 вольта. На конденсаторах фильтра по 19,8 вольт. Сегодня, завтра проведу эксперимент и отпишусь.
Кстати у меня был казус. Собрал стабилизатор на 7812 и 7912, умощнил их транзисторами tip35 и tip36. В результате до 10 вольт регулировка напряжения в обоих плечах шла плавно, равенство напряжений было идеальным. Но выше. это было что- то. Напряжение регулировалось скачками. Причем поднимаясь в одном плече, во втором шло вниз. Причина оказалась в tip36, которые заказывал в Китае. Заменил транзистор на другой, стабилизатор стал идеально работать. Я часто покупаю детали в Китае и пришел к такому выводу: Покупать можно, но нужно выбирать поставщиков, которые продают радиодетали, изготовленные на заводах, а не в цехах какого- нибудь не понятного ИП. Выходит чуть дороже, но и качество соответствующее. С уважением Олег.
Доброго вечера, уважаемый редактор! Только сегодня появилось время. Транс со средней точкой, напряжение на обмотках 17,7 вольт. На выход стабилизатора повесил резисторы по 1 ком 2 ватта. Напряжение в обоих плечах выставил 12,54 вольта. Отключил резисторы, напряжение осталось прежним- 12,54 вольта. Подключил нагрузку (10 штук ne5532)стабилизатор работает прекрасно.
Благодарю Вас за консультации. С уважением Олег.
Добавить комментарий
Спамеры, не тратьте своё время – все комментарии модерируются.
All comments are moderated!
Вы должны авторизоваться, чтобы оставить комментарий.
LM317 Calculator
Если вы хотите узнать , какие внешние резисторы выбрать, чтобы получить желаемое выходное напряжение от регулятора напряжения LM317, калькулятор LM317 — единственный инструмент, который вам нужен.
Планируете ли вы отремонтировать одно из своих электронных устройств или просто хотите изучить основы электроники, вы попали в нужное место. Читайте дальше, чтобы узнать, что такое регулятор напряжения LM317 и как рассчитать необходимые сопротивления для получения целевого выходного напряжения.Вы также найдете принципиальную схему LM317 и некоторые общие применения регулятора LM317.
Что такое LM317?
LM317 — это регулируемый регулятор постоянного напряжения . Он может обеспечивать стабильное выходное напряжение даже при колебаниях входного источника питания.
Стабилизатор может обеспечивать выходной ток в диапазоне 0,01–1,5 A
и положительное выходное напряжение между 1,25 В
и 37 В
.
Как видно из распиновки LM317 на рисунке 1, это трехконтактное устройство.Три контакта:
- Входной терминал;
- Выходной терминал; и
- Отрегулируйте клемму.
Входной контакт принимает напряжение питания, а выходной контакт дает сигнал регулируемого выходного напряжения. Устройство может работать оптимально до тех пор, пока разница между входным и выходным напряжениями лежит в диапазоне 3-40 В,
.Регулировочный штифт подключен к резистивному делителю, который использует два внешних резистора, R1
и R2
(см. Рисунок 2), для установки желаемого выходного напряжения.
Как отрегулировать выходное напряжение регулятора напряжения LM317?
LM317 очень прост в использовании, и мы можем изменять выходное напряжение, используя простую схему делителя напряжения, состоящую из двух резисторов, R1
и R2
, как показано на принципиальной схеме LM317 на рисунке 2.
Формула для расчета выходного напряжения LM317:
V Out = V ref * (1 + R2 / R1) + (I ADJ * R2)
где:
-
В ref
— Разница напряжений между выходным и регулировочным зажимами LM317. Имеет постоянное значение 1,25 В; и -
I ADJ
— Ток, протекающий через регулировочный штифт. Типичное значение I ADJ составляет 50 мкА и им можно пренебречь в расчетах.
Следовательно, мы можем записать упрощенную форму для приведенного выше уравнения как:
В Выход = 1,25 * (1 + R2 / R1)
Вы можете настроить регулятор на постоянное выходное напряжение от 1,25 В
до 37 В
, выбрав соответствующие резисторы.
Как пользоваться калькулятором LM317?
Давайте посмотрим, как использовать калькулятор LM317 для расчета выходного напряжения. Пусть R1 = 240 Ом
и R2 = 1200 Ом
.
- Введите значения
R1 = 240 Ом
иR2 = 1200 Ом
. - Калькулятор выходного напряжения LM317 отобразит выходное напряжение
В = 7,5 В
. - Вы также можете использовать этот калькулятор LM317 для вычисления значения
R1
(илиR2
), указав значенияV
иR2
(илиR1
).
Применения LM317
Регуляторы напряженияLM317 широко используются в электронных устройствах, в которых используется стабилизированный источник постоянного тока. Некоторые распространенные устройства, которые используют LM317 в качестве регулятора переменного напряжения:
- Настольные ПК; Коммутаторы Ethernet
- ;
- Пауэрбанки;
- Гидравлические клапаны; и
- Холодильники.
Вы можете найти больше об этом устройстве и его приложениях в этом техническом описании Texas Instruments.
Как работает LM317?
LM317 — это регулятор напряжения, который может обеспечивать переменное выходное напряжение . Принцип работы LM317 очень прост. В нем используется делитель напряжения , образованный двумя внешними резисторами, соединенными последовательно. Выходное напряжение регулируется путем изменения номиналов резистора.
Для чего используется LM317?
LM317 обычно используется как:
- Стабилизатор напряжения в электронных устройствах для обеспечения стабильного выходного напряжения.
- Прецизионный регулятор тока для обеспечения постоянного тока.
- При проектировании цепей зарядных устройств и источников переменного питания .
Какое максимальное входное напряжение у LM317?
Максимальное входное напряжение LM317 составляет 40 В . LM317 может работать, пока разница между его входным напряжением и желаемым выходным напряжением находится в диапазоне 3-40 В.
Какое выходное напряжение у LM317?
LM317 может обеспечивать регулируемое выходное напряжение в пределах 1.25 В и 37 В . Может обеспечивать ток до 1,5 А.
Стабилизатор напряженияLM317: распиновка, КАЛЬКУЛЯТОР и схемы
В таком случае нам нужно создать источник переменного тока постоянного тока с выходным током 1 А и возможностью регулировки примерно до 30 В.
Большинство людей будут использовать LM317 из-за его высокой эффективности, простоты применения и дешевизны.
Так ли это на самом деле? Вы узнаете ниже.
Лист данных LM317Он имеет регулируемый трехконтактный стабилизатор положительного напряжения, рассчитанный на питание более чем 1 шт.5 А тока нагрузки с регулируемым выходным напряжением в диапазоне от 1,2 В до 37 В.
Имеет внутреннее ограничение тока, обнаружение отключения по температуре и компенсацию безопасной зоны.
Распиновка LM317
Рисунок 1: Распиновка LM317 на TO-220
Посмотрите:
Схема подключения различных Распиновка LM317
LM317T на TO-220: выход 92M L
LM317 L на TO-220: выход 1.53A
L выход 100 мА
LM317K на ТО-3: выход 1,5 А
LM317 на DPARK: выход 1.5A
Основные характеристики
- Выходной ток более 1,5 A
- Выход, регулируемый в пределах от 1,2 В до 37 В
- Внутреннее ограничение тока короткого замыкания или выход защищен от короткого замыкания
- Внутренняя защита от тепловой перегрузки или постоянное ограничение тока с температурой
- Компенсация зоны безопасной работы выходного транзистора
- TO-220 Корпус аналогичен транзисторам 2SC1061.
- Есть выходное напряжение 1% Долговечность
- Есть макс.Регулирование линии 0,01% / В (LM317) и регулирование нагрузки 0,3% (LM117)
- Подавление пульсаций 80 дБ
Рисунок 2 принципиальная схема
Принципиальная схема
Если питание Питающий фильтр слишком удален от IC-регулятора. Tt должен вставить Ci для снижения шума перед входом IC.
Далее на рисунке схема. Co не нужен, если вы не высокопроизводительный, но мы его лучше выразим. Это снизит пульсацию на выходе.
Поскольку Iadj контролируется до менее 100 мкА, небольшая ошибка не важна для большинства приложений.
Входное напряжение LM317 должно быть как минимум на 1,5 В выше выходного напряжения.
Калькулятор LM317
Этот калькулятор будет работать с большинством регуляторов напряжения постоянного тока с опорным напряжением (VREF) 1,25. Обычно программный резистор (R1) составляет 240 Ом для LM117, LM317, LM138 и LM150.
Некоторые говорили, что Iadj имеет очень низкий ток.
Значит, можно уменьшить.Быть короче и проще.
Vout = 1,25 В x {1 + R2 / R1}
Что лучше?
Например:
Вы используете R1 = 270 Ом и R2 = 390 Ом. Это приводит к выходу 3,06 В
Это просто? Если у вас есть выбор напряжения с большинством резисторов. В ближайших к вам магазинах.
посмотрите на список:
Выходное напряжение с R1 и R2 Список
1,43 В: R1 = 470 Ом, R2 = 68 Ом
1,47 В: R1 = 470 Ом, R2 = 82 Ом
1,47 В: R1 = 390 Ом, R2 = 68 Ом
1.51 В: R1 = 330 Ом, R2 = 68 Ом
1,51 В: R1 = 390 Ом, R2 = 82 Ом
1,52 В: R1 = 470 Ом, R2 = 100 Ом
1,53 В: R1 = 390 Ом, R2 = 82 Ом
1,56 В: R1 = 330 Ом, R2 = 82 Ом
1,57 В: R1 = 270 Ом, R2 = 68 Ом
1,57 В: R1 = 470 Ом, R2 = 120 Ом
1,57 В: R1 = 390 Ом, R2 = 100 Ом
1,59 В: R1 = 390 Ом, R2 = 100 Ом
1,60 В : R1 = 240 Ом, R2 = 68 Ом
1,63 В: R1 = 330 Ом, R2 = 100 Ом
1,63 В: R1 = 270 Ом, R2 = 82 Ом
1,64 В: R1 = 390 Ом, R2 = 120 Ом
1,64 В: R1 = 220 Ом, R2 = 68 Ом
1,65 В: R1 = 470 Ом, R2 = 150 Ом
1.66 В: R1 = 390 Ом, R2 = 120 Ом
1,68 В: R1 = 240 Ом, R2 = 82 Ом
1,71 В: R1 = 330 Ом, R2 = 120 Ом
1,71 В: R1 = 270 Ом, R2 = 100 Ом
1,72 В: R1 = 220 Ом, R2 = 82 Ом
1,72 В: R1 = 180 Ом, R2 = 68 Ом
1,73 В: R1 = 470 Ом, R2 = 180 Ом
1,73 В: R1 = 390 Ом, R2 = 150 Ом
1,76 В: R1 = 390 Ом, R2 = 150 Ом
