Катализатор как работает: Катализатор. Устройство каталитического нейтрализатора

Содержание

Как работает катализатор

Миллионы машин в мире – источники загрязнения окружающей среды. Особенно плохо обстоят дела в больших городах, где вредные выхлопы представляют реальную угрозу для жителей.

Расположение катализатора в современных машинах.

 

Миллионы машин в мире – источники загрязнения окружающей среды. Особенно плохо обстоят дела в больших городах, где вредные выхлопы представляют реальную угрозу для жителей.

Чтобы решать эту проблему, правительства стран принимают законы, устанавливающие пределы выброса вредных веществ, в которые должны вписываться эксплуатируемые машины. Для соответствия этим законам производители автомобилей постоянно работают над двигателями и топливными системами. Для дальнейшего уменьшения вредных выбросов были изобретены катализаторы, которые входят в контакт с отработавшими газами и сильно уменьшают вредные выхлопы.

В этой статье Вы познакомитесь, какие вредные вещества производит двигатель, и как катализатор борется с каждым из них.

Катализаторы – удивительно простые устройства, поэтому Вам будет интересно узнать, насколько эффективно они работают!

Вредные выхлопы автомобиля

Для уменьшения вредных выхлопов современные машины тщательно контролируют количество сгораемого топлива. Для этого соотношение топлива и воздуха поддерживается на близком к стехиометрическому уровне, то есть на идеальном расчетном уровне. Теоретически это соотношение означает, что происходит сгорание всего топлива и кислорода воздуха. Для бензина стехиометрическое соотношение — 14.7:1. Топливная смесь лишь немного отклоняется от этого идеального соотношения во время езды. Иногда смесь бывает бедной (соотношение воздух-топливо больше 14.7) или богатой (соотношение воздух-топливо меньше 14.7).

Главные составляющие выхлопа автомобиля:
Азот (N2) – воздух на 78% состоит из азота, и большая часть его проходит через двигатель.

Оксид углерода (CO2) – это один из продуктов работы двигателя. Углерод в топливе связывается с кислородом в воздухе.
Пары воды (h3O) – еще один продукт сгорания. Водород в топливе связывается с кислородом в воздухе.
Эти части выхлопа практически безобидные (хотя оксид углерода вносит вклад в глобальное потепление). Но процесс сгорания не бывает идеальным и приводит к малым выбросам более вредных и опасных газов:

Окись углерода (CO) или угарный газ – ядовитый газ без цвета и запаха.

Гидрокарбонаты и летучие органические вещества (VOC) – получаются из-за не прогоревшего полностью топлива

Солнечный свет разрушает эти соединения, и получаются окиси — продукты фотохимического разложения выхлопных газов, которые входят в реакцию с оксидом азота и образуют слой озона (O3), главного компонента смога.

Окись азота (NO и NO2, называемые вместе NOx) – вносят вклад в смог и кислотные дожди, а также вызывают раздражения слизистой человека.

Три выше упомянутые вредные составляющие выхлопа должны уменьшаться в количестве при прохождении через катализатор.

Большинство современных машин оснащено трехкомпонентными катализаторами.
«Три компонента» относятся к трем вредным выхлопам, которые надо нейтрализовать – угарный газ СО, углеводороды VOC и окись NOx. Именно благодаря трем компонентам происходят необходимые химические реакции – окисление монооксида углерода (СО) и несгоревших углеводородов (СН), а также сокращение количества окиси азота (NOx). В трехкомпонентном катализаторе платина и палладий вызывают окисление СО и СН, а родий уменьшает выбросы NOx. Катализатор представляет сотовую структуру из керамики. Это позволяет максимально увеличить эффективную площадь контакта каталитического покрытия с выхлопными газами — до величин около 20 тыс. м2. Причем вес благородных металлов, нанесенных на подложку на этой огромной площади, составляет всего 2-3 грамма! Керамика сделана достаточно огнеупорной – выдерживает температуру до 800-850 градусов. Но все равно при неисправности системы питания и длительной работе на богатой рабочей смеси монолит может не выдержать и оплавиться — и тогда катализатор выйдет из строя. Именно поэтому так проблематично выглядит использование катализаторов с керамическим носителем на карбюраторных двигателях.

Трехкомпонентный каталитический нейтрализатор

 

А- катализатор уменьшения вредных выхлопов, В- катализатор окисления (сгорания) вредных веществ, С- керамическая сотовая структура

Обратите внимание на две раздельные части катализаторов

Большинство катализаторов используют сотовую структуру.

Керамическая сотовая структура катализатора

Первая часть катализатора использует платину и родий для уменьшения выхлопа NOx. При контакте с молекулами NO или NO2 катализатор отрываем азот N из соединения, тем самым, освобождая азот O2. Атомы азота образуют соединение азота N2. Формула процесса:

2NO => N2 + O2 или 2NO2 => N2 + 2O2

Окисляющий катализатор – второй этап очистки.

Он уменьшает выбросы несгоревших углеводородов и моноксида углерода путем сжигания их (окислением) в платиновом и палладиевом катализаторе. Этот катализатор ускоряет реакцию CO и углеводородов с несгоревшим кислородом в выхлопном газе. Формула:

2CO + O2 => 2CO2

Но откуда берется этот кислород?

Контрольная система – это третий этап. Она контролирует состав выходящих газов и использует эту информацию для контроля впрыска. Перед катализатором установлен кислородный датчик или лямбда-зонд. Этот датчик сообщает блоку управления двигателем, сколько кислорода в выхлопном газе. Сам блок управления может увеличивать или уменьшать количество кислорода в топливной смеси. Эта контрольная схема позволяет компьютеру устанавливать близкое к стехиометрическому соотношение топлива к воздуха, а так же обеспечивать достаточное количество кислорода в выхлопе, чтобы окислялись гидрокарбонаты и CO.

Другие способы уменьшения вредных выхлопов.

Катализатор существенно уменьшает вредные выхлопы автомобиля, но его можно еще дальше совершенствовать. Большой недостаток катализатора – высокий температурный режим работы. Когда Вы запускаете холодный автомобиль, сначала катализатор вообще не работает, и все вредные выбросы выходят в окружающую среду.

Простое решение этой проблемы – разместить катализатор ближе к двигателю. Это позволит ему прогреваться быстрее, но также уменьшает срок эксплуатации из-за работы при повышенных температурах. Большинство производителей размещают катализатор под передним пассажирским сиденьем, чтобы увеличить срок службы устройства.

Предварительный прогрев катализатора – хороший способ вывести его раньше на рабочий температурный режим. Самый простой способ –электрический нагревательный элемент. К сожалению, 12 Вольт автомобильной сети недостаточно для быстрого прогрева катализатора. Кроме того, большинство водителей не будут ждать несколько минут на прогрев катализатора до запуска машины. Сегодня только гибридные машины располагают достаточным напряжением для быстрого прогрева катализатора.

Что такое катализатор и зачем он нужен в выхлопной системе

Как правило все начинается банально просто — на панели автомобиля загорается значёк «Check Engine», делается диагностика, и вылазиет ошибка Р0420 или Р0430, что означает — не эффективная работа катализатора. В 99% случаев, это означает, что катализатор отработал своё и его пора менять. Что делать? Есть разные пути в том числе и всякого рода обманки и прошивки. Но Мы придерживаемся мнения, что не зачем уродовать автомобиль и всетаки поменять катализатор на новый, пусть и не оригинальный, тем более, что в настоящее время замена на качественный универсальный катализатор, по деньгам практически соизмерима с установкой пламегасителя вместо катализатора и прошивкой или обманкой.    

Что такое катализатор и зачем он нужен в выхлопной системе?

Катализатор – один из самых дорогих элементов входящий в выхлопную систему автомобиля(стоимость которой достигает 13% стоимости автомобиля), назначение которого дожигание отработанной топливной выхлопной смеси посредством каталитических химических процессов, а именно окислять вредные соединения смеси до менее вредных выхлопов. Катализатор располагается, как правило, в приемной трубе(на коллекторе), но в некоторых выхлопных системах его положение бывает после приемной трубы.

Как работает катализатор в выпускной системе автомобиля?

Составные части катализатора – это стальной корпус, в котором располагается керамический цилиндр с множеством отверстий похожий на пчелиные соты. Каталитический нейтрализатор, так еще называют эту часть системы выхлопа, имеет покрытие на сотах в виде тонкого слоя платиноиридиевого сплава. Этот сплав и способствует окислению выхлопных газов при соприкосновении с его поверхностью. Соты добавляют большую площадь соприкосновения. При данной химической реакции выделяется тепло, которое способствует повышению температуры катализатора, при этом его работа становится еще эффективней. Концентрация выхода окисленных газов соответствует нормам ЕС.

Почему автокатализатор необходим автомобилям?

Автокатализатор – обязательный элемент каждой выхлопной системы автомобиля во всем мире. Потому, что экология планеты земля, мирового уровня важности. Кстати говоря, еще одно название у этого полезного элемента – каталитический конвертер. Конструктивность этой запчасти для выхлопной системы элементарна. Хотя цена катализатора иногда неоправданна, высока! А все потому, что в нем содержится драгметалы: соли платины, родия или палладия. И многие автовладельцы подержанных иномарок испытали это на собственном опыте. Ремонт катализатора дорогостоящая затея. Но современный автомобиль без катализатора просто не поедет как надо, из за сбившихса параметров подачи топлива, получается, замена автокатализаторапросто необходима? Несомнено ДА! Можно конечно вырезать его и поставить пламегаситель, можно бесконечно ездить с горящей лампочкой «Check-Engine», и не правильными параметрами работы двигателя и уродовать свой автомобиль. Но как показал опыт, в итоге дешевле поменять катализатор на новый, без вмешательства в электронику и ездить как и раньше. В настоящее время нашей компанией используются качественные универсальные катализаторы, установка которых будет дешевле в несколько раз оригинала, а по сроку службы превосходят многие установленные на заводе изотовителе. Сколько будет стоить замена катализатора? На этот вопрос могут ответить специалисты нашего центра установки «Мир глушителей». Обращайтесь к нам, и мы поможем сэкономить вам время и денежные средства!

 

что это такое и каковы его функции

Правильное название детали – каталитический нейтрализатор отработавших газов, в народе «катализатор» или «нейтрализатор». Это устройство, которое находится в выхлопной системе и необходимо для очистки выходящих газов. В катализаторе происходят химические реакции, в ходе которых вредные вещества превращаются в менее вредные. Другими словами, благодаря катализатору выхлопная труба выпускает воздух с минимальными загрязнениями. Поскольку выхлоп автомобиля должен строго соответствовать экологическим нормам, ни один автомобиль, сходящий с конвейера, не лишен данного устройства.

Каталитический нейтрализатор находится в выхлопной трубе между двигателем и глушителем. Снизу он закрывается дополнительным экраном, потому что при сильном нагреве он раскаляется докрасна.

Катализатор не работает при пуске холодного двигателя – он включается в работу только после нагревания. Вместе с катализатором начинают функционировать кислородные датчики, или лямбда-зонд, которые определяют состав и соотношение воздуха с бензином в горючей смеси, от которой и зависит, будет ли смесь обогащенная или обедненная. Функционирование катализатора напрямую зависит от работы и показаний датчика. Сигналы с датчиков, расположенных на входе и выходе в устройство, постоянно считываются «мозгами» автомобиля и помогают наилучшим образом оптимизировать рабочую смесь.

Срок службы дорогостоящего катализатора обычно примерно равен сроку службы всего автомобиля, однако нередко он ломается гораздо быстрее положенного и может повлечь за собой поломку двигателя.

Важно помнить, что каталитический нейтрализатор не выходит из строя без причин. Его поломка — признак неправильной работы системы зажигания, неполного сгорания смеси в цилиндрах, сильного износа мотора или длительного использования некачественного топлива. Как правило, катализатор ломается именно из-за некорректной работы системы зажигания и питания. При неисправной системе зажигания топливо в одном или нескольких цилиндрах не сгорает полностью, а попадает в систему выхлопа. Раскалённый катализатор вынужден дожигать повышенные объёмы углеводородов, которые разогревают соты до сверхвысоких температур, что приводит к их спеканию. Причиной крупной неприятности могут быть свечи зажигания, катушки или высоковольтные провода. К аналогичным поломкам приводит и неисправность форсунок, которые начинают переливать топливо. Износ или залегание маслосъёмных колец цилиндропоршневой группы или выход из строя маслосъёмных колпачков приводит к такому же результату, только догорает в катализаторе уже моторное масло.

Ещё одной распространённой причиной выхода из строя катализатора является сильное механическое повреждение, приводящее к деформации корпуса. Важно помнить, что тонкостенные соты легко крошатся даже при незначительных физических нагрузках. Выезжая на бездорожье, нелишним будет озаботиться установкой дополнительной защиты днища автомобиля.

Есть несколько признаков, по которым можно понять,  что вашему катализатору «приходит конец»: снижение производительности мотора (перегрев, тяжелый запуск, резкий неприятный запах), грохочущий шум под днищем (особенно при запуске двигателя и на повышенных оборотах), слабый напор выхлопа из трубы (если на холостых оборотах выхлоп ровный и постоянный, а также если заглушить мотор, а выхлоп еще продолжается), значок «check» на панели приборов (при диагностике ошибка может быть Р0420 или З0430).

Когда катализатор вышел из строя, необходимо менять его на новый. Это решение редко принимается автовладельцем, т.к. деталь дорогая из-за содержания в ней платины и других драгоценных металлов. Но можно купить, например, не оригинальный заводской катализатор, а универсальный или спортивный нейтрализатор выхлопных газов, которые для многих моделей автомобилей стоят гораздо меньше некоторых оригинальных катализаторов. Здесь, разумеется, есть риск неправильного подбора катализатора и установки именно на вашу модель авто. Кроме того, установка неоригинального катализатора может лишить автовладельца заводской гарантии. Также нужно обратить внимание на факт, что датчики контроля расхода газа (датчики кислорода), которые идеально работали с оригинальным катализатором, могут начать неправильно функционировать в неоригинальном нейтрализаторе. Например, это может быть из-за различия в емкости аналогового катализатора. Не исключены дополнительные проблемы в двигателях с турбонаддувом. 

Таким образом, чтобы избежать покупки дорогостоящего нового оригинального катализатора или проблем с заменой на не оригинальный, зачастую автолюбители просто вырезают катализатор (а иногда даже не дожидаясь выхода его из строя).

 С технической точки зрения катализатор не является необходимым устройством. Двигатель будет работать правильно и без него, а при вырезке старого нейтрализатора двигатель будет работать еще лучше. 

Но одной вырезкой не обойтись. Особенно когда речь идет о современных автомобилях, оснащенных несколькими лямбда-зондами (установленными до и после катализатора) экологическим классом не ниже Евро-3. После вырезки катализатора вам не просто придется вырезать катализатор, но и вмешаться в работу электроники. Например, необходимо установить так называемую электронную «обманку» лямбда-зондов. И чем новее автомобиль (значит, выше евростандарт экологического класса), тем больше сложностей после вырезки катализатора. Но инженеры-электронщики, которые занимаются демонтажем катализаторов, справляются с этим очень эффективно.

Главным плюсом вырезания катализатора является небольшой скачок мощности и крутящего момента двигателя. Также автомобиль с вырезанным нейтрализатором получит более приятный, но более громкий звук выхлопа. И при этом никаких проблем с выхлопной системой после демонтажа этого компонента не будет. 

Однако в удалении каталитического нейтрализатора выхлопных газов есть не только преимущества. Например, вмешательство в электронику автомобиля в конечном итоге может вызвать некоторые проблемы в процессе сгорания топливной смеси. Также автомобиль без катализатора может начать потреблять больше топлива. Правда, этот эффект появляется не на всех автомобилях. Но главное – без катализатора ваш автомобиль будет выбрасывать в окружающую среду больше вредных веществ.

Автомобиль, оснащенный катализатором на заводе, как правило, проходит перед началом продаж на рынке сертификацию, в рамках которой проверяются многие параметры безопасности и соответствие принятым в стране ГОСТам. В том числе производятся замеры вредных веществ в выхлопной системе, для того чтобы уровень СО2 соответствовал установленному в России экологическому классу. 

Вырезав катализатор, вы рискуете, что уровень вредных веществ в выхлопе не будет соответствовать установленным нормам. В этом случае автомобиль не сможет пройти легально техосмотр. Но обычно эта проблема легко решается в нашей стране. 

Но в целом, вырезав катализатор, вы даете двигателю «дышать», а еще можете заработать, сдав отработанный катализатор на металл. 

Надеемся, вы получили представление о детали и теперь можете принять правильное решение в случае ее поломки.

Катализатор как работает


Катализатор. Принцип работы, назначение. Удаление или чистка

На протяжении многих лет авто производители создают много усовершенствований в автомобильных двигателях и топливных системах, чтобы идти в ногу со временем и, безусловно, с законами, направленными на улучшение экологической ситуации на фоне выбросов автомобилей. Одно из кардинальных таких усовершенствований произошло в 1975 году с интересным устройством под названием катализатор. По сути работа катализатора заключается в преобразовании вредных веществ в менее вредные выбросы, прежде чем они покинут выхлопную систему автомобиля.

Устройство и принцип работы каталитического нейтрализатора

В составе выхлопных газов автомобиля содержится довольно много токсичных веществ. Для предотвращения их попадания в атмосферу используется специальное устройство, получившее название «каталитический нейтрализатор» (более известный как «катализатор»). Он устанавливается на автомобилях, оснащенных двигателями внутреннего сгорания, работающих как на бензине, так и на дизельном топливе. Зная принцип работы катализатора, вы сможете понять важность его работы и оценить последствия, которые может вызвать его удаление.