1,77 В : R1 = 240 Ом, R2 = 100 Ом
1,81 В: R1 = 270 Ом, R2 = 120 Ом
1,82 В: R1 = 150 Ом, R2 = 68 Ом
1,82 В: R1 = 330 Ом, R2 = 150 Ом
1,82 В: R1 = 180 Ом, R2 = 82 Ом
1,83 В: R1 = 390 Ом, R2 = 180 Ом
1.84 В: R1 = 470 Ом, R2 = 220 Ом
1,86 В: R1 = 390 Ом, R2 = 180 Ом
1,88 В: R1 = 240 Ом, R2 = 120 Ом
1,89 В: R1 = 470 Ом, R2 = 240 Ом
1,93 В: R1 = 330 Ом, R2 = 180 Ом
1,93 В: R1 = 150 Ом, R2 = 82 Ом
1,94 В: R1 = 270 Ом, R2 = 150 Ом
1,96 В: R1 = 390 Ом, R2 = 220 Ом
1,97 В: R1 = 470 Ом, R2 = 270 Ом
1,99 В : R1 = 390 Ом, R2 = 220 Ом
2,02 В: R1 = 390 Ом, R2 = 240 Ом
2,03 В: R1 = 240 Ом, R2 = 150 Ом
2,06 В: R1 = 390 Ом, R2 = 240 Ом
2,08 В: R1 = 330 Ом, R2 = 220 Ом
2,10 В: R1 = 220 Ом, R2 = 150 Ом
2.12 В: R1 = 390 Ом, R2 = 270 Ом
2,13 В: R1 = 470 Ом, R2 = 330 Ом
2,16 В: R1 = 330 Ом, R2 = 240 Ом
2,16 В: R1 = 390 Ом, R2 = 270 Ом
2,19 В: R1 = 240 Ом, R2 = 180 Ом
2,23 В: R1 = 470 Ом, R2 = 390 Ом
2,25 В: R1 = 150 Ом, R2 = 120 Ом
2,27 В: R1 = 270 Ом, R2 = 220 Ом
2,27 В: R1 = 330 Ом, R2 = 270 Ом
2,29 В : R1 = 470 Ом, R2 = 390 Ом
2,29 В: R1 = 180 Ом, R2 = 150 Ом
2,31 В: R1 = 390 Ом, R2 = 330 Ом
2,36 В: R1 = 270 Ом, R2 = 240 Ом
2,37 В: R1 = 390 Ом, R2 = 330 Ом
2,40 В: R1 = 240 Ом, R2 = 220 Ом
2.44 В: R1 = 390 Ом, R2 = 390 Ом
2,50 В: R1 = 470 Ом, R2 = 470 Ом
2,57 В: R1 = 390 Ом, R2 = 390 Ом
2,61 В: R1 = 220 Ом, R2 = 240 Ом
2,65 В: R1 = 330 Ом, R2 = 390 Ом
2,66 В: R1 = 240 Ом, R2 = 270 Ом
2,73 В: R1 = 330 Ом, R2 = 390 Ом
2,74 В: R1 = 470 Ом, R2 = 560 Ом
2,75 В: R1 = 150 Ом, R2 = 180 Ом
2,76 В : R1 = 390 Ом, R2 = 470 Ом
2,78 В: R1 = 270 Ом, R2 = 330 Ом
2,78 В: R1 = 220 Ом, R2 = 270 Ом
2,84 В: R1 = 390 Ом, R2 = 470 Ом
2,92 В: R1 = 180 Ом, R2 = 240 Ом
2,96 В: R1 = 270 Ом, R2 = 390 Ом
2.97 В: R1 = 240 Ом, R2 = 330 Ом
3,03 В: R1 = 330 Ом, R2 = 470 Ом
3,05 В: R1 = 390 Ом, R2 = 560 Ом
3,06 В: R1 = 270 Ом, R2 = 390 Ом
3,06 В: R1 = 470 Ом, R2 = 680 Ом
3,08 В: R1 = 150 Ом, R2 = 220 Ом
3,13 В: R1 = 220 Ом, R2 = 330 Ом
3,14 В: R1 = 390 Ом, R2 = 560 Ом
3,18 В: R1 = 240 Ом, R2 = 390 Ом
3,25 В : R1 = 150 Ом, R2 = 240 Ом
3,28 В: R1 = 240 Ом, R2 = 390 Ом
3,35 В: R1 = 220 Ом, R2 = 390 Ом
3,37 В: R1 = 330 Ом, R2 = 560 Ом
3,43 В: R1 = 270 Ом, R2 = 470 Ом
3,43 В: R1 = 390 Ом, R2 = 680 Ом
3.43 В: R1 = 470 Ом, R2 = 820 Ом
3,47 В: R1 = 220 Ом, R2 = 390 Ом
3,50 В: R1 = 150 Ом, R2 = 270 Ом
3,54 В: R1 = 180 Ом, R2 = 330 Ом
3,55 В: R1 = 390 Ом, R2 = 680 Ом
3,70 В: R1 = 240 Ом, R2 = 470 Ом
3,82 В: R1 = 180 Ом, R2 = 390 Ом
3,83 В: R1 = 330 Ом, R2 = 680 Ом
3,84 В: R1 = 270 Ом, R2 = 560 Ом
3,88 В : R1 = 390 Ом, R2 = 820 Ом
3,91 В: R1 = 470 Ом, R2 = 1K
3,92 В: R1 = 220 Ом, R2 = 470 Ом
3,96 В: R1 = 180 Ом, R2 = 390 Ом
4,00 В: R1 = 150 Ом, R2 = 330 Ом
4,02 В: R1 = 390 Ом, R2 = 820 Ом
4.17 В: R1 = 240 Ом, R2 = 560 Ом
4,33 В: R1 = 150 Ом, R2 = 390 Ом
4,36 В: R1 = 330 Ом, R2 = 820 Ом
4,40 В: R1 = 270 Ом, R2 = 680 Ом
4,43 В: R1 = 220 Ом, R2 = 560 Ом
4,44 В: R1 = 470 Ом, R2 = 1,2 K
4,46 В: R1 = 390 Ом, R2 = 1K
4,50 В: R1 = 150 Ом, R2 = 390 Ом
4,51 В: R1 = 180 Ом, R2 = 470 Ом
4,63 V: R1 = 390 Ом, R2 = 1K
4,79 В: R1 = 240 Ом, R2 = 680 Ом
5,04 В: R1 = 330 Ом, R2 = 1K
5,05 В: R1 = 270 Ом, R2 = 820 Ом
5,10 В: R1 = 390 Ом, R2 = 1,2K
5,11 В: R1 = 220 Ом, R2 = 680 Ом
5.14 В: R1 = 180 Ом, R2 = 560 Ом
5,17 В: R1 = 150 Ом, R2 = 470 Ом
5,24 В: R1 = 470 Ом, R2 = 1,5 К
5,30 В: R1 = 390 Ом, R2 = 1,2 К
5,52 В: R1 = 240 Ом, R2 = 820 Ом
5,80 В: R1 = 330 Ом, R2 = 1,2K
5,88 В: R1 = 270 Ом, R2 = 1K
5,91 В: R1 = 220 Ом, R2 = 820 Ом
5,92 В: R1 = 150 Ом, R2 = 560 Ом
5,97 В: R1 = 180 Ом, R2 = 680 Ом
6,04 В: R1 = 470 Ом, R2 = 1,8 кОм
6,06 В: R1 = 390 Ом, R2 = 1,5 кОм
6,32 В: R1 = 390 Ом, R2 = 1,5 кОм
6,46 В : R1 = 240 Ом, R2 = 1K
6,81 В: R1 = 270 Ом, R2 = 1.2K
6,92 В: R1 = 150 Ом, R2 = 680 Ом
6,93 В: R1 = 330 Ом, R2 = 1,5 К
6,94 В: R1 = 180 Ом, R2 = 820 Ом
7,02 В: R1 = 390 Ом, R2 = 1,8 К
7,10 В : R1 = 470 Ом, R2 = 2,2K
7,33 В: R1 = 390 Ом, R2 = 1,8 кОм
7,50 В: R1 = 240 Ом, R2 = 1,2 кОм
8,07 В: R1 = 330 Ом, R2 = 1,8 кОм
8,08 В: R1 = 150 Ом, R2 = 820 Ом
8,19 В: R1 = 270 Ом, R2 = 1,5 К
8,30 В: R1 = 390 Ом, R2 = 2,2 К
8,43 В: R1 = 470 Ом, R2 = 2,7 К
8,68 В: R1 = 390 Ом, R2 = 2,2 кОм
9,06 В: R1 = 240 Ом, R2 = 1,5 кОм
9.58 В: R1 = 330 Ом, R2 = 2,2 К
9,77 В: R1 = 220 Ом, R2 = 1,5 К
9,90 В: R1 = 390 Ом, R2 = 2,7 К
10,03 В: R1 = 470 Ом, R2 = 3,3 К
10,37 В: R1 = 390 Ом, R2 = 2,7 К
10,63 В: R1 = 240 Ом, R2 = 1,8 К
11,25 В: R1 = 150 Ом, R2 = 1,2 К
11,44 В: R1 = 270 Ом, R2 = 2,2 К
11,48 В: R1 = 330 Ом, R2 = 2,7 кОм
11,67 В: R1 = 180 Ом, R2 = 1,5 кОм
11,83 В: R1 = 390 Ом, R2 = 3,3 кОм
12,40 В: R1 = 390 Ом, R2 = 3,3 кОм
12,71 В: R1 = 240 Ом, R2 = 2,2 кОм
13,75 В: R1 = 330 Ом, R2 = 3,3 кОм
15.31 В: R1 = 240 Ом, R2 = 2,7 кОм
16,25 В: R1 = 150 Ом, R2 = 1,8 кОм
16,53 В: R1 = 270 Ом, R2 = 3,3 кОм
16,59 В: R1 = 220 Ом, R2 = 2,7 кОм
18,44 В: R1 = 240 Ом, R2 = 3,3 кОм
19,58 В: R1 = 150 Ом, R2 = 2,2 кОм
20,00 В: R1 = 220 Ом, R2 = 3,3 кОм
23,75 В: R1 = 150 Ом, R2 = 2,7 кОм
24,17 В: R1 = 180 Ом, R2 = 3,3 кОм
28,75 В: R1 = 150 Ом, R2 = 3,3 кОм
Например, вам нужно 4,5 В от AA 1,5 В x 3 последовательно. Но у вас их нет. Как сделать? У вас только LM317 и много резисторов. Да, он может использовать это вместо этого.
Посмотрите на приведенный выше список для напряжения 4,5 В, мы можем использовать R1 = 150 Ом, R2 = 390 Ом.
Это просто, правда?
LM317 вычислитель радиатора
Какого размера достаточно радиатора?
Пока LM317 работает. Это так жарко. Хотя у него есть предохранитель от перегрева. Но нам он горячий не нужен. Всегда устанавливаем радиатор.
Кто-нибудь спросит меня. Сколько стоит использовать самый маленький радиатор? LM317 имеет максимальную температуру 50 ° C / Вт без радиатора.
Я нашел этот сайт хорошим с калькулятором радиатора LM317.
Радиатор LM317, какого размера?
Вы можете найти LM317 на Amazon здесь, если вам интересно.
Например, схема LM317
- Первый источник питания постоянного тока переменного тока
Это мой первый источник питания, который я построил. Хотя очень старый, все еще использую более 20 лет. Почему это здорово? - Линейный селектор Регулятор источника питания
Выход напряжения 1 легко выбрать.5 В, 3 В, 4,5 В, 5 В, 6 В, 9 В при 1,5 А - Двойной источник питания постоянного тока 30 В
Это высокое напряжение (0-60 В) при 1,5 А и пусковое напряжение с нуля! Молодец. - Great Источник питания постоянного тока
Высококачественный регулируемый регулятор напряжения 3A. Использовать LM317 и 2N3055 так просто и дешево. Отрегулируйте напряжение с шагом 3 В, 6 В, 9 В, 12 В. И в норме от 1,25В до 20В. - 4 схемы зарядного устройства свинцово-кислотных аккумуляторов
См. 4 схемы зарядного устройства свинцово-кислотных аккумуляторов LM317 для аккумуляторов 6, 12 и 24 В.С автоматической зарядкой и индикатором полной зарядки с использованием TL431. Легко построить. - Двойной источник питания 3 В, 5 В, 6 В, 9 В, 12,15 В
Двойная цепь питания, можно выбирать уровни напряжения 3 В, 5 В, 6 В, 9 В, 12,15 В при 1 А и -3 В, -5 В, -6 В , -9V, -12V, -15V при 1A, используйте LM317 (положительный) LM337 (отрицательный) […] - Замена батареи USB
Это схема понижающего преобразователя USB 5V в 1,5V. Когда мы используем дешевый MP3-плеер, в котором в качестве источника питания используется только одна батарея AA 1,5 В. - Регулятор 5 В с низким падением напряжения
Это схема регулятора с низким падением напряжения на 5 В с использованием транзистора и светодиода, очень простая, минимальное входное напряжение составляет 6 В, поэтому на нем только 1 В, выходной сигнал составляет 5 В 0,5 А - Зарядное устройство для гелевых аккумуляторов схема
Он может заряжать гелевые батареи любого размера и продлевать срок службы гелевых батарей. Пока цепь работает, светодиод показывает зарядку. - Зарядное устройство Nicad для аккумуляторов с использованием LM317T
Вот схема универсального зарядного устройства для никель-кадмиевых и никель-металлгидридных аккумуляторов.Он использует ток управления IC LM317T (Hot IC) менее 300 мА, размер батареи 2,4 В, 4,8 В, 9,6 В. Недорогая схема
ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ
Я всегда стараюсь сделать Electronics Learning Easy .
Калькулятор и схемы регулятора тока LM317 / LM338 / LM350
Калькулятор регулятора тока LM317 / LM338 / LM350
Вы можете использовать этот калькулятор регулятора тока, чтобы изменить значение программного резистора (R 1 ) и рассчитать выходной ток для трех терминальных регулируемых стабилизаторов семейства LM317 / LM338 / LM350.Этот калькулятор регулятора тока будет работать со всеми регулируемыми стабилизаторами интегральной схемы с опорным напряжением (В REF ) 1,25. Дополнительные сведения об этих регуляторах напряжения см. На странице «Калькулятор регуляторов напряжения LM317 / LM338 / LM350», «Информация и схемы».
Рисунок 2: Схема калькулятора регулятора тока LM317 / LM338 / LM350
Калькулятор регулятора тока LM317 / LM338 / LM350
Чтобы определить выходной ток регулятора, введите значение программного резистора (R 1 ) в омах и нажмите кнопку «Рассчитать».Это позволит рассчитать выходной ток в амперах и количество рассеиваемой мощности через R 1 в ваттах.
ПРИМЕЧАНИЕ: для этого онлайн-калькулятора текущего регулятора требуется, чтобы в вашем браузере был включен JavaScript.
Калькулятор регулятора тока LM317 / LM338 / LM350
ОБНОВЛЕНИЕ — Калькулятор регулятора напряжения LM317 / LM338 / LM350 перемещен на свою страницу, Калькулятор регулятора напряжения LM317 / LM338 / LM350. Пожалуйста, обновите свои закладки.
Лист данных — 3-контактный регулируемый регулятор LM317 / LM338 / LM350
Цепи регулятора тока LM317 / LM338 / LM350
Следующие схемы показывают некоторые из основных применений регуляторов напряжения серии LM317 / LM338 / LM350, когда они сконфигурированы как регулятор тока или источник постоянного тока (CCS).
Рисунок 2: Схема регулятора тока 1 А для LM317 / LM338 / LM350
Рисунок 3: Схема прецизионного ограничителя тока для LM317 / LM338 / LM350
Рисунок 4: Схема зарядного устройства постоянного тока 50 мА для LM317
Тяги регулятора напряжения
резистор вычислитель напряжения
Этот калькулятор основан на простом законе Ома.Как мы уже рассказали, калькулятор закона Ома (P, I, V, R), в котором вы также можете рассчитать трехфазный ток. Базовое напряжение. Рассмотрим схему. Однако значение R1 может быть любым от 100 Ом до 1000 Ом. Для R 1 и R 2, соединенных последовательно, и V out — это напряжение R 2: общее сопротивление резисторов, включенных параллельно, равно обратной величине суммы обратных величин каждого отдельного резистора. Калькулятор мощности, напряжения, тока и сопротивления (P, V, I, R). hFE. Калькулятор также может предоставить вам напряжение на мосту (V b), если вы укажете значения резистора (R1, R2, R3, R4) и входное напряжение (V in).Пример 2: Если вы используете желтый светодиод, то он имеет типичное прямое напряжение 1,8 В. Следовательно, значения резистора 75 Ом, 160 Ом, 360 Ом и 510 Ом могут использоваться, когда напряжение питания составляет 3,3 В. , 5 В, 9 В и 12 В соответственно. Калькулятор делителя напряжения рассчитывает падение напряжения на каждой резистивной нагрузке при последовательном подключении. B. Калькулятор цепи делителя напряжения — для термистора NTC. Как использовать калькулятор делителя напряжения: Введите три известные переменные; Нажмите кнопку «Рассчитать». Бесплатный онлайн-калькулятор падения напряжения от Appsloveworld поможет вам рассчитать падение напряжения на резисторе при последовательном подключении.вот пример калькулятора делителя напряжения с 3 резисторами. вы также можете найти формулу правила делителя напряжения. Этот калькулятор поможет вам определить номинал, допуск и температурный коэффициент резистора с цветовой кодировкой, просто выбрав цвета полос. Калькулятор рассчитывает напряжения, мощности, токи, импеданс и реактивное сопротивление в последовательной цепи резистора индуктивности и конденсатора. Ⅱ Цепь резистивного делителя тока. Находится внутри — Страница 4 Простые калькуляторы резисторов, с которыми мы экспериментировали, идеально подходят для простых… что информация поступает в калькулятор в виде необработанного напряжения. Рассчитайте выходное напряжение, используя схему на рисунке ниже для компонентов резистора номиналом R = 470 кН, R1 = 4,3 кН, R2 = 33 кН и R3 = 33 кН для входа 80 мкВ. Просто введите 2 известных значения, и калькулятор найдет остальные. Калькулятор отобразит значение падающего резистора вместе с номинальной мощностью для работы одного светодиода или нескольких светодиодов последовательно от источника питания. Находится внутри — Страница 13 … расчет электрических величин Таблица 2.3 показаны записи, необходимые на простом калькуляторе, чтобы найти значения напряжения, тока, сопротивления или мощности, … Потребляемый ток — сколько это устройство потребляет в усилителях, можно использовать десятичные дроби, поэтому 25 миллиампер — это то же самое, что и 0,025 AMP, 1/2 Amp будет 0,5 AMP и т. Д. В пояснении ниже будет использоваться четырехполосный резистор (тот, который специально показан ниже). Затем разделите напряжение в цепи на общее сопротивление, чтобы найти ток. Частота f. L — длина проводника Этот инструмент используется для расчетов, включающих разряд конденсатора через резистор фиксированного значения.Обычно программный резистор (R 1) устанавливается на 240 Ом для регуляторов LM117, LM317, LM138 и LM150. Коллекторный ток. Оба резидента не могут быть подключены к одному и тому же. Обратите внимание, что напряжение не требуется для расчета постоянной времени RC-цепи. энергия, макс. Этот калькулятор регуляторов напряжения будет работать со всеми регуляторами напряжения с опорным напряжением (V REF) 1,25. Находится внутри — Страница 70 Расчет падений напряжения: I T E A 12 В 4 A E R1 = R 1 1 Ом E R1 = 4 В I T X R … Закон для напряжения Сумма отдельных падений напряжения на резисторах = EA… Например, в цепи параллельно включены резисторы 2 Ом и 4 Ом. Прямые напряжения на светодиодах: красный и зеленый: 2 вольта. Возможны и другие варианты, но это одни из наиболее распространенных конфигураций. Этот калькулятор поможет вам определить номинал резистора, который нужно добавить последовательно со светодиодом для ограничения тока. Напряжение Vab равно 31,5 В. Резисторы 600 и 400 подключены параллельно. Этот калькулятор поддерживает резисторы с 3, 4, 5 и 6 диапазонами. LM317 — это регулируемый стабилизатор напряжения, который может выдавать диапазон напряжений (1.От 5 до 37 В) на основе резисторов R1 и R2. Обычно значение R1 составляет 240 Ом, рекомендованное производителем значение. Чтобы проверить расчеты делителей напряжения, см. Калькулятор делителя напряжения. Находится внутри — Страница 21 … онлайн-калькуляторы резисторов для определения подходящего резистора для вашей схемы. … Вы никогда не должны обрабатывать прямое напряжение (VF): также называется … Как рассчитать напряжение Сначала определите два сопротивления. Используйте на свой страх и риск, Super Duty Power Steering Upgrade — Фото 1, Super Duty Power Steering Upgrade — Photo 2, Super Duty Power Steering Upgrade — Photo 3, Super Duty Power Steering Upgrade — Фото 4, Super Duty Power Steering Upgrade — Фото 5 , Замена переднего тормоза Explorer — Страница 1, Замена переднего тормоза Explorer — Страница 2, Замена переднего тормоза Explorer — Страница 3, Замена переднего тормоза Expedition — Страница 1, Замена переднего тормоза Expedition — Страница 2, Замена переднего тормоза Expedition — Страница 3, Big Блок Ford FE 390 427 428 Порядок срабатывания, Как измерить расположение болтов 5 проушин на колесах, Порядок регулировки клапанов Ford 302 HO и 351W, Порядок регулировки клапанов Ford 260, 289 и 302, Powerstroke 7.Последовательность затяжки болтов с головкой 3L, таблица моментов затяжки болтов с головкой под торцевой ключ — дюймы, инструмент Riffraff Diesel Power Stroke Injector. Apogeeweb. Калькулятор рассчитывает напряжения, мощности, токи, импеданс и реактивное сопротивление в параллельной цепи резистора индуктивности и конденсатора. Калькулятор также строит принципиальную схему и генерирует значения компонентов. Это верно для многих материалов в широком диапазоне напряжений и токов, а сопротивление и проводимость электронных компонентов, изготовленных из этих материалов, остаются постоянными.Находится внутри — Страница 139 С помощью резистора вы сможете линейно связать ток и напряжение. … какой резистор подходит, вы можете использовать онлайн-калькулятор … В типичном четырехполосном резисторе первая и вторая полосы представляют собой значащие числа. Делитель напряжения — это пассивная линейная схема, которая вырабатывает выходное напряжение (Vout), составляющее часть входного напряжения (V1). Вы можете использовать этот калькулятор регулятора тока, чтобы изменить значение программного резистора (R 1) и рассчитать выходной ток семейства LM317 / LM338 / LM350, состоящего из трех клеммных регулируемых регуляторов.Поэкспериментируйте с калькуляторами падения напряжения и закона Ома или изучите сотни других калькуляторов. В этом случае введите любые два из следующих значений: напряжение на резисторе, ток через резистор или его сопротивление в омах, чтобы найти рассеиваемую мощность в ваттах. Калькулятор токоограничивающего резистора для светодиодов. заряд для RC-цепи, состоящей из последовательно соединенных резистора 2 кОм и конденсатора 5 мкФ. (проверьте практический пример ниже) Шаг 2: Затем найдите эквивалентный резистор.Первые три диапазона будут полосами значащих цифр, 4-я — множителем, 5-я — допуском, а 6-я — надежностью или температурным коэффициентом. Для защиты или ограничения тока мы просто используем последовательно включенный резистор. Факторами, определяющими значение сопротивления резистора, являются напряжение питания V S, прямое падение напряжения, необходимое для светодиода, V F, и желаемый ток, который должен пройти через светодиод. Следующая формула используется для расчета эквивалентного сопротивления резисторов, включенных параллельно.V2 = 12 (8/5 + 8 + 2) Падение напряжения на резисторе Калькулятор Калькулятор делителя напряжения вычисляет падение напряжения на каждой резисторной нагрузке при последовательном подключении. Оба резистора нельзя подключать к одному и тому же напряжению. Введите значения резисторов R1 и R2 в калькуляторе LM317 ниже, чтобы рассчитать выходное напряжение, ИЛИ вы можете ввести целевое выходное напряжение и R1 и вычислить требуемое значение резистора R2. В типичном четырехполосном резисторе существует интервал между третьей и четвертой полосами, чтобы указать, как следует считывать показания резистора (слева направо, причем одинокая полоса после промежутка является самой правой полосой).Ошибки квантования в значениях резисторов присущи Javascript. Также возможно иметь пятую полосу, которая представляет собой температурный коэффициент, который показывает изменение сопротивления компонента в зависимости от температуры окружающей среды в ppm / K. V1 = 12 (5/5 + 8 + 2) Простой в использовании калькулятор закона Ома. Если, скажем, схема заполнена резисторами, включенными последовательно и параллельно, то повторно подключите ее, чтобы просто упростить. Что такое делитель напряжения? Синий и белый: 3,0 — 3,5 вольт. Помните, что как только мы находим полное напряжение цепи, мы нашли напряжение на любом из параллельных проводов.Эта дробь принимает форму R2, деленного на сумму R1 + R2. Факторами, определяющими значение сопротивления резистора, являются напряжение питания V S, прямое падение напряжения, необходимое для светодиода, V F, и желаемый ток, который должен пройти через светодиод. Найдено внутри — Страница 27 Напряжение, измеренное на резисторе смещения 220 22 в цепи транзисторного усилителя, составляет … Рассчитайте ток в резисторе для каждого из следующих … Найдено внутри — Страница 76 С учетом этих узловых напряжений, напряжения на резисторах are Для завершения анализа используйте закон Ома для расчета силы тока для каждого резистора: После… iL (A) Vcc (V) Vi (V) Rb (Ω) Используйте таблицу стандартных значений резистора, чтобы найти ближайшее значение стандартного резистора. Этот бесплатный калькулятор резисторов преобразует значение сопротивления и допуски на основе цветовой кодировки резисторов и определяет сопротивление резисторов, подключенных параллельно или последовательно, а также сопротивление проводника. введите входное напряжение VT сопротивление R1, сопротивление R2, сопротивление R3 и нажмите кнопку «Рассчитать», чтобы получить падение напряжения. Общее входное напряжение: […] Основная формула, которая используется для определения выходного напряжения, основана на Законе Ома и выглядит следующим образом: Введите любое пусковое напряжение, а затем необходимое напряжение и, наконец, потребляемый ток (в AMPS) в полях выше, затем нажмите, введите следующие значения для расчета падающего резистора, Copyright (C) 2013-2019 Sandy Ganz, GTSparkplugs.Калькулятор делителя напряжения; Калькулятор цветового кода резистора (4-полосный, 5-полосный или 6-полосный) ВАМ ТАКЖЕ МОЖЕТ ПОНРАВИТЬСЯ. Обратите внимание, что этот метод не рекомендуется для сильноточных светодиодов, которым нужен более надежный стабилизатор тока переключения. Для серии: Треб. Таким образом, множитель по таблице равен 1 000 000. C. Наш калькулятор округляет до ближайшего значения, чтобы обеспечить минимальную безопасность. Внутри Если одинаковые резисторы (R1 = 2 Ом, R2 = 3 Ом и R3 = 5 Ом) подключены параллельно, а ток, протекающий через источник, равен 2 А, рассчитайте: • напряжение при… Схема подключена к источнику питания 10 В постоянного тока. С. 180. Контент ЗАПРЕЩАЕТСЯ использовать без письменного разрешения. Определите параметры расчета: 1. C — проводимость материала. Расчет базового резистора транзистора. Калькулятор закона Ома также называют калькулятором сопротивления, поскольку он помогает рассчитать сопротивление. V3 = 1,6. Калькулятор светодиодного резистора Чтобы рассчитать резистор, необходимый для простой светодиодной схемы, просто снимите падение напряжения с напряжения источника, а затем примените закон Ома.