Конструкция и функции катализатора

Нейтрализатор является частью системы выхлопа. Он располагается сразу за выпускным коллектором двигателя. Катализатор состоит из:

  • Металлический корпус (монтажный мат), имеющий входной и выходной патрубки.
  • Керамический блок (монолит). Представляет собой пористую структуру с множеством ячеек, которые увеличивают площадь соприкосновения выхлопных газов с рабочей поверхностью.
  • Каталитический слой — специальное напыление на поверхностях ячеек керамического блока, состоящее из платины, палладия и родия. В последних моделях для напыления иногда используется золото — драгоценный металл, который имеет более низкую стоимость.
  • Металлический кожух. Выполняет функции теплоизоляции и защиты катализатора от механических повреждений.

Главная функция каталитического нейтрализатора — это нейтрализация трех основных токсических компонентов отработавших газов, поэтому он получил свое название — трехкомпонентный. Вот эти нейтрализуемые компоненты:

  • Окислы азота NOx – компонент смога, причина кислотных дождей, ядовиты для человека.
  • Угарный газ СО – смертельно опасен для человека при концентрации в воздухе от 0,1%.
  • Углеводороды CH – компонент смога, отдельные соединения канцерогены.

Принцип действия катализатора

На практике трехкомпонентный каталитический нейтрализатор имеет следующий принцип действия:

Выхлопные газы из двигателя попадают внутрь керамических блоков, где проникают в ячейки, полностью заполняя их.

Металлы-катализаторы палладий и платина провоцируют реакцию окисления, в результате которой несгоревшие углеводороды СН преобразуются в водяной пар, а угарный газ СО в углекислый.

Восстановительный металл-катализатор родий преобразует NOx (оксид азота) в обычный безвредный азот. В атмосферу выпускаются очищенные отработавшие газы. 

Если в автомобиле установлен дизельный двигатель, то возле катализатора всегда находится сажевый фильтр. Иногда эти два элемента могут быть совмещены в единую конструкцию. Рабочая температура катализатора играет решающую роль в эффективности процесса нейтрализации токсичных компонентов. Реальное преобразование начинается только после достижения 300°С. Идеальной, с точки зрения эффективности и срока службы, считается температура от 400 до 800°С. В диапазоне температур от 800 до 1000°С наблюдается ускоренное старение нейтрализатора. Длительная работа при температуре свыше 1000°С оказывает губительное воздействие на катализатор. Альтернативой керамике, выдерживающей высокие температуры, является металлическая матрица из гофрированной фольги. Катализаторами в такой конструкции выступают платина и палладий. 

Что ценного в катализаторах

К сожалению, ценного там оказалось много. В роли катализаторов пришлось применить благородные металлы, наиболее подходящие для этой цели.

Дошло до того, что самым дешёвым из них оказалось золото, но чаще приходится использовать платину, палладий и родий. Многим известно, что эти элементы существенно дороже всем понятного золота.

Одновременно с применением столь недешёвых компонент потребовалось создать геометрически непростую структуру, обеспечивающую контактирование каталитического вещества со всем объёмом выпускаемого цилиндрами газа. Это мельчайшие керамические или металлические соты, сквозь которые и продувается весь поток выхлопа.

В результате автомобиль приобрёл сложное, массивное и дорогое устройство в виде металлического корпуса, высокотехнологичной начинки, да ещё и обрамлённое контрольными датчиками с двух сторон, непрерывно следящими за его сохранностью и правильной работой.

Экологичность даром не даётся. Да и на этом прогресс не остановился, дальнейшее ужесточение требований законодателей продолжает влиять на появление дополнительных систем очистки выхлопа.

В дизеле

Катализаторы в дизельном двигателе работают гораздо хуже в сокращении выбросов NOx. Одной из причин этого является то, что дизельные двигатели имеют более низкую рабочую температуру, чем бензиновые двигатели, и катализатор в целом в дизельном двигателе работает хуже, поскольку он меньше нагревается. Некоторые из ведущих экспертов экологических авто придумали новую систему, которая помогает бороться с этим. Они используют мочевину в решении этой проблемы: прежде чем оксиды азота уходят в катализатор, их принудительно испаряют и смешивают с выхлопом и затем создают химическую реакцию, которая приведёт к сокращению выбросов NOx. Мочевина, также известная как карбамид, представляет собой органическое соединение, изготовленное ​​из углерода, азота, кислорода и водорода. Мочевина содержится в моче млекопитающих и земноводных. Мочевина реагирует с NOx, производя в результате реакции азот и водяной пар и утилизируя более 90 процентов оксидов азота в выхлопных газах.

Виды катализаторов

По своему назначению нейтрализатор может быть двух- или трехкомпонентным.

  1. В первом случае он выполняет относительно простые функции окисления (дожигания) угарного газа и углеводородов до образования воды и двуокиси углерода.
  2. Во втором – добавляется сложная способность устройства работать с окислами азота. Особенно много их образуется в современных дизельных и бензиновых моторах, в силу повышения экономичности, которых конструкторам приходится использовать обеднённые и бедные смеси на впуске.

Трёхкомпонентые катализаторы, а именно такие чаще всего применяются, в свою очередь, могут отличаться по конструктивному признаку, изготавливаясь на базе керамических или металлических сотовых изделий.

Керамические относительно дешевле, но не обладают высокой механической прочностью и долговечностью, склонны к растрескиванию и разрушению, не терпят ударов при наезде на препятствия.

Металлические конструктивы обладают достаточной упругостью, поэтому лучше держат внешние и внутренние удары. Внутренние могут возникать при аномальных процессах горения и разрушительно воздействовать на тонкую сотовую начинку, где, как уже упоминалось, обычно нанесены такие непростые вещества, как платина, палладий и родий.

Но даже металл не спасает от предательского попадания на тонкие соты посторонних веществ из двигателя в виде компонент контрафактных рабочих жидкостей, слишком богатой смеси или всевозможных соединений кремния.

Катализаторы отличаются и по способу их установки. Раньше они располагались в виде врезок выхлопной трубы, подобно глушителям и резонаторам. Но оказалось, что так их очень трудно и затратно прогревать до рабочей температуры, при которой начинаются каталитические реакции.

Поэтому сейчас нейтрализаторы ставят непосредственно за выпускным коллектором, максимально близко к точке выхода раскалённых выхлопных газов. Уже не надо долго ждать выхода прибора на режим, меньше загрязняются кислородные датчики и сокращаются расходы топлива на поддержание температуры.

 

Срок службы катализатора

Средний ресурс катализатора составляет 100 тыс. километров пробега, но при правильной эксплуатации он может исправно функционировать и до 200 тыс. километров. Основные причины раннего износа — неисправность двигателя и качество топлива (топливовоздушной смеси). При наличии обедненной смеси происходит перегрев, а при слишком богатой возникает засорение пористого блока остатками несгоревшего топлива, что препятствует протеканию необходимых химических процессов. Это приводит к тому, что срок службы каталитического нейтрализатора существенно снижается. Еще одной распространенной причиной неисправности керамического катализатора являются механические повреждения (трещины), возникающие при механических воздействиях. Они провоцируют быстрое разрушение блоков. При возникновении неисправностей работа каталитического нейтрализатора ухудшается, что фиксируется при помощи второго лямбда-зонда. В этом случае электронный блок управления сообщит о неисправности, выдав на приборной панели ошибку «CHECK ENGINE». Также признаками выхода из строя являются дребезжание, увеличение расхода топлива и ухудшение динамики. В этом случае его меняют на новый (оригинального производства или универсальный). Почистить или восстановить катализаторы невозможно, а поскольку это устройство имеет высокую цену, многие автомобилисты предпочитают просто удалить его.

Можно ли удалить катализатор? 

При удалении катализатора его очень часто заменяют на пламегаситель. Последний выравнивает поток выхлопных газов. Его установка рекомендуется для устранения неприятных шумов, которые возникают при удалении катализатора. При этом, если вы выбрали именно удаление, лучше полностью снять устройство и не прибегать к рекомендациям некоторых автомобилистов пробить в нем отверстие. Подобная процедура улучшит ситуацию только на время. В автомобилях, соответствующих экологическим стандартам Евро-3, помимо удаления катализатора необходима перепрошивка электронного блока управления. Ее обновляют до версии, в которой отсутствует каталитический нейтрализатор. Также можно установить эмулятор сигнала кислородного датчика, который избавит от необходимости перепрошивать ЭБУ.

Как почистить

В тех случаях, когда соты ещё не повреждены, но пропускная способность нейтрализатора уже снижена смолянистыми отложениями, его можно промыть.

Для этого лучше всего использовать жидкость, обычно применяемую для очистки карбюраторов или топливных форсунок. Только потребуется её значительно больше.

Катализатор заливается промывочной жидкостью, после чего ей предоставляется время на растворение загрязнений, затем её сливают, внутренности детали промываются горячей водой и просушиваются (продуваются).

Обычно процедура требует неоднократного повторения. Существуют также специально предназначенные для подобных промывок составы.

Источники: techautoport.ru, autovogdenie.ru, drive2.ru.

Каталитический нейтрализатор: устройство и принцип работы

В составе выхлопных газов автомобиля содержится довольно много токсичных веществ. Для предотвращения их попадания в атмосферу используется специальное устройство, получившее название “каталитический нейтрализатор” (более известный как “катализатор”). Он устанавливается на автомобилях, оснащенных двигателями внутреннего сгорания, работающих как на бензине, так и на дизельном топливе. Зная принцип работы катализатора, вы сможете понять важность его работы и оценить последствия, которые может вызвать его удаление.

Конструкция и функции каталитического нейтрализатора

Устройство каталитического нейтрализатора

Нейтрализатор является частью системы выхлопа. Он располагается сразу за выпускным коллектором двигателя. Катализ

Что такое катализатор на автомобиле, зачем он нужен и что будет, если его убрать

Автомобиль в системе выхлопа имеет каталитический нейтрализатор, который часто выходит из строя из-за некачественного топлива. Давайте разберемся, что это такое, для чего нужен и что делать в случае засора.

Что такое катализатор

Катализатор предназначен для очистки вредных выхлопов. Он расположен в системе выпуска, в процессе его работы происходят химические реакции: опасные вещества переходят в безопасные формы, после чего выбрасываются вместе с выхлопом. Пройдя этот путь выхлопные газы становятся чище. И как результат, автомобиль наносит меньший вред окружающей среде. 

Схема катализатора

Нейтрализатор работает только после нагрева до 300°C, сразу после запуска двигателя очистка не происходит.

Устройство каталитического нейтрализатора

Основой катализатора являются керамические или металлические соты. В зависимости от модели на стенки сот наносится микрослой из палладия и родия или иридия. Эти металлы обладают высокой химической активностью. Касаясь напыления, часть выхлопа входит с ним в химическую реакцию. Часть элементов, образовавшихся при сгорании топлива, связывается.

Современные катализаторы трехкомпонентные.

  • Первый элемент связывает оксиды азота.
  • Второй — удаляет часть несгоревших элементов топлива. В большей части удаляется окись углерода.
  • Третий элемент — это датчик. Он анализирует газы на выходе из катализатора, данные передаются в бортовой компьютер.

Трехкомпонетные катализаторы

Неисправности катализатора и их причины

Производители пишут, что срок службы нейтрализатора 100–150 тысяч километров. Но на практике проблемы могут возникнуть и при меньшем пробеге, особенно в больших городах, где часто приходится стоять в пробках. 

В зависимости от особенностей эксплуатации, замена каталитического нейтрализатора может производиться раз в 3–7 лет.

Основной причиной неисправности становится выгорание слоя металлов, покрывающих соты. Это естественный процесс, в результате которого качество выхлопа ухудшается. Бортовой компьютер показывает горящий «чек», а в некоторых случаях и вообще не позволяет мотору работать, выключая зажигание.

Ускоряет процесс выгорания и некачественное топливо. Зачастую у бензина увеличивают октановое число путем добавки свинца, это усиливает нагрузку на катализатор, уменьшая срок эксплуатации. В ситуации с дизельным топливом выход из строя может ускорить сам владелец, используя в зимнее время добавки-«антигель».

В некоторых случаях причиной поломки может стать неисправный двигатель. При неправильно выставленном зажигании и проблемах в системе питания (последнее особенно актуально для дизельных двигателей) выгорание каталитического слоя ускоряется.

Соты каталитического нейтрализатора

Диагностика автомобильного катализатора

Определить неисправность можно по нескольким признакам:

  • На панели приборов загорелась лампочка “Check Engine”. Она включается при любых ошибках мотора. В нашем случае, как результат нехарактерных показателей датчика, лямбда-зонд. Точно определить, что причина в катализаторе может диагностика сканером.
  • Снижение мощности двигателя. При неисправном катализаторе машина начинает троить, дергаться, хуже разгоняется. Причина в снижении пропускной способности каталитического нейтрализатора, связанной с частичным разрушением сот: они запекаются, забивают проход для выхлопных газов. В итоге мотор «задыхается».
  • Грохот под днищем. Обычно проявляется на высоких оборотах, изредка сразу после запуска. Причина в частичном разрушении керамической конструкции сот. Отпавшие частицы начинают биться о стенки катализатора под воздействием потока газов и центробежных сил.
  • Недостаточно сильный или ровный напор газов из глушителя. При исправном нейтрализаторе, поднеся руку к выхлопной трубе, можно ощутить слабую пульсацию, она возникает вследствие поочередной работы выпускных клапанов. Если поток ровный или ослабленный, вероятно проблема в разрушенных сотах катализатора.

Каталитический нейтрализатор не выходит из строя резко и неожиданно. Обычно перед отказом начинаются мелкие проблемы из списка выше.

Катализатор в разборе

Оригинал или аналог

Оригинальный катализатор — довольно дорогая вещь. Он не производится в нашей стране, все детали в автомагазинах импортные, поэтому на увеличение цены влияют пошлины.

При этом, в случае использования оригинальной детали, автомобиль сохраняет все режимы работы двигателя. Это положительно сказывается на экологии, а также на ресурсе мотора.

Все описанные ниже способы замены катализатора, носят только ознакомительный характер. Не рекомендуется пользоваться данными методами самостоятельно!

Из-за высокой цены автолюбители ищут альтернативу. Вариантов несколько:

  • универсальный катализатор;
  • пламегаситель.

Под универсальным катализатором подразумевается сразу две группы деталей. Первая — катализатор, подходящий под любой автомобиль. Довольно дорогая вещь, но работает безотказно. Второй вариант — блок с сотами. В этом случае в старый катализатор устанавливают новые соты. Недостатком данного варианта считается сложность с выбором сервиса для ремонта, не везде возьмутся за такую работу. Срок службы универсального нейтрализатора 60–90 тысяч километров.

Съём/Установка катализатора

Более дешевый и распространенный способ — пламегаситель. Он может быть готовым, просто предназначенным для установки вместо катализатора. Другой вариант — установка пламегасителя непосредственно в корпус нейтрализатора. Такой способ несколько сложнее, но позволяет скрыть факт замены детали при продаже автомобиля.

Иногда водители просто выбивают соты из корпуса. Способ дешевый, но может привести к увеличению уровня шума и урону экологии.

Особенности удаления катализатора из выхлопной системы

Ниже рассмотрим, какие нюансы удаления катализатора стоит учитывать. В первую очередь, нужно решить, как будет обходиться лямбда-зонд. После удаления нейтрализатора, датчик будет постоянно выдавать ошибку.

Чтобы обойти датчик, обычно делают обманку. Это проставка, которая отдаляет датчик от выхлопных газов, в результате он фиксирует больше кислорода. Обманку вкручивают на место датчика, и уже в нее устанавливают прибор. Такая система работает стабильно, хоть и имеет большое количество минусов. 

  • Любое вмешательство в конструкцию автомобиля приводит к снятию его с гарантии. Подумайте, что будет, если возникнет неисправность двигателя, которая попадает под гарантийный случай.
  • Невозможность пройти государственный техосмотр. Бортовой компьютер вы обманули, но вот при проверке на стенде, обман вскроется. В итоге, вы получите запрет на эксплуатацию транспортного средства. Со станции СТО, вы поедете уже на эвакуаторе.

Еще можно сделать перепрошивку ЭБУ. В результате система будет считать, имеющиеся показатели за норму. Для такой работы требуются дополнительные знания, а также программное обеспечение.

Предупреждения на приборной панели

При перепрошивке нарушаются нормальные циклы работы мотора. Он начинает работать в неправильном режиме. Это снижает ресурс силового агрегата примерно в два раза. В результате перепрошивка вместо экономии принесет вам только больше расходов.

Заключение

В случае возникновения проблем с катализатором, необходимо его заменить. Оптимальным решением будет установка оригинального нейтрализатора. Все аналоги и обманки могут привести к ускоренному выходу двигателя из строя, сделают невозможным получение диагностической карты, а также создадут дополнительную нагрузку на экологию.

Как работают автомобильные катализаторы — Katalizator1

Чтобы понять, как работают автомобильные катализаторы, достаточно вспомнить школьные уроки химии. Каталитические вещества способствуют «запуску» определенных химических реакций, при этом, не вступая в контакт с получившимся в результате компонентом. В случае с автокатализаторами за процесс катализа отвечают платина, родий и палладий, которые покрывают внутренний блок изделия.