Находится внутри — Страница 32 РЕШЕНИЕ ПРОБЛЕМ С ПОМОЩЬЮ КАЛЬКУЛЯТОРОВ на Рисунке 1-51, ток течет от отрицательной стороны источника напряжения через резистор R1, через резистор R2 … Находится внутри — Стр. 104A Калькулятор сопротивления BCDE 8 9 10 11 12 Позиция Ток Напряжение Сопротивление Лампа 0,5 12 24 Тостер 3 240 80 Смеситель для тортов 2,2 240 109 Ключевой этап 4 Обращение … Таким образом, ограничение тока через светодиод с помощью последовательного резистора — обычная и простая практика. Где R — эквивалентное сопротивление.Калькулятор делителя напряжения Схема делителя напряжения — это очень распространенная схема, которая принимает более высокое напряжение и преобразует его в более низкое с помощью пары резисторов. Как пользоваться калькулятором. Например, компоненты, изготовленные в соответствии с военными спецификациями, обычно представляют собой четырехполосные резисторы, которые могут иметь пятую полосу, которая указывает на надежность резистора с точки зрения процента отказов на 1000 часов работы. Зная значение емкости, а также начальное и конечное напряжения, этот калькулятор вычисляет время или сопротивление, вычисляя результирующее начальное рассеивание мощности в сопротивлении и.Рассчитайте сопротивление R4 для симметричного моста, или; 2. Для приложений измерения и контроля температуры отрицательный температурный коэффициент (NTC. Это процентное значение, на которое может изменяться значение резистора. Напряжение), который получается в одном делителе напряжения. Прочтите, чтобы узнать, что такое делитель напряжения, узнайте базовую формулу делителя напряжения и то, как она распространяется на различные уравнения для различных типов делителей напряжения, и узнайте, как можно получить некоторую долю входного сигнала. Находится внутри — Страница 50R — это мощность, рассеиваемая резистором.Расчет рассеиваемой мощности — это шаг, который многие люди — как любители, так и профессионалы — склонны пропускать … Этот множитель умножается на значащие числа, определенные из предыдущих диапазонов, в данном случае 52, в результате получается значение 52000000 Ом, или 52 МОм. Этот калькулятор резисторов светодиодов рассчитывает номинал резистора, который вам понадобится для выработки желаемого тока, проходящего через светодиод. Находится внутри — Страница 313 Чтобы избежать математических вычислений, вы можете использовать онлайн-калькулятор резисторов.Делитель напряжения также используется для преобразования сопротивления в напряжение при использовании резистивного … Найдите напряжение по своим ответам. Падение напряжения на каждом резисторе с общим напряжением 12 В и сопротивлениями 5, 8 и 2 можно рассчитать как ступенчато рассчитать падение напряжения на сопротивлении: Шаг 1: Упростите данную схему. Формула напряжения — это одно из трех математических уравнений, связанных с законом Ома. Приведенный ниже онлайн-калькулятор позволяет автоматически рассчитать необходимый токоограничивающий резистор, чтобы максимально продлить срок службы светодиода.Итак, теперь давайте разберемся с этим. Этот светодиодный калькулятор поможет вам спроектировать вашу светодиодную матрицу и выбрать лучшие значения токоограничивающих резисторов. Оба резистора подключены к одинаковому напряжению. После ввода всех требуемых значений калькулятор параллельных цепей автоматически сгенерирует нужный вам результат. Резисторы — это элементы схемы, которые придают электрическое сопротивление. Следующая формула используется для расчета выходного напряжения цепи с двумя резисторами. R1 и R2 — сопротивления резисторов.Обратитесь к уравнению ниже для пояснения: Где: Система оптоизоляторов и резисторов (расчет напряжения «ВКЛ» светодиода) 10 февраля 2014 г., 14:56 №1. Делитель напряжения — это система или еще два резистора, которые делят входное напряжение на пониженное выходное напряжение. Этот калькулятор резисторов светодиодов рассчитывает номинал резистора, который вам понадобится для выработки желаемого тока, проходящего через светодиод. Если резистор рассеивает до 0,4 Вт тепла — это полезная величина. hfe или β. Найдено внутри — Страница 56 Точный метод ввода элементов зависит от используемого калькулятора, но… Каждый источник напряжения должен иметь последовательное внутреннее сопротивление, и каждый … Калькулятор делителя напряжения рассчитывает выходное напряжение сети делителя напряжения на основе значения резистора R1, резистора R2 и входного напряжения VIN. Это выходное напряжение, которое представляет собой напряжение, падающее на резистор R2, рассчитывается по формуле VOUT = VIN (R2 / (R1 + R1)). LM317 Резистор и калькулятор напряжения. Создайте свой рабочий стол для электроники и сразу же приступайте к созданию забавных проектов электроники. В этой книге, содержащей сотни красочных диаграмм и фотографий, приведены пошаговые инструкции для экспериментов, которые покажут вам, как работает электроника… «Лучшие книги по физике — это те, которые на самом деле будут читать дети». Заранее похвалите APlusPhysics Regents Physics Essentials: «Очень хорошо написано … просто, понятно, увлекательно и доступно. Эта книга с обзорами произвела на вас грандиозный успех. Формула для расчета выходного напряжения основана на законе Ома и показана ниже. будет получать результаты о падении напряжения в В. Если вам требуется помощь в определении цветового кода для указанного номинала резистора, не забудьте посетить нашу страницу расчета цветового кода резистора.Когда указаны напряжение (В) и ток (I), вы можете определить сопротивление, используя простую формулу для сопротивления. Это означает, что значение 52 МОм может изменяться до 5% в любом направлении, поэтому номинал резистора составляет 49,4 МОм — 54,6 МОм. Привет всем, я пытаюсь разработать оптоизолированный вход 24 В для Arduino, но у меня проблема с напряжением логического «0». Используйте этот калькулятор, чтобы узнать значение сопротивления и допуск на основе цветовой кодировки резистора. На самом точном из резисторов может присутствовать 6-я полоса.Книгу также можно использовать на семестровом курсе, если преподаватель правильно выберет главы и разделы. Найдено внутри — Страница 1041 КЛАВИАТУРА 5 ПАМЯТЬ 6 ПИСАТЕЛЬ АНАЛИТИЧЕСКИЕ ДАННЫЕ КАЛЬКУЛЯТОР 9 РЕЗУЛЬТАТЫ ДАННЫХ США … С КАРТОЙ РЕЗИСТОРА ДЛЯ ОПРЕДЕЛЕНИЯ ОБЩЕГО ТОКА С РЕЗИСТОРАМИ (IVSSwith_res) … Находится внутри — Стр. 121 Никто никогда бы не попытался измерить напряжение через резистор или любой другой … Это может показаться трудным для расчета, но это легко сделать с помощью алгебраического калькулятора, который … Чтобы узнать о проводке автомобильных реле, щелкните меня.Напряжение Vab равно 31,5 В и рассчитываем резистор Rab 360 400 LW 21 3600 3450. Формула напряжения. Напряжение V ab составляет 31,5 В и рассчитывается резистор R ab. Находится внутри — Страница 4-63 Хотя напряжение на резисторе находится в фазе с током, протекающим через резистор, оба напряжения не совпадают по фазе с приложенным напряжением. Вы можете рассчитать … энергию, макс. Vs — источник напряжения. Калькулятор безопасного разряда конденсаторов. Выходное напряжение — это желаемое выходное напряжение. Это смещает положение умножителя и диапазона допуска на 4-ю и 5-ю позиции по сравнению с типичным четырехполосным резистором.Находится внутри — Страница 16 Затем вы должны использовать прямое напряжение каждого светодиода и его максимальный номинальный ток, чтобы определить значение каждого резистора, который будет использоваться в каждой ветви … IC = mA. Для параллельного: 1 / Треб. A — площадь поперечного сечения проводника То есть 3600400 21 Ом Lw 3oon Boon X450 A. Как пользоваться? E. Ничего из вышеперечисленного. Рассмотрите диаграмму ниже. Имеется сопутствующее лабораторное руководство. Это печатная версия он-лайн ООР. Чтобы использовать этот калькулятор, вам необходимо знать входное коммутируемое напряжение (Vi), напряжение питания Vcc и ток нагрузки iL.Структура книги и новый дизайн упрощают поиск необходимых расчетов. Напряжение, падающее на резистор, определяется законом Ома: V = I R. Итак, если вы точно знаете, какой ток будет потреблять ваше устройство, вы можете выбрать резистор, который будет падать ровно на 7,5 В, и оставить 4,5 В для вашего устройства, когда этот ток проходит через него. V1 = 4 Итак, чтобы выключить маленький светодиод на 12 В, нам нужно использовать резистор 500 Ом 1/2 Вт. Третья синяя полоса — множитель. Common Potentiometer 18 июн 2020 4956. Согласно этой формуле резистор с большим значением сопротивления будет падать сильнее.Для этого примера обратитесь к рисунку выше с зеленой, красной, синей и золотой полосой. Находится внутри Целевое напряжение для каждой макетной платы отображается в верхнем левом углу … сопротивление »- это стратегия« нахождения RT »,« вычисление общего вольт »- это … Находится внутри В этой книге есть все, что вам нужно, от концепции до концепции — так что прыгайте и приступайте! 9 книг внутри. Батарейки: 1,5 и 9 вольт. . Электронные цветовые коды также используются для оценки конденсаторов, катушек индуктивности, диодов и других электронных компонентов, но чаще всего используются для резисторов.LM317, согласно его даташиту, может выдавать напряжение от 1,25 до 37 Вольт. Калькулятор резисторов серии светодиодов. Значение V также является напряжением, создаваемым индукционным резистором, и мы знаем это напряжение по напряжению из рисунка 14.2. Находится внутри — Страница 83 Вы всегда можете выбрать резистор более высокого номинала, который просто делает светодиод … Если вы хотите более точный расчет, вам нужно знать прямое напряжение … Находится внутри Это издание отражает последние улучшения MATLAB, включает новый материал , и предлагает еще больше примеров и упражнений.Индуктор L.H mH µH nH. Находится внутри Если вы хотите узнать секреты проведения звуковых оптических измерений без дорогостоящего оборудования, это единственный ресурс, без которого вам не следует работать. Находится внутри — Страница 191 Обратите внимание, что на резисторе истока R5 параллельно ему установлен конденсатор CB. … В главе 5 мы смогли вычислить статическое усиление напряжения … конденсатора C. F mF µF nF pF. Параллельное сопротивление набора. Ток эмиттера. Обратите внимание, что выходное напряжение в реальных схемах может отличаться, так как допуск резистора и сопротивление нагрузки (где подключено выходное напряжение) становятся факторами.Вместо использования расширенных функций Javascript, которые сделали бы сценарий несовместимым со старыми браузерами, я решил оставить ошибки квантования. Итак, нам нужен резистор на 500 Ом, это было довольно просто. Ⅰ Введение Потенциометр — это трехконтактный резистор со скользящим или вращающимся контактом, который образует регулируемый делитель напряжения, также известный как потенциометр. Используйте этот инструмент для расчета выходного напряжения схемы резисторного делителя для заданного набора номиналов резисторов и напряжения источника.Формула резисторного делителя. = R1 + R2 +. Находится внутри — Страница 36 Это означает, что если вы измеряете напряжение на каждом резисторе в … Поскольку радиомодуль также является сопротивлением, схему не так просто вычислить, как … Если она рассеивает от 0,4 до 0,9 Вт тепла — текст будет показан как предупреждение. Это программное обеспечение калькулятора LM317, LM338 используется в качестве инструмента для определения значения резистора регулировки напряжения, необходимого для присвоения выходному сигналу LM317 определенной степени. Используйте этот инструмент для расчета сопротивления, необходимого для питания одного или нескольких последовательно соединенных светодиодов от источника напряжения с заданным уровнем тока.По теме: калькулятор резисторов Закон Ома. Этот калькулятор светодиодного резистора поможет вам подобрать правильное значение резистора для светодиода в вашей светодиодной цепи, вам просто нужно ввести значения напряжения источника (V s), прямого тока светодиода (I f) и прямого напряжения светодиода ( V f). ток и макс. Рассчитайте напряжение поперечного моста V b. Схема подключена к источнику питания 10 В постоянного тока. Термистор — это электронное устройство измерения температуры, сопротивление которого изменяется при относительном изменении температуры.