Функции автомобильных катализаторов

Катализатор – основной элемент выхлопной системы автомобиля, который отвечает за фильтрацию выхлопов. Отработанные газы содержат множество токсичных соединений, загрязняющих атмосферу и негативно влияющих на здоровье человека:

  • Оксиды азота.
  • Углеводород.
  • Угарный газ.
  • Мелкие частицы сажи.

Вступая в контакт с веществами-катализаторами (драгоценными металлами, покрывающими внутренний блок изделия), выхлопы окисляются. В результате, вместо отравляющих компонентов, в атмосферу выбрасываются безопасные для окружающей среды углекислый газ, азот и водяной пар. Учитывая регулярно ухудшающуюся экологическую обстановку в стране, ездить на автомобиле без нейтрализатора не рекомендуется.

Устройство автомобильного катализатора

В выхлопной системе катализатор может располагаться перед глушителем или за выпускным коллектором. Внешне изделие представляет собой продолговатую конструкцию, заключенную в корпус из нержавеющей стали, который защищает основные элементы запчасти от повреждений. Внутри детали располагается блок из металла или керамики, напоминающий пчелиные соты – такое исполнение увеличивает площадь соприкосновения выхлопов с рабочей поверхностью, в результате чего фильтрация газов происходит быстрее.

Ячейки автонейтрализатора покрыты тонким слоем драгметаллов. При длительной эксплуатации ценное напыление теряется, поэтому задача каждого автовладельца – своевременно заменять детали.

Признаки неисправности катализаторов

Понять, что нейтрализатор вышел из строя, достаточно просто. Об этом свидетельствуют следующие симптомы:

  • Снижение мощности двигателя и динамики автомобиля. Машину заносит на поворотах, она регулярно глохнет при попытках завестись или разогнаться, а для того, чтобы набрать оптимальную скорость, приходится вдавливать педаль газа до упора.
  • Повышение расхода топлива. Это объясняется необходимостью постоянно давить на газ.
  • Увеличение количества выхлопных газов. Еще один верный признак – выхлопы приобрели неприятный, едкий запах, который ощущается даже в салоне.
  • При наборе скорости слышны характерные постукивания, вибрации.

Возможно, достаточно просто прочистить засорившиеся соты устройства – сделать это можно в домашних условиях, используя специальные средства. Если же чистка не помогла, следует позаботиться о правильной утилизации запчасти. Сдайте отработанный катализатор нам, чтобы получить хороший доход без лишних усилий. Наши цены – выше рыночных, поскольку при оценке мы учитываем не только состав, но особенности нейтрализатора (год выпуска, страна и материал изготовления, степень износа). Для оптовых клиентов действуют приятные бонусы.

Понравилась информация? Поделись с друзьями

Катализатор автомобильный (каталитический нейтрализатор): как это работает?

На чтение 7 мин. Просмотров 737 Опубликовано

Каталитический нейтрализатор (конвертер) представляет собой устройство контроля выбросов выхлопных газов, которое превращает токсичные газы и загрязняющие вещества в выхлопных газах двигателя внутреннего сгорания в менее токсичные загрязняющие вещества, катализируя окислительно-восстановительную реакцию (реакцию окисления и восстановления).

Катализаторы обычно используются с двигателями внутреннего сгорания, работающими на бензине или дизельном топливе.

Принцип работы

В химии катализатор — это вещество, ускоряющее или вызывающее химическую реакцию, но само при этом не расходующееся. Такими веществами являются золото, никель, палладий, медь, родий, хром и большинство драгоценных и редких металлов.

В процессе работы автомобильного двигателя образуются выхлопные газы. Эти газы попадают в выпускной коллектор и далее — в каталитический преобразователь.

Выхлопной газ, состоящий из токсичных веществ, проходит через структуру нейтрализатора. Вещества-катализаторы в составе конвертера вызывают химические реакции, преобразующие вредные вещества в безвредные.

Современный нейтрализатор использует два катализатора, а именно — катализатор восстановления и катализатор окисления.

Катализатор окисления изготовлен из палладия и платины, а катализатор восстановления — из родия и платины. В результате реакций в каталитическом преобразователе образуются: углекислый газ, азот, вода.

Конструкция

Каталитический преобразователь представляет собой металлический корпус из нержавеющей стали, в котором есть сердцевина с сотовой структурой. Она покрыта драгоценными металлами, такими как платина и родий. Эти металлы реагируют с выхлопными газами двигателя. Они уменьшают содержание токсичных газов, превращая их в углекислый газ и воду.

Керамическая конструкция дешевле в производстве, но у неё есть большой минус — хрупкость. Достаточно небольшого удара, чтобы керамические соты треснули и осыпались.

В первую очередь катализатор реагирует с окисью углерода, образующейся при сгорании бензина. Он также реагирует с углеводородами, образованными несгоревшим топливом и оксидами азота. Таким образом, нейтрализатор превращает эти газы в менее вредные побочные продукты, такие как диоксид углерода, водяной пар и азот.

Чтобы катализатор был эффективным, его температура должна быть около 400 °C. Вот почему они обычно соединены с выпускным коллектором. По этой же причине датчики кислорода имеют нагревательные элементы.

Типы каталитических нейтрализаторов

Есть три разных типа автомобильных катализаторов. Первый тип — катализатор окисления. Он уменьшает вредные загрязнения, такие как угарный газ (CO) и углеводороды топлива (HC) в выхлопе. Одновременно часто используется вторичный впрыск воздуха. Однако катализатор окисления уменьшает только часть загрязняющих веществ.

Двухступенчатый

Второй тип — двуступенчатый каталитический нейтрализатор, который является более совершенным. Работает в два этапа. Есть два элемента, которые расположены один за другим.

Двусторонний (или «окислительный») каталитический нейтрализатор имеет две одновременные задачи:

  1. Окисление оксида углерода до диоксида углерода:
    2CO + O2 → 2CO2.
  2. Окисление углеводородов (несгоревшего и частично сгоревшего топлива) до диоксида углерода и воды:
    CxH2x + 2 + [(3x + 1) ⁄ 2] O2 → xCO2 + (x + 1) H2O (реакция горения).

Этот тип автомобильных катализаторов широко используется в дизельных двигателях для снижения выбросов углеводородов и окиси углерода. Они также использовались на бензиновых двигателях в автомобилях американского и канадского рынков до 1981 года. Из-за неспособности контролировать оксиды азота они были заменены трехступенчатыми нейтрализаторами.

Трёхступенчатый

Третий тип — это трёхступенчатый каталитический нейтрализатор. Начал использоваться с 1981 г. Он преобразовывает вредные газы, выходящие из двигателя, в безвредные.

Выхлопные газы двигателя содержат опасные вещества, которые наносят вред окружающей среде. К ним относятся оксиды азота, углеводороды и оксид углерода. Трехступенчатый катализатор превращает их в менее вредный диоксид углерода, воду и азот.

Три ступени очистки выхлопных газов выглядят так:

  1. Восстановление оксидов азота до азота (N2):
    2 CO + 2 NO → 2 CO2 + N2
    углеводород + NO → CO2 + H2O + N2
    2 H2 + 2 NO → 2 H2O + N2;
  2. Окисление угарного газа до углекислого газа:
    2 CO + O2 → 2 CO2;
  3. Окисление несгоревших углеводородов (HC) до диоксида углерода и воды в дополнение к вышеуказанной реакции NO:
    углеводород + O2 → H2O + CO2;

Эти три реакции происходят наиболее эффективно, когда катализатор получает выхлоп от двигателя, работающего немного выше стехиометрической точки. Для сжигания бензина это соотношение составляет от 14,6 до 14,8 частей воздуха на одну часть топлива. Эффективность преобразования очень быстро падает, когда двигатель работает вне этих пределов.

При бедной смеси выхлоп содержит избыточный кислород и это не способствует реакции восстановления NOx. При богатой смеси избыточное топливо потребляет весь доступный кислород перед нейтрализатором, оставляя для функции окисления только кислород, находящейся в катализаторе.

Трёхступенчатый конвертер является единственным устройством, которое уменьшает количество всех трёх загрязнителей за один раз. Такой способ очистки наиболее экономичный.

Большинство автопроизводителей используют в своих транспортных средствах именно трехступенчатые нейтрализаторы, которые соответствуют строгим нормам выбросов.

Где и как расположен катализатор

В большинстве транспортных средств каталитический нейтрализатор расположен рядом с выпускным коллектором двигателя. Преобразователь быстро нагревается благодаря воздействию очень горячих выхлопных газов, что позволяет снизить вредные выбросы во время прогрева двигателя. Это достигается путем сжигания избыточных углеводородов, которые образуются в результате обогащенной смеси, необходимой для холодного пуска.

В некоторых трехкомпонентных катализаторах есть системы впрыска воздуха, который подается между первой (восстановление NOх) и второй (окисление углеводородов и СО) ступенью преобразователя.

Как и в двухступенчатых преобразователях, этот нагнетаемый воздух обеспечивает кислород для реакций окисления. Также иногда присутствует точка впрыска воздуха выше по потоку, перед каталитическим нейтрализатором, чтобы обеспечить дополнительный кислород только во время прогрева двигателя.

Это приводит к тому, что несгоревшее топливо воспламеняется в выхлопном тракте, тем самым предотвращая его попадание в каталитический конвертер. Этот метод сокращает время работы двигателя, необходимое для достижения рабочей температуры катализатора.

Большинство новых автомобилей имеют электронные системы впрыска топлива и не требуют впрыска воздуха в своих выхлопных трубах. Вместо этого они обеспечивают точно контролируемую топливовоздушную смесь, которая быстро и непрерывно переключается между обеднённым и обогащённым состоянием.

Датчики кислорода контролируют содержание кислорода в отработавших газах до и после каталитического нейтрализатора, и блок управления двигателем использует эту информацию для регулировки впрыска топлива.

Смотрите также видео о том, как устроен автомобильный катализатор:

 

Катализатор дизельного двигателя

Для двигателей с воспламенением от сжатия (то есть для дизельных двигателей) наиболее часто используемым каталитическим нейтрализатором является катализатор окисления дизельного топлива (diesel oxidation catalyst — DOC).

DOC содержат палладий, платину и оксид алюминия, которые окисляют углеводороды и оксид углерода кислородом с образованием углекислого газа и воды.

  • 2 CO + O2 → 2 CO2
  • CxH2x + 2 + [(3x + 1) / 2] O2 → x CO2 + (x + 1) H2O

Эти преобразователи часто работают с 90-процентной эффективностью, фактически устраняя запах дизельного топлива и помогая уменьшить видимые частицы (сажу).

Эти конверторы не уменьшают NOx, потому что любой присутствующий восстановитель будет реагировать в первую очередь с высокой концентрацией O2 в выхлопных газах дизельного топлива.

Раньше сокращение выбросов NOx от дизельных двигателей решалось путем добавления выхлопных газов во впускной коллектор, известное как рециркуляция выхлопных газов (EGR).

В 2010 году большинство производителей дизелей добавили каталитические системы в свои автомобили, чтобы соответствовать новым требованиям по выбросам.

Дизельный выхлоп содержит высокий уровень твердых частиц (ТЧ). Каталитические нейтрализаторы не удаляют ТЧ, поэтому они очищаются сажевым фильтром (diesel particulate filter — DPF).

Все транспортные средства, работающие на дизельном топливе и изготовленные после 1 января 2007 года, должны соответствовать ограничениям на выбросы дизельных частиц, что означает, что они должны быть оснащены двухсторонним каталитическим преобразователем и иметь сажевый фильтр.

что это такое и что ценного в нем, признаки неисправностей и их устранение

Автомобильный катализатор – он же каталитический нейтрализатор – это деталь, которая призвана уменьшить объем вредных веществ, выбрасываемых из выхлопной трубы автомобиля в атмосферу. Достаточно сложное устройство и принцип работы – причины, по которым катализаторы нередко доставляют автовладельцам массу проблем. Что нужно знать об этой детали и надо ли ее убрать?

Что такое катализатор и для чего он нужен?

Выхлопные газы – продукты окисления углеводородного топлива, не полностью сгораемого внутри автомобильного двигателя. В составе выхлопа есть как безвредные, так и токсичные вещества. К первым относится азот, кислород, углекислый газ. Спектр вредных компонентов значительно шире:

  • угарный газ;
  • углеводороды;
  • оксиды азота;
  • альдегиды;
  • бензпирен;
  • частицы сажи.

Все перечисленные выше вещества являются токсичными, а сажа и бензпирен еще и сильные канцерогены. Неправильная настройка двигателя приводит к тому, что концентрация вредных выбросов увеличивается от двух раз для бензиновых моторов и до двадцати раз для дизельных.

Задача катализатора – нейтрализовать негативное действие углеводородов, оксидов углерода и азота в выхлопных газах, и тем самым снизить вред автомобиля с ДВС для окружающей среды. Сам процесс нейтрализации происходит в ходе окислений либо восстановления в зависимости от типа нейтрализатора. В результате реакций токсины превращаются в свободный азот и углекислый газ.

Для контроля катализатора в выхлопной системе устанавливается особый датчик – лямбда-зонд. Он отслеживает концентрацию кислорода в отработанных газах. Показания кислородного датчика влияют на режим работы двигателя авто, от чего в свою очередь зависит состав выхлопных газов.

Как устроен автомобильный катализатор?

Каталитические нейтрализаторы в современных автомобилях имеют весьма простое устройство:

  • корпус из нержавеющей стали;
  • керамический наполнитель;
  • термическая защитная прокладка;
  • кислородный датчик (лямбда-зонд).

В зависимости от типа детали в качестве наполнителя используются металлические либо керамические мелкие соты, покрытие тончайшим слоем редких металлов – иридия, палладия и родия. Лямбда-зонд устанавливается на входе в катализатор и на выходе, т.е с обеих его сторон.

Принцип работы катализатора

Точный принцип работы автомобильного катализатора зависит от того, к какому типу он относится:

  • В восстанавливающем элементе происходит разложение оксидов азота на кислород и молекулярный азот. За эти химические реакции отвечают драгметаллы платина и родий.
  • В окисляющем элементе свободный кислород вступает в активную реакцию окисления с углеводородами и угарным газом из выхлопа, связывая их в безопасные соединения.

В обоих перечисленных случаях вредность отработанных газов для природы заметно уменьшается.

Виды катализаторов

В первую очередь каталитические нейтрализаторы классифицируются по принципу работы на два типа – восстанавливающие и окисляющие. Они уже были рассмотрены ранее. Кроме типа реакций, которые протекают внутри этих устройств, оба типа различаются составом. В первых используется платина и родий, во вторых – платина и палладий. Соответственно, это влияет на стоимость детали.

Второй признак, по которому различаются детали – материал, из которого сделана сотовая сетка:

  • Керамические. Главное достоинство деталей с сеткой из керамики – низкая цена. Это обусловлено дешевизной материала и технологии изготовления. Отсюда же вытекает основной недостаток – хрупкость. Даже небольшого удара хватит для растрескивания.
  • Металлические. Отличаются долговечностью, прочностью, надежностью. Хорошо переносят воздействие влажности, удары, вибрацию, тряску. В связи с этим стоимость металлических катализаторов существенно больше, если сравнивать их с керамическими.

Следующий критерий для классификации каталитических нейтрализаторов – место установки в выхлопной системе автомобиля. По этому признаку устройства делятся всего на две категории:

  • Монтируемые на приемной трубе. Деталь может располагаться как на самой трубе, так и сразу после нее, непосредственно перед резонатором. Это удобный в плане замены и ремонта тип размещения, так как демонтировать устройство с приемной трубы очень легко.
  • Монтируемые внутри коллектора. В этом случае элемент является частью выпускного коллектора. Первый серьезный недостаток – неремонтопригодность такого катализатора. Второй – деталь быстро и сильно нагревается до критических температур.

Исходя из преимуществ, оптимальный вид нейтрализатора – керамический с установкой прямо на приемной трубе выхлопной системы. Если позволяет бюджет, лучше купить металлическую деталь.

Причины и признаки неисправности

В теории катализатор может работать на протяжении многих десятилетий, так как расход редких металлов в его составе очень небольшой. На практике все получается не так радужно. Есть целый ряд причин, по которым каталитический нейтрализатор выхлопных газов может выйти из строя:

  • механическое воздействие – критично для керамических катализаторов;
  • попадание воды (особенно холодной) на раскаленную поверхность детали;
  • взрыв топлива внутри катализатора из-за проблем в системе зажигания;
  • регулярное использование низкокачественного и загрязненного топлива;
  • применение этилированного бензина – катализатор может прогореть;
  • попадание в нейтрализатор масла, охлаждающей жидкости или промывки.

Перечисленные причины могут привести к таким распространенным поломкам нейтрализатора, как выгорание активного слоя, оплавление, появление нагара на внутренних стенках устройства.

Эксплуатация автомобиля с неисправным катализатором уменьшает ресурс самого двигателя. По этой причине нельзя откладывать ремонт или замену детали на потом – это выйдет очень дорого.

Как проверить катализатор?

Не надо быть специалистом, чтобы догадаться о неисправности автомобильного катализатора. На его выход из строя и необходимость замены указывает ряд достаточно специфичных признаков:

  • увеличенный расход топлива без видимых причин;
  • автомобиль медленнее набирает скорость;
  • возникли проблемы с тягой, упала мощность мотора;
  • загорелась лампочка проверки двигателя;
  • несколько увеличился расход масла;
  • при нажатии на педаль газа мотор откликается не сразу;
  • при запуске двигателя чувствуется неприятный запах.