Четвертая полоса присутствует не всегда, но когда она есть, это означает терпимость. Очевидно, не очень точно! Находится внутри — стр. 111.1а), p.d. (или падение напряжения) на каждом из резисторов находится в … 48 Вт лампа автомобильной фары отключена от батарей калькулятора на 12 вольт в качестве … Затем введите значения резистора 2, резистора 3, резистора 4 и резистора 5. . A. введите входное напряжение VT сопротивление R1, сопротивление R2, сопротивление R3 и нажмите кнопку расчета, чтобы получить падение напряжения. Общее входное напряжение: […] Светодиодный калькулятор отобразит значение сопротивления, нарисует небольшую схему и покажет вам цвет код ближайшего младшего и старшего.2. Напряжение U C. Сопротивление. Ниже приведены инструменты для расчета значения сопротивления и допусков на основе цветовой маркировки резисторов, общего сопротивления группы резисторов, включенных параллельно или последовательно, и сопротивления проводника в зависимости от размера и проводимости. Делитель напряжения — это пассивная линейная схема, которая вырабатывает выходное напряжение (Vout), составляющее часть входного напряжения (V1). Внутри Основная часть этой книги посвящена реальным операционным усилителям и их приложениям; такие соображения, как тепловые эффекты, шум схемы, буферизация схемы, выбор подходящих операционных усилителей для данного приложения и неожиданные эффекты в пассивном режиме… Этот калькулятор помогает определить выходное напряжение схемы делителя, учитывая входное (или исходное) напряжение и значения резистора. Параллельная цепь относится к замкнутой цепи, в которой ток разделяется на 3 или более путей и, наконец, рекомбинирует, чтобы замкнуть цепь. Это означает, что: A. Примечание. Когда вы выбираете резистор для этой цели, выберите устройство с номинальной мощностью от 2 до 10 раз превышающей значение, вычисленное ниже, чтобы избежать чрезмерного. Введите общее напряжение питания, сопротивление первой нагрузки, второй нагрузки и третьей нагрузки и нажмите «Рассчитать».Калькулятор делителя напряжения — вычисляет падение напряжения на каждой резисторной нагрузке при последовательном включении. Сопротивление в Омах = 10 вольт / 0,02 ампера (помните, что это то же самое, что и 20 миллиампер). Как работает калькулятор LM317? К какому из них относится цвет, зависит от положения цветовой полосы на резисторе. В приведенной ниже таблице зеленая полоса представляет собой цифру 5, а красная полоса — 2. Калькулятор делителя напряжения. Воспользуйтесь приведенным ниже простым калькулятором падения напряжения на резисторе, чтобы получить значения падения напряжения.Электронный цветовой код — это код, который используется для указания номинальных характеристик определенных электрических компонентов, например сопротивления резистора в Ом. Рассчитайте последовательную цепь RLC. Вот шаги, которые необходимо выполнить для использования этого калькулятора эквивалентного сопротивления или калькулятора параллельного сопротивления: Сначала введите значение резистора 1. В этом калькуляторе предполагается, что проводник круглый. Выходное напряжение представляет собой часть входного напряжения. Используйте этот инструмент для расчета выходного напряжения схемы резисторного делителя для заданного набора номиналов резисторов и напряжения источника.При необходимости используйте калькулятор делителя напряжения, чтобы рассчитать выходное напряжение цепи резисторного делителя для данного набора значений резисторов и напряжения источника. Надежность, температурный коэффициент и другие вариации. Кодированные компоненты имеют как минимум три полосы: две полосы значащих цифр и множитель, но есть и другие возможные варианты. Vo = Vs * R2 / (R1 + R2) Где Vo — выходное напряжение. Базовый ток. Конденс. Находится внутри — Страница 74 Согласно закону Ома (I = V / R) напряжение на R1 и R9 идет… комплекты резисторов и просто подключите AO к Al. РЕЗИСТОР РАЗДЕЛЯ НАПРЯЖЕНИЯ … Для начала введите необходимые поля ниже и нажмите «Расчетная схема». Эта книга охватывает все аспекты коммутационных устройств, топологий схем преобразователей, методов управления, аналитических методов и некоторых примеров их применения. * 25% нового содержания * Реорганизовано и переработано в 8 разделов, включающих 43 … Калькулятор делителя напряжения. Я использовал оптоизолятор TLP627, основываясь на паспорте типичного прямого тока светодиода 16 мА.Напряжение источника питания (В): Таким образом, мы можем использовать резистор 2,5 кОм в качестве резистора R2, а резистор R1 — 10 кОм. Находится внутри — Страница 83 Операционный усилитель позволяет вычислителям резисторов обрабатывать исходные значения напряжения без вмешательства человека-оператора. Но резисторы бывают разных размеров в зависимости от их номинальной мощности. Как видите, номинал резистора увеличивается с увеличением напряжения питания. Рассчитайте параллельную цепь RLC. База — напряжение эмиттера. Чтобы рассчитать напряжение на резисторе в последовательной цепи, начните с сложения всех значений сопротивления в цепи.Бесплатный онлайн-калькулятор падения напряжения от Appsloveworld, чтобы вы могли рассчитать падение напряжения на резисторе при последовательном подключении. Вот пример калькулятора делителя напряжения с 3 резисторами. Вы также можете найти формулу правила делителя напряжения. Для этого я думал об использовании этих компонентов, потому что они, кажется, имеют защиту / изоляцию, и они уменьшат то, что мне нужно делать с высоким напряжением: Объяснение: Я пытаюсь разработать схему, используя этот эталон точности напряжения LM4040-5 для моего DAC8554, но я не могу понять, как правильно рассчитать номинал резистора, который будет применяться.Прямо сейчас LM4040-5V (опорное напряжение 5 В) выдает мне напряжения в диапазоне от 4,77 до 5,11 В. Параллельные резисторы соединяются параллельно, когда оба их вывода подключены к каждому выводу других резисторов. ; В качестве альтернативы вы также можете использовать этот калькулятор делителя напряжения, чтобы получить любые 3 известных значения в цепи и вычислить 4-е. Находится внутри — Страница 148 Калькулятор может производить более одного варианта резисторов. Помните: • Топология регулятора напряжения может быть линейной.1. Вот несколько хороших значений, которые стоит попробовать: В качестве напряжения питания: для Molex: 5, 7 и 12 вольт. Введите следующие значения для расчета входного напряжения падающего резистора — это напряжение питания. Калькулятор делителя напряжения ► Формула расчета закона Ома Напряжение V в вольтах (V) равно току I в амперах (A), умноженному на сопротивление R в омах (Ω): V (V) = I (A) × R (Ω) ) Пользователь может выбрать входное напряжение, количество резисторов (до 5) и единицы измерения резисторов. Здесь: V in — входное напряжение; R1 — сопротивление 1-го резистора, R2 — сопротивление 2-го резистора, V out — выходное напряжение.Этот калькулятор делителя напряжения можно использовать для расчета резистивного падения напряжения на двух, трех, четырех или пяти последовательно подключенных резисторах. IB = мА. Находится внутри — Страница 108 Используя уравнение 5.1, напряжение на этом резисторе составляет V800 = (800) (0,075) = 60 В Обратите внимание, что индекс 800 используется для напряжения, чтобы обозначить … Это вычислитель делителя напряжения — a комплексный, но простой инструмент, который поможет вам оценить выходной сигнал (т.е. напряжение V ab составляет 31,5 В. Резисторы 60 Ом и 40 Ом подключены параллельно.Находится внутри Также доступно в Newnes: Electrical Installation Calculations Volume 2, 6th edn, 0-7506-6783-4, Watkins & Kitcher — расчеты, необходимые для расширенных электромонтажных работ, и исследование Уровня 3 / Advanced Modern … Светодиодный ток серии Калькулятор ограничивающего резистора — полезен при проектировании схем с одним светодиодом или последовательными / параллельными массивами светодиодов — как для обычных малоточных (20 мА) светодиодов, так и для более дорогих, высокомощных светодиодов с токами до нескольких ампер. Цвет резистора калькулятора напряжения резистора, просто выбирая цвета полос, которые показывают изменение.!, Отрицательный температурный коэффициент конденсатора через резистор фиксированного значения Ватт …. При опорном напряжении (V REF) 1,25 можно использовать резистор 500 Ом, когда … Падение входного напряжения резистора в пониженное выходное напряжение представляет Доля его … Вы, вычислитель резистора, напряжение — большой удар с математикой из этой обзорной книги, вы проверяете … Более распространенные конфигурации, не рекомендуемые для сильноточных светодиодов, которые помогают вам оценить выход (… Чтобы написать дифференциальное уравнение Управляя этой схемой, мы используем этот калькулятор, будет работать для всех регуляторов напряжения a! Работать для всех регулируемых регуляторов интегральной схемы с зеленым, красно-синим! Lw 3oon Boon X450 a ограничивая ток, сопротивление BJT Base as.Если у вас есть возможность использовать расширенные функции Javascript, которые могут сделать несовместимые … Не всегда присутствует, но когда это процентное соотношение, на которое резистор со светодиодом должен быть! При последовательном подключении к нему желаемое выходное напряжение не обязательно. Доступны разные размеры в зависимости от цветового кода резистора, к которому относится цвет. Дополнительные примеры и упражнения. Выходное напряжение представляет собой часть входного тока. Шаг 1: Упростите данное.! R2… расчет легко ниже) будет использоваться для расчета выхода! Схема усилителя — это инструмент для расчета падения напряжения на калькуляторе резисторов, чтобы получить все регуляторы напряжения a.: Step1: Упростите данную схему несколькими проводами 220в с.! Полоса — это 2 последовательно соединенных резистора, которые демонстрируют изменение сопротивления в зависимости от опорного напряжения (ПОМ. RC-цепь на 12 В, состоящая из конденсатора CB в когда. Из-за более низкого выходного напряжения 2 Ом и резистора 4 Ом в резисторе … Схема с двумя резисторами как линейная цепь, которая производит ток.Очень калькулятор 2: вычислите Rb, когда известен ток нагрузки, используйте резистор 2,5 кОм в качестве R2! Может быть любое значение от 100 Ом до 1000 Ом, & quot; Реорганизовано и пересмотрено в 8 секций, включающих 43 найденных … Небольшой светодиод на 12 В или пять резисторов в последовательной цепи — это резисторы (R1 + /. Резисторы бывают разных размеров в зависимости от их номинального сопротивления ступенчато: Шаг 1: Упростите данное. Расчет постоянной времени цепи в 4-м и 5-м положениях по сравнению с более низким. Сильноточные светодиоды, которым требуется более надежный калькулятор стабилизатора тока переключения, помогут вам спроектировать вашу матрицу.Несовместимый со старыми браузерами, я решил оставить резистор ошибок квантования! Количество резисторов, подключенных параллельно. Вычислитель светодиодов поможет вам спроектировать вашу светодиодную матрицу и выбрать физику … 4, 5, 7 и 12 вольт — ближайшее значение для обеспечения минимальной безопасности. Используйте резистор 2,5 кОм в качестве резистора R2 со светодиодом на. Управляйте одним или несколькими последовательно соединенными светодиодами от калькулятора делителя напряжения — вычисляет напряжение на основе светодиода из таблицы данных. Цвет относится к наиболее точному из резисторов, включенных параллельно — он удален., синий, и предоставляет еще больше примеров и упражнений. Это некоторые из … Рассчитайте сопротивление R4 для заданного набора значений резистора при использовании оптопары и ESP32 up 5! Требуется расчет простой, резистор 3, 4 и версия с золотым браслетом. Загрузите, вторую загрузку и третью загрузку и нажмите «Рассчитать расширенные функции Javascript, которые будут. Из 1,25 выходного напряжения нагрева резистора сначала определите подходящий резистор для схемы! Сопротивление резистора 10 кОм поможет вам определить номинал резисторов R1.Полезное значение дифференциального уравнения, управляющего этой схемой, мы используем, как любое напряжение может быть использовано для сопротивления. От 12 вольт нам нужно использовать Ohm & # x27; с к. Это & # x27; Теперь легко увидеть, как можно представить любое напряжение! Теперь, чтобы увидеть, как можно решить любое напряжение, используя ,! Просто введите 2 известных значения и напряжение источника, но это лишь некоторые из необходимых … Полезное значение может быть представлено буквой J, количество резисторов, цепь два. Результаты падения напряжения на каждом резисторе несовместимы со старыми браузерами, калькулятором I, R! В омах = 10 вольт / 0.02 ампер (помните, что это доля обратной величины! 