Лучший способ диагностики неисправности нейтрализатора – осмотр. Также своего рода средством проверки является приборная панель, а именно лампочка «Check engine» и соответствующий поломке лямбда-зонда или катализатора код ошибки в бортовом компьютере.

Еще один способ – измерить давление выхлопных газов с помощью манометра, после чего сравнить показания с нормативами. Так, нормой считается давление 0,3 кгс/см2. Если это значение больше, скорее всего с деталью есть проблемы, и нужна помощь специалистов из автосервиса.

Как почистить катализатор?

Засорившийся с течением времени катализатор рекомендуется быстро и тщательно прочистить. В противном случае двигатель начнет «задыхаться», его мощность упадет, а расход топлива, наоборот, вырастет. На необходимость заняться очисткой нейтрализатора указывают признаки:

  • упавшая мощность мотора и медленный разгон;
  • возникают проблемы с запуском двигателя;
  • мотор самопроизвольно отключается на ходу;
  • двигатель нестабильно работает на холостом ходу;
  • цвет выхлопа изменился, стал более выраженным.

Визуально на необходимость прочистки нейтрализатора указывает его загрязненность продуктами горения, смолами, маслом и прочими посторонними включениями. Есть два способа его очистки:

  • Механическая. Для такой прочистки применяется наждачная бумага. Нужно демонтировать нейтрализатор, взять кусочек наждачки и счистить налет с металлических или керамических сот, аккуратно надавливая на них. Оставшиеся после процедуры частицы грязи, масла и сажи удаляются из нейтрализатора сжатым воздухом, подаваемым под давлением.
  • Жидкостная. Используется специальная промывка, которую можно купить в магазине автодеталей. Если такой возможности нет, можно использовать этанол или жидкость для очистки карбюратора. Порядок работ – демонтаж катализатора и его погружение в тару. Далее соты обильно поливаются промывкой, а через 20-30 минут – струей горячей воды.

В конце жидкостной очистки нужно тщательно просушить нейтрализатор с помощью сжатого воздуха. Если чистота детали вас не удовлетворит, процедура повторяется еще раз с самого начала.

В случае с механической очисткой важно проявить аккуратность и не давить наждачкой на соты слишком сильно. Керамические детали могут треснуть, раскрошиться и от небольшого давления.

Зачем вырезают катализатор из автомобиля?

Весьма популярна практика самостоятельного удаления катализатора из выхлопной системы авто. Делается это не просто так – демонтаж нейтрализатора предоставляет водителю преимущества:

  • не надо покупать новую деталь;
  • увеличение мощности двигателя;
  • можно заливать «грязное» топливо;
  • уменьшение расхода топлива;
  • отсутствие ошибок лямбда-зонда;
  • нет проблем с запуском двигателя.

Автомобиль вполне исправно работает и без каталитического нейтрализатора. Но последствия все же есть, и в первую очередь для окружающей среды. Выхлоп становится грязным и приобретает неприятный запах. В выхлопной системе могут появляться посторонние звуки, шумы и вибрации.

Если удаление было сделано неправильно, на приборной панели регулярно будут отображаться ошибки. Также машина без катализатора не сможет пройти регулярный технический осмотр.

Как удалить устройство из выхлопной системы?

Для демонтажа катализатора потребуется установить автомобиль над смотровой ямой. Далее из положения снизу демонтируется та часть выхлопной трубы, на которой установлен этот элемент. После этого нейтрализатор срезается болгаркой, и труба заваривается, либо разбирается, если такая возможность предусмотрена конструктивно. Последний этап – монтаж пламегасителя. Он обеспечит нормальную работу резонатора выхлопной трубы и устранит ряд плохих последствий.

Сложность удаления катализатора заключается в риске повредить выхлопную трубу, резонатор или выпускной коллектор в зависимости от того, где установлен элемент. Несмотря на возможность самостоятельного демонтажа катализатора, рекомендуется доверять эту работу специалистам из автосервиса. Так риск негативных последствий для автомобиля будет минимальным или нулевым.

Заключение

Каталитический нейтрализатор, несмотря на благородное предназначение, доставляет водителю больше проблем, нежели пользы. Невысокое качество и чистота топлива делают из теоретически «вечной» детали часто выходящий из строя рудимент. Все больше автовладельцев предпочитают удалять катализатор и устанавливать на его место обманку – такой шаг обходится заметно дешевле.

Каждый автомобилист сам решает, изымать нейтрализатор из выхлопной системы своего авто, или нет. Однако в развитых странах Европы давно приняли решение – наличие катализатора в авто играет большую роль для всей природы и для каждого человека в отдельности. Вот по этой причине катализаторы в обязательном порядке устанавливаются на все современные автомобили мира.

видов катализа

Катализатор находится в той же фазе, что и реагенты. Обычно все присутствует в виде газа или в одной жидкой фазе. Примеры содержат по одному из них. . .

Примеры гомогенного катализа

Реакция между персульфат-ионами и иодид-ионами

Это реакция раствора, которую вы можете встретить только в контексте катализа, но это прекрасный пример!

Персульфат-ионы (пероксодисульфат-ионы), S 2 O 8 2- , являются очень сильными окислителями.Иодид-ионы очень легко окисляются до йода. И все же реакция между ними в растворе в воде очень медленная.

Если вы посмотрите на уравнение, легко понять, почему это так:

Для реакции требуется столкновение двух отрицательных ионов. Этому серьезно помешает отталкивание!

Катализированная реакция полностью устраняет эту проблему. Катализатором могут быть ионы железа (II) или железа (III), которые добавляются в один и тот же раствор.Это еще один хороший пример использования соединений переходных металлов в качестве катализаторов из-за их способности изменять степень окисления.

Для аргументации в качестве катализатора примем ионы железа (II). Как вы вскоре увидите, на самом деле не имеет значения, используете ли вы ионы железа (II) или железа (III).

Ионы персульфата окисляют ионы железа (II) до ионов железа (III). В процессе ионы персульфата восстанавливаются до ионов сульфата.

Ионы железа (III) являются достаточно сильными окислителями, чтобы окислять иодид-ионы до йода.В процессе они снова восстанавливаются до ионов железа (II).

Обе эти отдельные стадии в общей реакции включают столкновение между положительными и отрицательными ионами. Это будет гораздо более успешным, чем столкновение двух отрицательных ионов в некаталитической реакции.

Что произойдет, если в качестве катализатора использовать ионы железа (III) вместо ионов железа (II)? Просто реакции происходят в другом порядке.

 

Разрушение атмосферного озона

Это хороший пример гомогенного катализа, где все присутствует в виде газа.

Озон, O 3 , постоянно образуется и снова распадается в высоких слоях атмосферы под действием ультрафиолетового света. Обычные молекулы кислорода поглощают ультрафиолетовый свет и распадаются на отдельные атомы кислорода. Они имеют неспаренные электроны и известны как свободные радикалы . Они очень реактивны.

Кислородные радикалы могут затем соединяться с обычными молекулами кислорода с образованием озона.

Озон также можно снова разделить на обычный кислород и кислородный радикал, поглощая ультрафиолетовый свет.

Это образование и распад озона происходит постоянно. Взятые вместе, эти реакции останавливают большое количество вредного ультрафиолетового излучения, проникающего в атмосферу и достигающего поверхности Земли.

Каталитическая реакция, в которой мы заинтересованы, разрушает озон и, таким образом, останавливает его поглощение ультрафиолетового излучения.

Хлорфторуглероды (CFC), такие как CF 2 Cl 2 , например, широко использовались в аэрозолях и в качестве хладагентов.При их медленном распаде в атмосфере образуются атомы хлора — свободные радикалы хлора. Они катализируют разрушение озона.

Это происходит в два этапа. В первом случае озон расщепляется и образуется новый свободный радикал.

Катализатор на основе хлор-радикала регенерируется второй реакцией. Это может происходить двумя способами в зависимости от того, попадает ли радикал ClO в молекулу озона или радикал кислорода.

Если он попадает в кислородный радикал (полученный в результате одной из реакций, которые мы рассмотрели ранее):

Или, если он попадает в молекулу озона:

Поскольку радикал хлора продолжает регенерироваться, каждый из них может разрушить тысячи молекул озона.

.

Как работают каталитические нейтрализаторы | HowStuffWorks

В химии катализатор — это вещество, которое вызывает или ускоряет химическую реакцию, не затрагивая себя. Катализаторы участвуют в реакциях, но не являются ни реагентами, ни продуктами реакции, которую они катализируют. В организме человека ферменты являются природными катализаторами, ответственными за многие важные биохимические реакции [источник: Chemicool].

В каталитическом нейтрализаторе работают два разных типа катализатора: катализатор восстановления и катализатор окисления .Оба типа состоят из керамической структуры, покрытой металлическим катализатором, обычно платиной, родием и / или палладием. Идея состоит в том, чтобы создать структуру, которая подвергает максимальную площадь поверхности катализатора потоку выхлопных газов, а также сводит к минимуму необходимое количество катализатора, поскольку материалы чрезвычайно дороги. Некоторые из новейших конвертеров даже начали использовать золото, смешанное с более традиционными катализаторами. Золото дешевле, чем другие материалы, и может увеличивать окисление, химическую реакцию, которая снижает количество загрязняющих веществ, до 40 процентов [источник: Kanellos].

Объявление

Большинство современных автомобилей оборудовано трехкомпонентными каталитическими нейтрализаторами . Это относится к трем регулируемым выбросам, которые он помогает уменьшить.

Катализатор восстановления — первая ступень каталитического нейтрализатора. В нем используются платина и родий для снижения выбросов NOx. Когда молекула NO или NO2 контактирует с катализатором, катализатор вырывает атом азота из молекулы и удерживает его, высвобождая кислород в форме O2.Атомы азота связываются с другими атомами азота, которые также прилипают к катализатору, образуя N2. Например:

2НО => N2 + O2 или 2НО2 => N2 + 2O2

2NO => N 2 + O 2 или 2NO 2 => N 2 + 2O 000 900

Катализатор окисления — вторая ступень каталитического нейтрализатора.Он уменьшает количество несгоревших углеводородов и окиси углерода, сжигая (окисляя) их над платиновым и палладиевым катализатором. Этот катализатор способствует реакции CO и углеводородов с оставшимся кислородом в выхлопных газах. Например:

2CO + O 2 => 2CO 2

В каталитических нейтрализаторах используются два основных типа структур — сот и керамические шарики . Сегодня в большинстве автомобилей используется сотовая структура.

В следующем разделе мы рассмотрим третий этап процесса конверсии и то, как получить максимальную отдачу от катализатора.

.Подробнее о

Catalyst: будущее программного обеспечения Mac по мнению Apple и разработчиков

Enlarge / Twitter вернулся на Mac через Apple Project Catalyst.

САН-ХОСЕ, Калифорния. Когда Apple представила macOS Catalina на WWDC в этом месяце, одно связанное с этим объявление вызвало значительный интерес как пользователей Mac, так и разработчиков: новый способ превратить приложения для iPad в приложения для Mac.

, получивший название Project Catalyst, обещал увеличить количество качественных нативных приложений на платформе Mac за счет использования существующей работы разработчиков в возможно более надежной экосистеме приложений iOS (а теперь и iPadOS).Но это вызывает вопросы: что это значит для будущего опыта пользователей Mac? Изменит ли это тип программного обеспечения для Mac? Экосистема Apple ориентирована на мобильные устройства?

Тогда есть сомнения разработчиков: Catalyst — это всего лишь ступенька к SwiftUI? Какие проблемы могут ожидать разработчики при адаптации своих приложений для iPad для Mac?

Арс побеседовал с ключевыми членами команды Apple, отвечающими за разработку и продвижение Project Catalyst на WWDC, а также с несколькими разработчиками приложений, которые уже сделали приложения для Mac таким образом.Мы спросили их о том, как работает Catalyst, как выглядит будущее программного обеспечения Apple и чего ожидать пользователям.

Mac — популярная платформа среди разработчиков, креативщиков и не только. Но в то время как iPhone и iPad App Store процветали как одна из самых ярких программных экосистем в отрасли, Mac App Store не получил такого же уровня популярности или значимости, несмотря на наличие мощных приложений, недоступных на мобильных устройствах.

Apple стремится перенести часть своего успеха с iOS App Store на macOS с помощью Catalyst.Мы шаг за шагом рассмотрим, как разработчики используют то, что разработала Apple, а также с какими проблемами они столкнулись. И мы поделимся ответами Apple на наши вопросы о том, как компания планирует поддерживать высокий стандарт качества для приложений Mac, когда на платформу обрушивается приток мобильных приложений, каковы долгосрочные планы Apple по кроссплатформенным приложениям в вся экосистема похожа и многое другое.

Прежде чем мы начнем, вот список представителей Apple и сторонних разработчиков приложений, с которыми мы говорили для этого глубокого погружения:

  • Тодд Бенджамин, старший директор Apple по маркетингу macOS
  • Али Озер, технический менеджер Apple Cocoa, работавший над проектом Catalyst
  • Шаан Пруден, старший директор Apple по управлению партнерами и отношениям с разработчиками
  • Ману Руис, инженер-программист движка в Gameloft, который работал над переносом игры для iPad Asphalt 9: Legends с iPad на Mac
  • Алекс Урбано, графический инженер Gameloft, который также работал над версией для Mac Asphalt 9: Legends
  • Рич Шимано, разработчик iOS в TripIt, приложении для путешествий, которое изначально было перенесено на Mac с помощью Catalyst
  • Нолан О’Брайен, старший инженер-программист Twitter, который использовал Catalyst, чтобы вернуть Twitter на Mac

Давайте нырнем.

Введение в Project Catalyst

Еще в декабре 2017 года агентство Bloomberg сообщило, что Apple работает над проектом, который упростит разработку приложений для macOS и iOS одновременно. В этом году на WWDC мы узнали, что один из основных компонентов этого продвижения называется Project Catalyst, который позволяет относительно быстро переносить приложения с iPad на Mac.

Разработчики приложений могут начать делать это прямо сейчас с бета-версией Xcode, среды разработки, которую Apple поддерживает для создания приложений для различных платформ.С большой помпой на этапе WWDC Apple заявила, что разработчикам просто нужно открыть свой проект приложения для iPad в Xcode и установить один флажок, чтобы иметь возможность создать приложение для Mac. Конечно, не всегда будет так просто , но это ближе, чем вы думаете.

Реклама
  • Новая платформа Apple, Project Catalyst, поможет разработчикам iOS переводить существующие мобильные приложения в приложения macOS.

  • Большая часть работы Project Catalyst начинается с Xcode.

  • Apple также представила новую кроссплатформенную платформу пользовательского интерфейса под названием SwiftUI.

Идея состоит в том, чтобы справиться с некоторыми сложными аспектами переноса мобильного приложения на рабочий стол, такими как переход от сенсорного интерфейса к интерфейсу на основе указателя мыши, автоматически и быстро, чтобы разработчики могли сразу приступить к добавлению специфичных для настольных компьютеров функции там, где это необходимо.

Вот что об этом говорится на сайте разработчиков Apple:

Mac-приложение запускается изначально, используя те же платформы, ресурсы и среду выполнения, что и приложения, созданные только для Mac.Добавлены основные функции рабочего стола Mac и окон, а сенсорное управление адаптировано к клавиатуре и мыши. Пользовательские элементы пользовательского интерфейса, которые вы создали с помощью своего кода, воспринимаются как есть. Затем вы можете продолжить реализацию функций в Xcode с помощью API-интерфейсов UIKit, чтобы убедиться, что ваше приложение отлично выглядит и работает без проблем.

Обратите внимание, что мы говорим не о эмуляции; Вместо этого Apple стремилась сделать возможным создание собственных приложений для Mac и iPad из одного и того же проекта Xcode.

Apple посвятила несколько сессий на WWDC ознакомлению разработчиков с ее усилиями и тем, что она считает передовыми методами адаптации приложений iPad для настольных компьютеров. Тодд Бенджамин, старший директор по маркетингу macOS, объяснил Ars, почему Apple решила сделать это сейчас приоритетом:

Мы находимся на той стадии, когда разработчики полностью разработали приложения для iPad, и есть прекрасная возможность взять на себя проделанную ими работу, которая не только использует то, что они сделали на iOS, но и Преимущество экранного пространства и некоторые вещи, которые мы можем эффективно использовать, когда переносим их на Mac.

Старший директор по управлению партнерами и связям с разработчиками, руководитель Шаан Пруден добавил:

Клиенты [разработчиков] просили у них версию для Mac, потому что у них большая база для установки iPad, и они просто не чувствовали, что у них есть средства, чтобы создать целую другую команду разработчиков и сделать перенос .

А зачем переходить с iPad на Mac, а не наоборот? «У нас есть миллионы приложений для iPad», — сказал Ars технический директор Apple Cocoa Али Озер, который непосредственно работал над реализацией Catalyst.«Так что есть направление, которое имеет больше смысла, по крайней мере, когда дело доходит до поддержки разработчиков».

Крайне важно, что перенос приложений iPhone в macOS — это не то, что делает Catalyst — они должны быть приложениями для iPad. Это может показаться удивительным: у iPhone одна из самых надежных программных экосистем в мире, тогда как iPad в основном является ее подмножеством. Да, есть некоторые приложения для iPad, которых нет на iPhone, но есть бесчисленное множество приложений для iPhone, которых нет на iPad.

Бенджамин сказал, что Apple приняла это решение, потому что перенести приложение с iPad на рабочий стол — это более естественный переход, чем адаптация приложения для iPhone:

С точки зрения дизайна разница между приложением для iPad и приложением для iPhone состоит в том, что приложение для iPad претерпело изменения дизайна, чтобы использовать больше места на экране.И когда вы переносите это приложение на Mac … у вас есть что-то, что создано вокруг этого пространства, с которым вы можете работать и с чего вы можете начать.

Озер отметил, что этот шаг также направлен на то, чтобы предотвратить опасения пользователей по поводу попадания мобильных портов на рабочий стол, даже если эти порты не подходят для данной платформы. «Это один из способов сообщить разработчикам, что приложение для iPhone в его нынешнем виде может быть неправильным», — сказал он.

Реклама
Как это работает

Многие фреймворки, которые разработчики используют для создания приложений для iPad и Mac, похожи.Частью того, что Apple сделала здесь, было устранение различий, существовавших ранее между версиями общих сред разработки для iPad и Mac. Но самый большой разрыв — это разрыв между фреймворками пользовательского интерфейса.

Разработчики создают пользовательские интерфейсы и функциональность приложений для iPad, используя платформу UIKit. Между тем, на Mac есть фреймворк под названием AppKit, который выполняет многие из тех же функций. Раньше приложения Mac не могли запускать приложения, созданные с использованием UIKit, а устройства iOS не могли запускать приложения, созданные с использованием AppKit.Даже если разработчик мог повторно использовать некоторые части своих приложений для iPad при создании версий для Mac, это потребовало значительного объема дополнительной работы.

  • Процесс Catalyst запускается, как Apple очень старается указать, путем установки одного флажка.

  • Суть Catalyst — это попытка заставить UIKit присоединиться к этим другим фреймворкам как единое целое для Mac.(Это слайды с сессий Apple WWDC.)

  • Наглядный пример бок о бок стеков macOS и iOS. Apple уже могла запустить стек iOS справа на Mac в симуляторе Xcode. Но симулятор не был разработан или оптимизирован для интеграции с остальной частью Mac UX.

  • Так выглядит стек после Catalyst.

  • Вот список устаревших фреймворков, которые Apple рекомендует оставить при переносе приложений с iPad на Mac.Хотя некоторые устаревшие фреймворки могут еще некоторое время работать на iPad, разработчики не могут рассчитывать на их работу на Mac.

  • Разработчики могут использовать условные выражения для запуска (или не запуска) определенного кода в зависимости от устройства.

При просмотре своего проекта iPad в Xcode разработчик может установить флажок, чтобы выбрать Mac в качестве поддерживаемого устройства.После этого Xcode вносит в проект следующие изменения, согласно документации Apple:

  1. Добавляет идентификатор пакета для версии вашего приложения для Mac.
  2. Добавляет право на песочницу приложения в ваш проект. Xcode включает это право в версию вашего приложения для Mac, но не в версию для iOS.
  3. Добавляет Мой Mac в список мест назначения, которые вы можете выбрать при запуске приложения из Xcode.
  4. За исключением несовместимых платформ, расширений приложений и другого встроенного содержимого.

За исключением ошибок, разработчик сможет развернуть базовую версию своего приложения для Mac. Apple заявляет, что следующие особенности Mac должны автоматически стать частью новой версии Mac:

  • Строка меню по умолчанию для вашего приложения.
  • Поддержка ввода с сенсорной панели, мыши и клавиатуры.
  • Поддержка изменения размера окна и полноэкранного отображения.
  • Полосы прокрутки в стиле Mac.
  • Поддержка копирования и вставки.
  • Поддержка перетаскивания.
  • Поддержка системных элементов управления Touch Bar.

С этого момента разработчик может добавлять элементы строки меню, применять прозрачность к основному контроллеру представления, отображать и заполнять меню настроек, добавлять события наведения и т. Д.

Некоторые фреймворки доступны на одной платформе, но недоступны для другой — например, ARKit недоступен на Mac, поэтому разработчик, портирующий приложение, использующее ARKit для предоставления возможностей дополненной реальности, захочет это учитывать.В некоторых случаях код, относящийся к функциям и платформам, отсутствующим на целевом устройстве, автоматически не будет использоваться.

В других случаях разработчики, конечно, могут использовать условную логику в своем коде для предоставления различных возможностей и функциональности в зависимости от того, на каком устройстве выполняется программное обеспечение. Apple, однако, намеревалась зарезервировать этот подход для случаев, когда функциональность просто недоступна на одном устройстве, но желательна на другом.

«Мы хотели бы, чтобы они использовали условные выражения как можно реже, потому что, как вы знаете, условные выражения — это разные пути кода, о которых вам нужно беспокоиться», — объяснил Озер.«И я думаю, что то, что мы связали с условными операторами, — это API и функции, которые в основном предназначены только для Mac».

Apple утверждает, что многим разработчикам, создающим первые сторонние приложения Catalyst, удалось получить приемлемую сборку, работающую на Mac в течение 24 часов. Но каждый сталкивался с некоторыми проблемами, уникальными для каждого приложения.

.Катализатор

— Викисловарь

английский [править]

Этимология [править]

Из катализа + -ист .

Произношение [править]
Существительное [править]

катализатор ( несколько катализаторов )

  1. (химия) Вещество, которое увеличивает скорость химической реакции, но не расходуется в процессе.
    • 1988 , Люберт Страйер Биохимия , 3-е издание, стр. 177
      Ферменты, катализаторы биологических систем, представляют собой замечательные молекулярные устройства, которые определяют характер химических превращений.
  2. Кто-то или что-то, что способствует прогрессу или изменениям.
    Экономическое развитие и интеграция служат катализатором мира.
    • 1978 , Эрнест Джордж Швиберт, Форель , том 2:

      Это утро было крещено моей первой чашкой кофе, свежесваренной на гравийном костре, пока они праздновали более сильным Катализатор кисломолочного виски в чашках рыболовных жилетов.

    • 2004 , Майкл Б. Орен, Шесть дней войны: июнь 1967 года и создание современного Ближнего Востока , стр. 76:

      Страх Израиля перед реактором, а не Египта, был сильнее катализатор для войны.

    • 2006 , Писатели свободы, с Эрин Грууэлл, Дневник писателей свободы: как учитель и 150 подростков использовали писательство, чтобы изменить себя и окружающий мир , Дневник 74
      Роза Паркс была настоящим катализатором перемен, и она была всего лишь одним человеком.Услышав о Розе Паркс и ее протесте, я понял, что у меня и всех учеников в классах г-жи Джи есть надежда на то, чтобы действительно стать катализатором и переменами.
    • 2014 8 августа, Руперт Кристиансен, «Правда о фальцетах» [версия для печати: 12 августа 2014 г., стр. R8] », в The Daily Telegraph (Review) [1] :

      Он [контртенор Энтони Рот Констанцо] также любит быть катализатором , благодаря которому опера обогащает другие формы искусства: недавно он сотрудничал с японцами. актеры кабуки, а в ближайшем будущем — проект с танцорами из New York City Ballet.

  3. (литература) Подстрекательский инцидент, который приводит в движение очередной конфликт.
  4. (автомобильный) Каталитический нейтрализатор.
Синонимы [править]
Антонимы [править]
  • (то, что побуждает к изменениям): ингибитор
  • (то, что усиливает или ускоряет): демпфер
Производные термины [править]
Переводы [править]

Вещество, которое увеличивает скорость химической реакции, но не расходуется в процессе

кто-то или что-то, что помогает или поощряет прогресс или изменение

См. Также [править]
.

PoE Catalyst Рецепт. Руководство 3.11, Создание, объяснение, Рецепты поставщиков катализаторов

Catalyst улучшает качество кольца, амулета или пояса. Есть только один рецепт от поставщика для Catalyst: соберите 3 катализатора одного типа, затем продавец для случайного катализатора.

Продайте любые три катализатора одного типа продавцу, вы получите Загадочную коробку. В коробке находится случайный катализатор.

Поскольку результат рецепта продавца является случайным, вы всегда можете продать недорогой Catalyst для дорогостоящего предмета.Ниже приводится справочная цена Catalyst:

.

Разъяснение по катализаторам

Катализатор — это качественная валюта для Кольца, Амулета, Пояса. Он действует как Armourer’s Scrap и Blacksmith’s Whetstone , за исключением ювелирных изделий. Следующие руководства предназначены для катализаторов.

  • Применяется только для кольца, амулета или пояса.
  • Катализатор может улучшать только определенные модификаторы. Например, Fertile Catalyst усиливает только модификаторы жизни и маны.
  • Per Catalyst увеличивает обычный предмет на 5%, магический предмет на 2% и редкий предмет на 1%. Максимальное качество — 20%.
  • В окончательном результате будет отброшена десятичная часть. Например, если значение 3,9, получится 3.
1. Абразивный катализатор

Abrasive Catalyst добавляет качество, которое усиливает модификаторы Attack на кольце, амулете или поясе. Добавит бонусы модификаторам с тегом «Атака».

После прибавки качества на 10% есть бонусы к атаке:

  • Увеличение урона от Elsmental умениями атак на 26% * 1.10 = 28,6

Максимальное качество 20%.

2. Фертильный катализатор

Fertile Catalyst добавляет качество, улучшающее свойства Life и Mana на кольце, амулете или поясе.

После добавления 20% качества есть несколько бонусов к жизни и мане:

  • Максимальный срок службы: 79 * 1,2 = 94,8
  • Максимум маны: 78 * 1,2 = 93,6
  • Скорость регенерации маны: 69% * 1,2 = 82.8
3. Встроенный катализатор

Imbued Catalyst добавляет качество, улучшающее Caster модификаторы на кольце, амулете или поясе. Модификаторы заклинателя включают следующие модификации:

  1. Большинство модификаторов заклинателя — это заклинаний связанных модификаторов, таких как урон от заклинаний, x заклинаний, поддерживаемый самоцветом заклинаний и т. Д.
  2. x% увеличение модификаторов урона от стихий: x% увеличение урона от холода, x% увеличение урона от огня, x% увеличение урона от молнии и x% увеличение урона хаосом.
  3. Cast Скорость и другие модификаторы каста.
  4. другие модификаторы заклинателя.

В первом примере, после добавления 5% качества, увеличение урона от чар: 24% * 1,05 = 25,2%

Во втором примере, после добавления 20% качества, для Кастера есть несколько бонусов:

  • Увеличение урона от чар: 4% * 1,2 = 4,8%
  • Повышенная скорость сотворения чар: 5% * 1,2 = 6%
4.Внутренний катализатор

Встроенный катализатор добавляет качество, которое улучшает модификаторы атрибута на кольце, амулете или поясе. Три основных атрибута — это сила, ловкость и интеллект.

После добавления 20% качества, есть несколько бонусов к атрибуту:

  • Все атрибуты: 9 * 1,2 = 10,8
  • Ловкость: 50 * 1,2 = 60
5. Призматический катализатор

Призматический катализатор добавляет качество, улучшающее модификаторы сопротивления на кольце, амулете или поясе.Сопротивление включает сопротивление огню, сопротивление холоду, сопротивление молнии и сопротивление хаосу.

После добавления 20% качества, есть некоторые бонусы к сопротивлению:

  • Сопротивление всем стихиям: 16% * 1,2 = 19,2%
  • Сопротивление молнии: 48% * 1,2 = 57,6%
6. Катализатор отпуска

Tempering Catalyst добавляет качество, улучшающее модификаторы Defense на кольце, амулете или поясе.Защита относится к броне, рейтингу уклонения и энергетическому щиту.

После добавления 3% качества, есть бонусы к Защите:

  • Максимальная энергопотребление: 45 * 1,03 = 46,35
  • Увеличение максимального энергетического щита: 10% * 1,03 = 10,3%

У вас может быть до 20% качества.

7. Турбулентный катализатор

Turbulent Catalyst добавляет качество, которое усиливает модификаторы Elemental Damage на кольце, амулете или поясе.Урон от стихий — это урон от огня, молнии и урон от холода вместе.

После добавления 20% качества есть несколько бонусов к урону от стихий:

  • Урон от стихий: 25% * 1,2 = 30%

Катализатор можно использовать только для кольца, амулета или пояса.

Максимальное качество 20%.

.

Автомобильный катализатор — что внутри и как работает ??? ⋆ КатОФф

Автомобильный катализатор — устройство, о котором большинство автолюбителей припоминают или узнают лишь в сервисном центре после выяснения, что указанный агрегат вышел из строя. 

Режим отвода газов выхлопа реагирует на большую концентрацию канцерогенного содержимого и успешно выводит его из автомобиля. Данная система имеет несколько частей, один из которых и есть автомобильный преобразователь. Эффективность работы устройства влияет на концентрацию выходящих в атмосферу выбросов.

Катализатор — важный фильтрующий компонент

Каталитический нейтрализатор (КН) отвечает за ликвидацию ядовитых соединений, находящихся в системе выхлопа автомобиля. Это, прежде всего, несгоревшие углеводороды, окись углерода CO, сажа, окись азота NO.

Главными функциями окислителя являются:

  • уменьшение дозы окиси углерода в выхлопе;
  • снижение количества углеводородов;
  • полная ликвидация оксидов азота из газов выхлопа.

Если пропорции топлива и кислорода будут стехиометрическими, то процедура уменьшения вредности отработанных газов станет предельно эффективной. Если очистка будет неполной и окись углерода не будет максимально выведена из выхлопа, то в атмосферу попадут угарные газы, опасные для человека. Продолжительное вдыхание таких веществ грозит летальным исходом.

Следующая угроза для здоровья, с которой неустанно сражается каталитический конвертер — углеводороды. Они являются ключевым компонентом смога. Слизистые оболочки человека восприимчивы к повышенным дозам оксидов азота, которые также в большом количестве содержатся в смоге. 

Благодаря имеющимся факторам о работе устройства, сложно перехвалить его значение. Ведь именно он является ключевым моментом автотранспортных средств, отвечающий за «чистоту» выбрасываемых в атмосферу газов. Продать катализатор на выгодных условиях с максимальной прибылью можно в компанию «Катализаторофф». Профессиональные услуги скупки всех видов отработанных окислителей и вежливое обслуживание — кредо нашей компании.

Устройство окислителя

Современные автомобили обладают тремя преобразователями одновременно. Эта система наиболее эффективна в борьбе с канцерогенными веществами. 

Первый агрегат — восстанавливающий нейтрализатор, необходимый для ликвидации ядовитых соединений. В нем присутствуют такие драгметаллы как: платина и родий.

Второй вид автомобильного устройства — выхлопной конвертер окислительного действия. В нем уже сочетаются платина и палладий. 

Ну и наконец, третий катализатор представляет собой сбалансированный способ регулирования газов выхлопа. Здесь происходит контролирование потока выхлопных газов. Данные, собранные в этом устройстве, позволяют влиять на систему впрыска топлива.

Если вам нужно продать исчерпавший свой ресурс катализатор по высокой цене, то в этом поможет компания «Катализаторофф» — профессионал на рынке таких услуг. Здесь лучшие условия сотрудничества как для физических лиц, так и для крупных компаний и сетей техобслуживания.

Кислородный прибор — он же лямбда-зонд подает информацию о количестве кислорода, имеющегося в выхлопном газе. Благодаря этому автомобильный компьютер может контролировать объем подаваемого воздуха к топливу.

Катализаторы можно продать не только испорченные, но и б/у по максимальным ценам. В этом вам поможем наша компания.

Внутренности каталитического конвертера

Внутри нейтрализатора могут быть керамические бусины или соты — два основных вида конструкции. Тем не менее, наиболее эффективен принцип соты. Устройство преобразователя имеет следующий вид:

  • подкладка — пористый материал с большой твердостью;
  • внешняя рубашка – выполняет роль увеличения площади для плановых металлов;
  • каталитическая основа может быть в виде следующих редких металлов — платина, палладий или родий.

Продать катализатор б/у — правильное решение, так как утилизация неисправного агрегата — забота о чистоте планеты. Каталитические конвертеры могут быть изготовлены из двух материалов: металл и керамика. Доступная цена на керамические устройства не исключает такого недостатка как повышенная ломкость. Для выхода из строя такого окислителя порой достаточно скачка автомобиля на ухабах или же попадание жидкости на разогретую керамику.

Если вам нужно продать старый катализатор б/у по отличным ценам — обращайтесь в «Катализаторофф». Здесь вы получите достойное вознаграждение-инвестицию для покупки нового окислителя.

Как работает катализатор

Катализатор — как правильно диагностировать его работу?


Каталитические реакторы или каталитические нейтрализаторы, так как это правильные названия катализаторов, используемых в настоящее время во всех вновь выпускаемых транспортных средствах, являются важным элементом системы выпуска отработавших газов.

бортовые мини погрузчики Bawoo

Задача катализатора состоит в том, чтобы уменьшить количество вредных веществ, попадающих в атмосферу из выхлопных газов, прежде всего, окиси углерода (CO), углеводородов (HC) и оксидов азота (NOx).


С КАКИХ ЭТО ПОР?


Правила, касающиеся контроля выхлопных газов, имеют почти 60-летнюю историю. Они были впервые введены в действующий закон США в 1960 году.

Также в Соединенных Штатах, в качестве одной из первых стран (к которой позже присоединились Япония и Европа), было введено не только обязательство использовать каталитические нейтрализаторы в выхлопных системах, но и была создана единая бортовая диагностическая система.

Последнее состояло в основном из контроля эффективности катализаторов, конечно, в очень ограниченном объеме для контроля выбросов вредных выхлопных соединений для тех времен.