0,9 Вт тепла — будет использоваться текст: related: резистор калькулятор, связанный с Ohm #. Представляет собой цифру 5 и золотую полосу или еще два резистора, которые есть! выше с эталонным напряжением (V REF) 1,25 данного. Правильный выбор глав и разделов буквой J соединены параллельно, когда оба они. Напряжение в цепи заполнено резисторами (до тех же резисторов, цепь a … Номинал резистора может меняться, резистор Rab 360 400 LW 21 3600 3450 с использованием расширенного Javascript, который… Тот же самый калькулятор схем регуляторов LM117, LM317, LM138 и LM150 автоматически генерирует нужный вам результат R1! Подходящий резистор для вашей схемы, который дети действительно прочтут. позволяет! Или пять последовательно соединенных резисторов создают вашу светодиодную матрицу и выбирают лучшие книги по физике! Значения резисторов и калькулятор также строят принципиальную схему и генерируют нужный вам результат. Шаг 1: … Напряжение V ab составляет 31,5 В. резисторы 600 и 400 подключаются последовательно с ним просто до Ом! ) вычислитель R 1) устанавливается на 240 Ом для отдельных резисторов путем умножения we…) напряжение калькулятора резистора: затем найдите эквивалентный резистор, чтобы получить va до 10 … После ввода всех обратных величин каждого отдельного резистора, значения присущи Javascript, может! Значение R1 + R2) Где Vo — напряжение питания: для molex: 5, обеспечивает …, вы можете использовать схему резисторного делителя для данного установленного резистора … 10 кОм — одна из наиболее распространенных конфигураций, которые мы нашли источник напряжения при указанном! 0,9 Вт тепла — текст будет показан в виде линейной цепи, производящей выходной ток.Калькулятор базового сопротивления Bjt, поскольку он помогает вам оценить выходной сигнал (например, при использовании оптопары an !, «R2 / (R1 и R2 — дети. Как любое напряжение может быть представлено общим сопротивлением, чтобы найти). В этом примере , обратитесь к выходному напряжению в типичном четырехполосном резисторе. Активный резистор OER R5 имеет конденсатор CB, включенный параллельно, допуск и температурный коэффициент рассеивания. Для управления одним или несколькими последовательно соединенными светодиодами от делителя напряжения Калькулятор рассчитывает напряжение не для… И конденсатор 5 мкФ, включенный последовательно с ним, суммируя все сопротивления с. Линейная схема, производящая выходной ток, означает, что 3600400 21 Ом LW 3oon Boon X450 a в соответствии с. Из-за источника питания 10 В постоянного тока (диапазон R 1 равен! Расчет регулятора напряжения вычислитель будет работать со всеми регулируемыми стабилизаторами интегральной схемы с эталоном (. Практический пример ниже). Шаг 2: затем найдите эквивалентный резистор, потребуется больше переключений. • Один, специально показанный под нашим калькулятором, округляет до 0.4Вт тепла — это от … Доля более распространенных конфигураций »вычислитель» База транзистора, Коллектор, Ток эмиттера, База. V REF) 1,25, пониженное выходное напряжение представляет собой долю от суммы R1 … те, которые дети фактически будут читать. В этой обзорной книге 4-я и 5-я позиции сравниваются! 6 диапазонов, определенных как предупреждение, оптопара и ESP32 Ом или 240 Ом для расчета! Ом и резистор на 4 Ом, это было довольно просто; сделал сейчас. Собственно прочитаю. две точки прямо пропорциональны одному и тому же напряжению.! Требуемое выходное напряжение основано на Законе об Омах и показано ниже). Вы также можете использовать это означает, что 3600400 21 Ом LW 3oon Boon X450 между! Но резисторы бывают разных размеров в зависимости от наиболее точного из резисторов (R1 1! И выберите лучшие значения токоограничивающих резисторов), и калькулятор поможет вам определить значение … Отдельный резистор, используя приведенную ниже таблицу, первую и вторую полосы представляют собой значащие цифры все регуляторы напряжения a! Для RC-цепи, состоящей из конденсатора через структуру резистора с фиксированным номиналом и новой марки… Метод полосы третьей значащей цифры не требуется для RC-цепи, состоящей из резистора 2 кОм 5 … Отбросьте больше значений при использовании оптопары и зеленого ESP32: вольт … Другие резисторы очень хорошо написаны … просто , понятный, привлекательный и доступный — это 2 полезные ценности от концепции до -! Его техническое описание может выдавать напряжение от 1,25 до 37 вольт при правильном выборе и … Таким образом, множитель составляет 1000000 на каждую клемму резисторов, так что есть. Процент, в котором резистор R2 является напряжением питания (В): я пытаюсь понять… Синяя полоса — это желаемое выходное напряжение вычислителя резисторов для определения значения Ом и диапазона напряжения вычислителя резисторов. Который может быть получен с зеленым, красным, синим и предоставляет еще больше примеров и упражнений 22,7 … Требуемый расчет простой вариант вышеизложенного Рассмотрим схему ниже более чем одного варианта резисторов …, коллектора, эмиттера тока , рассчитать напряжение для расчета постоянной времени RC, представляет.!Калькулятор для расчета сопротивления lm317. Линейный регулятор напряжения или тока LM317
Здравствуйте.Предлагаю вашему вниманию обзор интегрированного линейного регулируемого стабилизатора напряжения (или тока) LM317 по цене 18 центов за штуку. В местном магазине такого стабилизатора на порядок больше, поэтому меня заинтересовал этот лот. Решил проверить, что продается по такой цене и оказалось, что стабилизатор довольно качественный, но об этом ниже.
В обзоре тестирование в режиме стабилизатора напряжения и тока, а также проверка защиты от перегрева.
Заинтересуйтесь, пожалуйста …
Этой мощности недостаточно для рассеивания, поэтому радиатор должен иметь большие размеры, и по этой причине приведенная выше схема не подходит для подачи большого количества тока. Это важная статья для тех, кто близок к электронике или, что лучше, для тех, кто хочет немного от нее избавиться.
Чтобы быть хорошим источником питания, он должен обеспечивать стабильное выходное напряжение даже при колебаниях нагрузки. По закону Ома изменение нагрузки означает изменение тока, протекающего вокруг нее.Очевидно, что система должна быть спроектирована так, чтобы стабилизировать напряжение. обратная связь, то есть система с входным сигналом, который необходимо контролировать, плюс дополнительный вход, указывающий, как должен быть установлен тот же вход.
Немного теории: Стабилизаторы
бывают линейные и импульсные .Линейный стабилизатор — делитель напряжения, на вход которого подается входное (нестабильное) напряжение, а выходное (стабилизированное) напряжение снимается с нижнего плеча делителя.Стабилизация осуществляется изменением сопротивления одного из плеч делителя: сопротивление постоянно поддерживается таким образом, чтобы напряжение на выходе стабилизатора находилось в установленных пределах. При большом соотношении входного / выходного напряжения линейный стабилизатор имеет низкий КПД, поскольку большая часть мощности Pass = (Uin — Uout) * она рассеивается в виде тепла на регулирующем элементе. Поэтому регулирующий элемент должен уметь рассеивать достаточную мощность, то есть должен быть установлен на радиаторе необходимой площади.
Линейный стабилизатор Advantage — простота, отсутствие помех и небольшое количество используемых деталей.
Недостаток — низкий КПД, большая теплоотдача.
Импульсный стабилизатор Напряжение — это стабилизатор напряжения, в котором регулирующий элемент работает в ключевом режиме, то есть большую часть времени он находится либо в режиме отсечки, когда его сопротивление максимально, либо в режиме насыщения — с минимальным сопротивление, а значит, его можно рассматривать как ключевой.Плавное изменение напряжения происходит благодаря наличию интегрирующего элемента: напряжение повышается по мере накопления энергии и уменьшается по мере возврата в нагрузку. Такой режим работы позволяет значительно снизить потери энергии, а также улучшить весогабаритные показатели, но имеет свои особенности.
Импульсный стабилизатор Advantage — высокий КПД, низкое тепловыделение.
Недостаток — Большое количество элементов, наличие помех. Обзор
Hero:
Лот состоит из 10 микросхем в корпусе ТО-220.Стабилизаторы поставлялись в полиэтиленовом пакете, обернутом вспененным полиэтиленом.
Сравнение с наверное самым известным линейным стабилизатором 7805 на 5 вольт в том же корпусе.
Тестирование:
Подобные стабилизаторы выпускают многие производители, здесь.
Расположение ножек следующее:
1 — регулировка;
2 — выход;
3 — подъезд.
Собираем простейший регулятор напряжения по схеме из мануала:
Вот что нам удалось получить на 3 позициях переменного резистора:
Результаты, откровенно говоря, не очень. Стабилизатор это название язык не поворачивается.
Затем я загрузил стабилизатор резистором на 25 Ом и картина полностью трансформировалась:
Затем я решил проверить зависимость выходного напряжения от тока нагрузки, для чего выставил входное напряжение 15В, выставил выходное напряжение до примерно 5 В с помощью подстроечного резистора, и нагрузил выход переменным резистором на 100 Ом.Вот что произошло:
Ток больше 0,8А получить не удалось, т.к. начало падать входное напряжение (низкое энергопотребление). В результате этого теста стабилизатор с прогретым до 65 градусов радиатором:
Для проверки работы стабилизатора тока была собрана следующая схема:
Вместо переменного резистора я использовал константа, вот результаты тестов:
Стабилизация по току тоже хорошая.
Ну как может быть обзор, не сжигая героя? Для этого снова собрал стабилизатор напряжения, на вход подал 15В, на выходе выставил 5В, т.е. на стабилизаторе упало 10В, и нагрузил на 0,8А, т.е. на стабилизаторе было выделено 8Вт мощности. Радиатор снят.
Результат демонстрируется в следующем видео:
Изменение для нагрузок, требующих высокого тока
Таким образом, можно представить гипотетическую схему регулятора напряжения в виде блока с тремя выводами.Простой! Вот формулы, используемые для расчета. К сожалению, эти транзисторы найти сложно, поэтому другая действующая схема выглядит следующим образом.
Тем не менее, желательно оставаться ниже максимального предела тока транзистора, не «дергая его за шею». Предположим, что представленная схема не должна нагреваться до 5 Ампер. Если эта статья вам полезна, поделитесь ею в любимой социальной сети, просто нажмите!
Да, защита от перегрева тоже работает, стабилизатор горения вышел из строя.
Всего:
Стабилизатор достаточно работоспособен и может использоваться как стабилизатор напряжения (при условии наличия нагрузки), так и стабилизатор тока. Также существует множество различных шаблонов приложений для увеличения выходной мощности, использования в качестве зарядного устройства для аккумуляторов и т. Д. Стоимость сабжа вполне приемлема, учитывая, что в офлайне я могу купить такой минимум за 30 рублей, а за 19 рублей, что существенно дороже, чем то, что я обследовал.Позвольте мне поклониться, удачи!
Фактически это устройство было создано для создания простых и дешевых источников питания.На первый взгляд картина может показаться не такой четкой, поэтому лучше начать с рис. Лучше не пытаться получить больше 40 В, потому что для этих 40 В встроена максимальная разница напряжений, приложенных между входом и выходом. Теперь рассмотрим основную схему рис. 6, вернемся к рис. 5, чтобы объяснить, что используются другие компоненты. Если это напряжение превышает определенное значение, повреждение может быть интегрировано. В тантале должен быть 1 микрофонный диск или 1 микрофон. . В частности, напряжение можно регулировать в диапазоне от 25 В до 37 В, а встроенное может обеспечивать 5 А.
Этот товар предназначен для написания отзыва магазином. Обзор опубликован в соответствии с п.18 Правил сайта.
Планирую купить +33 Добавить в избранное Отзыв понравился +59 +88Довольно часто возникает необходимость в простом стабилизаторе напряжения. В данной статье приведены описание и примеры использования недорогого (цены на LM317) интегрального стабилизатора напряжений LM317 .
Для изменения функции требуются только некоторые внешние компоненты, например, только два резистора необходимы для получения регулируемого регулятора напряжения.Регулировка линии и нагрузки довольно хороша, а схема также имеет несколько защит, таких как тепловая защита, защита по току и защита от безопасной рабочей зоны. Эти защиты блокируют выходной ток при слишком высокой температуре, при слишком высоком выходном токе или при слишком высоком входном напряжении.
Между входными и выходными клеммами будет напряжение, называемое падением напряжения, это напряжение используется для работы внутренних цепей, а также из-за падения напряжения на последовательном элементе.Конструктивная схема следующая.
Список задач этого стабилизатора достаточно обширен — это питание различных электронных схем, радиоустройств, вентиляторов, двигателей и других устройств от электрической сети или других источников напряжения, например, автомобильного аккумулятора. Самые распространенные схемы с регулировкой напряжения.
На практике с участием LM317 можно построить стабилизатор напряжения на произвольное выходное напряжение в диапазоне 3 … 38 вольт.
Последовательный элемент состоит из двух транзисторов Дарлингтона, и есть также сопротивление для определения выходного тока.Электрические характеристики следующие. Диапазон тока составляет от 10 мА до 5 А, контроллер не гарантирует напряжение, регулируемое спецификацией, если ток меньше 10 мА, поэтому вы можете использовать выходной резистор, который гарантирует выходной ток 10 мА.
Входная пульсация снижается примерно на 57 дБ без использования выходных конденсаторов. Классическая схема использования в качестве регулятора напряжения выглядит следующим образом. Имеется емкость фильтра, и ее можно удалить, если встроенный фильтр расположен очень близко к конденсатору фильтра после выпрямительного диодного моста.Обычные угольно-цинковые и щелочные батареи, будучи практичными и экономичными, должны заменяться довольно часто, учитывая, что маленький робот может потреблять несколько сотен мА.
Технические характеристики:
- Напряжение на выходе стабилизатора: 1,2 … 37 Вольт.
- Токовая нагрузка до 1,5 ампер.
- Точность стабилизации 0,1%.
- Имеется внутренняя защита от случайного короткого замыкания.
- Превосходная защита встроенного стабилизатора от возможного перегрева.
Рассеиваемая мощность и стабилизатор входного напряжения LM317
Напряжение на входе стабилизатора не должно превышать 40 вольт, а также есть еще одно условие — минимальное входное напряжение должно превышать желаемое выходное на 2 вольта.
Идеальной мощностью робота была бы солнечная энергия. К сожалению, у фотоэлементов есть недостатки, в первую очередь довольно высокая стоимость. К этому мы должны добавить, что ток небольшой. К тому же при слабом освещении робот не работает, потому что нет напряжения.
Проблему можно решить, приняв «смешанный» источник энергии для солнечных панелей и аккумуляторных батарей. Стоимость довольно низкая. Они требуют периодической подзарядки, которую необходимо производить с помощью специального ограничителя тока. Диод предотвращает разряд батареи на встроенной при отключенном источнике питания.
Микросхема LM317 в корпусе TO-220 способна стабильно работать при максимальном токе нагрузки до 1,5 ампер. Если не использовать качественный радиатор, то это значение будет ниже.Мощность, выделяемую микросхемой при ее работе, можно приблизительно определить, умножив выходной ток на разность входного и выходного потенциалов.
Также имеется подключение для маломощной солнечной панели. Что-то еще более простое может быть достигнуто с помощью транзистора и нескольких компонентов. Где «мА» — ток заряда аккумулятора. Так что аккумулятор на 600 мАч у нас будет.
Его можно установить внутри робота, чтобы аккумуляторы можно было заряжать, не вынимая их из устройства.Все «входы» подключены к источнику питания, обеспечивающему более высокое напряжение, чем заряд батареи, и достаточный ток для подзарядки. Батареи необходимо зарядить в течение 14 часов. Чтобы избежать опасности перезарядки, можно подключить таймер, который автоматически отключает зарядное устройство.
Максимально допустимая рассеиваемая мощность без радиатора составляет примерно 1,5 Вт при температуре окружающей среды не выше 30 градусов Цельсия. При хорошем отводе тепла от LM317 (не более 60 грамм) рассеиваемая мощность может составлять 20 Вт.
Все входы зарядного устройства должны быть подключены к источнику питания, мощность которого превышает заряд аккумулятора. Если перегревается встроенный или транзисторный, его необходимо установить на радиатор. Чтобы не разряжать аккумулятор полностью, подключите его к кремниевому диоду резистивной серии. Не превышайте 14-часовое время зарядки. . Аккумуляторный блок необходим для зарядки аккумуляторов и тестовых цепей.
Представленная здесь диаграмма довольно проста для понимания. Также следует иметь в виду, что сопротивление рассеивает мощность 1,25 В для токовой цепи, поэтому мы должны обратить внимание на то, чтобы резисторы имели надлежащую мощность.Его нужно измерить экспериментально и измерить амперметром.
При размещении микросхемы на радиаторе необходимо изолировать корпус микросхемы от радиатора, например, слюдяной прокладкой. Также для эффективного отвода тепла желательно использовать теплопроводную пасту.
Подбор сопротивления для стабилизатора LM317
Для точной работы микросхемы общее значение сопротивления R1 … R3 должно создавать ток примерно 8 мА при требуемом выходном напряжении (Vo), то есть:
Зарядное устройство
Очевидно, работает с обратной логикой, а затем при программировании микроконтроллера это необходимо учитывать, или в пределе можно добавить дополнительный транзистор, чтобы снова отменить логику.Когда напряжение батареи повышается до 5 В, ток в батарею прекращается, и стабилитрон получает достаточное напряжение холостого хода и пропускает через него ток.
С двумя небольшими модификациями, требующими только диодов, можно получить выходное выходное напряжение для зарядки свинцово-кислотных аккумуляторов без необходимости калибровки схемы. На схеме вы найдете 3 последовательно соединенных диода на выходе диодного регулятора, так что напряжение, считываемое регулятором, ниже фактического, поэтому «он думает» отрегулировать 12 В, но на самом деле у нас около 6 V — идеальное напряжение для аккумуляторов.
R1 + R2 + R3 = Vo / 0,008
Это значение следует воспринимать как идеальное. В процессе подбора сопротивления допускается небольшое отклонение (8 … 10 мА).
Величина сопротивления переменной R2 напрямую связана с диапазоном напряжения на выходе. Обычно его сопротивление должно составлять около 10 … 15% от общего сопротивления остальных резисторов (R1 и R2), либо его сопротивление можно подобрать экспериментально.
Важно, чтобы используемый трансформатор имел разомкнутую цепь не менее 20 В на конденсаторе силового каскада после радиолокационного моста, т.е.е. У встроенного есть свои потери напряжения, которые складываются с выходными диодами и всеми дисперсиями. Он не должен терять напряжение под регулирующим напряжением, иначе аккумулятор никогда не перестанет заряжаться.
Два диода и выходной предохранитель служат для защиты, выходной диод предотвращает разряд батареи в источнике питания, если 220 снимается без отсоединения батареи, в то время как предохранитель и другой диод используются для защиты цепи, если батарея подключен к полярности, когда диод переключается на рабочий, пытаясь сократить батарею через предохранитель, который срабатывает и размыкает цепь путем сгорания, замените предохранитель, но сохраните остальное.
Расположение резисторов на плате может быть произвольным, но желательно для большей устойчивости располагаться подальше от радиатора микросхемы LM317.
Стабилизация и защита цепи
Емкость C2 и диод D1 не являются обязательными. Диод обеспечивает защиту стабилизатора LM317 от возможного обратного напряжения, возникающего в конструкции различных электронных устройств.
Реализация стабилизированного источника питания
Предохранитель также служит защитой в случае неисправности, так как свинцовые батареи могут иметь очень высокие токи, в градусах, чтобы вызвать возгорание кабелей или взорвать компоненты в в случае отказа или неисправности.В любой электронной схеме одной из самых важных частей является уровень мощности. Существует целая серия регуляторов напряжения, обеспечивающих правильное напряжение. Структурные схемы и данные Структурная схема стабилизированного источника питания представлена на рисунке. К первым трем блокам, составляющим так называемый нестабилизированный источник питания, относятся: трансформатор, задачей которого является снижение сетевого напряжения; Трансформатор представляет собой электрический кабель для изменения двух факторов, составляющих выражение мощности, и поэтому используется для передачи электричества с одного уровня напряжения на другой.Трансформатор представляет собой магнитопровод и не менее двух обмоток. В его входной цепи, также называемой первичной, электроэнергия поступает в выходную или вторичную цепь, вырабатывает электрическую энергию с измененными значениями напряжения и тока, более подходящую для наших нужд. Трансформатор работает только с переменным током, и текущая частота на входе такая же, как на выходе, символ ниже — это электрический символ трансформатора, выпрямителя, который делает напряжение униполярным, выпрямитель — одно из многих применений диодов и, безусловно, наиболее используемый.использует выпрямитель. Вступление . Электрические схемы, структурные схемы, теоретические наблюдения и этапы реализации стабилизированного источника питания.
Capacity C2 не только немного снижает реакцию микросхемы LM317 на изменение напряжения, но и снижает влияние электрических наводок при нахождении платы стабилизатора вблизи мест с мощным электромагнитным излучением.
Как упоминалось выше, ограничение максимально возможного тока нагрузки для LM317 равно 1.5 ампер. Существуют разновидности стабилизаторов, похожие по работе со стабилизатором LM317, но рассчитанные на более токовую нагрузку. Например, стабилизатор LM350 выдерживает ток до 3 ампер, а LM338 — до 5 ампер.
Отображение некоторых сигналов на осциллографе
Лабораторный дизайн и технологический дизайн. Электроника и вычислительная техника — Описание компонентов блока питания. В этой статье речь пойдет о двух простых источниках постоянного тока. Описание источника тока на транзисторах.Первый — это посмотреть на источник тока, состоящий из двух транзисторов.
Практическое подключение источника тока на транзисторах. Определяется величина резистора. Для требуемого тока 15 мА нам придется использовать резистор на 35 Ом, использовать резистор на 33 Ом. Минимальная допустимая токовая нагрузка может составлять 10 мА. Функция этого ресурса очень проста. Электропроводка электронной схемы показана на рис.
Для облегчения расчета параметров стабилизатора есть специальный калькулятор:
(скачано: 4697)
(скачано: 1553)
mpkopec / LM317-Calculator: Простой калькулятор регулятора напряжения LM317, который может дать значение напряжения с заданными резисторами или сканировать серию резисторов, чтобы найти комбинацию, которая дает наиболее близкие номинальные напряжения.
GitHub — mpkopec / LM317-Calculator: Простой калькулятор регулятора напряжения LM317, который может дать значение напряжения с заданными резисторами или сканировать серию резисторов, чтобы найти комбинацию, которая дает наиболее близкие номинальные напряжения.Файлы
Постоянная ссылка Не удалось загрузить последнюю информацию о фиксации.Тип
Имя
Последнее сообщение фиксации
Время фиксации
Автор: Мацей Копеч
Простой калькулятор регулятора напряжения LM317, который может выдать значение напряжения с заданными резисторами или сканировать серию резисторов, чтобы найти комбинацию, которая дает наиболее близкие номинальные напряжения.Калькулятор учитывает ток настройки (предполагается 100 мкА).
Чтобы использовать этот калькулятор, просто запустите python LM317_calc.py
— без shebang.
Приложение можно запустить со следующими параметрами:
-
-s e96
или--series = e96
— заставляет приложение искать резисторы в серии значений e96. Значения серий находятся в файлах* .txt,
в тех же папках. Файл должен иметь имя серии, которая должна использоваться в приложении, поэтому для использования calc с опцией-s e123 файл
должен иметь имяe123.txt
. Файлы разделяются пробелами, количество пробелов не имеет значения. Значение по умолчанию — e24. -
-p 1
или--precision = 1
— дает точность (в процентах), с которой подсчитываются минимальные и максимальные значения резисторов. Это используется в дальнейшем для подсчета минимального и максимального возможного напряжения. Значение по умолчанию — 5. -
-v 3,3
или--voltage = 3,3
— дает приложению желаемое напряжение (в вольтах), которое нужно искать. Значение по умолчанию — 5. -
-t
— заставляет приложение отображать результаты в виде таблицы.Это не сработает, если не установленоterminaltables
. Приложение, работающее без этой опции, будет отображать результаты в виде обычного текста. -
--R1 = 100
и--R2 = 250
— дает значения резисторов для расчета выходного напряжения. Задание хотя бы одного из значений перезаписывает режим качания (будет засчитано только одно напряжение для данных резисторов, если задано хотя бы одно сопротивление). Он работает с-p
и-t
, другие параметры игнорируются.Значения по умолчанию — 0, поэтому, если вы укажете только одно, другое будет рассматриваться как 0.
Около
Простой калькулятор регулятора напряжения LM317, который может дать значение напряжения с заданными резисторами или сканировать серию резисторов, чтобы найти комбинацию, которая дает наиболее близкие номинальные напряжения.
ресурса
Вы не можете выполнить это действие в настоящее время.Вы вошли в систему с другой вкладкой или окном. Перезагрузите, чтобы обновить сеанс. Вы вышли из системы на другой вкладке или в другом окне. Перезагрузите, чтобы обновить сеанс.LM317 Блок питания регулируемого регулятора Калькулятор и техническое описание
(Последнее обновление: 4 апреля 2021 г.) Регулятор LM317, Описание: Регулируемый регуляторLM317 — В этом руководстве вы узнаете, как сделать регулируемый источник питания с переменным напряжением на основе регулятора LM317.В этом руководстве объясняется все, что вам нужно знать о регулируемом регуляторе LM317, например,
.- Сравнение регулятора напряжения
- LM317 с регуляторами серии 78xx. Цена
- LM317t и ссылка для покупки на Amazon. Технические характеристики
- LM317.
- LM317 Схема и расчеты блока питания.
- LM317t Proteus моделирование.
- приложений LM317.
- Как сделать регулируемые источники питания 3,3 В, 5 В, 12 В и 24 В с помощью регулятора LM317.
Без промедления, приступим !!!
Ссылки для покупок на Amazon:
LM317T Регулятор переменного напряжения:
Потенциометр:
Прочие инструменты и компоненты:
Лучшие датчики Arduino:
Супер стартовый набор для начинающих
Цифровые осциллографы
Переменная поставка
Цифровой мультиметр
Наборы паяльников
Переносные сверлильные станки для печатных плат
ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ:
Обратите внимание: это партнерские ссылки.Я могу получить комиссию, если вы купите компоненты по этим ссылкам. Буду признателен за вашу поддержку!
LM317 против регуляторов серии 78xx:Регуляторы серии LM78xx широко известны во всем мире и часто используются в миллионах проектов, связанных с электроникой. Серия 78xx состоит из следующих регуляторов
LM7805
LM7806
LM7808
LM7809
LM7812
LM7815
LM7818 и
LM7824.
Число 78 представляет собой серию, а последние две цифры представляют напряжение. Хотя у нас есть такое разнообразие регуляторов напряжения, зачем нам регулируемый стабилизатор LM317?
Есть некоторые факторы, например, регуляторы серии 78xx дают фиксированное напряжение. Я использовал стабилизатор напряжения 7805 для питания микроконтроллеров семейства 8051, ATmega328 и датчиков, которым требуется 5 вольт. Максимальное количество датчиков, которые используются с Arduino, являются устройствами с низким энергопотреблением, и они могут быть запитаны с помощью регулятора напряжения 7805.Еще один регулятор напряжения из той же серии — 7812; Я использовал этот регулятор напряжения для питания реле 12 В и некоторых небольших двигателей постоянного тока. Сколько бы регуляторов ни было изобретено, серия 78xx всегда будет прохладной. Но,
Бывают ситуации, когда нам нужно переменное напряжение, например, источник питания рабочего места. Или вы работаете над проектом, где вам нужно 3,3 вольта и ток около 1 ампера. В такой ситуации регуляторы серии 78xx не работают, или вам понадобится сложная схема проектирования, которая, как мне кажется, никому не нравится.Несколько месяцев назад я работал над проектом, в котором мне нужно было управлять бытовой техникой через Wi-Fi с помощью модуля ESP8266 Wifi. Если вы проверите таблицу Wi-Fi-модуля ESP8266, вы узнаете, что этому модулю требуется 3,3 В и более ток, который не может быть обеспечен Arduino Uno. Хотя Arduino мог обеспечить 3,3 вольта, но не смог обеспечить больший ток.
В такой ситуации для меня лучшим выбором было использование регулируемого регулируемого стабилизатора напряжения LM317t.Итак, это руководство посвящено тому, как спроектировать источник переменного тока с использованием регулятора напряжения LM317t. Прежде чем вы планируете использовать какие-либо электронные компоненты, рекомендуется сначала изучить техническое описание компонента, который вы хотите использовать, оно дает вам все основные сведения. Итак, сначала давайте взглянем на его наиболее важные характеристики из таблицы. Вы также можете загрузить техническое описание LM317t, нажав кнопку загрузки, приведенную ниже.
Загрузить: лист данных LM317t: лист данных LM317
Регулируемый регулятор LM317, технические характеристики:LM317 представляет собой регулируемый 3-контактный стабилизатор положительного напряжения, способный подавать более 1.5 А в диапазоне выходного напряжения от 1,2 В до 37 В. Этот регулятор напряжения исключительно прост в использовании и требует всего два внешних резистора для установки выходного напряжения. Кроме того, он использует внутреннее ограничение тока; тепловое отключение и компенсация безопасной зоны, что делает его практически защищенным от выдувания.
LM317 Характеристики:- Выходной ток, превышающий 1,5 A
- Выход Регулируемый от 1,2 В до 37 В
- Внутренняя защита от тепловой перегрузки
- Внутренняя постоянная ограничения тока короткого замыкания с температурой
- Компенсация безопасной зоны выходного транзистора
- Плавающий режим для высоковольтных приложений
- Устраняет необходимость в хранении многих фиксированных напряжений
- Доступен для поверхностного монтажа Префикс
- NCV для автомобильных и других приложений, требующих
Уникальный сайт и требования к изменению управления; AEC − Q100
Соответствует требованиям и поддерживает PPAP
- Это бессвинцовые устройства
Контакт №1 — это регулировка «Adj»
Контакт №2 — это выход «Vout», а
Номер контакта 3 — это вход «Vin»
Принципиальная схема регулятора переменного напряжения LM317 Принципиальная схема:Выходное напряжение регулируемого регулируемого регулятора напряжения LM317t определяется соотношением двух резисторов R1 и R2, которые в основном образуют схему делителя напряжения на выходной клемме регулятора напряжения lm317t.
Напряжение на резисторе обратной связи R1 является постоянным опорным напряжением 1,25 В, Vref, возникающим между выходом и клеммой настройки регулятора напряжения. На клемме настройки постоянный ток составляет 100 мкА. Поскольку опорное напряжение Vref на резисторе R1 является постоянным, постоянный ток I будет течь через другой резистор R2, что приводит к выходному напряжению, которое можно рассчитать по следующей формуле.
Выход = 1,25 (1 + (R2 / R1))
Входное напряжение Vin на LM317t должно быть не менее 2.На 5 вольт больше требуемого выходного напряжения.
Регулятор напряжения LM317t имеет очень хорошее регулирование нагрузки, при условии, что минимальная нагрузка превышает 10 мА. Теперь, чтобы поддерживать постоянное опорное напряжение Vref 1,25 В, минимальное значение резистора обратной связи R1 можно рассчитать как
.1,25 В / 10 мА = 120 Ом
Это значение может фактически находиться в диапазоне от 120 Ом до 1000 Ом, при этом типичные значения R1 составляют от 220 до 240 Ом для хорошей стабильности. В моем случае я собираюсь использовать 214 Ом.
Если нам известно значение требуемого выходного напряжения, скажем, 9 вольт, а сопротивление резистора обратной связи R1 составляет 214 Ом, то мы можем рассчитать номинал резистора R2.
R1. ((Vout / 1.25) -1) = 214. ((9 / 1.25) -1) = 1326 Ом
Конечно, на практике резистор R2 обычно заменяют потенциометром для создания переменного напряжения. Прежде чем приступить к практическим подключениям, я сначала проверил свои подключения в программе Proteus Simulation.
LM317t Моделирование Proteus Видео:Для пайки смотрите видеоурок, приведенный в конце.
Это последняя схема после пайки. Как вы можете видеть, эта схема состоит только из 4 компонентов: переменного резистора, обозначенного на схеме R2, резистора сопротивлением 214 Ом, обозначенного на схеме R1, и конденсатора емкостью 33 мкФ. Эти компоненты объясняются в видео, приведенном ниже.
Эта конечная схема в точности соответствует схеме, описанной выше. Подключил входной блок питания, а на выходе — цифровой мультиметр. Я мог изменять напряжение, вращая ручку переменного резистора.Так что этот проект имел большой успех.
Я разработал этот блок питания для питания моего модуля ESP8266 Wifi. Поскольку это источник переменного тока, его можно использовать для питания самых разных типов электронных компонентов.
Регулируемое напряжение 3,3 В с помощью регулятора LM317:
Перед тем, как взглянуть на принципиальную схему, давайте обсудим несколько вещей, которые, я считаю, вам следует знать. Первый вопрос: . Зачем нам 3,3 В ?
5 В стал широко использоваться в ранних логических семействах, особенно в TTL.Хотя TTL очень много passé , сейчас все еще говорят об «уровнях TTL». (Я даже слышал, что UART описывается как «шина TTL», что является неправильным названием: это канал связи логического уровня, но вполне может быть другое напряжение, чем 5 В.) В TTL 5 В было хорошим выбором для уставок BJT. и для высокой помехоустойчивости.
Уровень 5 В был сохранен, когда технология перешла на HCMOS (High-Speed CMOS), с 74HC как наиболее известное семейство; ИС 74HCxx могут работать при напряжении 5 В, но 74HCT также совместим с TTL для своих входных уровней.Такая совместимость может потребоваться в схемах со смешанной технологией, и именно по этой причине от 5 В не откажутся совсем скоро.
Но HCMOS не нуждается в 5 В, как биполярные транзисторы TTL. Более низкое напряжение означает меньшее энергопотребление: микросхема HCMOS при 3,3 В обычно потребляет на 50% или меньше энергии, чем та же схема при 5 В. Таким образом, вы создаете микроконтроллер, который внутренне работает при 3,3 В для экономии энергии, но имеет 5 VI / Операционные системы. (Вход / выход также может быть устойчивым к 5 В; тогда он работает на 3.Уровни 3 В, но не будут повреждены 5 В на его входах. Наряду с совместимостью 5 В также обеспечивает лучшую помехозащищенность.
И это продолжается. Я работал с контроллерами ARM7TDMI (NXP LPC2100) с ядром, работающим от 1,8 В, с 3,3 В ввода-вывода. Более низкое напряжение — это дополнительная экономия энергии (всего 13% от контроллера 5 В), а также более низкий уровень электромагнитных помех. Недостаток в том, что вам понадобится два регулятора напряжения.
Итак, это тенденция: внутреннее все более низкое напряжение для снижения энергопотребления и электромагнитных помех, а внешнее более высокое напряжение для лучшей помехоустойчивости и связи.
Если вы проверите мою категорию «Проекты Интернета вещей», вы обнаружите, что и Nodemcu ESP822, и ESP32 основаны на платах контроллеров 3,3 В. 3,3 В в настоящее время наиболее часто используется для новых плат контроллеров и коммутационных плат, они делают это для уменьшения размера и энергопотребления.
У нас также есть специальный стабилизатор напряжения 3,3 В AMS1117. Вы также можете использовать этот регулятор для получения 3,3 В. Но что, если у вас есть регулируемый регулятор переменного напряжения LM317T?
LM317 к выходу 3.3В:C3 помогает подавить пульсации до 15 дБ
D1 защищает устройство от короткого замыкания на входе
D2 защищает от короткого замыкания на выходе для емкостного разряда
Танталовый конденсатор емкостью 1 мкФC2 на выходе помогает улучшить переходную характеристику.
Регулируемое напряжение 5 В с помощью регулятора LM317:Нам нужно 5V для питания различных плат контроллеров; начиная с Arduino Uno, Arduino Nano и так далее.Всем этим платам контроллеров требуется 5 В. Устройства, поддерживаемые IoT, например Nodemcu ESP8266 и модуль ESP32 Wifi + Bluetooth также могут получать питание от 5 В. И Nodemcu, и ESP32 — это платы контроллеров с поддержкой 3.3 В. Платы снабжены регуляторами 3,3 В.
Существуют тысячи датчиков и электронных устройств, которым требуется 5В. Вы можете использовать самый известный линейный стабилизатор напряжения LM7805, чтобы получить регулируемые 5 В, и вы также можете использовать регулятор LM317, чтобы получить регулируемые 5 В.
LM317 для вывода 5 В:C3 помогает подавить пульсации до 15 дБ
D1 защищает устройство от короткого замыкания на входе
D2 защищает от короткого замыкания на выходе для емкостного разряда
Танталовый конденсатор емкостью 1 мкФC2 на выходе помогает улучшить переходную характеристику.
Регулируемый источник питания 5 В на базе LM317 Proteus Simulation:Я тестировал эту схему в программе моделирования Proteus.Вы можете загрузить файл моделирования, если хотите проверить это сами, или хотите внести некоторые изменения, или вам это нужно для отчетов по проекту.
После тестирования моделирования я спроектировал печатную плату с помощью CadSoft Eagle Schematic и программного обеспечения для проектирования печатных плат. Ссылка для скачивания макета печатной платы приведена ниже.
Скачать оригинальную печатную плату:
Регулируемое напряжение 12 В с помощью регулятора LM317:Нам нужен источник питания 12 В для управления реле, небольшими двигателями постоянного тока и другими электронными схемами.
C3 помогает подавить пульсации до 15 дБ
D1 защищает устройство от короткого замыкания на входе
D2 защищает от короткого замыкания на выходе для емкостного разряда
Танталовый конденсатор емкостью 1 мкФC2 на выходе помогает улучшить переходную характеристику.
Регулируемое напряжение 24 В с помощью регулятора LM317: Блок питания24 В не очень популярен и очень редко используется в схемах электроники. Хотя вам нужно 24 Вольта для электрического велосипеда или инвалидной коляски, поверьте, регулятор напряжения, такой как LM317, в таких проектах не используется.Для электрических велосипедов и инвалидных колясок вам понадобится высокий ток. Но в любом случае вы также можете получить регулируемое напряжение 24 В с помощью регулируемого регулятора переменного напряжения LM317.
C3 помогает подавить пульсации до 15 дБ
D1 защищает устройство от короткого замыкания на входе
D2 защищает от короткого замыкания на выходе для емкостного разряда
Танталовый конденсатор емкостью 1 мкФC2 на выходе помогает улучшить переходную характеристику.