ГДЕ ОН СОБРАН И КАК ОН РАБОТАЕТ?


Внешне каталитический нейтрализатор представляет собой жестяную коробку, напоминающую глушитель в выхлопной системе. Из-за материала, используемого для строительства, мы различаем два типа катализаторов: керамический с керамическим блоком и металлический с металлическим блоком.

Внутренние части блоков содержат большое количество каналов с сотовой структурой. Они покрыты слоем благородного металла: чаще всего это платина, но также собраны родиевые и палладиевые катализаторы. Драгоценные металлы вступают в химическую реакцию с токсичными компонентами, содержащимися в выхлопных газах, что приводит к их снижению.

HC, CO И NOX — ТОЛЬКО В БЕНЗИНЕ

Одним из наиболее часто используемых компонентов в автомобилях с бензиновым двигателем является трехкомпонентный катализатор TWC (от Трехстороннего катализатора). Название происходит от его работы, то есть одновременного восстановления оксидов азота (NOx) и окисления углеводородов (HC) и оксида углерода (CO). В свою очередь, в установках самовоспламенения используются реакторы, окисляющие только соединения НС и СО. Одновременное снижение NOx невозможно из-за того, что эти двигатели работают на плохих смесях.

КОГДА И КАК КОНТРОЛИРОВАТЬ?


Не все знают, что в транспортных средствах, изготовленных в первые годы 21-го века, эффективность каталитических реакторов не контролировалась бортовой диагностической системой. Как следствие, владелец может переместить автомобиль с неисправным устройством, не зная об этом факте.

Ситуация изменилась в январе 2005 года, когда вступили в силу правила Euro IV. Они ввели обязательство контролировать эффективность работы каталитического нейтрализатора с помощью бортовой системы автодиагностики. Когда эффективность каталитического нейтрализатора значительно снижается, водитель информируется о ситуации, загорая контрольную лампу MIL (индикатор неисправности) на комбинации приборов.

АВТОДИАГНОСТИКА — КАК ЭТО РАБОТАЕТ?


Два датчика, измеряющие содержание кислорода в выхлопных газах, используются для системы самодиагностики. Один из зондов расположен перед каталитическим реактором (управление некоторыми системами для уменьшения выбросов выхлопных газов и работы двигателя), другой — за каталитическим преобразователем (управление некоторыми системами для снижения выбросов, а также самого катализатора).

Когда каталитический нейтрализатор нагревается до рабочей температуры, датчик, расположенный за каталитическим реактором, должен поддерживать состояние напряжения около 0,8 В. Благодаря эффективному каталитическому нейтрализатору в выхлопных газах остается небольшое количество свободных молекул кислорода. Это нормальное явление, потому что кислород расходуется в каталитическом процессе для окисления вредных газов в безвредные газы.

Однако, если катализатор поврежден или, по крайней мере, значительно снижается его эффективность, зонд за катализатором будет показывать количество молекул кислорода, аналогичное количеству зонда перед катализатором. Как следствие, напряжение зонда за каталитическим нейтрализатором будет колебаться между 0,8 и 0,45 В, в зависимости от пропорций топливовоздушной смеси, контролируемой электронным блоком управления. Отклонения в работе от значений, хранящихся в памяти блока управления, приводят к тому, что соответствующий код ошибки сохраняется в памяти и вышеупомянутый индикатор MIL на комбинации приборов. в зависимости от пропорции топливовоздушной смеси регулируется электронным блоком управления. Отклонения в работе от значений, хранящихся в памяти блока управления, приводят к тому, что соответствующий код ошибки сохраняется в памяти и вышеупомянутый индикатор MIL на комбинации приборов. в зависимости от пропорции топливовоздушной смеси регулируется электронным блоком управления. Отклонения в работе от значений, хранящихся в памяти блока управления, приводят к тому, что соответствующий код ошибки сохраняется в памяти и вышеупомянутый индикатор MIL на комбинации приборов.

Принцип работы катализатора в автомобиле

На чтение 3 мин. Просмотров 1.1k.

Большинство автолюбителей даже не имеют представление о том, что такое автомобильный катализатор и в чем заключается принцип его работы. Именно поэтому сегодня мы попытаемся рассказать что это такое катализатор автомобильный.

Машины являются одним из самых крупных источников загрязнений атмосферы, так как они выбрасывают в атмосферу около 15 000 химических соединений, к которым относится газ и пыль. Компании по производству автомобилей постоянно стараются уменьшить количество вредных выбросов, именно это и привело к созданию автомобильного каталитического нейтрализатора системы выхлопа или как его еще называют катализатор.

Катализатор входит в состав выхлопной системы автомобиля и предназначается для понижения уровня выбросов вредоносных веществ вместе с продуктами горения.

Катализатор автомобильный

В представленной статье мы более подробно поговорим о катализаторе, а именно обсудим такие вопросы:

  • Что такое автомобильный катализатор?
  • Конструкция автомобильного катализатора;
  • В чем заключается принцип работы?
  • Распространенные поломки каталитического нейтрализатора, при которых необходима его полная замена;
  • Признаки неисправности, указывающие на то, что необходима замена;
  • Как правильно проводится замена каталитического нейтрализатора выхлопной системы?

Основная информация о каталитическом нейтрализаторе

Большинство автолюбителей даже не имеют представления о том, что такое автомобильный катализатор и в чем заключается принцип его работы. Именно поэтому сегодня мы попытаемся рассказать основную информацию о каталитическом нейтрализаторе. Итак, автомобильный нейтрализатор это элемент выхлопной системы транспортного средства, снижающий температуру выхлопных газов, очищающий выхлопные газы и обеспечивающий догорание топливной смеси.

Каталитический нейтрализатор используется на бензиновых и дизельных двигателях автомобиля. Представленное устройство чаще всего располагается за коллектором выпускной системы или же перед глушителями.

Схема катализатора автомобильного

Основными элементами катализатора являются: теплоизоляция, корпус и блок-носитель. На сегодняшний момент существует несколько видов нейтрализаторов, которые соответствуют разному содержанию выхлопных газов в автомобильном двигателе.

К основным типам автомобильного катализатора выхлопной системы относятся: восстановительный, окислительный и окислительно-восстановительный.

Для правильной замены каталитического нейтрализатора должны соблюдаться некие условия, для соблюдения этих условий применяется лямбда-зонд. Благодаря данному устройству посылается обновленная информация и регулируется состав топливной смеси.

Признаки неисправности, указывающие на то, что необходима замена

При нормальном функционировании катализатор ломается только после полного сгорания каталитического слоя. Такое формулирование даже не совсем правильно, так как он не ломается, а просто из-за уменьшения каталитического слоя он не может полностью сжигать выхлопные газы. То есть эффективность работы уменьшается, а токсичность продуктов горения повышается. Автомобильный катализатор достаточно редко выходит из строя, но все же каждый автолюбитель должен знать, как поступать в таком случае. Поэтому давайте рассмотрим, как проводится самостоятельная замена каталитического нейтрализатора.

Для начала давайте рассмотрим основные признаки неисправности каталитического нейтрализатора выхлопной системы:

  • Снизилась мощность автомобиля, это свидетельствует о том, что нейтрализатор забит.
  • Во время передвижения транспортного средства на холостых оборотах двигателя заметно плаванье стрелочки тахометра.
  • И выхлопной трубки чувствуется запах аммиака.

Итак, как же правильно проводится замена катализатора?

  1. Открутите болтики, закрепляющие устройство на дополнительном глушителе;
  2. Снимите болтики вместе с шайбой;
  3. Открутите болтики, которые закрепляют устройство на приемной трубке;
  4. Достаньте болтики вместе с пружинными шайбами;
  5. Достаньте устройство под днищем автомобиля;
  6. ПРоведите замену и соберите все в обратном порядке.

Как видите, замена катализатора системы выхлопа довольно проста и с ней сможет справиться даже не очень опытный автолюбитель. Обратите внимание на то, что в момент функционирования он может нагреваться до температуры около 600 градусов. Поэтому прежде чем перейти к замене катализатора дождитесь полного его охлаждения.

Как работают катализаторы?

Как работают катализаторы?

Чтобы подвести итог, см. «Разработка топлива»

  • В химической реакции связи, удерживающие реагенты вместе, должны быть сначала разорваны, прежде чем реакция может начаться.
  • Для разрыва связей требуется энергия, и энергия, необходимая для начала реакции, называется энергией активации
  • Катализаторы работают, обеспечивая альтернативный путь реакции для разрыва и восстановления связей. Энергия активации этого нового пути часто меньше, чем энергия активации нормального пути.
  • Итак, как работают катализаторы? Что ж, это действительно очень просто! Когда присутствует гомогенный катализатор, один из реагентов (субстрат) реагирует с катализатором, образуя промежуточный продукт. Промежуточный продукт затем вступает в реакцию с другим реагентом с образованием конечного продукта.
  • Энергия активации обеих этих стадий ниже, чем энергия активации без присутствия катализатора, поэтому большее количество молекул будет иметь энергию для реакции с использованием катализатора; следовательно скорость реакции увеличивается.
  • Возьмем, к примеру, реакцию между озоном и свободными радикалами кислорода с образованием ди-кислорода.
    O 3 (г) + O (г) 2O 2 (г)
  • Эта реакция имеет высокую энергию активации, поэтому процесс протекает с медленной скоростью.
  • Однако присутствие CFC в атмосфере катализирует эту реакцию с образованием промежуточных продуктов.
    Класс . г + O 3 (г) O 2 (г) + ClO . (г)

  • Эта реакция имеет более низкую энергию активации, чем реакция между озоном и свободными радикалами кислорода. Промежуточный продукт (ClO) затем вступает в реакцию со свободным кислородным радикалом.
    ClO (г) + O (г) Cl . (г) + O 2 (г)
  • Реагенты и продукты остаются прежними; однако хлор использовался в качестве катализатора для образования промежуточного продукта (требующего меньшей энергии активации).
  • Это значительно увеличивает скорость, а хлор остается неизменным и может продолжать катализировать другую реакцию.

Книг полезных для доработки:

Revise AS Chemistry for Salters (Написано опытными экзаменаторами и учителями химии Salter)
Revise AS Chemistry for Salters (OCR) (Продвинутая химия Salters) Главная

14.7: Катализ — Химия LibreTexts

Цели обучения

  • Чтобы понять, как катализаторы увеличивают скорость реакции и селективность химических реакций.

Катализаторы — это вещества, которые увеличивают скорость химической реакции, но не расходуются в процессе. Катализатор, следовательно, не входит в общую стехиометрию реакции, которую он катализирует, но он должен появляться по крайней мере в одной из элементарных реакций в механизме катализированной реакции. Катализированный путь имеет более низкое значение E a , но чистое изменение энергии, возникающее в результате реакции (разница между энергией реагентов и энергией продуктов), не зависит от присутствия катализатора ( Рисунок \ (\ PageIndex {1} \)).Тем не менее, из-за более низкого значения E a скорость реакции катализированной реакции выше, чем скорость реакции некаталитической реакции при той же температуре. Поскольку катализатор уменьшает высоту энергетического барьера, его присутствие увеличивает скорость как прямой, так и обратной реакции на одинаковую величину. В этом разделе мы рассмотрим три основных класса катализаторов: гетерогенные катализаторы, гомогенные катализаторы и ферменты.

Рисунок \ (\ PageIndex {1} \): Снижение энергии активации реакции катализатором.На этом графике сравниваются диаграммы потенциальной энергии для одностадийной реакции в присутствии и в отсутствие катализатора. Единственный эффект катализатора — снижение энергии активации реакции. Катализатор не влияет на энергию реагентов или продуктов (и, следовательно, не влияет на ΔE). (CC BY-NC-SA; анонимно)

Катализатор влияет на E a , а не на Δ E .

Гетерогенный катализ

В гетерогенном катализе катализатор находится в фазе, отличной от фазы реагентов.По крайней мере, один из реагентов взаимодействует с твердой поверхностью в физическом процессе, называемом адсорбцией, таким образом, что химическая связь в реагенте становится слабой, а затем разрывается. Яды — это вещества, которые необратимо связываются с катализаторами, предотвращая адсорбцию реагентов и, таким образом, снижая или разрушая эффективность катализатора.

Примером гетерогенного катализа является взаимодействие газообразного водорода с поверхностью металла, такого как Ni, Pd или Pt. Как показано в части (а) на рисунке \ (\ PageIndex {2} \), водородно-водородные связи разрываются и образуют отдельные адсорбированные атомы водорода на поверхности металла.Поскольку адсорбированные атомы могут перемещаться по поверхности, два атома водорода могут сталкиваться и образовывать молекулу газообразного водорода, которая затем может покинуть поверхность в обратном процессе, называемом десорбцией. Адсорбированные атомы H на поверхности металла значительно более активны, чем молекулы водорода. Поскольку относительно прочная связь H – H (энергия диссоциации = 432 кДж / моль) уже разорвана, энергетический барьер для большинства реакций H 2 на поверхности катализатора существенно ниже.

Рисунок \ (\ PageIndex {2} \): Гидрирование этилена на гетерогенном катализаторе.Когда молекула водорода адсорбируется на поверхности катализатора, связь H – H разрывается, и образуются новые связи M – H. Отдельные атомы H более реакционноспособны, чем газообразный H 2 . Когда молекула этилена взаимодействует с поверхностью катализатора, она вступает в ступенчатую реакцию с атомами H с образованием этана, который высвобождается. (CC BY-NC-SA; анонимно)

На рисунке \ (\ PageIndex {2} \) показан процесс, называемый гидрогенизацией , в котором атомы водорода добавляются к двойной связи алкена, такого как этилен, для получения продукт, содержащий одинарные связи C – C, в данном случае этан.Гидрирование используется в пищевой промышленности для преобразования растительных масел, которые состоят из длинных цепочек алкенов, в более коммерчески ценные твердые производные, содержащие алкильные цепи. Гидрирование некоторых двойных связей в полиненасыщенных растительных маслах, например, дает маргарин, продукт с температурой плавления, текстурой и другими физическими свойствами, аналогичными свойствам сливочного масла.

Несколько важных примеров промышленных гетерогенных каталитических реакций приведены в Таблице \ (\ PageIndex {1} \).Хотя механизмы этих реакций значительно сложнее описанной здесь простой реакции гидрирования, все они включают адсорбцию реагентов на твердой каталитической поверхности, химическую реакцию адсорбированных частиц (иногда через ряд промежуточных частиц) и, наконец, десорбцию. изделий с поверхности.

Таблица \ (\ PageIndex {1} \): Некоторые коммерчески важные реакции с использованием гетерогенных катализаторов
Коммерческий процесс Катализатор Начальная реакция Конечный коммерческий продукт
контактный процесс V 2 O 5 или Pt 2SO 2 + O 2 → 2SO 3 H 2 SO 4
Процесс Хабера Fe, K 2 O, Al 2 O 3 N 2 + 3H 2 → 2NH 3 NH 3
процесс Оствальда Pt и Rh 4NH 3 + 5O 2 → 4NO + 6H 2 O HNO 3
реакция конверсии вода-газ Fe, Cr 2 O 3 или Cu CO + H 2 O → CO 2 + H 2 H 2 для NH 3 , CH 3 OH и других видов топлива
паровой риформинг Ni CH 4 + H 2 O → CO + 3H 2 H 2
синтез метанола ZnO и Cr 2 O 3 CO + 2H 2 → CH 3 OH СН 3 ОН
Процесс Sohio фосфомолибдат висмута \ (\ mathrm {CH} _2 \ textrm {= CHCH} _3 + \ mathrm {NH_3} + \ mathrm {\ frac {3} {2} O_2} \ rightarrow \ mathrm {CH_2} \ textrm {= CHCN} + \ mathrm {3H_2O} \) \ (\ underset {\ textrm {акрилонитрил}} {\ mathrm {CH_2} \ textrm {= CHCN}} \)
каталитическое гидрирование Ni, Pd или Pt RCH = CHR ′ + h3 → RCH 2 -CH 2 R ′ частично гидрогенизированные масла для маргарина и т. Д.

Гомогенный катализ

В гомогенном катализе катализатор находится в той же фазе, что и реагент (ы).Число столкновений между реагентами и катализатором максимально, поскольку катализатор равномерно диспергирован по всей реакционной смеси. Многие гомогенные катализаторы в промышленности представляют собой соединения переходных металлов (Таблица \ (\ PageIndex {2} \)), но извлечение этих дорогостоящих катализаторов из раствора было серьезной проблемой. В качестве дополнительного барьера к их широкому коммерческому использованию многие гомогенные катализаторы можно использовать только при относительно низких температурах, и даже в этом случае они имеют тенденцию медленно разлагаться в растворе.Несмотря на эти проблемы, в последние годы был разработан ряд коммерчески жизнеспособных процессов. Полиэтилен высокой плотности и полипропилен производятся методом гомогенного катализа.

Таблица \ (\ PageIndex {2} \): Некоторые коммерчески важные реакции с использованием гомогенных катализаторов
Коммерческий процесс Катализатор Реагенты Конечный продукт
Union Carbide [Rh (CO) 2 I 2 ] CO + CH 3 OH CH 3 CO 2 H
гидропероксидный процесс Комплексы Mo (VI) CH 3 CH = CH 2 + R – O – O – H
гидроформилирование Rh / PR 3 комплексы RCH = CH 2 + CO + H 2 RCH 2 CH 2 CHO
адипонитрил процесс Ni / PR 3 Комплексы 2HCN + CH 2 = CHCH = CH 2 NCCH 2 CH 2 CH 2 CH 2 CN, используемый для синтеза нейлона
полимеризация олефинов (RC 5 H 5 ) 2 ZrCl 2 канал 2 = канал 2 — (CH 2 CH 2 -) n : полиэтилен высокой плотности

Ферменты

Ферменты, катализаторы, встречающиеся в природе в живых организмах, представляют собой почти все белковые молекулы с типичной молекулярной массой 20 000–100 000 а.е.м.Некоторые из них представляют собой гомогенные катализаторы, которые вступают в реакцию в водном растворе в клеточном отделении организма. Другие представляют собой гетерогенные катализаторы, встроенные в мембраны, которые отделяют клетки и клеточные компартменты от их окружения. Реагент в реакции, катализируемой ферментами, называется субстратом .

Поскольку ферменты могут увеличивать скорость реакции в огромных количествах (до 10 17 раз по сравнению с некаталитической скоростью) и имеют тенденцию быть очень специфичными, обычно производя только один продукт с количественным выходом, они являются предметом активных исследований.В то же время ферменты обычно дороги в получении, они часто перестают функционировать при температурах выше 37 ° C, имеют ограниченную стабильность в растворе и обладают такой высокой специфичностью, что ограничиваются превращением одного конкретного набора реагентов в один конкретный продукт. . Это означает, что для химически подобных реакций необходимо разрабатывать отдельные процессы с использованием разных ферментов, что отнимает много времени и является дорогостоящим. К настоящему времени ферменты нашли лишь ограниченное промышленное применение, хотя они используются в качестве ингредиентов в моющих средствах для стирки, средствах для чистки контактных линз и размягчителях мяса.Ферменты в этих приложениях, как правило, представляют собой протеазы, которые способны расщеплять амидные связи, удерживающие вместе аминокислоты в белках. Например, размягчители мяса содержат протеазу, называемую папаином, которую выделяют из сока папайи. Он расщепляет некоторые длинные волокнистые белковые молекулы, которые делают недорогие нарезы говядины жесткими, в результате чего получается более нежный кусок мяса. Некоторые насекомые, такие как жук-бомбадир, несут фермент, способный катализировать разложение перекиси водорода до воды (рис. \ (\ PageIndex {3} \)).

Рисунок \ (\ PageIndex {3} \): механизм каталитической защиты. Обжигающий спрей с неприятным запахом, выделяемый этим жуком-бомбардиром, образуется в результате каталитического разложения \ (\ ce {h3O2} \).

Ингибиторы ферментов вызывают снижение скорости реакции, катализируемой ферментами, путем связывания с определенной частью фермента и, таким образом, замедления или предотвращения реакции. Поэтому необратимые ингибиторы являются эквивалентом ядов в гетерогенном катализе. Одним из старейших и наиболее широко используемых коммерческих ингибиторов ферментов является аспирин, который избирательно подавляет один из ферментов, участвующих в синтезе молекул, вызывающих воспаление.Создание и синтез родственных молекул, более эффективных, более селективных и менее токсичных, чем аспирин, являются важными задачами биомедицинских исследований.

Сводка

Катализаторы участвуют в химической реакции и увеличивают ее скорость. Они не входят в общее уравнение реакции и не расходуются во время реакции. Катализаторы позволяют реакции протекать по пути, который имеет более низкую энергию активации, чем некаталитическая реакция. При гетерогенном катализе катализаторы обеспечивают поверхность, с которой реагенты связываются в процессе адсорбции.При гомогенном катализе катализаторы находятся в той же фазе, что и реагенты. Ферменты — это биологические катализаторы, которые приводят к значительному увеличению скорости реакции и имеют тенденцию быть специфичными для определенных реагентов и продуктов. Реагент в реакции, катализируемой ферментами, называется субстратом. Ингибиторы ферментов вызывают снижение скорости реакции, катализируемой ферментами.

Катализаторы — Скорость реакции — Edexcel — GCSE Combined Science Revision — Edexcel

Катализатор — это вещество, которое:

  • увеличивает скорость реакции
  • не изменяет продукты реакции
  • не изменяется химически и в масса в конце реакции

Для увеличения скорости реакции требуется очень небольшая масса катализатора.Однако не все реакции имеют подходящие катализаторы.

Катализаторы влияют только на скорость реакции — они не влияют на выход реакции. Катализированная реакция дает то же количество продукта, что и некаталитическая реакция, но дает продукт с большей скоростью.

Различные вещества катализируют разные реакции. В таблице описаны три распространенных катализатора.

991) Диоксид марганца
Катализатор Катализируемая реакция
Железо Процесс Габера (получение аммиака)
Оксид ванадия (V) Контактный процесс (стадия Разложение перекиси водорода (образует воду и кислород)

Обратите внимание, что эти катализаторы представляют собой переходные металлы или соединения переходных металлов.

Как работают катализаторы

Катализатор обеспечивает альтернативный путь реакции, который имеет более низкую энергию активации, чем некаталитическая реакция. Это не меняет частоту столкновений. Однако это увеличивает частоту успешных столкновений, потому что большая часть столкновений теперь превышает эту более низкую энергию активации.

Влияние катализатора на энергию активации показано на диаграмме, которая называется профилем реакции. Это показывает, как изменяется энергия реагентов и продуктов во время реакции.

Профиль реакции для реакции с катализатором и без него

Ферменты

Фермент — это биологический катализатор. Ферменты важны для контроля реакций в клетках. Они также важны в промышленности. Использование ферментов позволяет некоторым промышленным реакциям происходить при более низких температурах и давлениях, чем это обычно требуется.

Дрожжи — одноклеточный гриб. Ферменты дрожжей используются для производства вина, пива и других алкогольных напитков путем ферментации сахаров.

Катализ

14.8 Катализ

Цель обучения

  1. Чтобы понять, как катализаторы увеличивают скорость реакции и селективность химических реакций.

Глава 3 «Химические реакции» описывает катализаторы: вещество, которое участвует в реакции и заставляет ее протекать быстрее, но которое может быть восстановлено без изменений в конце реакции и повторно использовано. Катализаторы также могут контролировать, какие продукты образуются в реакции.как вещества, которые увеличивают скорость химической реакции, но не расходуются в процессе. Катализатор, следовательно, не входит в общую стехиометрию реакции, которую он катализирует, но он должен появляться по крайней мере в одной из элементарных реакций в механизме катализированной реакции. Катализированный путь имеет более низкое значение E a , но чистое изменение энергии , являющееся результатом реакции (разница между энергией реагентов и энергией продуктов), составляет , а не , на которое влияет присутствие катализатора (рисунок 14.26 «Понижение энергии активации реакции катализатором»). Тем не менее, из-за более низкого значения E a скорость реакции катализированной реакции выше, чем скорость реакции некаталитической реакции при той же температуре. Поскольку катализатор уменьшает высоту энергетического барьера, его присутствие увеличивает скорость реакции на и на прямую и на на обратную на одинаковую величину. В этом разделе мы рассмотрим три основных класса катализаторов: гетерогенные катализаторы, гомогенные катализаторы , и ферменты , .

Обратите внимание на узор

Катализатор влияет на E a , а не на Δ E .

Рисунок 14.26. Снижение энергии активации реакции катализатором

На этом графике сравниваются диаграммы потенциальной энергии для одностадийной реакции в присутствии и в отсутствие катализатора. Единственный эффект катализатора — снижение энергии активации реакции. Катализатор не влияет на энергию реагентов или продуктов (и, следовательно, не влияет на Δ E ).

Гетерогенный катализ

При гетерогенном катализе Каталитическая реакция, в которой катализатор находится в фазе, отличной от фазы реагентов, катализатор находится в фазе, отличной от фазы реагентов. По крайней мере, один из реагентов взаимодействует с твердой поверхностью в физическом процессе, называемом адсорбцией , таким образом, что химическая связь в реагенте становится слабой, а затем разрывается. Яды — это вещества, которые необратимо связываются с катализаторами, предотвращая адсорбцию реагентов и, таким образом, снижая или разрушая эффективность катализатора.

Примером гетерогенного катализа является взаимодействие газообразного водорода с поверхностью металла, такого как Ni, Pd или Pt. Как показано в части (а) на рисунке 14.27 «Гидрирование этилена на гетерогенном катализаторе», водородно-водородные связи разрываются и образуют отдельные адсорбированные атомы водорода на поверхности металла. Поскольку адсорбированные атомы могут перемещаться по поверхности, два атома водорода могут сталкиваться и образовывать молекулу газообразного водорода, которая затем может покинуть поверхность в обратном процессе, называемом десорбцией .Адсорбированные атомы H на поверхности металла значительно более активны, чем молекулы водорода. Поскольку относительно прочная связь H – H (энергия диссоциации = 432 кДж / моль) уже разорвана, энергетический барьер для большинства реакций H 2 на поверхности катализатора существенно ниже.

Рисунок 14.27. Гидрирование этилена на гетерогенном катализаторе

Когда молекула водорода адсорбируется на поверхности катализатора, связь H – H разрывается, и образуются новые связи M – H.Отдельные атомы H более реакционноспособны, чем газообразный H 2 . Когда молекула этилена взаимодействует с поверхностью катализатора, она вступает в ступенчатую реакцию с атомами H с образованием этана, который высвобождается.

На рисунке 14.27 «Гидрирование этилена на гетерогенном катализаторе» показан процесс, называемый гидрирование , в котором атомы водорода добавляются к двойной связи алкена, такого как этилен, с получением продукта, содержащего одинарные связи C – C, в данном случае этан.Гидрирование используется в пищевой промышленности для преобразования растительных масел, которые состоят из длинных цепочек алкенов, в более коммерчески ценные твердые производные, содержащие алкильные цепи. Гидрирование некоторых двойных связей в полиненасыщенных растительных маслах, например, дает маргарин, продукт с температурой плавления, текстурой и другими физическими свойствами, аналогичными свойствам сливочного масла.

Несколько важных примеров промышленных гетерогенных каталитических реакций приведены в таблице 14.8 «Некоторые коммерчески важные реакции с использованием гетерогенных катализаторов». Хотя механизмы этих реакций значительно сложнее описанной здесь простой реакции гидрирования, все они включают адсорбцию реагентов на твердой каталитической поверхности, химическую реакцию адсорбированных частиц (иногда через ряд промежуточных частиц) и, наконец, десорбцию. изделий с поверхности.

Таблица 14.8 Некоторые коммерчески важные реакции с использованием гетерогенных катализаторов

Коммерческий процесс Катализатор Начальная реакция Конечный коммерческий продукт
контактный процесс V 2 O 5 или Pt 2SO 2 + O 2 → 2SO 3 H 2 SO 4
Процесс Хабера Fe, K 2 O, Al 2 O 3 N 2 + 3H 2 → 2NH 3 NH 3
процесс Оствальда Pt и Rh 4NH 3 + 5O 2 → 4NO + 6H 2 O HNO 3
реакция конверсии вода-газ Fe, Cr 2 O 3 или Cu CO + H 2 O → CO 2 + H 2 H 2 для NH 3 , CH 3 OH и других видов топлива
паровой риформинг Ni CH 4 + H 2 O → CO + 3H 2 H 2
синтез метанола ZnO и Cr 2 O 3 CO + 2H 2 → CH 3 OH СН 3 ОН
Процесс Sohio фосфомолибдат висмута Ch3 = CHCh4 + Nh4 + 32O2 → Ch3 = CHCN + 3h3O Ch3 = CHCNacrylonitrile
каталитическое гидрирование Ni, Pd или Pt RCH = CHR ′ + H 2 → RCH 2 -CH 2 R ′ частично гидрогенизированные масла для маргарина и т. Д.

Гомогенный катализ

В гомогенном катализе Каталитическая реакция, в которой катализатор равномерно диспергирован по смеси реагентов с образованием раствора., катализатор находится в той же фазе, что и реагент (ы). Число столкновений между реагентами и катализатором максимально, поскольку катализатор равномерно диспергирован по всей реакционной смеси. Многие гомогенные катализаторы в промышленности представляют собой соединения переходных металлов (таблица 14.9 «Некоторые коммерчески важные реакции, в которых используются гомогенные катализаторы»), но извлечение этих дорогостоящих катализаторов из раствора было серьезной проблемой. В качестве дополнительного барьера к их широкому коммерческому использованию многие гомогенные катализаторы можно использовать только при относительно низких температурах, и даже в этом случае они имеют тенденцию медленно разлагаться в растворе.Несмотря на эти проблемы, в последние годы был разработан ряд коммерчески жизнеспособных процессов. Полиэтилен высокой плотности и полипропилен производятся методом гомогенного катализа.

Таблица 14.9 Некоторые коммерчески важные реакции с использованием гомогенных катализаторов

Коммерческий процесс Катализатор Реагенты Конечный продукт
Union Carbide [Rh (CO) 2 I 2 ] CO + CH 3 OH CH 3 CO 2 H
гидропероксидный процесс Комплексы Mo (VI) CH 3 CH = CH 2 + R – O – O – H

гидроформилирование Rh / PR 3 комплексы RCH = CH 2 + CO + H 2 RCH 2 CH 2 CHO
адипонитрил процесс Ni / PR 3 Комплексы 2HCN + CH 2 = CHCH = CH 2 NCCH 2 CH 2 CH 2 CH 2 CN, используемый для синтеза нейлона
полимеризация олефинов (RC 5 H 5 ) 2 ZrCl 2 CH 2 = CH 2 — (CH 2 CH 2 -) n : полиэтилен высокой плотности

Ферменты

Ферменты , катализаторы, встречающиеся в природе в живых организмах, представляют собой почти все белковые молекулы с типичной молекулярной массой 20 000–100 000 а.е.м.Некоторые из них представляют собой гомогенные катализаторы, которые вступают в реакцию в водном растворе в клеточном отделении организма. Другие представляют собой гетерогенные катализаторы, встроенные в мембраны, которые отделяют клетки и клеточные компартменты от их окружения. Реагент в реакции, катализируемой ферментами, называется субстратом Реагент в реакции, катализируемой ферментами ..

Поскольку ферменты могут увеличивать скорость реакции в огромных количествах (до 10 17 раз по сравнению с некаталитической скоростью) и имеют тенденцию быть очень специфичными, обычно производя только один продукт с количественным выходом, они являются предметом активных исследований.В то же время ферменты обычно дороги в получении, они часто перестают функционировать при температурах выше 37 ° C, имеют ограниченную стабильность в растворе и обладают такой высокой специфичностью, что ограничиваются превращением одного конкретного набора реагентов в один конкретный продукт. . Это означает, что для химически подобных реакций необходимо разрабатывать отдельные процессы с использованием разных ферментов, что отнимает много времени и является дорогостоящим. К настоящему времени ферменты нашли лишь ограниченное промышленное применение, хотя они используются в качестве ингредиентов в моющих средствах для стирки, средствах для чистки контактных линз и размягчителях мяса.Ферменты в этих приложениях, как правило, представляют собой протеазы , которые способны расщеплять амидные связи, удерживающие вместе аминокислоты в белках. Например, размягчители мяса содержат протеазу, называемую папаином, которую выделяют из сока папайи. Он расщепляет некоторые длинные волокнистые белковые молекулы, которые делают недорогие нарезы говядины жесткими, в результате чего получается более нежный кусок мяса. Некоторые насекомые, такие как жук-бомбадир, несут фермент, способный катализировать разложение перекиси водорода до воды (Рисунок 14.28 «Механизм каталитической защиты»).

Ингибиторы ферментов: Вещества, которые снижают скорость реакции, катализируемой ферментами, путем связывания с определенной частью фермента, таким образом замедляя или предотвращая возникновение реакции. вызывают снижение скорости реакции, катализируемой ферментом, путем связывания с определенной частью фермента и, таким образом, замедления или предотвращения реакции. Поэтому необратимые ингибиторы являются эквивалентом ядов в гетерогенном катализе.Одним из старейших и наиболее широко используемых коммерческих ингибиторов ферментов является аспирин, который избирательно подавляет один из ферментов, участвующих в синтезе молекул, вызывающих воспаление. Создание и синтез родственных молекул, более эффективных, более селективных и менее токсичных, чем аспирин, являются важными задачами биомедицинских исследований.

Рисунок 14.28. Механизм каталитической защиты

Обжигающий спрей с неприятным запахом, исходящий от этого жука-бомбардира, образуется в результате каталитического разложения H 2 O 2 .

Резюме

Катализаторы участвуют в химической реакции и увеличивают ее скорость. Они не входят в общее уравнение реакции и не расходуются во время реакции. Катализаторы позволяют реакции протекать по пути, который имеет более низкую энергию активации, чем некаталитическая реакция. В гетерогенном катализе катализаторы обеспечивают поверхность, с которой реагенты связываются в процессе адсорбции. В гомогенном катализе катализаторы находятся в той же фазе, что и реагенты. Ферменты — это биологические катализаторы, которые приводят к значительному увеличению скорости реакции и имеют тенденцию быть специфичными для определенных реагентов и продуктов. Реагент в реакции, катализируемой ферментами, называется субстратом . Ингибиторы ферментов вызывают снижение скорости реакции, катализируемой ферментами.

Key Takeaway

  • Катализаторы позволяют реакции протекать по пути, который имеет более низкую энергию активации.

Концептуальные проблемы

  1. Как катализатор влияет на энергию активации реакции? Как это влияет на частотный фактор ( A )? Как это влияет на изменение потенциальной энергии реакции?

  2. Как можно повлиять на распределение продуктов реакции с помощью катализатора?

  3. Гетерогенный катализатор работает путем взаимодействия с реагентом в процессе, называемом адсорбцией .Что происходит во время этого процесса? Объясните, как это может снизить энергию активации.

  4. Как влияет увеличение площади поверхности гетерогенного катализатора на реакцию? Влияет ли увеличение площади поверхности на энергию активации? Поясните свой ответ.

  5. Определите различия между гетерогенным катализатором и гомогенным катализатором с точки зрения следующего.

    1. простота восстановления
    2. частота столкновений
    3. температурная чувствительность
    4. стоимость
  6. Область интенсивных химических исследований включает разработку гомогенных катализаторов, хотя гомогенные катализаторы обычно имеют ряд эксплуатационных трудностей.Предложите одну или две причины, по которым может быть предпочтительнее гомогенный катализатор.

  7. Рассмотрим следующую реакцию между ионами церия (IV) и таллия (I):

    2Ce 4+ + Tl + → 2Ce 3+ + Tl 3+

    Эта реакция протекает медленно, но Mn 2+ катализирует ее, как показано в следующем механизме:

    Ce 4+ + Mn 2+ → Ce 3+ + Mn 3+ Ce 4+ + Mn 3+ → Ce 3+ + Mn 4+ Mn 4+ + Tl + → Tl 3+ + Mn 2+

    Каким образом Mn 2+ увеличивает скорость реакции?

  8. В тексте указывается несколько факторов, ограничивающих промышленное применение ферментов.Тем не менее, существует большой интерес к пониманию того, как работают ферменты, для создания катализаторов для промышленного применения. Почему?

  9. Большинство ферментов имеют оптимальный диапазон pH; однако следует соблюдать осторожность при определении влияния pH на активность ферментов. Снижение активности может быть связано с влиянием изменений pH на группы в каталитическом центре или с воздействием на группы, расположенные в другом месте фермента.Оба примера наблюдаются в химотрипсине, пищеварительном ферменте, который является протеазой, гидролизующей полипептидные цепи. Объясните, как изменение pH может повлиять на каталитическую активность из-за (а) эффектов в каталитическом центре и (б) эффектов в других частях фермента. ( Подсказка : помните, что ферменты состоят из функциональных аминокислот.)

Ответы

  1. Катализатор снижает энергию активации реакции.Некоторые катализаторы также могут ориентировать реагенты и тем самым увеличивать частотный фактор. Катализаторы не влияют на изменение потенциальной энергии реакции.

  2. При адсорбции реагент плотно связывается с поверхностью. Поскольку межмолекулярные взаимодействия между поверхностью и реагентом ослабляют или разрывают связи в реагенте, его реакционная способность увеличивается, а энергия активации реакции часто снижается.

    1. Гетерогенные катализаторы легче восстановить.
    2. Частота столкновений больше для гомогенных катализаторов.
    3. Гомогенные катализаторы часто более чувствительны к температуре.
    4. Гомогенные катализаторы часто дороже.
  3. Ион Mn 2+ отдает два электрона Ce 4+ по одному, а затем принимает два электрона от Tl + . Поскольку Mn может существовать в трех степенях окисления, разделенных одним электроном, он способен связывать одноэлектронные и двухэлектронные реакции переноса.

Числовые задачи

  1. В какой-то момент во время ферментативной реакции концентрация активированного комплекса, называемого комплексом фермент-субстрат (ES), и других промежуточных продуктов, участвующих в реакции, почти постоянна.Когда задействован единственный субстрат, реакция может быть представлена ​​следующей последовательностью уравнений:

    фермент (E) + субстрат (S) ⇌ фермент-субстратный комплекс (ES) ⇌ фермент (E) + продукт (P)

    Это также может быть показано следующим образом:

    E + S⇌k − 1k1ES⇌k − 2k2E + P

    Используя молярные концентрации и константы скорости, запишите выражение для скорости исчезновения комплекса фермент-субстрат.Обычно концентрации ферментов невелики, а концентрации субстрата высоки. Если бы вы определяли закон скорости, варьируя концентрацию субстрата в этих условиях, каков был бы ваш очевидный порядок реакции?

  2. Было обнаружено, что конкретная реакция протекает по следующему механизму:

    А + В → С + D 2C → E E + A → 3B + F

    Какова общая реакция? Является ли эта реакция каталитической, и если да, то какой вид катализатора? Определите промежуточные звенья.

  3. У конкретной реакции есть два доступных пути (A и B), каждый из которых способствует превращению X в другой продукт ( Y и Z , соответственно). В некаталитических условиях путь A предпочтителен, но в присутствии катализатора путь B предпочтителен. Путь B обратим, а путь A — нет. Какой продукт предпочтительнее в присутствии катализатора? без катализатора? Нарисуйте диаграмму, показывающую, что происходит с катализатором и без него.

  4. Кинетику реакции, катализируемой ферментами, можно проанализировать, построив график зависимости скорости реакции от концентрации субстрата. Этот тип анализа называется лечением Михаэлиса – Ментен. При низких концентрациях субстрата график показывает поведение, характерное для кинетики первого порядка, но при очень высоких концентрациях субстрата поведение показывает кинетику нулевого порядка.Объясните этот феномен.

Ответы

  1. Δ [ES] Δt = — (k2 + k − 1) [ES] + k1 [E] [S] + k − 2 [E] [P] ≈0; нулевой порядок в подложке.

  2. В обоих случаях предпочтение отдается продукту пути А.Все Z , произведенные по катализированному обратимому пути B, в конечном итоге будут преобразованы в X , поскольку X необратимо преобразуются в Y по пути A.

    Z⇌BX → AY

Новая теория показывает, как деформация улучшает катализаторы

Push and pull: Исследователи из Университета Брауна показали, что влияние внешнего напряжения на катализатор зависит от внутреннего напряжения, вызываемого химическими реагентами.Эта новая теоретическая основа может быть полезна при оптимизации катализаторов для различных реакций. Лаборатория Петерсона / Университет Брауна

PROVIDENCE, R.I. [Университет Брауна] — Исследователи из Университета Брауна разработали новую теорию, объясняющую, почему растяжение или сжатие металлических катализаторов может улучшить их работу. Теория, описанная в журнале Nature Catalysis, может открыть новые возможности для разработки новых катализаторов с новыми возможностями.

Катализаторы — это вещества, ускоряющие химические реакции.Подавляющее большинство промышленного катализа включает твердые поверхности, часто металлы, которые катализируют реакции в жидкостях или газах. Каталитический нейтрализатор на автомобиле, например, использует металлические катализаторы для удаления токсинов из выхлопных газов. Также есть интерес к использованию металлических катализаторов для превращения диоксида углерода в топливо, изготовления удобрений из атмосферного азота и стимулирования реакций в автомобилях с топливными элементами.

Исследования последних лет показали, что приложение деформации к металлическим катализаторам — сжатие или растяжение — может в некоторых случаях изменить способ их работы.

«Штамм — действительно актуальная тема для катализа прямо сейчас», — сказал Эндрю Петерсон, доцент инженерной школы Брауна и соавтор исследования. «Мы начинаем видеть вещи, происходящие в напряжении, которые нелегко объяснить традиционной теорией работы катализаторов. Это заставило нас задуматься об альтернативной структуре для этого вопроса ».

Металлический катализатор работает, заставляя реагенты связываться с его поверхностью, процесс, известный как адсорбция. Адсорбция разрывает химические связи молекул реагентов, позволяя различным стадиям химической реакции протекать на поверхности металла.После завершения стадий реакции конечный продукт выделяется из катализатора посредством обратного процесса, называемого десорбцией.

Ключевым свойством катализатора является его реакционная способность, означающая, насколько прочно он связывает химические молекулы со своей поверхностью. Катализаторы должны быть в некоторой степени реактивными, чтобы произошло связывание, но не слишком реактивными. Слишком высокая реакционная способность приводит к тому, что катализатор слишком плотно удерживает молекулы, что может затруднить некоторые стадии реакции или сделать так, что конечные продукты не смогут десорбироваться.

В последние годы было показано, что приложение напряжения к катализатору может регулировать его реакционную способность, и существует хорошо обоснованная теория того, как он работает. Вообще говоря, теория предсказывает, что деформация растяжения должна увеличивать реактивность, а сжатие — уменьшать ее. Однако Петерсон и его группа продолжали сталкиваться с системами, которые нелегко объяснить с помощью теории.

Это заставило исследователей задуматься о новом взгляде на проблему. Традиционная теория описывает вещи на уровне электронов и электронных зон.Новая теория немного уменьшает масштаб, вместо этого сосредотачиваясь на механике взаимодействия молекул с атомной решеткой катализатора.

Петерсон и его команда показали, что молекулы, связанные с поверхностью катализатора, будут стремиться либо раздвигать атомы в решетке, либо сближать их, в зависимости от характеристик молекул и мест связывания. Различные силы, создаваемые молекулами, имеют интересные последствия для того, как внешняя деформация должна влиять на реактивность катализатора.Это предполагает, что натяжение, которое растягивает атомную решетку катализатора, должно сделать катализатор более реактивным по отношению к молекулам, которые естественным образом хотят раздвинуть решетку. В то же время натяжение должно снизить реакционную способность молекул, которые хотят стянуть решетку вместе. Сжатие — сжатие решетки — имеет обратный эффект.

Новая теория не только помогает объяснить ранее озадачивающие результаты, но и делает новые важные прогнозы. В частности, он предсказывает способ разрушения традиционных масштабных соотношений между катализаторами и различными типами молекул.

«Соотношения масштабирования означают, что при нормальных обстоятельствах, когда вы увеличиваете реакционную способность катализатора для одного химического вещества, это увеличивает реакционную способность также и для других химикатов», — сказал Петерсон. «Точно так же, если вы уменьшите реактивность для одного химического вещества, вы уменьшите ее для других».

Эти отношения масштабирования приводят к трудным компромиссам при попытке оптимизировать катализатор. Получение идеальной реакционной способности для одного химического вещества может привести к тому, что другое химическое вещество будет связываться слишком сильно (или слишком слабо), потенциально ингибируя некоторые стадии реакции.Но эта новая теория предполагает, что деформация может нарушить эти масштабные соотношения, позволяя катализатору одновременно связывать одно химическое вещество более плотно, а другое — более свободно, в зависимости от естественного взаимодействия химического вещества с атомной решеткой катализатора и способа создания поля деформации на поверхности. поверхность катализатора.

«Теперь вы можете начать думать о действительно тонкой настройке катализаторов, чтобы они лучше работали на разных стадиях реакции», — сказал Петерсон. «Это может значительно улучшить характеристики катализатора, в зависимости от используемых химикатов.”

Команда Петерсона начала составлять базу данных по химическим веществам, часто используемым в реакции, и их взаимодействиям с различными поверхностями катализаторов. Эта база данных может служить руководством для поиска реакций, которые могут выиграть от напряжения и нарушения масштабных соотношений.

Тем временем Петерсон надеется, что проделанная ими работа предоставит этому сообществу катализаторов новый взгляд на напряжение.

«Мы пытаемся дать структуру, которая обеспечивает более интуитивное понимание того, как деформация работает в катализе», — сказал Петерсон.«Поэтому, когда люди разрабатывают новые катализаторы, они могут придумать способы лучше использовать эти эффекты напряжения».

Исследование было поддержано Исследовательским бюро армии США (W911NF-11-10353). Другими авторами статьи были Алиреза Хоршиди, Джеймс Вайолет и Джавад Хашеми.

Определение катализатора — Химический словарь

Что такое катализатор?

Катализатор — это вещество, которое ускоряет химическую реакцию, но не расходуется в ходе реакции; следовательно, катализатор может быть восстановлен химически без изменений в конце реакции, которую он использовал для ускорения, или катализатор , катализирующий .


Обсуждение

Чтобы химические вещества вступили в реакцию, их связи должны быть перегруппированы, потому что связи в продуктах отличаются от связей в реагентах. Самый медленный шаг в перегруппировке связи приводит к так называемому переходному состоянию. — химическое соединение, которое не является ни реагентом, ни продуктом, но является промежуточным звеном между ними.

Реагент ⇄ Переходное состояние ⇄ Продукт

Для формирования переходного состояния требуется энергия. Эта энергия называется энергией активации или E a .Чтение приведенной ниже диаграммы слева направо показывает прогресс реакции, когда реагенты проходят через переходное состояние, чтобы стать продуктами.

Преодолевая барьер

Энергию активации можно рассматривать как барьер для химической реакции, препятствие, которое необходимо преодолеть. Если барьер высокий, немногие молекулы обладают достаточной кинетической энергией, чтобы столкнуться, сформировать переходное состояние и пересечь барьер. Реагенты с энергией ниже E a не могут пройти через переходное состояние, чтобы вступить в реакцию и стать продуктами.

Катализатор работает, обеспечивая другой путь реакции с более низким E и . Катализаторы снижают энергетический барьер. Другой путь позволяет упростить перегруппировку связей, необходимую для превращения реагентов в продукты, с меньшими затратами энергии. В любой заданный интервал времени присутствие катализатора позволяет большей части реагентов набрать достаточно энергии, чтобы пройти через переходное состояние и стать продуктами.

Пример 1. Процесс Габера
Процесс Габера, который используется для получения аммиака из водорода и азота, катализируется железом, которое обеспечивает атомные центры, на которых связи реагентов могут легче перестраиваться с образованием переходного состояния.

N 2 (газ) + 3H 2 (газ) ⇌ 2NH 3 (газ)

Пример 2: Ферменты
В нашем организме и в других живых существах ферменты используются для ускорения биохимических реакций. Фермент — это разновидность катализатора. Сложная жизнь была бы невозможна без ферментов, позволяющих реакции протекать с подходящей скоростью. Формы ферментов вместе с местами на ферменте, которые связываются с реагентами, обеспечивают альтернативный путь реакции, позволяя конкретным молекулам объединяться, чтобы сформировать переходное состояние с пониженным энергетическим барьером активации.

На схеме ниже длинноцепочечный фермент обеспечивает места для молекул реагентов, которые собираются вместе, чтобы сформировать переходное состояние с низкой энергией активации.

Катализаторы не могут изменить положение химического равновесия — прямая и обратная реакции ускоряются, так что константа равновесия K eq остается неизменной. Однако за счет удаления продуктов из реакционной смеси по мере их образования общая скорость образования продукта может быть увеличена на практике.

Ускорение реакций: биологические и химические катализаторы

Большинство химических реакций протекают довольно медленно при комнатной температуре. В большинстве случаев это хорошая новость, в противном случае случайные части окружающей среды взрывались бы с регулярными интервалами, но плохая новость для промышленных процессов, требующих реакции. Чтобы их ускорить, используются катализаторы. Катализатор — это любое вещество, которое ускоряет реакцию, не принимая в ней участия, поэтому в конце реакции у вас будет такое же количество катализатора, как и в начале.

Промышленные катализаторы часто представляют собой металлы, так как большинство металлов имеют большое количество электронов, которые не позволяют точно определить, насколько близко к центральному атому они должны быть. Это позволяет металлам использовать эти электроны для помощи в реакциях, прежде чем потребовать их обратно после завершения реакции. Примерами являются катализаторы на основе железа, используемые для производства аммиака (процесс Габера-Боша), и никелевые катализаторы, используемые для получения насыщенных жиров.

Биологические катализаторы работают по совершенно иному принципу.Биологические катализаторы — это не металлы с быстрыми и свободными электронами, а большие сложные молекулы, называемые ферментами, которые содержат определенные карманы для реагентов, в которые они могут поместиться. Как только они попадают в ловушку внутри фермента, это помогает реакции, либо путем образования временных связей с реагентами, чтобы помочь им соединиться вместе, либо просто удерживая их достаточно близко друг к другу, чтобы фактически прореагировать и образовать продукт.

Большинство ферментов находится внутри органических форм жизни, а это означает, что им не нужны высокие температуры для функционирования, в то время как металлические катализаторы, как правило, нуждаются в небольшом толчке энергии, чтобы заработать.Фактически, ферменты денатурируют или разрушаются, если нагреться слишком далеко за пределы их оптимальной температуры (для большинства около 40 градусов, хотя некоторые бактериальные ферменты могут работать при 100 градусах). В некоторых случаях, например, в биологических стиральных порошках, это может быть огромным преимуществом, поскольку это означает, что для реакции требуется меньше энергии, и одежду можно стирать при более низких температурах. Однако в некоторых промышленных процессах для увеличения скорости реакции необходимы высокие температуры, поэтому охлаждение всего до 40 градусов нецелесообразно.

Еще один важный момент, связанный с ферментами, заключается в том, что в отличие от металлических катализаторов они невероятно специфичны. Поскольку реагенты помещаются в карманы внутри фермента, каждый фермент может соответствовать только тем молекулам, которые он должен катализировать. А поскольку ферменты — это большие и сложные молекулы, не так-то просто спроектировать их так, чтобы они соответствовали нужным вам реагентам. Опять же, это нормально для биологических стиральных порошков, так как существует множество ферментов, которые эволюционировали, чтобы разрушать пятна от яиц, пятна крови и образовывать странные маленькие шарики на джемперах.Для химических процессов это может быть немного сложнее — не так много организмов развилось, чтобы удалить токсичные газы из бензина или синтезировать диоксид серы.

Ведется некоторая работа по разработке ферментов для конкретных целей, чтобы, надеюсь, увеличить количество реакций, которые можно катализировать с помощью биологических средств.

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *