Электронные схемы для начинающих с описанием в домашних условиях: Простые схемы для начинающих радиолюбителей

Содержание

Самодельные электронные схемы. Самоделки электронные для начинающих. Подводная камера для зимней рыбалки

С каждым днем становится все больше и больше, появляется много новых статей, то новым посетителям довольно сложно сразу сориентироваться и пересмотреть за раз все уже написанное и ранее размещенное.

Мне же очень хочется обратить внимание всех посетителей на отдельные статьи, которые были размещены на сайте ранее. Для того что бы не пришлось долго искать нужную информацию я сделаю несколько «входных страниц» со ссылками на наиболее интересные и полезные статьи по отдельным темам.

Первую такую страничку назовем «Полезные электронные самоделки». Здесь рассматриваются простые электронные схемы, которые доступны для реализации людям любого уровня подготовки. Схемы построены с использованием современной электронной базы.

Вся информация в статьях изложена в очень доступной форме и в объеме, необходимом для практической работы. Естественно, что для реализации таких схем нужно разбираться хотя бы в азах электроники.

Итак, подборка наиболее интересных статей сайта по тематике «Полезные электронные самоделки» . Автор статей — Борис Аладышкин.

Современная элементная база электроники значительно упрощает схемотехнику. Даже обычный сумеречный выключатель теперь можно собрать всего из трех детелей.

В статье описывается простая и надежная схема управления электронасосом. Несмотря на предельную простоту схемы устройство может работать в двух режимах: водоподъем и дренаж.

В статье приведены несколько схем аппаратов для точечной сварки.

С помощью описываемой конструкции можно определить работает или нет механизм, расположенный в другом помещении или здании. Информацией о работе является вибрация самого механизма.

Рассказ о том, что такое трансформатор безопасности, для чего он нужен и как его можно изготовить самостоятельно.

Описание простого устройства, отключающего нагрузку в случае выхода сетевого напряжения за допустимые пределы.

В статье рассмотрена схема простого терморегулятора с использованием регулируемого стабилитрона TL431.

Статья о том, как сделать устройство плавного включения ламп с помощью микросхемы КР1182ПМ1.

Иногда при пониженном напряжении в сети или пайке массивных деталей пользоваться паяльником становится просто невозможно. Вот тут на помощь и может придти повышающий регулятор мощности для паяльника.

Статья о том, чем можно заменить механический терморегулятор масляного отопительного радиатора.

Описание простой и надежной схемы терморегулятора для системы отопления.

В статье дается описание схемы преобразователя выполненного на современной элементной базе, содержащего минимальное количество деталей и позволяющего получить в нагрузке значительную мощность.

Статья о различных способах подключения нагрузки к блоку управления на микросхемах с помощью реле и тиристоров.

Описание простой схемы управления светодиодными гирляндами.

Конструкция простого таймера, позволяющего включать и выключать нагрузку, через заданные интервалы времени. Время работы и время паузы друг от друга не зависят.

Описание схемы и принципа действия простого аварийного светильника на основе энергосберегающей лампы.

Подробный рассказ о популярной «лазерно-утюжной» технологии изготовления печатных плат, её особенностях и нюансах.

Кто занимается радиоэлектроникой дома, обычно очень любознателен. Радиолюбительские схемы и самоделки помогут найти новое направление в творчестве. Возможно, кто-то найдет для себя оригинальное решение той или иной проблемы. Некоторые самоделки используют уже готовые устройства, соединяя их различным образом. Для других нужно самому полностью создавать схему и производить необходимые регулировки.

Одна из самых простых самоделок. Больше подходит тем, кто только начинает мастерить. Если есть старый, но рабочий сотовый кнопочный телефон с кнопкой включения плеера, из него можно сделать, например, дверной звонок в свою комнату. Преимущества такого звонка:

Для начала нужно убедиться, что выбранный телефон способен выдавать достаточно громкую мелодию, после чего его необходимо полностью разобрать. В основном детали крепятся винтами или скобами, которые осторожно отгибаются. При разборке нужно будет запомнить, что за чем идет, чтобы потом можно было все собрать.

На плате отпаивается кнопка включения плеера, а вместо нее припаиваются два коротких провода. Затем эти провода приклеиваются к плате, чтобы не оторвать пайку. Телефон собирается. Осталось соединить телефон с кнопкой звонка через двужильный провод.

Самоделки для автомобилей

Современные автомобили снабжены всем необходимым. Однако бывают случаи, когда просто необходимы самодельные устройства. Например, что-то сломалось, отдали другу и тому подобное. Вот тогда умение создавать электронику своими руками в домашних условиях будет очень полезно.

Первое, во что можно вмешаться, не боясь навредить авто, — это аккумулятор. Если в нужный момент зарядки для аккумулятора не оказалось под рукой, ее можно быстро собрать самостоятельно. Для этого потребуется:

Идеально подходит трансформатор от лампового телевизора. Поэтому те, кто увлекается самодельной электроникой, никогда не выбрасывают электроприборы, в надежде, что они когда-нибудь понадобятся. К сожалению, трансформаторы использовались двух видов: с одной и с двумя катушками. Для зарядки аккумулятора на 6 вольт пойдет любой, а для 12 вольт только с двумя.

На оберточной бумаге такого трансформатора показаны выводы обмоток, напряжение для каждой обмотки и рабочий ток. Для питания нитей накаливания электронных ламп используется напряжение 6,3 В с большим током. Трансформатор можно переделать, убрав лишние вторичные обмотки, или оставить все как есть. В этом случае первичные и вторичные обмотки соединяют последовательно. Каждая первичная рассчитана на напряжение 127 В, поэтому, объединяя их, получают 220 В. Вторичные соединяют последовательно, чтобы получить на выходе 12,6 В.

Диоды должны выдерживать ток не менее 10 А. Для каждого диода необходим радиатор площадью не менее 25 квадратных сантиметров. Соединяются они в диодный мост. Для крепления подойдет любая электроизоляционная пластина. В первичную цепь включается предохранитель на 0,5 А, во вторичную — 10 А. Устройство не переносит короткого замыкания, поэтому при подключении аккумулятора нельзя путать полярность.

Простые обогреватели

В холодное время года бывает необходимо подогреть двигатель. Если автомобиль стоит там, где есть электрический ток, эту проблему можно решить с помощью тепловой пушки. Для ее изготовления потребуется:

  • асбестовая труба;
  • нихромовая проволока;
  • вентилятор;
  • выключатель.

Диаметр асбестовой трубы выбирается по размеру вентилятора, который будет использоваться. От его мощности будет зависеть производительность обогревателя. Длина трубы — предпочтение каждого. Можно в ней собрать нагревательный элемент и вентилятор, можно только нагреватель. При выборе последнего варианта придется продумать, как пустить воздушный поток на обогревательный элемент. Это можно сделать, например, поместив все составляющие в герметичный корпус.

Нихромовую проволоку также подбирают по вентилятору. Чем мощнее последний, тем большего диаметра можно использовать нихром. Проволока скручивается в спираль и размещается внутри трубы. Для крепления используются болты, которые вставляются в заранее просверленные отверстия в трубе. Длина спирали и их количество выбираются опытным путем. Желательно, чтобы спираль при работающем вентиляторе не нагревалась докрасна.

От выбора вентилятора будет зависеть, какое напряжение нужно подать на обогреватель. При использовании электровентилятора на 220 В не нужно будет использовать дополнительный источник питания.

Весь обогреватель подключается к сети через шнур с вилкой, но он сам должен иметь свой выключатель. Это может быть как просто тумблер, так и автомат. Второй вариант более предпочтителен, он позволяет защищать общую сеть. Для этого ток срабатывания автомата должен быть меньше тока срабатывания автомата помещения. Выключатель еще нужен для быстрого отключения обогревателя в случае неполадок, например, если вентилятор не будет работать.

У такого обогревателя есть свои минусы:

  • вредность для организма от асбестовой трубы;
  • шум от работающего вентилятора;
  • запах от пыли, попадающей на нагретую спираль;
  • пожароопасность.

Некоторые проблемы можно решить, применив другую самоделку. Вместо асбестовой трубы, можно использовать банку из-под кофе. Чтобы спираль не замыкалась на банку, ее крепят к текстолитовой рамке, которую фиксируют с помощью клея. В качестве вентилятора используется кулер. Для его питания нужно будет собрать еще одно электронное устройство — небольшой выпрямитель.

Самоделки приносят тому, кто ими занимается, не только удовлетворение, но и пользу. С их помощью можно экономить электроэнергию, например, отключая электроприборы, которые забыли отключить. Для этой цели можно использовать реле времени.

Самый простой способ создать задающий время элемент — это использовать время заряда или разряда конденсатора через резистор. Такая цепочка включается в базу транзистора. Для схемы потребуются следующие детали:

  • электролитический конденсатор большой емкости;
  • транзистор типа p-n-p;
  • электромагнитное реле;
  • диод;
  • переменный резистор;
  • постоянные резисторы;
  • источник постоянного тока.

Для начала необходимо определить, какой ток будет коммутироваться через реле. Если нагрузка очень мощная, для ее подключения понадобится магнитный пускатель. Катушку пускателя можно подключать через реле. Важно, чтобы контакты реле могли работать свободно не залипая. По выбранному реле подбирается транзистор, определяется, с каким током и напряжением он может работать. Ориентироваться можно на КТ973А.

База транзистора соединяется через ограничительный резистор с конденсатором, который, в свою очередь, подключается через двухполярный выключатель. Свободный контакт выключателя соединяется через резистор с минусом питания. Это необходимо для разряда конденсатора. Резистор исполняет роль ограничителя тока.

Сам конденсатор подключается к положительной шине источника питания через переменный резистор с большим сопротивлением. Подбирая емкость конденсатора и сопротивление резистора, можно менять интервал времени задержки. Катушка реле шунтируется диодом, который включается в обратном направлении. В этой схеме используется КД 105 Б. Он замыкает цепь при обесточивании реле, защищая транзистор от пробоя.

Работает схема следующим образом. В исходном состоянии база транзистора отключена от конденсатора, и транзистор закрыт. При включении выключателя база соединяется с разряженным конденсатором, транзистор открывается и подает напряжение на реле. Реле срабатывает, замыкает свои контакты и подает напряжение на нагрузку.

Конденсатор начинает заряжаться через резистор, подключенный к положительной клемме источника питания. По мере того как конденсатор заряжается, напряжение на базе начинает расти. При определенном значении напряжения транзистор закрывается, обесточивая реле. Реле отключает нагрузку. Чтобы схема снова заработала, нужно разрядить конденсатор, для этого переключают выключатель.

Многие электрические приборы можно отремонтировать или изготовить новые своими руками. Для этого дома всегда найдётся то, что можно переделать для выполнения новых функций: старые электронные часы, детское авто, вышедший из употребления компьютер и многое другое. Полезные поделки всегда можно отремонтировать или переделать. Для работы лучше иметь мастерскую с инструментами.

Оснащённая домашняя мастерская мастера

Блок питания

Самодельные электронные устройства нуждаются в питании разного напряжения. В частности, для пайки необходим регулируемый блок питания. Такую возможность может обеспечить микросхема LM-317, являющаяся стабилизатором напряжения.

Схема регулируемого блока питания

Устройства на основе этой схемы позволяют изменять выходное напряжение в пределах 1,2-30 В, с помощью переменного резистора Р1. Допускаемый ток составляет 1,5 А, мощность прибора зависит от выбора трансформатора.

Наладка вольтметра производится подстроечным резистором Р2. Для этого следует выставить ток 1 мА при выходном напряжении схемы 30 В.

На микросхеме выделяется тем больше мощности, чем больше разница между входным и выходным сигналами. Для уменьшения нагрева для неё требуется радиатор с кулером.

Самодельная плата с микросхемой LM-317 помещается в корпус – блок питания компьютера. На передней панели из текстолита устанавливается вольтметр и зажимы к выходным проводам.

Простой автопробник

Пробник для авто и других целей должен быть всегда под рукой дома, в гараже или в пути. На рисунке ниже изображена схема самоделки, которая позволяет проверять электрические цепи с сопротивлением до 10 кОм и наличие напряжения 6-15 В.

Две цепи индикации подключены последовательно к батарее и параллельно друг к другу. Первая состоит из резистора R1 и светодиода HL1, который светится при проверке напряжения. Одновременно происходит подзарядка батареи.

Схема и конструкция: а) схема самоделки, которая позволяет проверять электрические цепи с сопротивлением до 10 кОм и наличие напряжения 6-15 В; б) самодельная конструкция автопробника

Когда проверяется цепь, ток течёт от батареи по цепи HL2, R2. При этом светится светодиод HL2. Его яркость будет тем больше, чем меньше сопротивление цепи.

Как и все самоделки, конструктивно пробник можно выполнить разными способами, например, поместить его в прозрачный пластиковый футляр, который легко склеить своими руками.

Такие устройства незаменимы при ремонте в домашних условиях электросети или бытового прибора. Поделки могут быть более сложными и иметь дополнительные функции.

Электрические приборы для термообработки мясных продуктов без применения топлива изготавливаются на небольшое количество порций и могут использоваться дома или на даче. Для приготовления шашлыка, с помощью электрошашлычницы, нет необходимости тратить дорогие часы отдыха, стоя на улице у мангала.

В специализированных магазинах можно выбрать любые устройства, но многое решает цена. Если иметь навыки обращения с электричеством, значительно дешевле будет изготовить электрошашлычницу своими руками.

Конструкции делаются в горизонтальном или вертикальном исполнении. Мощность прибора обычно не превышает 1,5 кВт. Мясо нагревается с помощью спирали с вольфрамовой или нихромовой нитью. Все металлические части изготавливаются из нержавейки.

Типовые устройства представляют собой вертикальные нагреватели в центре и шампура с продуктом вокруг. Крепятся они сверху. Целесообразно шампура изготовить в виде спиралей, с которых мясо не сползает вниз в процессе приготовления.

Вид электрошашлычницы вертикального исполнения

Для качественного приготовления шашлычницы своими руками шампура следует располагать как можно ближе к нагревателю, но так, чтобы продукт не касался спирали. При размещении на расстоянии мясо не поджарится, а будет сушиться.

Кусочки продукта, размером не более 40 мм, насаживаются на шампур, который вертикально размещается вокруг нагревателя. Затем производится включение электричества и нагрев спирали.

Основой нагревателя служит жаропрочная керамическая трубка, на которую намотана спираль. Крепление внизу производится с помощью специального патрона.

В круглом основании крепятся специальные чашки для сбора жира и каркас, служащий для удерживания шампуров вертикально.

Чашки изготавливают из нержавейки. Снизу они имеют крестообразные выступы, которыми вставляются в прорези основания. Внутри у них монтируются приспособления для крепления шампуров. Фиксация чашки с двух сторон позволяет им удерживать шампуры вертикально.

Соединение должно быть прочным и в то же время легко разбираться для чистки. Можно изготовить общий съёмный поддон для всех шампуров.

Подводящий провод по сечению подбирается под мощность нагревателя (2,5 или 4 мм 2). Дома или на даче для него должна быть розетка на 16 А.

Таймера для полива растений

Устройства с применяют для капельного полива участка из ёмкости в определённое время. Их можно подключить к клапанам с любой пропускной способностью.

Часто фирменные приборы не обеспечивают требуемой надёжности. Тогда на помощь приходят старые настенные часы, которые исправны, но дома уже не применяются. На концах минутной и часовой стрелок крепятся маленькие магниты, а на циферблате – 3 геркона.

Схема таймера для полива растений, в которой применены настенные часы

Как только часовая стрелка доходит до числа 7, а минутная – до 12, что соответствует времени 7 часов, герконы SA1 и SA3 срабатывают и сигнал открывает электроклапан. Через 2 часа стрелки переместятся на 9 и 12, и ток через контакты герконов SA1 и SA2 подастся на закрывание клапана.

На схеме изображён «датчик дождя», который в сырую погоду закрывает транзистор VT1 и клапан остаётся постоянно в закрытом состоянии. Также предусмотрено ручное управление электроклапаном через кнопки S1 и S2.

Можно настроить часы на любое время включения клапана.

Авто с пультом управления

Самодельные модели на радиоуправлении захватывают не только детей, но и взрослых. Их можно применять для игры дома или устраивать настоящие соревнования во дворе. Для сборки своими руками понадобятся шасси с колёсами, электромотор и корпус.

В продаже существует большой ассортимент, но прежде всего надо определиться, какую машинку лучше сделать. Пульт управления может быть проводным или с радиоуправлением.

При выборе деталей следует обратить внимание на их качество. На пластике не должно быть зазубрин, вкраплений и других механических дефектов. Колёса продаются вместе с шасси и должны легко поворачиваться. Сцепление с поверхностью лучше обеспечивается резиной. Пластмассовые колёса в этом плане значительно хуже.

Новичку лучше взять электродвигатель, который дешевле и проще в обслуживании, чем ДВС. Корпус можно выбрать любой или изготовить по своему эскизу.

Мотор, аккумулятор и радиоблок с антенной устанавливаются на шасси мини-авто. Если приобретается набор с комплектующими, к нему прилагается инструкция по сборке.

После установки деталей, регулируется работа мотора. Корпус на шасси устанавливается после того, как всё заработает.

Сборку мини-копий можно производить дома следующим образом:

  • авто собирается тщательно и общими усилиями;
  • материалы деталей модели могут отличаться от оригинала;
  • мелкие и незначительные детали можно опустить.

Модель может быть изготовлена без зацикливания на определённой марке авто. Многое зависит от финансов и наличия свободного времени. Сборка мини-автомобиля в домашних условиях вместе с ребёнком имеет большое воспитательное значение.

Работа по сборке модели авто производится по плану. Некоторые детали необходимо купить, но можно использовать старые игрушки.

Мотор должен по мощности соответствовать весу устройства. Для питания применяются свежие батарейки или аккумулятор.

Если использовать специальный автоконструктор, поделки могут быть самыми разнообразными. Последовательность сборки:

  • первой собирается рама;
  • крепится и регулируется мотор;
  • устанавливается источник питания;
  • закрепляется ;
  • устанавливаются и регулируются колёса.

Виды радиоуправляемых автомобильных моделей

Многие хитрости самоделок раскрыты в этом видео.

Электронные самоделки позволяют сделать жизнь комфортней и сэкономить немало средств. Кроме того, можно найти применение старым электроприборам, чтобы они не пылились в кладовке без цели. Полезные поделки своими руками часто оказываются лучше изделий заводского производства.

Схемы самодельных измерительных приборов

Схема прибора, разработанная на основе классического мультивибратора, но вместо нагрузочных резисторов в коллекторные цепи мультивибратора включены транзисторы противоположной основным проводимостью.

Хорошо, если в вашей лаборатории есть осциллограф. Ну а если его нет и купить его по тем или иным причинам не представляется возможным, не огорчайтесь. В большинстве случаев его с успехом может заменить логический пробник, позволяющий проконтролировать логические уровни сигналов на входах и выходах цифровых интегральных схем, определить наличие импульсов в контролируемой цепи и отразить полученную информацию в визуальной (свето-цветовой или цифровой) или звуковой (тональными сигналами различной частоты) формах. При налаживании и ремонте конструкций на цифровых интегральных схемах далеко не всегда так уж необходимо знать характеристики импульсов или точные значения уровней напряжения. Поэтому логические пробники облегчают процесс налаживания, даже если есть осциллограф.

Представлена огромная подборка разичных схем генераторов импульсов. Одни из них формируют на выходе одиночный импульс, длительность которого не зависит от длительности запускающего (входного) импульса. Применяются такие генераторы в самых разнообразных целях: имитации входных сигналов цифровых устройств, при проверке работоспособности цифровых интегральных схем, необходимости подачи на какое-то устройство определенного числа импульсов с визуальным контролем процессов и т. д. Другие генерируют пилообразные и прямоугольные импульсы различной частоты, скважности и амплитуды

Ремонт различных узлов и устройств низкочастотной радиоэлектронной аппаратуры и техники можно значительно упростить, если использовать в качестве помощника функциональный генератор, который дает возможность исследовать амплитудно-частотные характеристики любого низкочастотного устройства, переходные процессы и нелинейные характеристики любых аналоговых приборов, а также обладает возможностью генерации импульсов прямоугольной формы и упрощения процесса наладки цифровых схем.

При наладке цифровых устройств обязательно нужен еще один прибор — генератор импульсов. Промышленный генератор — прибор достаточно дорогой и редко бывает в продаже, но его аналог, пусть не такой точный и стабильный, можно собрать из доступных радиоэлементов в домашних условиях

Однако создание звукового генератора, вырабатывающего синусоидальный сигнал, дело непростое и довольно кропотливое, особенно в части налаживания. Дело в том, что любой генератор содержит, по крайней мере, два элемента: усилитель и частотнозависимую цепь, определяющую частоту колебаний. Обычно она включается между выходом и входом усилителя, создавая положительную обратную связь (ПОС). В случае ВЧ-генератора все просто — достаточно усилителя на одном транзисторе и колебательного контура, определяющего частоту. Для диапазона звуковых частот наматывать катушку сложно, да и добротность ее получается низкой. Поэтому в диапазоне звуковых частот используют RC-элементы — резисторы и конденсаторы. Они довольно плохо фильтруют основную гармонику колебаний, и потому синусоидальный сигнал оказывается искаженным, например, ограниченным по пикам. Для устранения искажений применяют цепи стабилизации амплитуды, поддерживающие низкий уровень генерируемого сигнала, когда искажения еще незаметны. Именно создание хорошей стабилизирующей цепи, не искажающей синусоидальный сигнал, и вызывает основные трудности.

Часто, собрав конструкцию, радиолюбитель видит, что устройство не работает. У человека ведь нет органов чувств, позволяющих видеть электрический ток, электромагнитное поле или процессы, происходящие в электронных схемах. Помогают это сделать радиоизмерительные приборы — глаза и уши радиолюбителя.

Поэтому нужно какое-то средство испытания и проверки телефонов и громкоговорителей, усилителей звуковой частоты, различных звукозаписывающих и звуковоспроизводящих устройств. Такое средство — это радиолюбительские схемы генераторов сигналов звуковой частоты, или, говоря проще, звуковой генератор. Традиционно он вырабатывает непрерывный синусоидальный сигнал, частоту и амплитуду которого можно изменять. Это позволяет проверять все каскады УНЧ, находить неисправности, определять коэффициент усиления, снимать амплитудно-частотные характеристики (АЧХ) и много всего другого.

Рассмотрена несложная радиолюбительская самодельная приставка превращающая ваш мультиметр в универсальный прибор проверки стабилитронов и динисторов. Имеются чертежи печатной платы

Одно из распространенных хобби любителей и профессионалов в области электроники – это конструирование и изготовление различных самоделок для дома. Электронные самоделки не требуют больших материальных и финансовых затрат и выполняться могут в домашних условиях, поскольку работы с электроникой являются, по большей части, «чистыми». Исключение составляет только изготовление разнообразных корпусных деталей и иных механических узлов.

Полезные электронные самоделки могут использоваться во всех областях быта, начиная от кухни и заканчивая гаражом, где многие занимаются усовершенствованием и ремонтом электронных устройств автомобиля.

Самоделки на кухне

Кухонные самоделки из области электроники могут составлять дополнение к существующим аксессуарам и принадлежностям. Большой популярностью среди жителей квартир пользуются промышленный и самодельные электрошашлычницы.

Еще один распространенный пример кухонных самоделок, сделанных своими руками домашнего электрика, – таймеры и автоматика включения освещения над рабочими поверхностями, электроподжиг газовых горелок.

Важно! Изменение конструкции некоторой бытовой техники, в особенности газовых приборов, может вызвать «непонимание и неприятие» контролирующих организаций. Кроме того, это требует большой аккуратности и внимательности.

Электроника в автомобиле

Самодельные устройства для автомобиля наиболее широкое распространение получили среди владельцев отечественных марок транспорта, которые отличаются минимальным количеством дополнительных функций. Широким спросом пользуются такие схемы:

  • Звуковые сигнализаторы поворотов и включения ручного тормоза;
  • Сигнализатор режимов работы аккумуляторной батареи и генератора.

Более опытные радиолюбители занимаются оснащением своего автомобиля датчиками парковки, электронными приводами стеклоподъемников, автоматическими датчиками освещенности для управления ближним светом фар.

Самоделки для начинающих

Большинство начинающих радиолюбителей занимаются изготовлением конструкций, которые не требуют высокой квалификации. Простые отработанные конструкции могут служить длительное время и не только ради пользы, но и в качестве напоминания о техническом «взрослении» от начинающего радиолюбителя до профессионала.

Для малоопытных любителей множество производителей выпускают готовые наборы для конструирования, которые содержат в составе печатную плату и набор элементов. Такие наборы позволяют отработать такие навыки:

  • Чтение принципиальных и монтажных схем;
  • Правильная пайка;
  • Настройка и регулировка по готовой методике.

Среди наборов очень распространены электронные часы различных вариантов исполнения и степени сложности.

В качестве области применения знаний и опыта радиолюбители могут конструировать электронные игрушки, используя схемы попроще или переделывая промышленные конструкции под свои пожелания и возможности.

Интересные идеи для поделок можно видеть на примерах изготовления радиоэлектронных поделок из пришедших в негодность деталей вычислительной техники.

Домашняя мастерская

Для самостоятельного конструирования радиоэлектронных устройств необходим некоторый минимум инструментов, приспособлений и измерительных приборов :

  • Паяльник;
  • Бокорезы;
  • Пинцет;
  • Набор отверток;
  • Пассатижи;
  • Многофункциональный тестер (авометр).

На заметку. Планируя заниматься электроникой своими руками, не следует браться сразу за сложные конструкции и приобретать дорогостоящий инструмент.

Большинство радиолюбителей начинали свой путь с использования простейшего паяльника 220В 25-40Вт, а из измерительных приборов в домашней лаборатории использовался самый массовый советский тестер Ц-20. Всего этого достаточно для занятий с электричеством, приобретения нужных навыков и опыта.

Начинающему радиолюбителю нет смысла покупать дорогостоящую паяльную станцию, если нет необходимого опыта работы с обычным паяльником. Тем более что возможность применения станции появится еще не скоро, а только по прошествии иногда довольно длительного времени.

Также нет необходимости в профессиональной измерительной аппаратуре. Единственный серьезный прибор, который может понадобиться даже начинающему любителю, – это осциллограф. Для тех, кто уже разбирается в электронике, осциллограф является одним из самых востребованных измерительных инструментов.

В качестве авометра с успехом можно использовать недорогие цифровые приборы китайского производства. Имея богатую функциональность, они обладают высокой точностью измерений, простотой использования и, что важно, имеют встроенный модуль для измерения параметров транзисторов.

Говоря о домашней мастерской у самоделкина, нельзя не упомянуть о материалах, применяемых для пайки. Это припой и флюс. Самым распространенным припоем является сплав ПОС-60, который имеет невысокую температуру плавления и обеспечивает высокую надежность пайки. Большинство припоев, применяемых для пайки всевозможных устройств, является аналогами упомянутого сплава и может быть им с успехом заменено.

В качестве флюса для пайки используется обычная канифоль, но для удобства пользования лучше использовать ее раствор в этиловом спирте. Флюсы на основе канифоли не требуют удаления с монтажа после работы, поскольку являются химически нейтральными при большинстве условий эксплуатации, а тонкая пленка канифоли, образовавшаяся после испарения растворителя (спирта), проявляет неплохие защитные свойства.

Важно! При пайке электронных компонентов ни в коем случае нельзя использовать активные флюсы. Особенно это касается паяльной кислоты (раствор хлористого цинка), поскольку даже в обычных условиях такой флюс разрушающе воздействует на тонкие медные печатные проводники.

Для облуживания сильно окисленных выводов лучше использовать активный бескислотный флюс ЛТИ-120, который не требует смывания.

Очень удобно работать, используя припой, в состав которого включен флюс. Припой выполнен в виде тонкой трубочки, внутри которой находится канифоль.

Для монтажа элементов хорошо подходят макетные платы из двухстороннего фольгированного стеклотекстолита, которые производятся в широком ассортименте.

Меры безопасности

Занятия электричеством связаны с риском для здоровья и даже жизни, особенно, если электроника своими руками конструируется с сетевым питанием. Самодельные электрические устройства не должны использовать бестрансформаторное питание от бытовой сети переменного тока. В крайнем случае, настройку подобных устройств следует производить, подключая их к сети через разделительный трансформатор с коэффициентом трансформации, равным единице. Напряжение на его выходе будет соответствовать сетевому, но в то же время будет обеспечена надежная гальваническая развязка.

Facebook

Twitter

Вконтакте

Google+

Проблемы 

Радиолюбительство — ссылки

Радиолюбительство — ссылки
Электронный умелец
Поверхностный монтаж от А до Я. Высококачественный усилитель мощности, печатные платы, трансформаторы.

Audio Hi-Fi — Окно в мир звука
Сайт для аудиофилов и радиолюбителей: большой каталог аудио-компонентов, схемы, программы, статьи, полезные советы, доски объявлений, магазины, форум, рейтинг сайтов и многое другое.

ICEiNet.ru — архив радиосхем
Архив принципиальных схем и документации: сетевое оборудование, модемы и радиомодемы, ИК-порты, лазеры. Загрузка программ для работы в Интернете. Форум.

Ставропольский технический портал.
Справочная информация по радиокомпонентам, различные принципиальные схемы, радиолюбительский форум.

Николай Большаков — инженер-радиотехник
Об авторе и сфере профессиональных интересов. Схемы и описания широкого спектра радиоэлектронных устройств: антенн, радиопередатчиков, радиостанций, аппаратуры радиоуправления,     аудиотехники, бытовой электроники и др. Советы начинающему радиолюбителю. Справочные материалы по радиоэлектронике. Формулы и программы для расчетов.

Аудио-Видео Клуб Новосибирска
Сайт для ценителей аудио и видео компонентов. hi-fi «золотых» 70-80х под заказ. Виниловые проигрыватели и аксессуары к ним. Проектирование и изготовление АС, аудиомебели. Дизайн и подбор компонентов для домашнего кинотеатра. Согласование вашей системы применительно к акустике помещения. Клубная система сервиса.

Радиолоцман — информационнно-поисковый сервер по радиоэлектронике
Поисковая система схем и ресурсов по радиолюбительству и электронике. Цены и справочные материалы по электронным компонентам. База данных книг по радиоэлектронике и ремонту бытовой техники. Доска объявлений. Форум.

Паяльник — схемы для радиолюбителей
Схемы и описания радиомикрофонов, жучков и передатчиков, усилителей, регуляторов тембра, эквалайзеров, радиоприемников и тюнеров, детекторов радиозакладок, приборов и деталей СИ-БИ связи, инфракрасной техники и др. Советы при работе с металлами, древесиной, печатными платами и др. Форум.

Open Hardware Project — проект разработки открытого Hardware
Описания, технические характеристики и схемы электронных устройств. Загрузка бесплатного ПО. Тематические статьи. Ссылки. О проекте.

Shema.ru -каталог принципиальных схем и описаний бытовой и радиолюбительской техники
Каталог: принципиальные схемы и фирменные описания бытовой аппаратуры, антенны, цифровая техника, радиопередатчики, радиостанции, узлы радиолюбительской техники, электропитание, радиоприем, телефония, телевидение. Форумы. Объявления о купле-продаже.

Советская эстрадная музыка и звукосхемотехника
Подборка советских песен в формате mp3. Статьи и схемы, посвященные звукотехнике и магнитной записи. Поиск песен. Форум. Поиск. Ссылки.

Amt electronics — частные разработки по электронике и ремонту, идеи, программы
Информация по ремонту радиоаппаратуры: принципиальные схемы, сервисные инструкции, входы в сервисные меню, специализированные конференции. Каталог радиотехнических ресурсов. Обзор журнала «Ремонт электронной техники».

Электроника — частная страница Александра
Подборка практических советов по работе с техникой. Принципиальные схемы для сотовых телефонов, телевизоров и др. Электронная версия книги Эрнеста Цветкова «В поисках утраченного Я», рассказывающей о гипнозе, медитации и магии.

Ремонт радиоаппаратуры — рекомендации специалистов
Собрание статей по ремонту электронной техники: телевизоров, видеомагнитофонов, мониторов, факсов, принтеров и пр. Документация по элементной базе. Подборка электрических схем. Форум по обмену опытом.

Телефония — схемы телефонных аппаратов
Схемы телефонов с кнопочным набором, с определителем номера, радиотелефонов, ABY, Panasonic. Тематические ссылки.

Крузо — электрические схемы радиоаппаратуры
Принципиальные электрические схемы отечественной бытовой радиоаппаратуры: магнитофонов, усилителей, электрофонов, приемников, радиол, тюнеров и др.

Справочная информация о телефонных аппаратах
Фотокаталог телефонов с описанием основных функций аппаратов. Схемы, инструкции. Форум.

Аппаратура рижского завода «Радиотехника» — описания, характеристики, схемы
Иллюстрированный каталог продукции завода: усилители, деки, тюнеры, акустические системы. Технические характеристики и принципиальные схемы устройств.

RadioDux — материалы по ремонту радиоэлектронной аппаратуры
Публикации по ремонту и настройке мониторов, телевизоров, магнитофонов, телефонов, усилителей и др. Архив ПО. Загрузка схем аппаратуры. Ссылки.

Помелов Влад — радиотехник, электронщик
Каталоги: принципиальных схем электронных устройств, радиотехнических программ и утилит, в т.ч. разработанных автором. Статьи, документация, справочники по радиотехнике и электронике. Тематические ссылки. Форум.

Схемы домашней электроники
Принципиальные схемы, статьи, советы по ремонту бытовой аудио-видеотехники, телефонов, видеокамер, автомобильных устройств. Форумы. Возможность заказа сборника схем на компакт-дисках. Цены. Об условиях оплаты и доставки.

Радиоспутник — принципиальные схемы приборов
Принципиальные схемы и технические характеристики радиоприборов: тюнера, передатчика, микрофона, частотомера, телефонной трубки, блоков питания, цифровой техники и др. Советы радиолектронщикам.

Все, что вы хотите знать о металлодетекторах
Информация о металлодетекторах: теоретические сведения, патенты, схемы. Техническая документация на намоточные изделия, радиоэлектронные элементы. Англо-русский толковый словарь по этой теме.

Мир электроника — схемы, справочники, советы по электротехнике
Сборник схем усилителей. Справочная информация по микросхемам, электронным компонентам. Советы по электробезопасности.

Диаграмма — рассылка принципиальных электрических схем почтой
Каталог схем аудио-видеоаппаратуры, DVD, мониторов, телефонов, бытовой техники и др. Прайс-лист. Оплата наложенным платежом, переводом. Условия доставки. Справочник по радиотехнике.

Радиоэлектроника –информация для любителей и специалистов
Справочная информация по телемеханике, радиосвязи, вычислительной технике, PIC и пр. Описания различных устройств, технологий. Схемы. Подборка тематических ссылок.

Электронные схемы периферийных устройств
Описание и схемы устройств, подключаемых к компьютеру: электронный кодовый замок, ключ для защиты программ от копирования, цифровой вольтметр и т.д. Тематические статьи.

Каталог электрических принципиальных схем
Схемы, чертежи печатных плат и описание электронных схемотехнических устройств: источников питания, домашней и автоэлектроники, устройств защиты информации и др.

«Кулибин» — сборник электронных схем Юрия Рубана
Электронные схемы и компоненты для аудиотехники, устройств автомобиля, телефонии, бытовой техники, радио, компьютеров. Советы по ремонту домашней техники. Справочные данные по микросхемам и транзисторам. Ссылки на серверы производителей электронных компонентов. Зеркало http://kulibin2000.boom.ru

Узлы электронных схем
Радиосхемы: усилители, генераторы, измерители, источники тока, радиоприемники. Азбука транзисторной схемотехники.

Схемы, справочники, программы по радиотехнике
Схемы и описания телевизоров, бытовой техники; рекомендации по ремонту аппаратуры, справочные данные.

«Всем об электронике» — схемы, программы, полезные советы

Лебедев Андрей — радиотехник-любитель
Об авторе и его увлечениях: компьютер, чтение. Подборка ссылок по электронной тематике — схемы, каталоги, справочники, программы. Советы по ремонту радиоаппаратуры.

Radiopic — производство радиоэлектронных устройств и поставка электронных компонентов
Каталог радиоаппаратуры: электронные часы, цифровые и информационные табло, таймеры, датчики, приборы и др. Предложение услуг конструирования и производства аппаратуры на заказ. Ассортимент электронных компонентов: микросхемы, микроконтроллеры, транзисторы, диоды, датчики, фильтры, резонаторы, предохранители, конденсаторы, резисторы и др. Прайс-листы в формате zip. Справочная информация по радиоде

Схемы бытовой техники
Схемы телевизоров, телефонов, автомагнитол, мониторов, музыкальных центров, блоков питания и др. Справочники по транзисторам, полупроводниковых приборов и др. Тематические ссылки.

Грецов Дмитрий — сотрудник фирмы Техномаркет-С
Об авторе и его работе. Информация для радиолюбителей. Документация.

Генераторные и модуляторные электронные лампы — справочная информация для радолюбителей
Общие данные по радиолампам. Рекомендации по применению. Словарь терминов и определений. Описание радиоламп: генераторных, импульсных генераторных, импульсных модульных. Схемы усилителей мощности и источников питания.

Паяльник — коллекция радиосхем
Радиосхемы и рекомендации по изготовлению: усилители, металлоискатели, эквалайзеры, автосигнализация, «жучки», акустические системы, радиомодемы, си-би радио, дозиметры.

Схемы устройств иллюминации для Нового года
Схемы, описания, фотографии, предложения по изготовлению устройств «бегущие огни». Конференция.

Электроника и микроэлектроника — схемы устройств для защиты от шпионажа
Сборник радиоэлектронных схем и описания устройств технической разведки, телефонных ретрансляторов, видеопередатчиков; бытовой радиоаппаратуры. Об авторе — электронщике. Тематические ссылки.

Micar — продажа компакт-дисков с электрическими схемами бытовой видеотехники
Список принципиальных электрических схем размещенных на компакт-дисках: телевизоры, видеомагнитофоны, видеокамеры. Рекомендации по ремонту телевизоров и видеомагнитофонов.

Батраков Евгений — радиолюбитель
Об авторе — инженере-конструкторе и радиолюбителе. Интересы: радиотехника, электроника. Схемы электроприборов: люстра Чижевского, руль для компьютера, импульсные источники питания, преобразователи и др. Зеркало http://www.radiolub.newmail.ru/

Мир радиоэлектроники — радиосхемы и программы для расчета электронных цепей
Радиосхемы: усилители, радиомикрофоны, эмуляторы телефонных карт, конверторы УКВ, зарядные устройства. Загрузка: русификаторы и библиотеки радиоэлементов для программы ACCEL EDA, программы для расчета радиосхем.

Мастерские штучки — пособие по организации зловредных шуток и защиты от них
Описание самодельных взрывающихся и электроных устройств и шуток, котоорые автор организовал с их помощью.

Сергей Куляпин — астроном и радиолюбитель
Справочник для начинающих астрономов и радиолюбителей. Сведения об объектах неба в разное время года и суток, об оптическом оборудовании, фотоальбом. Справочная информация и радиодеталях. Сборник схем. Тематические ссылки

Радиотехники всех стран, соединяйтесь! — советы по ремонту видеоаппаратуры
Статьи по ремонту аудио и видеоаппаратуры. Описания. Принципиальные схемы мониторов Samsung.

1001схема — библиотека электрических принципиальных схем бытовой радиоаппаратуры

Schemes — продажа сервисных инструкции для ремонта бытовой электроники
Список имеющейся документации на аппаратуру Aiwa, JVC, Samsung, Sanyo, Toshiba, LG. Заказ схем. Форум.

Старая радиоаппаратура — информация для радиолюбителя
Документация и схемы старой радиоаппаратуры: радиоприемники, передатчики, телеграфный ключ, реле и др. Список предлагаемых для продажи или обмена деталей.

На шаг ближе к Hi-Fi! — советы по модернизации российской и советской аудиотехники
Тематические статьи. Рекомендации по модернизации аудиотехники: акустические системы, усилители, CD-проигрыватели. Радиосхемы: акустические системы, усилители, динамики. Форум.

Сборник схем и описаний электронных устройств
Схемы: малогабаритные ЧМ передатчики и приёмники, источники питания, исполнительные устройства. Техническая документация. Подборка информации по радиоэлектронике. Полезные советы начинающим радиолюбителям. Каталог ссылок технической тематики (связь, электроника, стандартизация).

IR-Studio — комплекс для считывания и имитации ИК-пультов бытовой электроники
Описание аппаратной и программной части комплекса. Схемы аппаратной части. О методах кодировки сигнала. База данных по сигналам пультов. Загрузка: программная часть комплекса, руководство пользователя, схемы аппаратной части.

Электроника для начинающих
Описания деталей, принципиальные схемы и новости для радиолюбителей. Возможность самостоятельного обновления базы данных.

Электроакустика — схемы, информация, программы
Схемы, описания, статьи по технологии воспроизведения звука и электронной записи. Справочные данные. Возможность загрузки программ. Фотографии акустической системы автора.

Сергей Оборин — услуги в области радиоэлектроники
Предложение услуг раскодировки автомагнитол, ремонта радио-аппаратуры, разкодирование GSM, программаторов, прошивки (ПЗУ, EEPROM), русификация принтеров, видеокарт. Подборка ссылок на ресурсы по радиоэлектронике.

Э-метр (E-meter) — описание прибора для саентологической практики
Описание, характеристики, схемы, фотографии прибора для измерения «волн мысли»

Построение аудиоаппаратуры — старница ивана Клубкова
Справочники, идеи, описания, чертежи и схемы для аудио- и акустических систем, проигрывателей, усилителей и др.

Радиодело — справочная информация по ремонту бытовой электроники
Схемы. Справочник электронных элементов. Советы.

Схемы импортной радиаппаратуры
Схемы аппаратуры по разделам: портативные телевизоры, видеоплейеры, CD-плейеры, диктофоны, цифровые фотоаппараты

Schemes Navigator — коллекция электрических принципиальных схем
Схемы телефонов, усилителей, телевизоров, программаторов и др. Файлы в zip-формате. Зеркало http://members.tripod.com/~Overact

Домашний сабвуфер — пособие по изготовлению
Руководство по изготовлению сабвуферов: теоретические сведения, практические указания, программы для расчетов. Конференция по домашним сабвуферам.

Джойстик своими руками
Иллюстрированное руководство по изготовлению джойстика.

Schemes Navigator — принципиальные схемы электронных устройств
Принципиальные схемы устройств для телевизоров, компьютеров, телефонов, радио и др. Документация по детамлям и приборам в PDF-формате.

Радиотехнический сайт студентов-радиотехников
Теоретические и практические рекомендации по созданию радиоэлектронных устройств. Форум по радиотехнике. Информация о кафедре радиотехники СевГТУ. Об авторах — студентах СевГТУ.

Yo-Prog — программатор смарт-карт
Описание устройства и особенностей программирования карт доступа. Описание форматов HEX-файлов. FAQ. Загрузка: ПО для программатора, инструкция пользователя.

Бродилка — схемы и справочные материалы по радиоэлектронике
Таблица замены импортных микросхем отечественными аналогами. Схемы имитаторов, регуляторов, озонатора, преобразователя напряжения. Ссылки по темам: рыбалка, бесплатное в Сети.

Панфилов Сергей — радиолюбитель и цветовод
Об увлечениях автора: радиолюбительство и цветоводство. Подборка информации для радиолюбителей. Советы от автора. Ссылки.

Электронные схемы бытовых устройств
Схемы источников питания, зарядных устройств, преобразователей, датчиков и др. Конференция.

ZPS electronics — схемы по радиоэлектронике
Сборник схем ( усилители, конверторы, радиоприемники и др.). Описание устройств, инструмента для работы радиолюбителя. Справочная информация по радиодеталям.

Создание домашнего кинотеатра — советы и рекомендации
Выбор аппаратуры для построения ДК. Информация о компонентах, планировании, акустике, твикинге и др. Форум. Тематические ссылки.

Дмитрий Усков — радиотехник
Информация о технологии изготовления печатных плат, усилителей мощности (для активного сабвуфера, двухполосный и др.). Сведения об авторе.

Медведев Михаил — радиолюбитель
Принципиальные схемы электронных устройств и бытовой техники. Ссылки по радиоэлектронике.

Принципиальная схемотехника — принципиальные схемы и описания устройств
Материалы по темам: радиопередача, измерения, радиоприем, телефония, радиостанции, звукотехника, источники питания и др.

Александр Наумычев — радиолюбитель
Схемы мониторов, телевизоров, телефонов, автомагнитол. Каталог ссылок на серверы по радиотехнике.

Защита от электронного шпионажа — электронная версия книги
Текст пособия для радиолюбителей по защите от электронного шпионажа.

Импульсные блоки питания телевизоров и видеомагнитофонов
Схемы.

Любительская схемотехника
Микросхемы для автомагнитолы, телевизоров и др. Каталог ссылок на серверы по радиотехнике. Юмористические рассказы автора.

Паяльник — архив радиосхем
Радиосхемы: ламповые и транзисторные усилители, эквалайзеры, металлоискатели, сигнализация, «жучки», дозиметры, источники питания, радиомодемы, телевизоры, аудиотехника. Советы по взлому НТВ+. Форум.

Петров Вадим — радиолюбитель
Фото автора. Увлечения: радиолюбительство и программирование. Статьи. Ссылки. О заработке в Интернете и спонсоре Spedia.

Схемотека — коллекция схем для радиолюбителей
Радиосхемы бытовой электроаппаратуры: радиоприемников, магнитофонов, усилителей, телефонов, телевизоров и др.

Типовые схемы включения импортных микросхем
Схемы усилителей, транзисторов. Микросхемы для теле- и видеоаппаратуры.

Bug’s — схемы. программы, справочная информация по радиотехнике
Схемы аудио-видео, компьютерной и бытовой техники, жучков, передатчиков, автомобильных устройств и др. Возможность загрузки программ. Справочная информация по радиолюбительству. Рекомендации по раскодировке магнитол.

Sam sebe master – страница радиолюбителя-электронщика
Классификация радиодеталей. Схемы и описания электронных устройств (бегущий огонь, универсальный пробник и др.) и технология их изготовления в домашних условиях. Возможность покупки электронных устройств или набора деталей. Прайс-лист.

Solo — описание устройства для взлома спутникового телевидения
Схема программатора JDM. Советы по изготовлению двухчиповой печатной платы Solo. Коды для взлома спутникового телевидения.

Мир TV — о ремонте теле-видеоаппаратуры
Описание возможных неисправностей аппаратуры и способов их ремонта. Справочник по микросхемам. Сборник программ для защиты от интернет-атак.

Домашняя студия звукозаписи — советы по созданию
Список минимального состава оборудования. Коллекция сэмплов в формате wav. Электрическая схема микрофонного усилителя. Рассказ о рок-группе «Ландшафт».

На шаг ближе к Hi-Fi — рекомендации по доработке аппаратуры
Теоретические и практические сведения, схемы и руководства по доработке советской аудиаппаратуры.

Александр — радиолюбитель
Подборка ссылок: советы, схемы по радиолюбительству. Чат. Форум.

Дмитрий — радиолюбитель
Описание и схемы детекторов, регуляторов, звонков, телефонов, усилителей, блокираторов, преобразователей, шифраторов и дешифраторов и др.

Продажа схем и документации на аудио-видеотехнику
Каталог CD-дисков, содержащих схемы и документацию к телевизорам, видеомагнитофонам, музыкальным центрам, автомагнитолам, радиотелефонам и др. Предложение почтовой доставки по России. Условия оплаты: WebMoney, наложенный платеж. Зеркало http://mag.webservis.ru/

Псковские радиолюбители СВ-диапазона
Правила работы в СВ-диапазоне. Характеристики и описание радиостанций «President» (на англ.яз). Фотогалерея со встречи псковских СВ-радиолюбителей 1998 года.

Телевизоры СССР — виртуальный музей
Описания советских телевизоров, производимых в 1934-1990 годах: фотографии, сведения об особенностях конструкции, электрические схемы. История развития телевидения в СССР.

Электроника у Танкиста — схемы и описания
Технические описания компьютерной техники (мониторов, серверов и др.). Схемы бытовой, аудио-видеотехники, видеокамер, телефонов, автоэлектроники.

CoolRadio — электронные схемы
Схемы электронных устройств (жучков, охранных устройств, дозиметров и др.)

ElectroShock — материалы по электронике
Схемы и описания электронных устройств (радиомикрофона, индикаторов, регуляторов и др.). Книги, статьи по электронике и радиолюбительских технологиях. Возможность загрузки программ для расчетов по электронике.

RetStudio electronics — описание электронных схем
Схемы: жучки, электрошок, преобразoватель напряжения и т. д. Советы, возможность загрузки программ для радиолюбителей.

Схемы бытовой телерадиоаппаратуры
Принципиальные схемы телерадиоаппаратуры: магнитолы, автомагнитолы, музыкальные центры, телевизоры, видеомагнитофоны.

Lazer — радиосхемы телевизионных разветвителей и усилителей
Радиосхемы и технические описания телевизионных разветвителей и усилителей.

UA1CAN — сайт радиолюбителя
Радиосхемы: антенны, усилители мощности, кварцевые генераторы, согласующие устройства. Загрузка программ для радиолюбителей.

Радиолюбительская технология — описания, схемы, советы
Описания и схемы радиоприемной аппаратуры, электронных часов, блоков питания, звукотехники и др. Советы и схемы для начинающего радиолюбителя. Каталог микросхем и их зарубежных аналогов. Программы для расчета радиолюбительских устройств.


Радиосхемы. — Главная

РАДИОСХЕМЫ, Схемы электрические  принципиальные

Электрические схемы для начинающих, для любителей и профессионалов

Добро пожаловать в раздел Радиосхемы! Это отдельный раздел Сайта Радиолюбителей который был создан специально для тех кто дружит с паяльником, привык все делать сам своими руками и он посвящен исключительно электрическим схемам.

Здесь Вы найдете принципиальные схемы различной тематики как для самостоятельной сборки начинающими радиолюбителями, так и для более опытных радиолюбителей, для тех кому слово РАДИО давно уже стало не просто хобби а профессией.

Кроме схем для самостоятельной сборки, у нас здесь имеется и достаточно большая (и постоянно обновляемая!) база электрических схем различной промышленной электроники и бытовой техники- схемы телевизоров, мониторов, магнитол, усилителей, измерительных приборов, стиральных машин, микроволновок и так далее.

Специально для работников сферы ремонта, у нас на сайте имеется раздел «Даташиты», где вы сможете найти справочную информацию на различные радиоэлементы.

А если Вам необходима какая либо схема и есть желание ее скачать, то у нас здесь все бесплатно, без регистрации, без СМС, без файлообменников и прочих сюрпризов

Если есть вопросы или не нашли то что искали- заходите к нам на ФОРУМ, подумаем вместе!!

Для облегчения поиска необходимой информации раздел разбит по категориям

Схемы для начинающих

В этом разделе собраны простые схемы для начинающих радиолюбителей.
Все схемы чрезвычайно просты, имеют описание и предназначены для самостоятельной сборки.
материалы в категории

Свет и музыка

устройства световых эффектов: мигалки, цветомузыки, стробоскопы, автоматы переключения гирлянд и так далее. Конечно-же все схемы можно собрать самостоятельно

материалы в категории

Схемы источников питания

Любая радиоэлектронная аппаратура нуждается в питании. Именно источникам питания и посвящена данная категория

материалы в категории

Электроника в быту

В этой категории представлены схемы устройств для бытового применения: отпугиватели грызунов, различные сигнализации, ионизаторы и так далее…
В общем все что может быть полезно для дома

материалы в категории

Антенны и Радиоприемники

 Антенны ( в том числе и самодельные), антенные комплектующие а также схемы радиоприемников для самостоятельной сборки

материалы в категории

Шпионские штучки

В этом разделе находятся схемы различных «шпионских» устройств- радиожучки, глушители и прослушиватели телефонов, детекторы радиожучков

материалы в категории

Авто- Мото- Вело электроника

Принципиальные схемы различных вспомогательных устройств к автомобилям: зарядные устройства, указатели поворотов, управление светом фар и так далее

материалы в категории

Измерительные приборы

 

Электрические принципиальные схемы измерительных приборов: как самодельных так и промышленного производства

материалы в категории

Отечественная техника 20 Века

 

Подборка электрических принципиальных схем бытовой радиоаппаратуры выпущенной в СССР

 

материалы в категории

Схемы телевизоров LCD (ЖК)

Электрические принципиальные схемы телевизоров LCD (ЖК)

материалы в категории

Схемы программаторов

Схемы различных программаторов

материалы в категории

 

Аудиотехника

Схемы устройств связанных со звуком: усилители транзисторные и на микросхемах, предварительные и ламповые, устройства преобразования звука

материалы в категории 

Схемы мониторов

Принципиальные электрические схемы различных мониторов: как стареньких кинескопных, так и современных ЖК

материалы в категории

Схемы автомагнитол и прочей авто-аудиотехники

 Подборка схем автомобильной аудиотехники: автомагнитолы, усилительные устройства и автомобильные телевизоры

Схемы автомагнитол

устройства на микроконтроллерах

материалы в категории

Схемы музыкальных центров

Электрические принципиальные схемы и инструкции по реонту музыкальных центров

материалы в категории

Схемы DVD плееров и
домашних кинотеатров

материалы в категории

Схемы усилителей и ресиверов

материалы в категории

Схемы Блоков питания
и
инверторов ЖК телевизоров
и мониторов

Электрические принципиальные схемы инверторов и источников питания телевизоров

Схемы инверторов и источников питания ЖК телевизоров и мониторов

Схемы телефонов и для телефонов

 Схемы радиотелефонов и различных самодельных устройств к телефонам- антипираты, блокираторы и так далее

материалы в категории

Схемы инверторов
Сварочных

Схемы сварочного оборудования- сварочные источники, полуавтоматы и инверторы

Схемы сварочных инверторов

Справочные материалы

Различные справочники в помощь радиолюбителям

материалы в категории

Схемы с пояснениями простых устройств для радиолюбителей.

Как читать электрические схемы. Схемы самодельных измерительных приборов

Схемы самодельных измерительных приборов

Схема прибора, разработанная на основе классического мультивибратора, но вместо нагрузочных резисторов в коллекторные цепи мультивибратора включены транзисторы противоположной основным проводимостью.

Хорошо, если в вашей лаборатории есть осциллограф. Ну а если его нет и купить его по тем или иным причинам не представляется возможным, не огорчайтесь. В большинстве случаев его с успехом может заменить логический пробник, позволяющий проконтролировать логические уровни сигналов на входах и выходах цифровых интегральных схем, определить наличие импульсов в контролируемой цепи и отразить полученную информацию в визуальной (свето-цветовой или цифровой) или звуковой (тональными сигналами различной частоты) формах. При налаживании и ремонте конструкций на цифровых интегральных схемах далеко не всегда так уж необходимо знать характеристики импульсов или точные значения уровней напряжения. Поэтому логические пробники облегчают процесс налаживания, даже если есть осциллограф.

Представлена огромная подборка разичных схем генераторов импульсов. Одни из них формируют на выходе одиночный импульс, длительность которого не зависит от длительности запускающего (входного) импульса. Применяются такие генераторы в самых разнообразных целях: имитации входных сигналов цифровых устройств, при проверке работоспособности цифровых интегральных схем, необходимости подачи на какое-то устройство определенного числа импульсов с визуальным контролем процессов и т. д. Другие генерируют пилообразные и прямоугольные импульсы различной частоты, скважности и амплитуды

Ремонт различных узлов и устройств низкочастотной радиоэлектронной аппаратуры и техники можно значительно упростить, если использовать в качестве помощника функциональный генератор, который дает возможность исследовать амплитудно-частотные характеристики любого низкочастотного устройства, переходные процессы и нелинейные характеристики любых аналоговых приборов, а также обладает возможностью генерации импульсов прямоугольной формы и упрощения процесса наладки цифровых схем.

При наладке цифровых устройств обязательно нужен еще один прибор — генератор импульсов. Промышленный генератор — прибор достаточно дорогой и редко бывает в продаже, но его аналог, пусть не такой точный и стабильный, можно собрать из доступных радиоэлементов в домашних условиях

Однако создание звукового генератора, вырабатывающего синусоидальный сигнал, дело непростое и довольно кропотливое, особенно в части налаживания. Дело в том, что любой генератор содержит, по крайней мере, два элемента: усилитель и частотнозависимую цепь, определяющую частоту колебаний. Обычно она включается между выходом и входом усилителя, создавая положительную обратную связь (ПОС). В случае ВЧ-генератора все просто — достаточно усилителя на одном транзисторе и колебательного контура, определяющего частоту. Для диапазона звуковых частот наматывать катушку сложно, да и добротность ее получается низкой. Поэтому в диапазоне звуковых частот используют RC-элементы — резисторы и конденсаторы. Они довольно плохо фильтруют основную гармонику колебаний, и потому синусоидальный сигнал оказывается искаженным, например, ограниченным по пикам. Для устранения искажений применяют цепи стабилизации амплитуды, поддерживающие низкий уровень генерируемого сигнала, когда искажения еще незаметны. Именно создание хорошей стабилизирующей цепи, не искажающей синусоидальный сигнал, и вызывает основные трудности.

Часто, собрав конструкцию, радиолюбитель видит, что устройство не работает. У человека ведь нет органов чувств, позволяющих видеть электрический ток, электромагнитное поле или процессы, происходящие в электронных схемах. Помогают это сделать радиоизмерительные приборы — глаза и уши радиолюбителя.

Поэтому нужно какое-то средство испытания и проверки телефонов и громкоговорителей, усилителей звуковой частоты, различных звукозаписывающих и звуковоспроизводящих устройств. Такое средство — это радиолюбительские схемы генераторов сигналов звуковой частоты, или, говоря проще, звуковой генератор. Традиционно он вырабатывает непрерывный синусоидальный сигнал, частоту и амплитуду которого можно изменять. Это позволяет проверять все каскады УНЧ, находить неисправности, определять коэффициент усиления, снимать амплитудно-частотные характеристики (АЧХ) и много всего другого.

Рассмотрена несложная радиолюбительская самодельная приставка превращающая ваш мультиметр в универсальный прибор проверки стабилитронов и динисторов. Имеются чертежи печатной платы


Радиолюбительская технология. В книге рассказывается о технологии работ радиолюбителя. Даются реко-мендации по обработке материалов, намотке катушек и трансформаторов, монтажу и пайке деталей. Описывается изготовление самодельных деталей элементов конструкций, простейших станков, приспособлений и инструмента.


Цифровая электроника для начинающих. Основы цифровой электроники изложены простым и доступным для начинающих способом — путем создания на макетной плате забавных и познавательных устройств на транзисторах и микросхемах, которые сразу после сборки начинают работать, не требуя пайки, наладки и программирования. Набор необходимых деталей сведен к минимуму как по количеству наименований, так и по стоимости.

По ходу изложения даются вопросы для самопроверки и закрепления материала, а также творческие задания на самостоятельную разработку схем.


Осциллографы. Основные принципы измерений. Осциллографы – незаменимый инструмент для тех, кто проектирует, производит или ремонтирует электронное оборудование. В современном быстро изменяющемся мире специалистам необходимо иметь самое лучшее оборудование для быстрого и точного решения своих насущных, связанных с измерениями задач. Будучи “глазами” инженеров в мир электроники, осциллографы являются ключевым инструментарием при изучении внутренних процессов в электронных схемах.


Спроектировать и построить катушку Тесла довольно легко. Для новичка это кажется сложной задачей (мне это тоже казалось сложным), но можно получить рабочую катушку, следуя инструкциям в этой статье и проделав небольшие расчеты. Конечно, если вы хотите очень мощную катушку, нет никакого способа кроме изучения теории и проведения множества расчетов.


Самоделки юного радиолюбителя. В книге описываются имитаторы звуков, искатели скрытой электропроводки, акустические выключатели, автоматы звукового управления моделями, электромузыкальные инструменты, приставки к электрогитарам, цветомузыкальные приставки и другие конструкции, собранные из доступных деталей


Школьная радиостанция ШК-2 — Алексеев С. М. В брошюре описаны два передатчика и два приемника, работающие на диапазонах 28 и 144 М гц, модулятор для анодно-экранной модуляции, блок питания и простые антенны. В ней рассказывается также об организации работы учащихся на коллективной радиостанции, о подготовке операторов, содержании их работы, об исследовательской работе школьников в области распространения КВ и УКВ.


Electronics For Dummies
Build your electronics workbench — and begin creating fun electronics projects right away
Packed with hundreds of colorful diagrams and photographs, this book provides step-by-step instructions for experiments that show you how electronic components work, advice on choosing and using essential tools, and exciting projects you can build in 30 minutes or less. You»ll get charged up as you transform theory into action in chapter after chapter!


Книга состоит из описаний простых конструкций, содержащих электронные компоненты, и экспериментов с ними. Кроме традиционных конструкций, чья логика работы определяется их схемотехникой, добавлены описания изделий, функционально реализующихся с помощью программирования. Тематика изделий — электронные игрушки и сувениры.


Как освоить радиоэлектронику с нуля. Если у вас есть огромное желание дружить с электроникой, если вы хотите создавать свои самоделки, но не знаете, с чего начать, — воспользуйтесь этим самоучителем. Вы узнаете, как читать принципиальные схемы, работать с паяльником, и создадите немало интересных самоделок. Вы научитесь пользоваться измерительным прибором, разрабатывать и создавать печатные платы , узнаете секреты многих профессиональных радиолюбителей. В общем, получите достаточное количество знаний для дальнейшего освоения электроники самостоятельно.


Паять просто — пошаговое руководство для начинающих. Комикс, несмотря на свой формат и объем, в мелких деталях объясняет основные принципы этого процесса, которые совсем не очевидны для людей, ни разу не державших в руках паяльник (как показывает практика, для многих державших тоже). Если вы давно хотели научиться паять сами, или планируете научить этому своих детей, то этот комикс для вас.


Электроника для любознательных. Эта книга написана специально для вас, начинающих увлекательное восхождение к вершинам электроники. Помогает освоению диалог автора книги с новичком. А еще помощниками в овладении знаниями становятся измерительные приборы, макетная плата, книги и ПК.


Энциклопедия юного радиолюбителя. Здесь Вы найдете множество практических схем как отдельных узлов и блоков, так и целых устройств. В разрешении многих вопросов поможет специальный справочник. Пользуясь удобной системой поиска, отыщешь нужный раздел, а к нему как наглядные примеры великолепно выполненные рисунки.


Книга создана специально для начинающих радиолюбителей, или, как еще у нас любят говорить, — «чайников». Она рассказывает об азах электроники и электротехники, необходимых радиолюбителю. Теоретические вопросы рассказываются в очень доступной форме и в объеме, необходимом для практической работы. Книга учит правильно паять, проводить измерения, анализ схем. Но, скорее, это книга о занимательной электронике. Ведь основа книги — радиолюбительские самоделки, доступные начинающему радиолюбителю и полезные в быту.


Это вторая книга из серии изданий, адресованных начинающему радиолюбителю в качестве учебно-практического пособия. В этой книге на более серьезном уровне продолжено знакомство с различными схемами на полупроводниковой и радиовакуумной базе, основами звукотехники, электро и радиоизмерениями. Изложение сопровождается большим количеством иллюстраций и практических схем.

Азбука радиолюбителя. Основное и единственное назначение этой книги — приобщить к радиолюбительскому творчеству ребят, не имеющих об этом ни малейшего представления. Книга построена по принципу `от азов — через знакомство — к пониманию` и может быть рекомендована школьникам средних и старших классов как путеводитель по началам радиотехники.

Ниже приводятся несложные светозвуковые схемы, в основном собранные на основе мультивибраторов, для начинающих радиолюбителей. Во всех схемах использована простейшая элементная база, не требуется сложная наладка и допускается замена элементов на аналогичные в широких пределах.

Электронная утка

Игрушечную утку можно снабдить несложной схемой имитатора «кряканья» на двух транзисторах. Схема представляет собой классический мультивибратор на двух транзисторах, в одно плечо которого включен акустический капсюль, а нагрузкой другого служат два светодиода, которые можно вставить в глаза игрушки. Обе эти нагрузки работают поочередно – то раздается звук, то вспыхивают светодиоды – глаза утки. В качестве включателя питания SA1 можно применить герконовый датчик (можно взять из датчиков СМК-1, СМК-3 и др., используемых в системах охранной сигнализации как датчики открывания двери). При поднесении магнита к геркону его контакты замыкаются и схема начинает работать. Это может происходить при наклоне игрушки к спрятанному магниту или поднесения своеобразной «волшебной палочки» с магнитом.

Транзисторы в схеме могут быть любые p-n-p типа, малой или средней мощности, например МП39 – МП42 (старого типа), КТ 209, КТ502, КТ814, с коэффициентом усиления более 50. Можно использовать и транзисторы структуры n-p-n, например КТ315, КТ 342, КТ503, но тогда нужно изменить полярность питания, включения светодиодов и полярного конденсатора С1. В качестве акустического излучателя BF1 можно использовать капсюль типа ТМ-2 или малогабаритный динамик. Налаживание схемы сводится к подбору резистора R1 для получения характерного звука кряканья.

Звук подскакивающего металлического шарика

Схема довольно точно имитирует такой звук, по мере разряда конденсатора С1 громкость «ударов» снижается, а паузы между ними уменьшаются. В конце послышится характерный металлический дребезг, после чего звук прекратится.

Транзисторы можно заменить на аналогичные, как и в предыдущей схеме.
От емкости С1 зависит общая продолжительность звучания, а С2 определяет длительность пауз между «ударами». Иногда для более правдоподобного звучания полезно подобрать транзистор VT1, так как работа имитатора зависит от его начального тока коллектора и коэффициента усиления (h31э).

Имитатор звука мотора

Им можно, например, озвучить радиоуправляемую или другую модель передвижного устройства.

Варианты замены транзисторов и динамика – как и в предыдущих схемах. Трансформатор Т1 – выходной от любого малогабаритного радиоприемника (через него в приемниках также подключен динамик).

Существует множество схем имитации звуков пения птиц, голосов животных, гудка паровоза и т.д. Предлагаемая ниже схема собрана всего на одной цифровой микросхеме К176ЛА7 (К561 ЛА7, 564ЛА7) и позволяет имитировать множество разных звуков в зависимости от величины сопротивления, подключаемого к входным контактам Х1.

Следует обратить внимание, что микросхема здесь работает «без питания», то есть на ее плюсовой вывод (ножка 14) не подается напряжение. Хотя на самом деле питание микросхемы все же осуществляется, но происходит это только при подключении сопротивления-датчика к контактам Х1. Каждый из восьми входов микросхемы соединен с внутренней шиной питания через диоды, защищающие от статического электричества или неправильного подключения. Через эти внутренние диоды и осуществляется питание микросхемы за счет наличия положительной обратной связи по питанию через входной резистор-датчик.

Схема представляет собой два мультивибратора. Первый (на элементах DD1.1, DD1.2) сразу начинает вырабатывать прямоугольные импульсы с частотой 1 … 3 Гц, а второй (DD1.3, DD1.4) включается в работу, когда на вывод 8 с первого мультивибратора поступит уровень логической «1». Он вырабатывает тональные импульсы с частотой 200 … 2000 Гц. С выхода второго мультивибратора импульсы подаются на усилитель мощности (транзистор VT1) и из динамической головки слышится промодулированный звук.

Если теперь к входным гнездам Х1 подключить переменный резистор сопротивлением до 100 кОм, то возникает обратная связь по питанию и это преображает монотонный прерывающийся звук. Перемещая движок этого резистора и меняя сопротивление можно добиться звука, напоминающего трель соловья, щебетание воробья, крякание утки, квакание лягушки и т.д.

Детали
Транзистор можно заменить на КТ3107Л, КТ361Г но в этом случае нужно поставить R4 сопротивлением 3,3 кОм, иначе уменьшится громкость звука. Конденсаторы и резисторы – любых типов с номиналами, близкими к указанным на схеме. Надо иметь в виду, что в микросхемах серии К176 ранних выпусков отсутствуют вышеуказанные защитные диоды и такие зкземпляры в данной схеме работать не будут! Проверить наличие внутренних диодов легко – просто замерить тестером сопротивления между выводом 14 микросхемы («+» питания) и ее входными выводами (или хотя бы одним из входов). Как и при проверке диодов, сопротивление в одном направление должно быть низким, в другом – высоким.

Выключатель питания в этой схеме можно не применять, так как в режиме покоя устройство потребляет ток менее 1 мкА, что значительно меньше даже тока саморазряда любой батареи!

Наладка
Правильно собранный имитатор никакой наладки не требует. Для изменения тональности звука можно подбирать конденсатор С2 от 300 до 3000 пФ и резисторы R2, R3 от 50 до 470 кОм.

Фонарь-мигалка

Частоту миганий лампы можно регулировать подбором элементов R1, R2, C1. Лампа может быть от фонарика либо автомобильная 12 В. В зависимости от этого нужно выбирать напряжение питания схемы (от 6 до 12 В) и мощность коммутирующего транзистора VT3.

Транзисторы VT1, VT2 – любые маломощные соответствующей структуры (КТ312, КТ315, КТ342, КТ 503 (n-p-n) и КТ361, КТ645, КТ502 (p-n-p), а VT3 – средней или большой мощности (КТ814, КТ816, КТ818).

Простое устройство для прослушивания звукового сопровождения ТВ — передач на наушники. Не требует никакого питания и позволяет свободно перемещаться в пределах комнаты.

Катушка L1 представляет собой «петлю» из 5…6 витков провода ПЭВ (ПЭЛ)-0.3…0.5 мм, проложенную по периметру комнаты. Она подключается параллельно динамику телевизора через переключатель SA1 как показано на рисунке. Для нормальной работы устройства выходная мощность звукового канала телевизора должна быть в пределах 2…4 Вт, а сопротивление петли – 4…8 Ом. Провод можно проложить под плинтусом или в кабельном канале, при этом нужно располагать его по возможности не ближе 50 см от проводов сети 220 В для уменьшения наводок переменного напряжения.

Катушка L2 наматывается на каркас из плотного картона или пластика в виде кольца диаметром 15…18 см, которое служит наголовником. Она содержит 500…800 витков провода ПЭВ (ПЭЛ) 0,1…0,15 мм закрепленного клеем или изолентой. К выводам катушки подключены последовательно миниатюрный регулятор громкости R и наушник (высокоомный, например ТОН-2).

Автомат выключения освещения

От множества схем подобных автоматов эта отличается предельной простотой и надежностью и в подробном описании не нуждается. Она позволяет включать освещение или какой-нибудь электроприбор на заданное непродолжительное время, а затем автоматически его отключает.

Для включения нагрузки достаточно кратковременно нажать выключатель SA1 без фиксации. При этом конденсатор успевает зарядиться и открывает транзистор, который управляет включением реле. Время включения определяется емкостью конденсатора С и с указанным на схеме номиналом (4700 мФ) составляет около 4 минут. Увеличение времени включенного состояния достигается подключением дополнительных конденсаторов параллельно С.

Транзистор может быть любым n-p-n типа средней мощности или даже маломощным, типа КТ315. Это зависит от рабочего тока применяемого реле, которое также может быть любым другим на напряжение срабатывания 6-12 В и способным коммутировать нагрузку необходимой вам мощности. Можно использовать и транзисторы p-n-p типа, но нужно будет поменять полярность напряжения питания и включения конденсатора С. Резистор R также влияет в небольших пределах на время срабатывания и может быть номиналом 15 … 47 кОм в зависимости от типа транзистора.

Список радиоэлементов
ОбозначениеТипНоминалКоличествоПримечаниеМагазинМой блокнот
Электронная утка
VT1, VT2Биполярный транзистор

КТ361Б

2МП39-МП42, КТ209, КТ502, КТ814В блокнот
HL1, HL2Светодиод

АЛ307Б

2В блокнот
C1100мкФ 10В1В блокнот
C2Конденсатор0. 1 мкФ1В блокнот
R1, R2Резистор

100 кОм

2В блокнот
R3Резистор

620 Ом

1В блокнот
BF1Акустический излучательТМ21В блокнот
SA1Геркон1В блокнот
GB1Элемент питания4.5-9В1В блокнот
Имитатор звука подскакивающего металлического шарика
Биполярный транзистор

КТ361Б

1В блокнот
Биполярный транзистор

КТ315Б

1В блокнот
C1Электролитический конденсатор100мкФ 12В1В блокнот
C2Конденсатор0. 22 мкФ1В блокнот
Динамическая головкаГД 0.5…1Ватт 8 Ом1В блокнот
GB1Элемент питания9 Вольт1В блокнот
Имитатор звука мотора
Биполярный транзистор

КТ315Б

1В блокнот
Биполярный транзистор

КТ361Б

1В блокнот
C1Электролитический конденсатор15мкФ 6В1В блокнот
R1Переменный резистор470 кОм1В блокнот
R2Резистор

24 кОм

1В блокнот
T1Трансформатор1От любого малогабаритного радиоприемникаВ блокнот
Универсальный имитатор звуков
DD1МикросхемаК176ЛА71К561ЛА7, 564ЛА7В блокнот
Биполярный транзистор

КТ3107К

1КТ3107Л, КТ361ГВ блокнот
C1Конденсатор1 мкФ1В блокнот
C2Конденсатор1000 пФ1В блокнот
R1-R3Резистор

330 кОм

1В блокнот
R4Резистор

10 кОм

1В блокнот
Динамическая головкаГД 0. 1…0.5Ватт 8 Ом1В блокнот
GB1Элемент питания4.5-9В1В блокнот
Фонарь-мигалка
VT1, VT2Биполярный транзистор

При изучении электроники возникает вопрос, как читать электрические схемы. Естественным желанием начинающего электронщика или радиолюбителя является спаять какое-то интересное электронное устройство. Однако на начальном пути достаточных теоретических знаний и практических навыков как всегда не хватает. Поэтому устройство собирают вслепую. И часто бывает, что спаянное устройство, на которое было затрачено много времени, сил и терпения, — не работает, что вызывает только разочарование и отбивает желание у начинающего радиолюбителя заниматься электроникой, так и не ощутив все прелести данной науки. Хотя, как оказывается, схема не заработала из-за допущения сущего пустяковой ошибки. На исправление такой ошибки у более опытного радиолюбителя ушло бы меньше минуты.

В данной статье приведены полезные рекомендации, которые позволят свести к минимуму количество ошибок. Помогут начинающему радиолюбителю собирать различные электронные устройства, которые заработают с первого раза.

Любая радиоэлектронная аппаратура состоит из отдельных радиодеталей, спаянных (соединенных) между собой определенным образом. Все радиодетали, их соединения и дополнительные обозначения отображаются на специальном чертеже. Такой чертеж называется электрической схемой. Каждая радиодеталь имеет свое обозначение, которое правильно называется условное графическое обозначение, сокращенно – УГО . К УГО мы вернемся дальше в этой статье.


Принципиально можно выделить два этапа совершенствования чтения электрических схем. Первый этап характерен для монтажников радиоэлектронной аппаратуры. Они просто собирают (паяют) устройства не углубляясь в назначение и принцип работы основных его узлов. По сути дела – это скучная работа, хотя, хорошо паять, нужно еще поучиться. Лично мне гораздо интересней паять то, что я полностью понимаю, как оно работает. Появляются множества вариантов для маневров. Понимаешь какой номинал, например или критичный в данной случае, а каким можно пренебречь и заменить другим. Какой транзистор можно заменить аналогом, а где следует использовать транзистор только указанной серии. Поэтому лично мне ближе второй этап.

Второй этап присущ разработчикам радиоэлектронной аппаратуры. Такой этап является самый интересный и творческий, поскольку совершенствоваться в разработке электронных схем можно бесконечно.

По этому направлению написаны целые тома книг, наиболее известной из которых является «Искусство схемотехники». Именно к этому этапу мы будем стремиться подойти. Однако здесь уже потребуются и глубокие теоретические знания, но все оно того стоит.

Обозначение источников питания

Любое радиоэлектронное устройство способно выполнять свои функции только при наличии электроэнергии. Принципиально выделяют два типа источников электроэнергии: постоянного и переменного тока. В данной статье рассматриваются исключительно источниках . К ним относятся батарейки или гальванические элементы, аккумуляторные батареи, различного рода блоки питания и т.п.

В мире насчитывается тысячи тысяч разных аккумуляторов, гальванических элементов и т.п., которые отличаются как внешним видом, так и конструкцией. Однако всех их объединяет общее функциональное назначение – снабжать постоянным током электронную аппаратуру. Поэтому на чертежах электрических схем источники они обозначаются единообразно, но все же с некоторыми небольшими отличиями.

Электрические схемы принято рисовать слева на право, то есть так, как и писать текст. Однако такого правила далеко не всегда придерживаются, особенно радиолюбители. Но, тем не менее, такое правило следует взять на вооружение и применять в дальнейшем.


Гальванический элемент или одна батарейка, неважно «пальчиковая», «мизинчиковая» или таблеточного типа, обозначается следующим образом: две параллельные черточки разной длины. Черточка большей длины обозначает положительный полюс – плюс «+», а короткая – минус «-».

Также для большей наглядности могут проставляться знаки полярности батарейки. Гальванический элемент или батарейка имеет стандартное буквенное обозначение G .

Однако радиолюбители не всегда придерживаются такой шифровки и часто вместо G пишут букву E , которая обозначает, что данный гальванический элемент является источником электродвижущей силы (ЭДС). Также рядом может указываться величина ЭДС, например 1,5 В.

Иногда вместо изображения источника питания показывают только его клеммы.

Группа гальванических элементов, которые могут повторно перезаряжаться, аккумуляторной батареей . На чертежах электрических схем они обозначается аналогично. Только между параллельными черточками находится пунктирная линия и применяется буквенное обозначение GB . Вторая буква как раз и обозначает «батарея».

Обозначение проводов и их соединений на схемах

Электрические провода выполняют функцию объединения всех электронных элементов в единую цепь. Они выполняют роль «трубопровода» — снабжают электронные компонент электронами. Провода характеризуются множеством параметров: сечением, материалом, изоляцией и т.п. Мы же будем иметь дело с монтажными гибкими проводами.

На печатных платах проводами служат токопроводящие дорожки. Вне зависимости от вида проводника (проволока или дорожка) на чертежах электрических схем они обозначаются единым образом – прямой линией.

Например, для того, что бы засветить лампу накаливания необходимо напряжение от аккумуляторной батареи подвести с помощью соединительных проводов к лампочке. Тогда цепь будет замкнута и в ней начнет протекать ток, который вызовет нагрев нити лампы накаливания до свечения.

Проводник принять обозначать прямой линией: горизонтальной или вертикальной. Согласно стандарту, провода или токоведущие дорожки могут изображаться под углом 90 или 135 градусов.

В разветвленных цепях проводники часто пересекаются. Если при этом не образуется электрическая связь, то точка в месте пересечения не ставится.

Обозначение общего провода

В сложных электрических цепях с целью улучшения читаемости схемы часто проводники, соединенные с отрицательной клеммой источника питания, не изображают. А вместо них применяют знаки, обозначающие отрицательных провод, который еще называют общи й или масса или шасси или земля .

Рядом со знаком заземления часто, особенно в англоязычных схемах, делается надпись GND, сокращенно от GRAUND – земля .

Однако следует знать, что общий провод не обязательно должен быть отрицательным, он также может быть и положительным. Особенно часто за положительный общий провод принимался в старых советских схемах, в которых преимущественно использовались транзисторы p n p структуры.

Поэтому, когда говорят, что потенциал в какой-то точке схемы равен какому-то напряжению, то это означает, что напряжение между указанной точкой и «минусом» блока питания равен соответствующему значению.

Например, если напряжение в точке 1 равно 8 В, а в точке 2 оно имеет величину 4 В, то нужно положительный щуп вольтметра установить в соответствующую точку, а отрицательный – к общему проводу или отрицательной клемме.

Таким подходом довольно часто пользуются, поскольку это очень удобно с практической точки зрения, так как достаточно указать только одну точку.

Особенно часто это применяется при настройке или регулировке радиоэлектронной аппаратуре. Поэтому учиться читать электрические схемы гораздо проще, пользуясь потенциалами в конкретных точках.

Условное графическое обозначение радиодеталей

Основу любого электронного устройства составляют радиодетали. К ним относятся , светодиоды, транзисторы, различные микросхемы и т. д. Чтобы научиться читать электрические схемы нужно хорошо знать условные графические обозначения всех радиодеталей.

Для примера рассмотрим следующий чертеж. Он состоит из батареи гальванических элементов GB 1 , резистора R 1 и светодиода VD 1 . Условное графическое обозначение (УГО) резистора имеет вид прямоугольника с двумя выводами. На чертежах он обозначается буквой R , после которой ставится его порядковый номер, например R 1 , R 2 , R 5 и т. д.

Поскольку важным параметром резистора помимо сопротивления является , то ее значение также указывается в обозначении.

УГО светодиода имеет вид треугольника с риской у его вершины; и двумя стрелочками, острия которых направлены от треугольника. Один вывод светодиода называется анодом, а второй – катодом.

Светодиод, как и «обычный» диод, пропускает ток только в одном направлении – от анода к катоду. Данный полупроводниковый прибор обозначается VD , а его тип указывается в спецификации или в описании к схеме. Характеристики конкретного типа светодиода приводятся в справочниках или «даташитах».

Как читать электрические схемы реально

Давайте вернемся к простейшей схеме, состоящей из батареи гальванических элементов GB 1 , резистора R 1 и светодиода VD 1 .

Как мы видим – цепь замкнута. Поэтому в ней протекает электрический ток I , который имеет одинаковое значение, поскольку все элементы соединены последовательно. Направление электрического тока I от положительной клеммы GB 1 через резистор R 1 , светодиод VD 1 к отрицательной клемме.

Назначение всех элементов вполне понятно. Конечной целью является свечение светодиода. Однако, чтобы он не перегрелся и не вышел из строя резистор ограничивает величину тока.

Величина напряжения, согласно второму закона Кирхгофа, на всех элементах может отличаться и зависит от сопротивления резистора R 1 и светодиод VD 1 .

Если измерить вольтметром напряжение на R 1 и VD 1 , а затем полученные значения сложить, то их сумма будет равна напряжению на GB 1 : V 1 = V 2 + V 3 .

Соберем по данному чертежу реальное устройство.

Добавляем радиодетали

Рассмотрим следующую схему, состоящую из четырех параллельных ветвей. Первая представляет собой лишь аккумуляторную батарею GB 1, напряжением 4,5 В. Во второй ветви последовательно соединены нормально замкнутые контакты K 1.1 электромагнитного реле K 1 , резистора R 1 и светодиода VD 1 . Далее по чертежу находится кнопка SB 1 .

Третья параллельная ветвь состоит из электромагнитного реле K 1 , шунтированного в обратном направлении диодом VD 2 .

В четвертой ветви имеются нормально разомкнутые контакты K 1. 2 и бузер BA 1 .

Здесь присутствуют элементы, ранее нами не рассмотрены в данной статье: SB 1 – это кнопка без фиксации положения. Пока она нажата ее, контакты замкнуты. Но как только мы перестанем нажимать и уберем палец с кнопки, контакты разомкнутся. Такие кнопки еще называют тактовыми.

Следующий элемент– это электромагнитное реле K 1 . Принцип работы его заключается в следующем. Когда на катушку подано напряжение, замыкаются его разомкнутые контакты и размыкаются замкнутые контакты.

Все контакты, которые соответствуют реле K 1 , обозначаются K 1.1 , K 1.2 и т. д. Первая цифра означает принадлежность их соответствующему реле.

Бузер

Следующий элемент, ранее не знакомый нам, — это бузер. Бузер в какой-то степени можно сравнить с маленьким динамиком. При подаче переменного напряжения на его выводы раздается звук соответствующей частоты. Однако в нашей схеме отсутствует переменное напряжение. Поэтому мы будем применять активный бузер, который имеет встроенный генератор переменного тока.

Пассивный бузер – для переменного тока.

Активный бузер – для постоянного тока.

Активный бузер имеет полярность, поэтому следует ее придерживаться.

Теперь мы уже можем рассмотреть, как читать электрическую схему в целом.

В исходном состоянии контакты K 1.1 находятся в замкнутом положении. Поэтому ток протекает по цепи от GB 1 через K 1.1 , R 1 , VD 1 и возвращается снова к GB 1 .

При нажатии кнопки SB 1 ее контакты замыкаются, и создается путь для протекания тока через катушку K 1 . Когда реле получило питание ее нормально замкнутые контакты K 1.1 размыкаются, а нормально замкнутые контакты K 1. 2 замыкаются. В результате гаснет светодиод VD 1 и раздается звук бузера BA 1 .

Теперь вернемся к параметрам электромагнитного реле K 1 . В спецификации или на чертеже обязательно указывается серия применяемого реле, например HLS ‑4078‑ DC 5 V . Такое реле рассчитано на номинальное рабочее напряжение 5 В. Однако GB 1 = 4,5 В, но реле имеет некоторый допустимы диапазон срабатывания, поэтому оно будет хорошо работать и при напряжении 4,5 В.

Для выбора бузера часто достаточно знать лишь его напряжение, однако иногда нужно знать и ток. Также следует не забывать и о его типе – пассивный или активный.

Диод VD 2 серии 1 N 4148 предназначен для защиты элементов, которые производят размыкание цепи, от перенапряжения. В данном случае можно обойтись и без него, поскольку цепь размыкает кнопка SB 1 . Но если ее размыкает транзистор или тиристор, то VD 2 нужно обязательно устанавливать.

Учимся читать схемы с транзисторами

На данном чертеже мы видим VT 1 и двигатель M 1 . Для определенности будем применять транзистор типа 2 N 2222 , который работает в .

Чтобы транзистор открылся, нужно на его базу подать положительный потенциал относительно эмиттера – для n p n типа; для p n p типа нужно подавать отрицательный потенциал относительно эмиттера.

Кнопка SA 1 с фиксацией, то есть он сохраняет свое положение после нажатия. Двигатель M 1 постоянного тока.

В исходном состоянии цепь разомкнута контактами SA 1 . При нажатии кнопки SA1 создается несколько путей протеканию тока. Первый путь – «+» GB 1 – контакты SA 1 – резистор R 1 – переход база-эмиттер транзистора VT 1 – «-» GB 1 . Под действием протекающего тока через переход база-эмиттер транзистор открывается и образуется второй путь току – «+»GB 1 SA 1 – катушка реле K 1 – коллектор-эмиттер VT 1 – «-» GB 1 .

Получив питание, реле K 1 замыкает свои разомкнутые контакты K 1.1 в цепи двигателя M 1 . Таким образом, создается третий путь: «+» GB 1 SA 1 K 1.1 M 1 – «-» GB 1 .

Теперь давайте все подытожим. Для того чтобы научиться читать электрические схемы, на первых порах достаточно лишь четко понимать законы Кирхгофа, Ома, электромагнитной индукции; способы соединения резисторов, конденсаторов; также следует знать назначение всех элементом. Также поначалу следует собирать те устройства, на которые имеются максимально подробные описания назначения отдельных компонентов и узлов.

Разобраться в общем подходе к разработке электронных устройств по чертежам, с множеством практических и наглядных примеров поможет мой очень полезный для начинающих курс . Пройдя данный курс, Вы сразу почувствуете, что перешли от новичка на новый уровень.

Приведены несколько схем простых устройств и узлов, которые могут быть изготовлены начинающими радиолюбителями.

Однокаскадный усилитель ЗЧ

Это простейшая конструкция, которая позволяет продемонстрировать усилительные способности транзистора Правда, коэффициент усиления по напряжению невелик — он не превышает 6, поэтому сфера применения такого устройства ограничена.

Тем не менее его можно подключить, скажем, к детекторному радиоприемнику (он должен быть нагружен на резистор 10 кОм) и с помощью головного телефона BF1 прослушивать передачи местной радиостанции.

Усиливаемый сигнал поступает на входные гнезда X1, Х2, а напряжение питания (как и во всех остальных конструкциях этого автора, оно составляет 6 В — четыре гальванических элемента напряжением по 1,5 В, соединенных последовательно) подается на гнезда ХЗ, Х4.

Делитель R1R2 задает напряжение смещения на базе транзистора, а резистор R3 обеспечивает обратную связь по току, что способствует температурной стабилизации работы усили теля.

Рис. 1. Схема однокаскадного усилителя ЗЧ на транзисторе.

Как происходит стабилизация? Предположим, что под воздействием температуры увеличился ток коллекто ра транзистора Соответственно увеличится падение напряжения на резисто ре R3. В итоге уменьшится ток эмитте ра, а значит, и ток коллектора — он достигнет первоначального значения.

Нагрузка усилительного каскада — головной телефон сопротивлением 60.. 100 Ом. Проверить работу усилителя несложно, нужно коснуться входного гнезда Х1 например, пинцетом в телефоне должно прослушиваться слабое жужжание, как результат наводки пере менного тока. Ток коллектора транзис тора составляет около 3 мА.

Двухкаскадный УЗЧ на транзисторах разной структуры

Он выполнен с непосредственной связью между каскадами и глубокой отрицательной обратной связью по постоянному току, что делает его режим независящим от температуры окружающей среды. Основа температурной стабилизации — резистор R4, работаю щий аналогично резистору R3 в предыдущей конструкции

Усилитель более «чувствительный” по сравнению с однокаскадным — коэффициент усиления по напряжению достигает 20. На входные гнезда можно подавать переменное напряжение амплитудой не более 30 мВ, иначе возникнут искажения, прослушиваемые в головном телефоне.

Проверяют усилитель, прикоснувшись пинцетом (или просто пальцем) входного гнезда Х1 — в телефоне раздастся громкий звук. Усилитель потребляет ток около 8 мА.

Рис. 2. Схема двухкаскадного усилителя ЗЧ на транзисторах разной структуры.

Эту конструкцию можно использовать для усиления слабых сигналов например, от микрофона. И конечно он позволит значительно усилить сигнал 34, снимаемый с нагрузки детекторного приемника.

Двухкаскадный УЗЧ на транзисторах одинаковой структуры

Здесь также использована непосредственная связь между каскадами, но стабилизация режима работы несколько отличается от предыдущих конструкций.

Допустим, что ток коллектора транзистора VТ1 уменьшился Падение напряжения на этом транзисторе увеличится что приведет к увеличению напряжения на резисторе R3, включенном в цепи эмиттера транзис тора VТ2.

Благодаря связи транзисторов через резистор R2, увеличится ток базы входного транзистора, что приведет к увеличению его тока коллектора. В итоге первоначальное изменение тока коллектора этого транзистора будет скомпенсировано.

Рис. 3. Схема двухкаскадного усилителя ЗЧ на транзисторах одинаковой структуры.

Чувствительность усилителя весьма высока — коэффициент усиления достигает 100. Усиление в сильной степени зависит от емкости конденсатора С2 — если его отключить, усиление снизится. Входное напряжение должно быть не более 2 мВ.

Усилитель хорошо работает с детекторным приемником, с электретным микрофоном и другими источниками слабого сигнала. Ток, потребляемый усилителем — около 2 мА.

Он выполнен на транзисторах разной структуры и обладает усилением по напряжению около 10. Наибольшее входное напряжение может быть 0,1 В.

Усилитель двухкаскадный первый собран на транзисторе VТ1 второй — на VТ2 и VТЗ разной структуры. Первый ка скад усиливает сигнал 34 по напряжению причем обе полуволны одинаково. Второй — усиливает сигнал по току но каскад на транзисторе VТ2 “работает” при положительных полуволнах, а на транзисторе VТЗ — при отрицательных.

Рис. 4. Двухтактный усилитель мощности ЗЧ на транзисторах.

Режим по постоянному току выбран таким что напряжение в точке соединения эмиттеров транзисторов второго каскада равно примерно половине напряжения источника питания.

Это достигается включением резистора R2 обратной связи Ток коллектора входного транзистора, протекая через диод VD1, приводит к падению на нем напряжения. которое является напряжением смещения на базах выходных транзисторов (относительно их эмиттеров), — оно позволяет уменьшить искажения усиливаемого сигнала.

Нагрузка (несколько параллельно включенных головных телефонов либо динамическая головка) подключена к усилителю через оксидный конденсатор С2.

Если усилитель будет работать на динамическую головку (сопротивлением 8 -.10 Ом), емкость этого конденсатора должна бы ь минимум вдвое больше Обратите внимание на подключение нагрузки первого каскада — резистора R4 Его верхний по схеме вывод соединен не с плюсом питания, как это обычно делается, а с нижним выводом нагрузки.

Это так называемая цепь вольтодобавки, при которой в базовую цепь выходных транзисторов поступает небольшое на пряжение ЗЧ положительной обратной связи, выравнивающее условия работы транзисторов.

Двухуровневый индикатор напряжения

Такое устройство можно использовать. например, для индикации “истощения” батареи питания либо индикации уровня воспроизводимого сигнала в бытовом магнитофоне. Макет индикатора позволит продемонстрировать принцип его работы.

Рис. 5. Схема двухуровневого индикатора напряжения.

В нижнем по схеме положении движка переменного резистора R1 оба транзистора закрыты, светодиоды HL1, HL2 погашены. При перемещении движкарезистора вверх, напряжение на нем увеличивается. Когда оно достигнет напряжения открывания транзистора VТ1 вспыхнет светодиод HL1

Если продолжать перемещать движок. наступит момент, когда вслед за диодом VD1 откроется транзистор VТ2. Вспыхнет и светодиод HL2. Иными словами, малое напряжение на входе индикатора вызывает свечение только светодиода HL1 а большее обоих светодиодов.

Плавно уменьшая входное напряжение переменным резистором, заметим что вначале гаснет светодиод HL2, а затем — HL1. Яркость светодиодов зависит от ограничительных резисторов R3 и R6 при увеличении их сопротивлений яркость падает.

Чтобы подключить индикатор к реальному устройству, нужно отсоединить верхний по схеме вывод переменного резистора от плюсового провода источника питания и подать контролируемое напряжение на крайние выводы этого резистора. Перемещением его движка подбирают порог срабатывания индикатора.

При контроле только напряжения источника питания допустимо установить на месте HL2 светодиод зеленого свечения АЛ307Г.

Он выдает световые сигналы по принципу меньше нормы — норма — больше нормы. Для этого в индикаторе использованы два светодиода красно го свечения и один — зеленого.

Рис. 6. Трехуровневый индикатор напряжения.

При некотором напряжении на движке переменного резистора R1 (напряжение в норме) оба транзистора закрыты и (работает) только зеленый светодиод HL3. Перемещение движка резистора вверх по схеме приводит к увеличению напряжения (больше нормы) на нем открывается транзистор VТ1.

Светодиод HL3 гаснет, а HL1 зажигается. Если движок перемещать вниз и уменьшать таким образом напряжение на нем (‘меньше нормы”) транзистор VТ1 закроется, а VТ2 откроется. Будет наблюдаться такая картина: вначале погаснет светодиод HL1, затем зажжется и вскоре погаснет HL3 и в заключение вспыхнет HL2.

Из-за низкой чувствительности индикатора получается плавный переход от погасания одного светодиода к зажиганию другого еще не погас полностью например, HL1, а уже зажигается HL3.

Триггер Шмитта

Как известно это устройство ис пользуется обычно для преобразования медленно изменяющегося напряжения в сигнал прямоугольной формыКогда движок переменного резистора R1 находится в нижнем по схеме положении транзистор VТ1 закрыт.

Напряжение на его коллекторе высокое, в результате транзистор VТ2 оказывается открытым а значит, светодиод HL1 зажжен На резисторе R3 образуется падение напряжения.

Рис. 7. Простой триггер Шмитта на двух транзисторах.

Медленно перемещая движок переменного резистора вверх по схеме, удастся достичь момента когда произойдет скачкообразное открывание транзистора VТ1 и закрывание VТ2 Это случится при превышении напряжения на базе VТ1 падения напряжения на резисторе R3.

Светодиод погаснет. Если после этого перемещать движок вниз триггер возвратится в первоначальное положение — вспыхнет светодиод Это произойдет при напряжении на движке меньшем чем напряжение выключения светодиода.

Ждущий мультивибратор

Такое устройство обладает одним устойчивым состоянием и переходит в другое только при подаче входного сигнала При этом мультивибратор формирует импульс своей длительности независимо от длительности входного. Убедимся в этом проведя эксперимент с макетом предлагаемого устройства.

Рис. 8. Принципиальная схема ждущего мультивибратора.

В исходном состоянии транзистор VТ2 открыт, светодиод HL1 светится. Достаточно теперь кратковременно замкнуть гнезда Х1 и Х2 чтобы импульс тока через конденсатор С1 открыл транзистор VТ1. Напряжение на его коллекторе снизится и конденсатор С2 окажется подключенным к базе транзистора VТ2 в такой полярности, что тот закроется. Светодиод погаснет.

Конденсатор начнет разряжаться ток разрядки потечет через резистор R5, удерживая транзистор VТ2 в закрытом состоянии Как только конденсатор разрядится, транзистор VТ2 вновь откроется и мультивибратор перейдет снова в режим ожидания.

Длительность формируемого мультивибратором импульса (продолжительность нахождения в неустойчивом состоянии) не зависит от длительности запускающего, а определяется сопротивлением резистора R5 и емкостью конденсатора С2.

Если подключить параллельно С2 конденсатор такой же емкости, светодиод вдвое дольше будет оставаться в погашенном состоянии.

И. Бокомчев. Р-06-2000.

Забавные электронные самоделки. Радиосхемы своими руками для дома

Электрические схемы для начинающих, для любителей и профессионалов

Добро пожаловать в раздел Радиосхемы ! Это отдельный раздел Сайта Радиолюбителей который был создан специально для тех кто дружит с паяльником, привык все делать сам своими руками и он посвящен исключительно электрическим схемам.

Здесь Вы найдете принципиальные схемы различной тематики как для самостоятельной сборки начинающими радиолюбителями , так и для более опытных радиолюбителей, для тех кому слово РАДИО давно уже стало не просто хобби а профессией.

Кроме схем для самостоятельной сборки, у нас здесь имеется и достаточно большая (и постоянно обновляемая!) база электрических схем различной промышленной электроники и бытовой техники- схемы телевизоров, мониторов, магнитол, усилителей, измерительных приборов, стиральных машин, микроволновок и так далее.

Специально для работников сферы ремонта, у нас на сайте имеется раздел «Даташиты «, где вы сможете найти справочную информацию на различные радиоэлементы.

А если Вам необходима какая либо схема и есть желание ее скачать, то у нас здесь все бесплатно, без регистрации, без СМС, без файлообменников и прочих сюрпризов

Если есть вопросы или не нашли то что искали- заходите к нам на ФОРУМ , подумаем вместе!!

Для облегчения поиска необходимой информации раздел разбит по категориям

Схемы для начинающих

В этом разделе собраны простые схемы для начинающих радиолюбителей .
Все схемы чрезвычайно просты, имеют описание и предназначены для самостоятельной сборки.
материалы в категории

Свет и музыка

устройства световы х эффектов : мигалки, цветомузыки, стробоскопы, автоматы переключения гирлянд и так далее. Конечно-же все схемы можно собрать самостоятельно

материалы в категории

Схемы источников питания

Любая радиоэлектронная аппаратура нуждается в питании. Именно источникам питания и посвящена данная категория

материалы в категории

Электроника в быту

В этой категории представлены схемы устройств для бытового применения: отпугиватели грызунов, различные сигнализации, ионизаторы и так далее…
В общем все что может быть полезно для дома

Антенны и Радиоприемники

Антенны (в том числе и самодельные), антенные комплектующие а также схемы радиоприемников для самостоятельной сборки

Шпионские штучки

В этом разделе находятся схемы различных «шпионских» устройств- радиожучки, глушители и прослушиватели телефонов, детекторы радиожучков

Авто- Мото- Вело электроника

Принципиальные схемы различных вспомогательных устройств к автомобилям : зарядные устройства, указатели поворотов, управление светом фар и так далее

Измерительные приборы

Электрические принципиальные схемы измерительных приборов: как самодельных так и промышленного производства

материалы в категории

Отечественная техника 20 Века

Подборка электрических принципиальных схем бытовой радиоаппаратуры выпущенной в СССР

материалы в категории

Схемы телевизоров LCD (ЖК)

Электрические принципиальные схемы телевизоров LCD (ЖК)

материалы в категории

Схемы программаторов


Схемы различных программаторов

материалы в категории

Аудиотехника

Схемы устройств связанных со звуком: усилители транзисторные и на микросхемах, предварительные и ламповые, устройства преобразования звука

материалы в категории

Схемы мониторов

Принципиальные электрические схемы различных мониторов: как стареньких кинескопных, так и современных ЖК

материалы в категории

Схемы автомагнитол и прочей авто-аудиотехники


Подборка схем автомобильной аудиотехники: автомагнитолы, усилительные устройства и автомобильные телевизоры

Кто занимается радиоэлектроникой дома, обычно очень любознателен. Радиолюбительские схемы и самоделки помогут найти новое направление в творчестве. Возможно, кто-то найдет для себя оригинальное решение той или иной проблемы. Некоторые самоделки используют уже готовые устройства, соединяя их различным образом. Для других нужно самому полностью создавать схему и производить необходимые регулировки.

Одна из самых простых самоделок. Больше подходит тем, кто только начинает мастерить. Если есть старый, но рабочий сотовый кнопочный телефон с кнопкой включения плеера, из него можно сделать, например, дверной звонок в свою комнату. Преимущества такого звонка:

Для начала нужно убедиться, что выбранный телефон способен выдавать достаточно громкую мелодию, после чего его необходимо полностью разобрать. В основном детали крепятся винтами или скобами, которые осторожно отгибаются. При разборке нужно будет запомнить, что за чем идет, чтобы потом можно было все собрать.

На плате отпаивается кнопка включения плеера, а вместо нее припаиваются два коротких провода. Затем эти провода приклеиваются к плате, чтобы не оторвать пайку. Телефон собирается. Осталось соединить телефон с кнопкой звонка через двужильный провод.

Самоделки для автомобилей

Современные автомобили снабжены всем необходимым. Однако бывают случаи, когда просто необходимы самодельные устройства. Например, что-то сломалось, отдали другу и тому подобное. Вот тогда умение создавать электронику своими руками в домашних условиях будет очень полезно.

Первое, во что можно вмешаться, не боясь навредить авто, — это аккумулятор. Если в нужный момент зарядки для аккумулятора не оказалось под рукой, ее можно быстро собрать самостоятельно. Для этого потребуется:

Идеально подходит трансформатор от лампового телевизора. Поэтому те, кто увлекается самодельной электроникой, никогда не выбрасывают электроприборы, в надежде, что они когда-нибудь понадобятся. К сожалению, трансформаторы использовались двух видов: с одной и с двумя катушками. Для зарядки аккумулятора на 6 вольт пойдет любой, а для 12 вольт только с двумя.

На оберточной бумаге такого трансформатора показаны выводы обмоток, напряжение для каждой обмотки и рабочий ток. Для питания нитей накаливания электронных ламп используется напряжение 6,3 В с большим током. Трансформатор можно переделать, убрав лишние вторичные обмотки, или оставить все как есть. В этом случае первичные и вторичные обмотки соединяют последовательно. Каждая первичная рассчитана на напряжение 127 В, поэтому, объединяя их, получают 220 В. Вторичные соединяют последовательно, чтобы получить на выходе 12,6 В.

Диоды должны выдерживать ток не менее 10 А. Для каждого диода необходим радиатор площадью не менее 25 квадратных сантиметров. Соединяются они в диодный мост. Для крепления подойдет любая электроизоляционная пластина. В первичную цепь включается предохранитель на 0,5 А, во вторичную — 10 А. Устройство не переносит короткого замыкания, поэтому при подключении аккумулятора нельзя путать полярность.

Простые обогреватели

В холодное время года бывает необходимо подогреть двигатель. Если автомобиль стоит там, где есть электрический ток, эту проблему можно решить с помощью тепловой пушки. Для ее изготовления потребуется:

  • асбестовая труба;
  • нихромовая проволока;
  • вентилятор;
  • выключатель.

Диаметр асбестовой трубы выбирается по размеру вентилятора, который будет использоваться. От его мощности будет зависеть производительность обогревателя. Длина трубы — предпочтение каждого. Можно в ней собрать нагревательный элемент и вентилятор, можно только нагреватель. При выборе последнего варианта придется продумать, как пустить воздушный поток на обогревательный элемент. Это можно сделать, например, поместив все составляющие в герметичный корпус.

Нихромовую проволоку также подбирают по вентилятору. Чем мощнее последний, тем большего диаметра можно использовать нихром. Проволока скручивается в спираль и размещается внутри трубы. Для крепления используются болты, которые вставляются в заранее просверленные отверстия в трубе. Длина спирали и их количество выбираются опытным путем. Желательно, чтобы спираль при работающем вентиляторе не нагревалась докрасна.

От выбора вентилятора будет зависеть, какое напряжение нужно подать на обогреватель. При использовании электровентилятора на 220 В не нужно будет использовать дополнительный источник питания.

Весь обогреватель подключается к сети через шнур с вилкой, но он сам должен иметь свой выключатель. Это может быть как просто тумблер, так и автомат. Второй вариант более предпочтителен, он позволяет защищать общую сеть. Для этого ток срабатывания автомата должен быть меньше тока срабатывания автомата помещения. Выключатель еще нужен для быстрого отключения обогревателя в случае неполадок, например, если вентилятор не будет работать. У такого обогревателя есть свои минусы:

  • вредность для организма от асбестовой трубы;
  • шум от работающего вентилятора;
  • запах от пыли, попадающей на нагретую спираль;
  • пожароопасность.

Некоторые проблемы можно решить, применив другую самоделку. Вместо асбестовой трубы, можно использовать банку из-под кофе. Чтобы спираль не замыкалась на банку, ее крепят к текстолитовой рамке, которую фиксируют с помощью клея. В качестве вентилятора используется кулер. Для его питания нужно будет собрать еще одно электронное устройство — небольшой выпрямитель.

Самоделки приносят тому, кто ими занимается, не только удовлетворение, но и пользу. С их помощью можно экономить электроэнергию, например, отключая электроприборы, которые забыли отключить. Для этой цели можно использовать реле времени.

Самый простой способ создать задающий время элемент — это использовать время заряда или разряда конденсатора через резистор. Такая цепочка включается в базу транзистора. Для схемы потребуются следующие детали:

  • электролитический конденсатор большой емкости;
  • транзистор типа p-n-p;
  • электромагнитное реле;
  • диод;
  • переменный резистор;
  • постоянные резисторы;
  • источник постоянного тока.

Для начала необходимо определить, какой ток будет коммутироваться через реле. Если нагрузка очень мощная, для ее подключения понадобится магнитный пускатель. Катушку пускателя можно подключать через реле. Важно, чтобы контакты реле могли работать свободно не залипая. По выбранному реле подбирается транзистор, определяется, с каким током и напряжением он может работать. Ориентироваться можно на КТ973А.

База транзистора соединяется через ограничительный резистор с конденсатором, который, в свою очередь, подключается через двухполярный выключатель. Свободный контакт выключателя соединяется через резистор с минусом питания. Это необходимо для разряда конденсатора. Резистор исполняет роль ограничителя тока.

Сам конденсатор подключается к положительной шине источника питания через переменный резистор с большим сопротивлением. Подбирая емкость конденсатора и сопротивление резистора, можно менять интервал времени задержки. Катушка реле шунтируется диодом, который включается в обратном направлении. В этой схеме используется КД 105 Б. Он замыкает цепь при обесточивании реле, защищая транзистор от пробоя.

Работает схема следующим образом. В исходном состоянии база транзистора отключена от конденсатора, и транзистор закрыт. При включении выключателя база соединяется с разряженным конденсатором, транзистор открывается и подает напряжение на реле. Реле срабатывает, замыкает свои контакты и подает напряжение на нагрузку.

Конденсатор начинает заряжаться через резистор, подключенный к положительной клемме источника питания. По мере того как конденсатор заряжается, напряжение на базе начинает расти. При определенном значении напряжения транзистор закрывается, обесточивая реле. Реле отключает нагрузку. Чтобы схема снова заработала, нужно разрядить конденсатор, для этого переключают выключатель.

Ниже приводятся несложные светозвуковые схемы, в основном собранные на основе мультивибраторов, для начинающих радиолюбителей. Во всех схемах использована простейшая элементная база, не требуется сложная наладка и допускается замена элементов на аналогичные в широких пределах.

Электронная утка

Игрушечную утку можно снабдить несложной схемой имитатора «кряканья» на двух транзисторах. Схема представляет собой классический мультивибратор на двух транзисторах, в одно плечо которого включен акустический капсюль, а нагрузкой другого служат два светодиода, которые можно вставить в глаза игрушки. Обе эти нагрузки работают поочередно – то раздается звук, то вспыхивают светодиоды – глаза утки. В качестве включателя питания SA1 можно применить герконовый датчик (можно взять из датчиков СМК-1, СМК-3 и др., используемых в системах охранной сигнализации как датчики открывания двери). При поднесении магнита к геркону его контакты замыкаются и схема начинает работать. Это может происходить при наклоне игрушки к спрятанному магниту или поднесения своеобразной «волшебной палочки» с магнитом.

Транзисторы в схеме могут быть любые p-n-p типа, малой или средней мощности, например МП39 – МП42 (старого типа), КТ 209, КТ502, КТ814, с коэффициентом усиления более 50. Можно использовать и транзисторы структуры n-p-n, например КТ315, КТ 342, КТ503, но тогда нужно изменить полярность питания, включения светодиодов и полярного конденсатора С1. В качестве акустического излучателя BF1 можно использовать капсюль типа ТМ-2 или малогабаритный динамик. Налаживание схемы сводится к подбору резистора R1 для получения характерного звука кряканья.

Звук подскакивающего металлического шарика

Схема довольно точно имитирует такой звук, по мере разряда конденсатора С1 громкость «ударов» снижается, а паузы между ними уменьшаются. В конце послышится характерный металлический дребезг, после чего звук прекратится.

Транзисторы можно заменить на аналогичные, как и в предыдущей схеме.
От емкости С1 зависит общая продолжительность звучания, а С2 определяет длительность пауз между «ударами». Иногда для более правдоподобного звучания полезно подобрать транзистор VT1, так как работа имитатора зависит от его начального тока коллектора и коэффициента усиления (h31э).

Имитатор звука мотора

Им можно, например, озвучить радиоуправляемую или другую модель передвижного устройства.

Варианты замены транзисторов и динамика – как и в предыдущих схемах. Трансформатор Т1 – выходной от любого малогабаритного радиоприемника (через него в приемниках также подключен динамик).

Существует множество схем имитации звуков пения птиц, голосов животных, гудка паровоза и т.д. Предлагаемая ниже схема собрана всего на одной цифровой микросхеме К176ЛА7 (К561 ЛА7, 564ЛА7) и позволяет имитировать множество разных звуков в зависимости от величины сопротивления, подключаемого к входным контактам Х1.

Следует обратить внимание, что микросхема здесь работает «без питания», то есть на ее плюсовой вывод (ножка 14) не подается напряжение. Хотя на самом деле питание микросхемы все же осуществляется, но происходит это только при подключении сопротивления-датчика к контактам Х1. Каждый из восьми входов микросхемы соединен с внутренней шиной питания через диоды, защищающие от статического электричества или неправильного подключения. Через эти внутренние диоды и осуществляется питание микросхемы за счет наличия положительной обратной связи по питанию через входной резистор-датчик.

Схема представляет собой два мультивибратора. Первый (на элементах DD1.1, DD1.2) сразу начинает вырабатывать прямоугольные импульсы с частотой 1 … 3 Гц, а второй (DD1.3, DD1.4) включается в работу, когда на вывод 8 с первого мультивибратора поступит уровень логической «1». Он вырабатывает тональные импульсы с частотой 200 … 2000 Гц. С выхода второго мультивибратора импульсы подаются на усилитель мощности (транзистор VT1) и из динамической головки слышится промодулированный звук.

Если теперь к входным гнездам Х1 подключить переменный резистор сопротивлением до 100 кОм, то возникает обратная связь по питанию и это преображает монотонный прерывающийся звук. Перемещая движок этого резистора и меняя сопротивление можно добиться звука, напоминающего трель соловья, щебетание воробья, крякание утки, квакание лягушки и т.д.

Детали
Транзистор можно заменить на КТ3107Л, КТ361Г но в этом случае нужно поставить R4 сопротивлением 3,3 кОм, иначе уменьшится громкость звука. Конденсаторы и резисторы – любых типов с номиналами, близкими к указанным на схеме. Надо иметь в виду, что в микросхемах серии К176 ранних выпусков отсутствуют вышеуказанные защитные диоды и такие зкземпляры в данной схеме работать не будут! Проверить наличие внутренних диодов легко – просто замерить тестером сопротивления между выводом 14 микросхемы («+» питания) и ее входными выводами (или хотя бы одним из входов). Как и при проверке диодов, сопротивление в одном направление должно быть низким, в другом – высоким.

Выключатель питания в этой схеме можно не применять, так как в режиме покоя устройство потребляет ток менее 1 мкА, что значительно меньше даже тока саморазряда любой батареи!

Наладка
Правильно собранный имитатор никакой наладки не требует. Для изменения тональности звука можно подбирать конденсатор С2 от 300 до 3000 пФ и резисторы R2, R3 от 50 до 470 кОм.

Фонарь-мигалка

Частоту миганий лампы можно регулировать подбором элементов R1, R2, C1. Лампа может быть от фонарика либо автомобильная 12 В. В зависимости от этого нужно выбирать напряжение питания схемы (от 6 до 12 В) и мощность коммутирующего транзистора VT3.

Транзисторы VT1, VT2 – любые маломощные соответствующей структуры (КТ312, КТ315, КТ342, КТ 503 (n-p-n) и КТ361, КТ645, КТ502 (p-n-p), а VT3 – средней или большой мощности (КТ814, КТ816, КТ818).

Простое устройство для прослушивания звукового сопровождения ТВ — передач на наушники. Не требует никакого питания и позволяет свободно перемещаться в пределах комнаты.

Катушка L1 представляет собой «петлю» из 5…6 витков провода ПЭВ (ПЭЛ)-0.3…0.5 мм, проложенную по периметру комнаты. Она подключается параллельно динамику телевизора через переключатель SA1 как показано на рисунке. Для нормальной работы устройства выходная мощность звукового канала телевизора должна быть в пределах 2…4 Вт, а сопротивление петли – 4…8 Ом. Провод можно проложить под плинтусом или в кабельном канале, при этом нужно располагать его по возможности не ближе 50 см от проводов сети 220 В для уменьшения наводок переменного напряжения.

Катушка L2 наматывается на каркас из плотного картона или пластика в виде кольца диаметром 15…18 см, которое служит наголовником. Она содержит 500…800 витков провода ПЭВ (ПЭЛ) 0,1…0,15 мм закрепленного клеем или изолентой. К выводам катушки подключены последовательно миниатюрный регулятор громкости R и наушник (высокоомный, например ТОН-2).

Автомат выключения освещения

От множества схем подобных автоматов эта отличается предельной простотой и надежностью и в подробном описании не нуждается. Она позволяет включать освещение или какой-нибудь электроприбор на заданное непродолжительное время, а затем автоматически его отключает.

Для включения нагрузки достаточно кратковременно нажать выключатель SA1 без фиксации. При этом конденсатор успевает зарядиться и открывает транзистор, который управляет включением реле. Время включения определяется емкостью конденсатора С и с указанным на схеме номиналом (4700 мФ) составляет около 4 минут. Увеличение времени включенного состояния достигается подключением дополнительных конденсаторов параллельно С.

Транзистор может быть любым n-p-n типа средней мощности или даже маломощным, типа КТ315. Это зависит от рабочего тока применяемого реле, которое также может быть любым другим на напряжение срабатывания 6-12 В и способным коммутировать нагрузку необходимой вам мощности. Можно использовать и транзисторы p-n-p типа, но нужно будет поменять полярность напряжения питания и включения конденсатора С. Резистор R также влияет в небольших пределах на время срабатывания и может быть номиналом 15 … 47 кОм в зависимости от типа транзистора.

Список радиоэлементов
ОбозначениеТипНоминалКоличествоПримечаниеМагазинМой блокнот
Электронная утка
VT1, VT2Биполярный транзистор

КТ361Б

2МП39-МП42, КТ209, КТ502, КТ814В блокнот
HL1, HL2Светодиод

АЛ307Б

2В блокнот
C1100мкФ 10В1В блокнот
C2Конденсатор0. 1 мкФ1В блокнот
R1, R2Резистор

100 кОм

2В блокнот
R3Резистор

620 Ом

1В блокнот
BF1Акустический излучательТМ21В блокнот
SA1Геркон1В блокнот
GB1Элемент питания4.5-9В1В блокнот
Имитатор звука подскакивающего металлического шарика
Биполярный транзистор

КТ361Б

1В блокнот
Биполярный транзистор

КТ315Б

1В блокнот
C1Электролитический конденсатор100мкФ 12В1В блокнот
C2Конденсатор0. 22 мкФ1В блокнот
Динамическая головкаГД 0.5…1Ватт 8 Ом1В блокнот
GB1Элемент питания9 Вольт1В блокнот
Имитатор звука мотора
Биполярный транзистор

КТ315Б

1В блокнот
Биполярный транзистор

КТ361Б

1В блокнот
C1Электролитический конденсатор15мкФ 6В1В блокнот
R1Переменный резистор470 кОм1В блокнот
R2Резистор

24 кОм

1В блокнот
T1Трансформатор1От любого малогабаритного радиоприемникаВ блокнот
Универсальный имитатор звуков
DD1МикросхемаК176ЛА71К561ЛА7, 564ЛА7В блокнот
Биполярный транзистор

КТ3107К

1КТ3107Л, КТ361ГВ блокнот
C1Конденсатор1 мкФ1В блокнот
C2Конденсатор1000 пФ1В блокнот
R1-R3Резистор

330 кОм

1В блокнот
R4Резистор

10 кОм

1В блокнот
Динамическая головкаГД 0. 1…0.5Ватт 8 Ом1В блокнот
GB1Элемент питания4.5-9В1В блокнот
Фонарь-мигалка
VT1, VT2Биполярный транзистор

В наше время существует огромный выбор инструментов и приборов для занятий радиоэлектроникой: паяльные станции, стабилизированные лабораторные источники питания, гравировальные наборы (для сверления плат и обработки конструкционных материалов), инструмент для зачистки и обработки проводов и кабелей и так далее. И все это оборудование стоит немалых денег. Возникает резонный вопрос — сможет ли начинающий радиолюбитель преобрести весь этот арсенал оборудования? Ответ очевиден, тем более для некоторых людей, увлекающихся электроникой по случаю (для единичного изготовления каких-то полезных приспособлений для бытовых целей), покупка такого количества инструмента не требуется. Выход из создавшегося положения довольно прост — изготовить необходимый инструмент собственными руками. Данные самоделки послужат временной (а для кого-то и постоянной) альтернативой заводскому оборудованию.
Итак, приступим. Основой нашего устройства служит сетевой понижающий трансформатор от любого отслужившего свой срок радиоэлектронного устройства (телевизор, магнитофон, стационарный радиоприемник и т.д.). Так же могут пригодится сетевой шнур, колодка предохранителей и выключатель питания.

Далее необходимо снабдить наш блок питания регулируемым стабилизатором напряжения. Так как конструкция расчитана на повторение начинающими радиолюбителями, самым рациональным, по моему мнению, будет применение интегрального стабилизатора на микросхеме типа LM317T (К142ЕН12А). На основе данной микросхемы мы соберем регулируемый стабилизатор напряжения от 1,2 до 30 вольт с полным током нагрузки до 1,5 ампер и защитой от перегрузки по току и превышению температуры. Принципиальная схема стабилизатора представлена на рисунке.

Собрать схему стабилизатора можно на куске нефольгированного стеклогетинакса (или электрокартона) навесным монтажем или на макетной плате — схема настолько проста, что даже не требует печатной платы.

На выход стабилизатора можно подключить (параллельно выводам) вольтметр, для контроля и регулировки выходного напряжения,и (последовательно с плюсовым выводом) миллиамперметр, для контроля токопотребления подключаемой к стабилизатору радиолюбительской самоделки.

Еще одна необходимая в арсенале начинающего радиолюбителя вещь — микроэлектродрель. Как известно, в арсенале любого (начинающего или умудренного опытом) самодельщика существует »склад» вышедшей из обихода или неисправной аппаратуры. Хорошо, если на таком »складе» найдется детская машинка с электроприводом, микромотор от которой и послужит электродвигателем для нашей микродрели. Необходимо только замерить диаметр вала двигателя и в ближайшем радиомагазине приобрести патрон с набором цанговых зажимов (под сверла разного диаметра) для этого микродвигателя. Полученную микродрель можно подключать к нашему блоку питания. Посредством регулирования напряжения можно регулировать количество оборотов дрели.

Следующая необходимая вещь — низковольтный паяльник с гальванической развязкой от сети (для пайки полевых транзисторов и микросхем, которые боятся статического разряда). В продаже имеются низковольтные паяльники на 6, 12, 24, 48 вольт, а если трансформатор, который мы выбрали для нашего изделия от старого лампового телевизора, то можно считать что нам крупно повезло — мы имеем уже готовую обмотку для питания низковольтного электропаяльника (следует задействовать накальные обмотки (6 вольт) трансформатора для питания паяльника). Применение трансформатора от лампового телевизора дает еще один плюс нашей схеме — мы можем оснастить наше устройство еще и инструментом для зачистки концов провода.

Основа этого приспособления — две контактных колодки, между которыми закреплена нихромовая проволока и кнопка, с нормально разомкнутыми контактами. Техническое оформление этого устройства видно из рисунка. Подключается оно все к той же накальной обмотке трансформатора. При нажатии на кнопку нихром разогревается (все наверное помнят что такое выжигатель) и прожигает изоляцию провода в нужном месте.

Корпус для данного блока питания можно найти готовый или собрать самому. Если сделать его из металла и предусмотреть вентиляционные отверстия только снизу и по бокам, то сверху можно расположить стойки для паяльника и инструмента зачистки провода. Коммутацию всего этого хозяйства можно осуществить применив пакетный переключатель, систему тумблеров или разъемов — здесь для фантазии пределов нет.

Впрочем и модернизировать данный блок можно под свои нужды — дополнить, к примеру, зарядным устройством для аккумуляторов или электроискровым гравером и т.д. Данное устройство служило мне долгие годы и служит до сих пор (правда теперь на даче) для изготовления и проверки различных радиоэлектронных и электротехнических самоделок. Автор — Электродыч.

С каждым днем становится все больше и больше, появляется много новых статей, то новым посетителям довольно сложно сразу сориентироваться и пересмотреть за раз все уже написанное и ранее размещенное.

Мне же очень хочется обратить внимание всех посетителей на отдельные статьи, которые были размещены на сайте ранее. Для того что бы не пришлось долго искать нужную информацию я сделаю несколько «входных страниц» со ссылками на наиболее интересные и полезные статьи по отдельным темам.

Первую такую страничку назовем «Полезные электронные самоделки». Здесь рассматриваются простые электронные схемы, которые доступны для реализации людям любого уровня подготовки. Схемы построены с использованием современной электронной базы.

Вся информация в статьях изложена в очень доступной форме и в объеме, необходимом для практической работы. Естественно, что для реализации таких схем нужно разбираться хотя бы в азах электроники.

Итак, подборка наиболее интересных статей сайта по тематике «Полезные электронные самоделки» . Автор статей — Борис Аладышкин.

Современная элементная база электроники значительно упрощает схемотехнику. Даже обычный сумеречный выключатель теперь можно собрать всего из трех детелей.

В статье описывается простая и надежная схема управления электронасосом. Несмотря на предельную простоту схемы устройство может работать в двух режимах: водоподъем и дренаж.

В статье приведены несколько схем аппаратов для точечной сварки.

С помощью описываемой конструкции можно определить работает или нет механизм, расположенный в другом помещении или здании. Информацией о работе является вибрация самого механизма.

Рассказ о том, что такое трансформатор безопасности, для чего он нужен и как его можно изготовить самостоятельно.

Описание простого устройства, отключающего нагрузку в случае выхода сетевого напряжения за допустимые пределы.

В статье рассмотрена схема простого терморегулятора с использованием регулируемого стабилитрона TL431.

Статья о том, как сделать устройство плавного включения ламп с помощью микросхемы КР1182ПМ1.

Иногда при пониженном напряжении в сети или пайке массивных деталей пользоваться паяльником становится просто невозможно. Вот тут на помощь и может придти повышающий регулятор мощности для паяльника.

Статья о том, чем можно заменить механический терморегулятор масляного отопительного радиатора.

Описание простой и надежной схемы терморегулятора для системы отопления.

В статье дается описание схемы преобразователя выполненного на современной элементной базе, содержащего минимальное количество деталей и позволяющего получить в нагрузке значительную мощность.

Статья о различных способах подключения нагрузки к блоку управления на микросхемах с помощью реле и тиристоров.

Описание простой схемы управления светодиодными гирляндами.

Конструкция простого таймера, позволяющего включать и выключать нагрузку, через заданные интервалы времени. Время работы и время паузы друг от друга не зависят.

Описание схемы и принципа действия простого аварийного светильника на основе энергосберегающей лампы.

Подробный рассказ о популярной «лазерно-утюжной» технологии изготовления печатных плат, её особенностях и нюансах.

Любительские схемы на микросхемах. Радиолюбительские схемы и самоделки, собранные своими руками

Электрические схемы для начинающих, для любителей и профессионалов

Добро пожаловать в раздел Радиосхемы ! Это отдельный раздел Сайта Радиолюбителей который был создан специально для тех кто дружит с паяльником, привык все делать сам своими руками и он посвящен исключительно электрическим схемам.

Здесь Вы найдете принципиальные схемы различной тематики как для самостоятельной сборки начинающими радиолюбителями , так и для более опытных радиолюбителей, для тех кому слово РАДИО давно уже стало не просто хобби а профессией.

Кроме схем для самостоятельной сборки, у нас здесь имеется и достаточно большая (и постоянно обновляемая!) база электрических схем различной промышленной электроники и бытовой техники- схемы телевизоров, мониторов, магнитол, усилителей, измерительных приборов, стиральных машин, микроволновок и так далее.

Специально для работников сферы ремонта, у нас на сайте имеется раздел «Даташиты «, где вы сможете найти справочную информацию на различные радиоэлементы.

А если Вам необходима какая либо схема и есть желание ее скачать, то у нас здесь все бесплатно, без регистрации, без СМС, без файлообменников и прочих сюрпризов

Если есть вопросы или не нашли то что искали- заходите к нам на ФОРУМ , подумаем вместе!!

Для облегчения поиска необходимой информации раздел разбит по категориям

Схемы для начинающих

В этом разделе собраны простые схемы для начинающих радиолюбителей .
Все схемы чрезвычайно просты, имеют описание и предназначены для самостоятельной сборки.
материалы в категории

Свет и музыка

устройства световы х эффектов : мигалки, цветомузыки, стробоскопы, автоматы переключения гирлянд и так далее. Конечно-же все схемы можно собрать самостоятельно

материалы в категории

Схемы источников питания

Любая радиоэлектронная аппаратура нуждается в питании. Именно источникам питания и посвящена данная категория

материалы в категории

Электроника в быту

В этой категории представлены схемы устройств для бытового применения: отпугиватели грызунов, различные сигнализации, ионизаторы и так далее…
В общем все что может быть полезно для дома

Антенны и Радиоприемники

Антенны (в том числе и самодельные), антенные комплектующие а также схемы радиоприемников для самостоятельной сборки

Шпионские штучки

В этом разделе находятся схемы различных «шпионских» устройств- радиожучки, глушители и прослушиватели телефонов, детекторы радиожучков

Авто- Мото- Вело электроника

Принципиальные схемы различных вспомогательных устройств к автомобилям : зарядные устройства, указатели поворотов, управление светом фар и так далее

Измерительные приборы

Электрические принципиальные схемы измерительных приборов: как самодельных так и промышленного производства

материалы в категории

Отечественная техника 20 Века

Подборка электрических принципиальных схем бытовой радиоаппаратуры выпущенной в СССР

материалы в категории

Схемы телевизоров LCD (ЖК)

Электрические принципиальные схемы телевизоров LCD (ЖК)

материалы в категории

Схемы программаторов


Схемы различных программаторов

материалы в категории

Аудиотехника

Схемы устройств связанных со звуком: усилители транзисторные и на микросхемах, предварительные и ламповые, устройства преобразования звука

материалы в категории

Схемы мониторов

Принципиальные электрические схемы различных мониторов: как стареньких кинескопных, так и современных ЖК

материалы в категории

Схемы автомагнитол и прочей авто-аудиотехники


Подборка схем автомобильной аудиотехники: автомагнитолы, усилительные устройства и автомобильные телевизоры

Кто занимается радиоэлектроникой дома, обычно очень любознателен. Радиолюбительские схемы и самоделки помогут найти новое направление в творчестве. Возможно, кто-то найдет для себя оригинальное решение той или иной проблемы. Некоторые самоделки используют уже готовые устройства, соединяя их различным образом. Для других нужно самому полностью создавать схему и производить необходимые регулировки.

Одна из самых простых самоделок. Больше подходит тем, кто только начинает мастерить. Если есть старый, но рабочий сотовый кнопочный телефон с кнопкой включения плеера, из него можно сделать, например, дверной звонок в свою комнату. Преимущества такого звонка:

Для начала нужно убедиться, что выбранный телефон способен выдавать достаточно громкую мелодию, после чего его необходимо полностью разобрать. В основном детали крепятся винтами или скобами, которые осторожно отгибаются. При разборке нужно будет запомнить, что за чем идет, чтобы потом можно было все собрать.

На плате отпаивается кнопка включения плеера, а вместо нее припаиваются два коротких провода. Затем эти провода приклеиваются к плате, чтобы не оторвать пайку. Телефон собирается. Осталось соединить телефон с кнопкой звонка через двужильный провод.

Самоделки для автомобилей

Современные автомобили снабжены всем необходимым. Однако бывают случаи, когда просто необходимы самодельные устройства. Например, что-то сломалось, отдали другу и тому подобное. Вот тогда умение создавать электронику своими руками в домашних условиях будет очень полезно.

Первое, во что можно вмешаться, не боясь навредить авто, — это аккумулятор. Если в нужный момент зарядки для аккумулятора не оказалось под рукой, ее можно быстро собрать самостоятельно. Для этого потребуется:

Идеально подходит трансформатор от лампового телевизора. Поэтому те, кто увлекается самодельной электроникой, никогда не выбрасывают электроприборы, в надежде, что они когда-нибудь понадобятся. К сожалению, трансформаторы использовались двух видов: с одной и с двумя катушками. Для зарядки аккумулятора на 6 вольт пойдет любой, а для 12 вольт только с двумя.

На оберточной бумаге такого трансформатора показаны выводы обмоток, напряжение для каждой обмотки и рабочий ток. Для питания нитей накаливания электронных ламп используется напряжение 6,3 В с большим током. Трансформатор можно переделать, убрав лишние вторичные обмотки, или оставить все как есть. В этом случае первичные и вторичные обмотки соединяют последовательно. Каждая первичная рассчитана на напряжение 127 В, поэтому, объединяя их, получают 220 В. Вторичные соединяют последовательно, чтобы получить на выходе 12,6 В.

Диоды должны выдерживать ток не менее 10 А. Для каждого диода необходим радиатор площадью не менее 25 квадратных сантиметров. Соединяются они в диодный мост. Для крепления подойдет любая электроизоляционная пластина. В первичную цепь включается предохранитель на 0,5 А, во вторичную — 10 А. Устройство не переносит короткого замыкания, поэтому при подключении аккумулятора нельзя путать полярность.

Простые обогреватели

В холодное время года бывает необходимо подогреть двигатель. Если автомобиль стоит там, где есть электрический ток, эту проблему можно решить с помощью тепловой пушки. Для ее изготовления потребуется:

  • асбестовая труба;
  • нихромовая проволока;
  • вентилятор;
  • выключатель.

Диаметр асбестовой трубы выбирается по размеру вентилятора, который будет использоваться. От его мощности будет зависеть производительность обогревателя. Длина трубы — предпочтение каждого. Можно в ней собрать нагревательный элемент и вентилятор, можно только нагреватель. При выборе последнего варианта придется продумать, как пустить воздушный поток на обогревательный элемент. Это можно сделать, например, поместив все составляющие в герметичный корпус.

Нихромовую проволоку также подбирают по вентилятору. Чем мощнее последний, тем большего диаметра можно использовать нихром. Проволока скручивается в спираль и размещается внутри трубы. Для крепления используются болты, которые вставляются в заранее просверленные отверстия в трубе. Длина спирали и их количество выбираются опытным путем. Желательно, чтобы спираль при работающем вентиляторе не нагревалась докрасна.

От выбора вентилятора будет зависеть, какое напряжение нужно подать на обогреватель. При использовании электровентилятора на 220 В не нужно будет использовать дополнительный источник питания.

Весь обогреватель подключается к сети через шнур с вилкой, но он сам должен иметь свой выключатель. Это может быть как просто тумблер, так и автомат. Второй вариант более предпочтителен, он позволяет защищать общую сеть. Для этого ток срабатывания автомата должен быть меньше тока срабатывания автомата помещения. Выключатель еще нужен для быстрого отключения обогревателя в случае неполадок, например, если вентилятор не будет работать. У такого обогревателя есть свои минусы:

  • вредность для организма от асбестовой трубы;
  • шум от работающего вентилятора;
  • запах от пыли, попадающей на нагретую спираль;
  • пожароопасность.

Некоторые проблемы можно решить, применив другую самоделку. Вместо асбестовой трубы, можно использовать банку из-под кофе. Чтобы спираль не замыкалась на банку, ее крепят к текстолитовой рамке, которую фиксируют с помощью клея. В качестве вентилятора используется кулер. Для его питания нужно будет собрать еще одно электронное устройство — небольшой выпрямитель.

Самоделки приносят тому, кто ими занимается, не только удовлетворение, но и пользу. С их помощью можно экономить электроэнергию, например, отключая электроприборы, которые забыли отключить. Для этой цели можно использовать реле времени.

Самый простой способ создать задающий время элемент — это использовать время заряда или разряда конденсатора через резистор. Такая цепочка включается в базу транзистора. Для схемы потребуются следующие детали:

  • электролитический конденсатор большой емкости;
  • транзистор типа p-n-p;
  • электромагнитное реле;
  • диод;
  • переменный резистор;
  • постоянные резисторы;
  • источник постоянного тока.

Для начала необходимо определить, какой ток будет коммутироваться через реле. Если нагрузка очень мощная, для ее подключения понадобится магнитный пускатель. Катушку пускателя можно подключать через реле. Важно, чтобы контакты реле могли работать свободно не залипая. По выбранному реле подбирается транзистор, определяется, с каким током и напряжением он может работать. Ориентироваться можно на КТ973А.

База транзистора соединяется через ограничительный резистор с конденсатором, который, в свою очередь, подключается через двухполярный выключатель. Свободный контакт выключателя соединяется через резистор с минусом питания. Это необходимо для разряда конденсатора. Резистор исполняет роль ограничителя тока.

Сам конденсатор подключается к положительной шине источника питания через переменный резистор с большим сопротивлением. Подбирая емкость конденсатора и сопротивление резистора, можно менять интервал времени задержки. Катушка реле шунтируется диодом, который включается в обратном направлении. В этой схеме используется КД 105 Б. Он замыкает цепь при обесточивании реле, защищая транзистор от пробоя.

Работает схема следующим образом. В исходном состоянии база транзистора отключена от конденсатора, и транзистор закрыт. При включении выключателя база соединяется с разряженным конденсатором, транзистор открывается и подает напряжение на реле. Реле срабатывает, замыкает свои контакты и подает напряжение на нагрузку.

Конденсатор начинает заряжаться через резистор, подключенный к положительной клемме источника питания. По мере того как конденсатор заряжается, напряжение на базе начинает расти. При определенном значении напряжения транзистор закрывается, обесточивая реле. Реле отключает нагрузку. Чтобы схема снова заработала, нужно разрядить конденсатор, для этого переключают выключатель.

Ниже приводятся несложные светозвуковые схемы, в основном собранные на основе мультивибраторов, для начинающих радиолюбителей. Во всех схемах использована простейшая элементная база, не требуется сложная наладка и допускается замена элементов на аналогичные в широких пределах.

Электронная утка

Игрушечную утку можно снабдить несложной схемой имитатора «кряканья» на двух транзисторах. Схема представляет собой классический мультивибратор на двух транзисторах, в одно плечо которого включен акустический капсюль, а нагрузкой другого служат два светодиода, которые можно вставить в глаза игрушки. Обе эти нагрузки работают поочередно – то раздается звук, то вспыхивают светодиоды – глаза утки. В качестве включателя питания SA1 можно применить герконовый датчик (можно взять из датчиков СМК-1, СМК-3 и др., используемых в системах охранной сигнализации как датчики открывания двери). При поднесении магнита к геркону его контакты замыкаются и схема начинает работать. Это может происходить при наклоне игрушки к спрятанному магниту или поднесения своеобразной «волшебной палочки» с магнитом.

Транзисторы в схеме могут быть любые p-n-p типа, малой или средней мощности, например МП39 – МП42 (старого типа), КТ 209, КТ502, КТ814, с коэффициентом усиления более 50. Можно использовать и транзисторы структуры n-p-n, например КТ315, КТ 342, КТ503, но тогда нужно изменить полярность питания, включения светодиодов и полярного конденсатора С1. В качестве акустического излучателя BF1 можно использовать капсюль типа ТМ-2 или малогабаритный динамик. Налаживание схемы сводится к подбору резистора R1 для получения характерного звука кряканья.

Звук подскакивающего металлического шарика

Схема довольно точно имитирует такой звук, по мере разряда конденсатора С1 громкость «ударов» снижается, а паузы между ними уменьшаются. В конце послышится характерный металлический дребезг, после чего звук прекратится.

Транзисторы можно заменить на аналогичные, как и в предыдущей схеме.
От емкости С1 зависит общая продолжительность звучания, а С2 определяет длительность пауз между «ударами». Иногда для более правдоподобного звучания полезно подобрать транзистор VT1, так как работа имитатора зависит от его начального тока коллектора и коэффициента усиления (h31э).

Имитатор звука мотора

Им можно, например, озвучить радиоуправляемую или другую модель передвижного устройства.

Варианты замены транзисторов и динамика – как и в предыдущих схемах. Трансформатор Т1 – выходной от любого малогабаритного радиоприемника (через него в приемниках также подключен динамик).

Существует множество схем имитации звуков пения птиц, голосов животных, гудка паровоза и т.д. Предлагаемая ниже схема собрана всего на одной цифровой микросхеме К176ЛА7 (К561 ЛА7, 564ЛА7) и позволяет имитировать множество разных звуков в зависимости от величины сопротивления, подключаемого к входным контактам Х1.

Следует обратить внимание, что микросхема здесь работает «без питания», то есть на ее плюсовой вывод (ножка 14) не подается напряжение. Хотя на самом деле питание микросхемы все же осуществляется, но происходит это только при подключении сопротивления-датчика к контактам Х1. Каждый из восьми входов микросхемы соединен с внутренней шиной питания через диоды, защищающие от статического электричества или неправильного подключения. Через эти внутренние диоды и осуществляется питание микросхемы за счет наличия положительной обратной связи по питанию через входной резистор-датчик.

Схема представляет собой два мультивибратора. Первый (на элементах DD1.1, DD1.2) сразу начинает вырабатывать прямоугольные импульсы с частотой 1 … 3 Гц, а второй (DD1.3, DD1.4) включается в работу, когда на вывод 8 с первого мультивибратора поступит уровень логической «1». Он вырабатывает тональные импульсы с частотой 200 … 2000 Гц. С выхода второго мультивибратора импульсы подаются на усилитель мощности (транзистор VT1) и из динамической головки слышится промодулированный звук.

Если теперь к входным гнездам Х1 подключить переменный резистор сопротивлением до 100 кОм, то возникает обратная связь по питанию и это преображает монотонный прерывающийся звук. Перемещая движок этого резистора и меняя сопротивление можно добиться звука, напоминающего трель соловья, щебетание воробья, крякание утки, квакание лягушки и т.д.

Детали
Транзистор можно заменить на КТ3107Л, КТ361Г но в этом случае нужно поставить R4 сопротивлением 3,3 кОм, иначе уменьшится громкость звука. Конденсаторы и резисторы – любых типов с номиналами, близкими к указанным на схеме. Надо иметь в виду, что в микросхемах серии К176 ранних выпусков отсутствуют вышеуказанные защитные диоды и такие зкземпляры в данной схеме работать не будут! Проверить наличие внутренних диодов легко – просто замерить тестером сопротивления между выводом 14 микросхемы («+» питания) и ее входными выводами (или хотя бы одним из входов). Как и при проверке диодов, сопротивление в одном направление должно быть низким, в другом – высоким.

Выключатель питания в этой схеме можно не применять, так как в режиме покоя устройство потребляет ток менее 1 мкА, что значительно меньше даже тока саморазряда любой батареи!

Наладка
Правильно собранный имитатор никакой наладки не требует. Для изменения тональности звука можно подбирать конденсатор С2 от 300 до 3000 пФ и резисторы R2, R3 от 50 до 470 кОм.

Фонарь-мигалка

Частоту миганий лампы можно регулировать подбором элементов R1, R2, C1. Лампа может быть от фонарика либо автомобильная 12 В. В зависимости от этого нужно выбирать напряжение питания схемы (от 6 до 12 В) и мощность коммутирующего транзистора VT3.

Транзисторы VT1, VT2 – любые маломощные соответствующей структуры (КТ312, КТ315, КТ342, КТ 503 (n-p-n) и КТ361, КТ645, КТ502 (p-n-p), а VT3 – средней или большой мощности (КТ814, КТ816, КТ818).

Простое устройство для прослушивания звукового сопровождения ТВ — передач на наушники. Не требует никакого питания и позволяет свободно перемещаться в пределах комнаты.

Катушка L1 представляет собой «петлю» из 5…6 витков провода ПЭВ (ПЭЛ)-0.3…0.5 мм, проложенную по периметру комнаты. Она подключается параллельно динамику телевизора через переключатель SA1 как показано на рисунке. Для нормальной работы устройства выходная мощность звукового канала телевизора должна быть в пределах 2…4 Вт, а сопротивление петли – 4…8 Ом. Провод можно проложить под плинтусом или в кабельном канале, при этом нужно располагать его по возможности не ближе 50 см от проводов сети 220 В для уменьшения наводок переменного напряжения.

Катушка L2 наматывается на каркас из плотного картона или пластика в виде кольца диаметром 15…18 см, которое служит наголовником. Она содержит 500…800 витков провода ПЭВ (ПЭЛ) 0,1…0,15 мм закрепленного клеем или изолентой. К выводам катушки подключены последовательно миниатюрный регулятор громкости R и наушник (высокоомный, например ТОН-2).

Автомат выключения освещения

От множества схем подобных автоматов эта отличается предельной простотой и надежностью и в подробном описании не нуждается. Она позволяет включать освещение или какой-нибудь электроприбор на заданное непродолжительное время, а затем автоматически его отключает.

Для включения нагрузки достаточно кратковременно нажать выключатель SA1 без фиксации. При этом конденсатор успевает зарядиться и открывает транзистор, который управляет включением реле. Время включения определяется емкостью конденсатора С и с указанным на схеме номиналом (4700 мФ) составляет около 4 минут. Увеличение времени включенного состояния достигается подключением дополнительных конденсаторов параллельно С.

Транзистор может быть любым n-p-n типа средней мощности или даже маломощным, типа КТ315. Это зависит от рабочего тока применяемого реле, которое также может быть любым другим на напряжение срабатывания 6-12 В и способным коммутировать нагрузку необходимой вам мощности. Можно использовать и транзисторы p-n-p типа, но нужно будет поменять полярность напряжения питания и включения конденсатора С. Резистор R также влияет в небольших пределах на время срабатывания и может быть номиналом 15 … 47 кОм в зависимости от типа транзистора.

Список радиоэлементов
ОбозначениеТипНоминалКоличествоПримечаниеМагазинМой блокнот
Электронная утка
VT1, VT2Биполярный транзистор

КТ361Б

2МП39-МП42, КТ209, КТ502, КТ814В блокнот
HL1, HL2Светодиод

АЛ307Б

2В блокнот
C1100мкФ 10В1В блокнот
C2Конденсатор0.1 мкФ1В блокнот
R1, R2Резистор

100 кОм

2В блокнот
R3Резистор

620 Ом

1В блокнот
BF1Акустический излучательТМ21В блокнот
SA1Геркон1В блокнот
GB1Элемент питания4.5-9В1В блокнот
Имитатор звука подскакивающего металлического шарика
Биполярный транзистор

КТ361Б

1В блокнот
Биполярный транзистор

КТ315Б

1В блокнот
C1Электролитический конденсатор100мкФ 12В1В блокнот
C2Конденсатор0.22 мкФ1В блокнот
Динамическая головкаГД 0.5…1Ватт 8 Ом1В блокнот
GB1Элемент питания9 Вольт1В блокнот
Имитатор звука мотора
Биполярный транзистор

КТ315Б

1В блокнот
Биполярный транзистор

КТ361Б

1В блокнот
C1Электролитический конденсатор15мкФ 6В1В блокнот
R1Переменный резистор470 кОм1В блокнот
R2Резистор

24 кОм

1В блокнот
T1Трансформатор1От любого малогабаритного радиоприемникаВ блокнот
Универсальный имитатор звуков
DD1МикросхемаК176ЛА71К561ЛА7, 564ЛА7В блокнот
Биполярный транзистор

КТ3107К

1КТ3107Л, КТ361ГВ блокнот
C1Конденсатор1 мкФ1В блокнот
C2Конденсатор1000 пФ1В блокнот
R1-R3Резистор

330 кОм

1В блокнот
R4Резистор

10 кОм

1В блокнот
Динамическая головкаГД 0.1…0.5Ватт 8 Ом1В блокнот
GB1Элемент питания4.5-9В1В блокнот
Фонарь-мигалка
VT1, VT2Биполярный транзистор

С каждым днем становится все больше и больше, появляется много новых статей, то новым посетителям довольно сложно сразу сориентироваться и пересмотреть за раз все уже написанное и ранее размещенное.

Мне же очень хочется обратить внимание всех посетителей на отдельные статьи, которые были размещены на сайте ранее. Для того что бы не пришлось долго искать нужную информацию я сделаю несколько «входных страниц» со ссылками на наиболее интересные и полезные статьи по отдельным темам.

Первую такую страничку назовем «Полезные электронные самоделки». Здесь рассматриваются простые электронные схемы, которые доступны для реализации людям любого уровня подготовки. Схемы построены с использованием современной электронной базы.

Вся информация в статьях изложена в очень доступной форме и в объеме, необходимом для практической работы. Естественно, что для реализации таких схем нужно разбираться хотя бы в азах электроники.

Итак, подборка наиболее интересных статей сайта по тематике «Полезные электронные самоделки» . Автор статей — Борис Аладышкин.

Современная элементная база электроники значительно упрощает схемотехнику. Даже обычный сумеречный выключатель теперь можно собрать всего из трех детелей.

В статье описывается простая и надежная схема управления электронасосом. Несмотря на предельную простоту схемы устройство может работать в двух режимах: водоподъем и дренаж.

В статье приведены несколько схем аппаратов для точечной сварки.

С помощью описываемой конструкции можно определить работает или нет механизм, расположенный в другом помещении или здании. Информацией о работе является вибрация самого механизма.

Рассказ о том, что такое трансформатор безопасности, для чего он нужен и как его можно изготовить самостоятельно.

Описание простого устройства, отключающего нагрузку в случае выхода сетевого напряжения за допустимые пределы.

В статье рассмотрена схема простого терморегулятора с использованием регулируемого стабилитрона TL431.

Статья о том, как сделать устройство плавного включения ламп с помощью микросхемы КР1182ПМ1.

Иногда при пониженном напряжении в сети или пайке массивных деталей пользоваться паяльником становится просто невозможно. Вот тут на помощь и может придти повышающий регулятор мощности для паяльника.

Статья о том, чем можно заменить механический терморегулятор масляного отопительного радиатора.

Описание простой и надежной схемы терморегулятора для системы отопления.

В статье дается описание схемы преобразователя выполненного на современной элементной базе, содержащего минимальное количество деталей и позволяющего получить в нагрузке значительную мощность.

Статья о различных способах подключения нагрузки к блоку управления на микросхемах с помощью реле и тиристоров.

Описание простой схемы управления светодиодными гирляндами.

Конструкция простого таймера, позволяющего включать и выключать нагрузку, через заданные интервалы времени. Время работы и время паузы друг от друга не зависят.

Описание схемы и принципа действия простого аварийного светильника на основе энергосберегающей лампы.

Подробный рассказ о популярной «лазерно-утюжной» технологии изготовления печатных плат, её особенностях и нюансах.

Одно из распространенных хобби любителей и профессионалов в области электроники – это конструирование и изготовление различных самоделок для дома. Электронные самоделки не требуют больших материальных и финансовых затрат и выполняться могут в домашних условиях, поскольку работы с электроникой являются, по большей части, «чистыми». Исключение составляет только изготовление разнообразных корпусных деталей и иных механических узлов.

Полезные электронные самоделки могут использоваться во всех областях быта, начиная от кухни и заканчивая гаражом, где многие занимаются усовершенствованием и ремонтом электронных устройств автомобиля.

Самоделки на кухне

Кухонные самоделки из области электроники могут составлять дополнение к существующим аксессуарам и принадлежностям. Большой популярностью среди жителей квартир пользуются промышленный и самодельные электрошашлычницы.

Еще один распространенный пример кухонных самоделок, сделанных своими руками домашнего электрика, – таймеры и автоматика включения освещения над рабочими поверхностями, электроподжиг газовых горелок.

Важно! Изменение конструкции некоторой бытовой техники, в особенности газовых приборов, может вызвать «непонимание и неприятие» контролирующих организаций. Кроме того, это требует большой аккуратности и внимательности.

Электроника в автомобиле

Самодельные устройства для автомобиля наиболее широкое распространение получили среди владельцев отечественных марок транспорта, которые отличаются минимальным количеством дополнительных функций. Широким спросом пользуются такие схемы:

  • Звуковые сигнализаторы поворотов и включения ручного тормоза;
  • Сигнализатор режимов работы аккумуляторной батареи и генератора.

Более опытные радиолюбители занимаются оснащением своего автомобиля датчиками парковки, электронными приводами стеклоподъемников, автоматическими датчиками освещенности для управления ближним светом фар.

Самоделки для начинающих

Большинство начинающих радиолюбителей занимаются изготовлением конструкций, которые не требуют высокой квалификации. Простые отработанные конструкции могут служить длительное время и не только ради пользы, но и в качестве напоминания о техническом «взрослении» от начинающего радиолюбителя до профессионала.

Для малоопытных любителей множество производителей выпускают готовые наборы для конструирования, которые содержат в составе печатную плату и набор элементов. Такие наборы позволяют отработать такие навыки:

  • Чтение принципиальных и монтажных схем;
  • Правильная пайка;
  • Настройка и регулировка по готовой методике.

Среди наборов очень распространены электронные часы различных вариантов исполнения и степени сложности.

В качестве области применения знаний и опыта радиолюбители могут конструировать электронные игрушки, используя схемы попроще или переделывая промышленные конструкции под свои пожелания и возможности.

Интересные идеи для поделок можно видеть на примерах изготовления радиоэлектронных поделок из пришедших в негодность деталей вычислительной техники.

Домашняя мастерская

Для самостоятельного конструирования радиоэлектронных устройств необходим некоторый минимум инструментов, приспособлений и измерительных приборов :

  • Паяльник;
  • Бокорезы;
  • Пинцет;
  • Набор отверток;
  • Пассатижи;
  • Многофункциональный тестер (авометр).

На заметку. Планируя заниматься электроникой своими руками, не следует браться сразу за сложные конструкции и приобретать дорогостоящий инструмент.

Большинство радиолюбителей начинали свой путь с использования простейшего паяльника 220В 25-40Вт, а из измерительных приборов в домашней лаборатории использовался самый массовый советский тестер Ц-20. Всего этого достаточно для занятий с электричеством, приобретения нужных навыков и опыта.

Начинающему радиолюбителю нет смысла покупать дорогостоящую паяльную станцию, если нет необходимого опыта работы с обычным паяльником. Тем более что возможность применения станции появится еще не скоро, а только по прошествии иногда довольно длительного времени.

Также нет необходимости в профессиональной измерительной аппаратуре. Единственный серьезный прибор, который может понадобиться даже начинающему любителю, – это осциллограф. Для тех, кто уже разбирается в электронике, осциллограф является одним из самых востребованных измерительных инструментов.

В качестве авометра с успехом можно использовать недорогие цифровые приборы китайского производства. Имея богатую функциональность, они обладают высокой точностью измерений, простотой использования и, что важно, имеют встроенный модуль для измерения параметров транзисторов.

Говоря о домашней мастерской у самоделкина, нельзя не упомянуть о материалах, применяемых для пайки. Это припой и флюс. Самым распространенным припоем является сплав ПОС-60, который имеет невысокую температуру плавления и обеспечивает высокую надежность пайки. Большинство припоев, применяемых для пайки всевозможных устройств, является аналогами упомянутого сплава и может быть им с успехом заменено.

В качестве флюса для пайки используется обычная канифоль, но для удобства пользования лучше использовать ее раствор в этиловом спирте. Флюсы на основе канифоли не требуют удаления с монтажа после работы, поскольку являются химически нейтральными при большинстве условий эксплуатации, а тонкая пленка канифоли, образовавшаяся после испарения растворителя (спирта), проявляет неплохие защитные свойства.

Важно! При пайке электронных компонентов ни в коем случае нельзя использовать активные флюсы. Особенно это касается паяльной кислоты (раствор хлористого цинка), поскольку даже в обычных условиях такой флюс разрушающе воздействует на тонкие медные печатные проводники.

Для облуживания сильно окисленных выводов лучше использовать активный бескислотный флюс ЛТИ-120, который не требует смывания.

Очень удобно работать, используя припой, в состав которого включен флюс. Припой выполнен в виде тонкой трубочки, внутри которой находится канифоль.

Для монтажа элементов хорошо подходят макетные платы из двухстороннего фольгированного стеклотекстолита, которые производятся в широком ассортименте.

Меры безопасности

Занятия электричеством связаны с риском для здоровья и даже жизни, особенно, если электроника своими руками конструируется с сетевым питанием. Самодельные электрические устройства не должны использовать бестрансформаторное питание от бытовой сети переменного тока. В крайнем случае, настройку подобных устройств следует производить, подключая их к сети через разделительный трансформатор с коэффициентом трансформации, равным единице. Напряжение на его выходе будет соответствовать сетевому, но в то же время будет обеспечена надежная гальваническая развязка.

Базовый набор «Ардуино» 2.0

От производителя:

«Ардуино» — это микроконтроллерная платформа для непрофессионалов, увлекающихся разработкой электронных проектов. Базовый набор помогает усвоить основы работы с «Ардуино» и потренировать практические навыки.

Набор включает платформу «Ардуино уно» с кабелем для подключения к ПК, макетную плату, электронные компоненты, брошюру с упражнениями и книгу Джереми Блума «Изучаем „Ардуино“. Инструменты и методы технического волшебства».

С помощью базового набора начинающие инженеры научатся программировать контроллер «Ардуино», собирать электрические схемы на макетной плате с использованием платформы и различных электронных компонентов, подключать датчики и передавать информацию с «Ардуино» на ПК и обратно. Также комплект позволяет выполнить 7 экспериментов, описанных в прилагаемом руководстве, 12 практических упражнений, приведенных в главах 1–3 книги Джереми Блума, и более 30 примеров, представленных на сайте разработчика «Ардуино».

Руководство содержит краткое описание платы «Ардуино уно», инструкцию по ее подключению к ПК и установке среды разработки «Ардуино ИДЕ», краткое описание языка программирования и упражнения по основам работы с платой.

В книге «Изучаем „Ардуино“. Инструменты и методы технического волшебства» рассказывается, как собрать готовое устройство, анализировать электрические схемы, читать технические описания и выбирать подходящие детали для собственных проектов. Джереми Блум делится с читателями передовым опытом в области программирования и проектирования устройств, а также фрагментами кода и схемотехническими решениями. Материал книги ориентирован на применение несложных и недорогих комплектующих для экспериментов в домашних условиях.

Состав набора: — платформа «Ардуино уно»;
— ЮСБ-кабель;
— плата прототипирования на 400 контактов размером 8,5 × 5,5 см;
— 10 проводов «Папа — папа»;
— 10 резисторов 220 Ом;
— 10 резисторов 10 кОм;
— фоторезистор GL5516;
— датчик температуры TMP36;
— РГБ-светодиод;
— потенциометр 10К;
— 2 красных светодиода;
— 2 зеленых светодиода;
— 2 синих светодиода;
— 2 желтых светодиода;
— 3 тактовые кнопки 6 × 6 мм;
— руководство пользователя;
— книга «Изучаем „Ардуино““. Инструменты и методы технического волшебства».

15 Простая электронная схема для начинающих

Интересует электроника? Конечно, теория утомляет.

Начнем с более простых электронных схем.

Для новичков или тех, кто хочет, чтобы трасса была быстрой и недорогой.

Кроме того, это отличное обучение! Почему?

Потому что понимание простых электронных схем является хорошим основанием.

Сказал мой друг.
«Большой проект электроники включает в себя множество небольших электронных схем»

Как вы думаете, правда?

Я тоже считаю это правдой.Некоторые из ваших работ могут нуждаться в крошечных деталях. Так что небольшие схемы помогут ему хорошо работать.

Ну и что,

Я использовал для создания множества небольших схем. Конечно, на это нужно много времени. Наше время дорого.

Я хочу помочь вам выбрать эту простую схему. И строить быстро вовремя.

Всего ниже 15 цепей.

1 # Learn LDR автоматический светодиодный фонарик

Попробуйте простой автоматический светодиодный фонарик. Всего из 5 частей.

Узнайте о транзисторе, LDR, светодиодах и других компонентах, работающих вместе как делитель напряжения.

Подробнее об этой схеме

Он подаст звуковой сигнал, когда почва высохнет. Итак, деревья не умирают.

Солнечная батарея работает от источника постоянного тока напряжением 6 В. Так что экономия на удобстве и не требует батарей.

Схема без использования печатной платы. Вы можете легко построить из нескольких частей.

Подробнее об этой схеме

3 # Сделайте источник питания 12 В 2 А постоянного тока

Если вы ищете адаптер переменного тока 12 В, простой проект.

Вам может понравиться эта схема.

Он может питать все цепи, требующие источника постоянного тока 12 В до 2 А.

Например, автомобильная аудиосистема: Усилитель TDA2004.

В любом случае, давайте вернемся к этой схеме.

Это особенное здание с молотком!

Подробнее об этой схеме

4 # Регулятор постоянного напряжения с использованием 78xx

Обычно основным источником питания электронной схемы является аккумулятор.

Энергия чистая и безопасная, поскольку она мала.

Например, в большинстве схем используется батарея на 9 В. Когда его сила ушла.

Надо купить новую замену. Это совсем не удобно.

Таким образом, делаю вместо него блок питания на 9В.

Первый выбор, мы рекомендуем LM7809.

Это один из популярных трехконтактных линейных регуляторов семейства IC-78xx.

См. В схеме выше.

Напряжение переменного тока от 12 В до 18 В от трансформатора подается на D1-D4.Они выпрямляют переменный ток в постоянный.

Затем C1 фильтрует сглаживание постоянного тока.

Затем 7809 преобразует это нерегулируемое постоянное напряжение в стабильное + 9В.

Дополнительно, если нужны другие уровни напряжения.

Например, 5В цифровой, мы используем IC-7805 вместо IC-7809.

Итак, используйте IC-7812 для выхода 12 В постоянного тока.

Если вы хотите построить это.

Вы можете увидеть больше простых электронных схем с разводкой печатной платы.

Подробнее об этой схеме

5 # Первый источник переменного тока

1.5 А, от 1,2 В до 30 В Регулируемый источник питания с использованием LM317

Иногда необходимо использовать схему источника питания 1,5 В.

Но вы не можете использовать IC-7805. Или.

Вам необходимо использовать другое напряжение, например 13 В или 4,5 В.

Рекомендуется: Калькулятор микросхемы регулятора напряжения LM317

Лучше всего использовать регулируемый источник питания.

Для новичков и самых простых мы используем LM317 (трехконтактные регулируемые регуляторы с положительным регулированием).

LM317 — это ИС регулируемого регулятора, предназначенная для многих источников питания для 1.Выход 5А.

Связано: LM317 2N3055 Источник переменного тока

Кроме того, он регулируется от 1,2 В до 37 В, с ограничением тока, тепловым отключением, полной защитой.

Эта схема создана для вас.

Он может подавать напряжение от 1,2 В до 30 В во всем диапазоне около 1 А.

Подробнее об этой схеме

6 # 30-минутный транзисторный таймер


Мы можем использовать эти простые электронные схемы.Изучить основную схему таймера.

Работа схемы основана на изучении заряда и разряда конденсатора.

И мы можем применить его для включения-выключения электроприборов.

Приложение, просто поставь реле вместо светодиода.

Подробнее об этой схеме

7 # Бесконтактный тестер напряжения

Вам нужен инструмент для проверки сети переменного тока без прикосновения?

Эта схема может это сделать.

Проще говоря, внутри схемы используются транзисторы без IC.

Вы можете услышать звук и отобразить его на светодиодном дисплее.

Подробнее об этой схеме

8 # Таймер 5-30 минут с использованием IC 555

В этой схеме таймера используется таймер 555 IC. Это маленький, компактный и портативный.

Для сигнализации с помощью зуммера. Мы можем выбрать время 5, 10, 15 и 30 минут с S3 до S7 в качестве порядка.

Это дает понять, что мозг готов продолжать работать.

Это понравилось многим друзьям.Вам тоже может понравиться.

Можно читать дальше : это таймер на 5-30 минут с разводкой печатной платы.

9 # Простейший инвертор на транзисторах


Когда вам нужно использовать небольшую лампочку с батареей 12 В. Но света нет. Почему? Для этой лампочки требуется высокое напряжение 220 В переменного тока. Как преобразовать 12 В постоянного тока в 220 В переменного тока 50 Гц?

У вас может быть много идей на этот счет. Но если вы торопитесь, вот еще одна простая идея. Называется самый простой инвертор.

Он использует только два силовых транзистора, два резистора и один трансформатор.Так легко! Вы можете иметь их в магазине. […]

Подробнее об этой схеме


Если вы хотите сделать забавную схему для людей. Эта схема может вызвать смех. Это небольшая электрическая цепь высокого напряжения. На выходе низкий ток. Это не вредно для людей.

Внутри схемы есть несколько компонентов: два небольших NPN-транзистора, 2 резистора и трансформатор. Так легко строить и недорого!

Подробнее об этой схеме

11 # Звуковой усилитель низкой мощности с печатной платой

Это моя первая схема звукового усилителя.Я использую LM386 в качестве основного, это усилитель низкого напряжения (5–12 В), разработанный специально для аудио приложений.

Который может использоваться с маленьким 9-вольтовым аккумулятором. Потребление тока всего 5 мА. И усиление до 500 мВт.

Коэффициент усиления внутренне установлен на 20. Коэффициент усиления можно увеличить до 200, подключив конденсатор емкостью 10 мкФ к контактам 1 (+) и 8 (-). Достаточно, чтобы легко расширить звук мобильного телефона до 3-дюймового динамика.

Подробнее об этой схеме

12 # Стереоусилитель мощности низкого напряжения


Это мои первые комплекты схем стереоусилителя мощности, которые можно использовать с небольшой 9-вольтовой батареей, потребляемой током всего 5 миллиампер.И усиление до 500 мВт.

Подробнее об этой схеме

13 # Цепи LED Chaser с использованием 4017 + 555


Есть 5 цепей с печатными платами о цепях LED Chaser или ходовых огнях.

Они используют IC-4017 для управления светодиодами и IC-555 в качестве генератора импульсов. Лучше всего для новичка или для детей изучать цифровые технологии, и мой сын их любит.

Подробнее об этой схеме

Вот много интересных сайтов об этом.

10 лучших простых электронных схем для начинающих Спасибо за то, что показали мою схему на своих сайтах
Базовая электроника: 20 шагов
12 Простых электронных схем — Коллекция простых электронных схем
EasyEDA — Онлайн-дизайн печатных плат и симулятор схем

14 # Двойной светодиодный мигающий индикатор работает


Это требует больше работы Free Running Multivibrator, чтобы напоминать Flip Flop. Которые постоянно поощряют себя.

Q1 и Q2 — это транзисторные PNP, которые можно использовать в целом (2N3906,2N2907 и т. Д.)

Подробнее об этой схеме

15 # Базовая музыкальная звуковая мелодия


В схеме в основном используется базовая микросхема UM66T, использующая звук музыкального происхождения с приятным звучанием и простая в использовании.

Он использует только одну интегральную схему и громкоговоритель, пьезозуммер, малогабаритный, и имеет питание только 3В.

Подробнее об этой схеме

Заключение

Это всего лишь несколько простых схем схем.Если вы хотите посмотреть больше схем, нажмите здесь!

Не только это. Смотрите больше схем ниже!

Смотрите! 99+ простых электронных схем

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

Введение в базовую электронику, электронные компоненты и проекты

Изучить основы электроники и создавать собственные проекты намного проще, чем вы думаете. В этом руководстве мы дадим вам краткий обзор общих электронных компонентов и объясним их функции.Затем вы узнаете о схематических диаграммах и о том, как они используются для проектирования и построения схем. И, наконец, вы примените эту информацию, создав свою первую базовую схему.

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ КНИГА (PDF) — Информационный пакет Makerspace

Перед тем, как начать, убедитесь, что ваш электронный рабочий стол правильно настроен. Рабочее место не обязательно должно быть изысканным, и вы даже можете собрать свой собственный электронный верстак.

Электронные компоненты могут быть небольшими, и рекомендуется держать все в порядке.Самый популярный вариант — использовать прозрачные пластиковые ящики для хранения деталей. Кроме того, вы можете использовать пластиковые ящики для хранения, которые свешиваются на стойку или помещаются на полку.

Теперь, когда у вас есть хорошее рабочее место, пора снабдить его необходимыми инструментами и оборудованием. Это неполный список, но он выделяет наиболее распространенные элементы, используемые в электронике.

Макет

Макетные платы — важный инструмент для создания прототипов и временных схем.Эти платы содержат отверстия для вставки проводов и компонентов. Поскольку они временны, они позволяют создавать схемы без пайки. Отверстия в макете соединены рядами по горизонтали и вертикали, как показано ниже.

Цифровой мультиметр

Мультиметр — это устройство, которое используется для измерения электрического тока (амперы), напряжения (вольты) и сопротивления (Ом). Он отлично подходит для поиска и устранения неисправностей в цепях и может измерять как переменное, так и постоянное напряжение.Прочтите этот пост, чтобы узнать больше о том, как использовать мультиметр.

Держатели для батарей

Батарейный отсек — пластиковый корпус, вмещающий батарейки от 9В до АА. Некоторые держатели закрыты и могут иметь встроенный выключатель.

Тестовые провода (зажимы типа «крокодил»)

Измерительные провода отлично подходят для соединения компонентов вместе для проверки цепи без пайки.

Кусачки

Кусачки необходимы для снятия изоляции с многожильных и одножильных медных проводов.

Набор прецизионных отверток

Прецизионные отвертки также называются ювелирными отвертками и обычно поставляются в комплекте. Преимущество этих отверток перед обычными — это точные наконечники каждой отвертки. Это очень удобно при работе с электроникой, содержащей крошечные винты.

Третья рука помощи

При работе с электроникой кажется, что рук никогда не хватает, чтобы все удержать. Вот здесь и приходит помощь (третья рука).Отлично подходит для удержания печатных плат или проводов при пайке или лужении.

Тепловая пушка

Тепловая пушка используется для усадки пластиковых трубок, известной как термоусадка, для защиты оголенных проводов. Термоусадочная лента, которую называют изолентой электроники, пригодится в самых разных областях применения.

Перемычка

Эти провода используются с макетными платами и макетными платами и обычно представляют собой одножильный провод 22–28 AWG. Провода перемычки могут иметь концы «папа» или «мама» в зависимости от того, как их нужно использовать.

Паяльник

Когда пришло время создать постоянную цепь, вам нужно спаять части вместе. Для этого вам понадобится паяльник. Конечно, паяльник бесполезен, если к нему нет припоя. Вы можете выбрать этилированный или бессвинцовый припой нескольких диаметров.

Теперь пора поговорить о различных компонентах, которые воплощают в жизнь ваши электронные проекты. Ниже приводится краткое описание наиболее распространенных компонентов и функций, которые они выполняют.

Переключатель

Переключатели

могут быть разных форм, например, кнопочные, кулисные, мгновенные и другие. Их основная функция — прерывание электрического тока путем включения или выключения цепи.

Резистор

Резисторы используются для сопротивления прохождению тока или для управления напряжением в цепи. Величина сопротивления резистора измеряется в Ом. У большинства резисторов есть цветные полосы снаружи, и этот код сообщит вам значение сопротивления.Вы можете использовать мультиметр или калькулятор цветового кода резистора Digikey, чтобы определить номинал резистора.

Переменный резистор (потенциометр)

Переменный резистор также известен как потенциометр. Эти компоненты можно найти в таких устройствах, как диммер или регулятор громкости для радио. Когда вы поворачиваете вал потенциометра, сопротивление в цепи изменяется.

Светозависимый резистор (LDR)

Светозависимый резистор также является переменным резистором, но управляется светом, а не поворотом ручки.Сопротивление в цепи изменяется в зависимости от интенсивности света. Их часто можно найти во внешнем освещении, которое автоматически включается в сумерках и выключается на рассвете.

Конденсатор

Конденсаторы накапливают электричество, а затем разряжают его обратно в цепь при падении напряжения. Конденсатор подобен перезаряжаемой батарее, его можно заряжать, а затем разряжать. Значение измеряется в диапазоне Ф (Фарад), нанофарада (нФ) или пикофарада (пФ).

Диод

Диод пропускает электричество в одном направлении и блокирует обратное.Основная роль диода — направлять электричество по нежелательному пути внутри цепи.

Светоизлучающий диод (LED)

Светодиод похож на стандартный диод тем, что электрический ток течет только в одном направлении. Основное отличие заключается в том, что светодиод излучает свет, когда через него проходит электричество. Внутри светодиода находятся анод и катод. Ток всегда течет от анода (+) к катоду (-) и никогда в обратном направлении.Более длинная ветвь светодиода — это положительная (анодная) сторона.

Транзистор

Транзистор — это крошечные переключатели, которые включают или выключают ток при срабатывании электрического сигнала. Помимо переключателя, он также может использоваться для усиления электронных сигналов. Транзистор похож на реле, за исключением того, что у него нет движущихся частей.

Реле

Реле — это переключатель с электрическим приводом, который открывается или закрывается при подаче питания. Внутри реле находится электромагнит, который управляет механическим переключателем.

Интегральная схема (ИС)

Интегральная схема — это схема, размер которой уменьшен для размещения внутри крошечного чипа. Эта схема содержит электронные компоненты, такие как резисторы и конденсаторы, но в гораздо меньшем масштабе. Интегральные схемы бывают разных вариаций, таких как таймеры 555, регуляторы напряжения, микроконтроллеры и многие другие. Каждый вывод на ИС уникален с точки зрения своей функции.

Перед тем как разрабатывать электронный проект, вы должны знать, что такое схема и как ее правильно создать.

Электронная схема — это круговой путь проводников, по которым может течь электрический ток. Замкнутый контур похож на круг, потому что он начинается и заканчивается в одной и той же точке, образуя полный цикл. Кроме того, замкнутая цепь позволяет электричеству беспрерывно течь от (+) питания к (-) земле.

Напротив, если есть какой-либо перерыв в подаче электроэнергии, это называется обрывом цепи. Как показано ниже, переключатель в цепи может вызывать ее размыкание или замыкание в зависимости от своего положения.

Все схемы должны иметь три основных элемента. Эти элементы представляют собой источник напряжения, токопроводящую дорожку и нагрузку.

Источник напряжения, например аккумулятор, необходим для протекания тока через цепь. Кроме того, необходим токопроводящий путь, по которому будет проходить электричество. Наконец, для правильной схемы нужна нагрузка, потребляющая энергию. Нагрузкой в ​​приведенной выше схеме является лампочка.

При работе со схемами вы часто встретите нечто, называемое схематической диаграммой.На этих схемах используются символы, показывающие, какие электронные компоненты используются и где они размещаются в цепи. Эти символы представляют собой графические изображения реальных электронных компонентов.

Ниже приведен пример схемы, изображающей цепь светодиода, управляемую переключателем. Он содержит символы для светодиода, резистора, батареи и переключателя. Следуя схематической диаграмме, вы сможете узнать, какие компоненты использовать и где их разместить. Эти схемы чрезвычайно полезны для новичков при первом изучении схем.

Принципиальная схема светодиодной цепи

Существует много типов электронных символов, и они незначительно различаются в зависимости от страны. Ниже приведены несколько наиболее часто используемых электронных символов в США.

Резисторы

обычно используются в проектах электроники, и важно знать, какой размер использовать. Чтобы узнать номинал резистора, вам нужно знать напряжение и силу тока для вашего светодиода и батареи.

Для стандартного светодиода обычно требуется напряжение около 2 В и ток 20 мА или.02A для правильной работы. Далее вам нужно узнать, какое напряжение у вашего аккумулятора. В этом примере мы будем использовать батарею на 9 В. Чтобы определить размер резистора, нам нужно использовать формулу, известную как закон Ома, как показано ниже.

Закон Ома — сопротивление (R) = напряжение (В) / ток (I)

  • Сопротивление измеряется в Ом (Ом)
  • Напряжение измеряется в вольтах (В)
  • Ток измеряется в амперах (A)

Используя закон Ома, вам нужно вычесть напряжение светодиода из напряжения батареи.Это даст вам напряжение 7, которое нужно разделить на 0,02 ампера от светодиода. Эта формула показывает, что вам понадобится резистор 350 Ом.

Отметим, что стандартные резисторы не имеют сопротивления 350 Ом, но доступны в 330 Ом, что вполне подойдет.

Теперь пришло время объединить все, что вы узнали, и создать базовую схему. Этот проект — отличный стартовый проект для начинающих. Мы будем использовать тестовые провода, чтобы создать временную схему без пайки ее вместе.

Необходимые детали:

Принципиальная схема

Этапы проекта

  1. Прикрепите зажим аккумулятора к верхней части аккумулятора 9 В.
  2. Красный провод от зажима аккумулятора подсоединяется к одному зажиму типа «крокодил» на красном щупе.
  3. Другой конец красного щупа подсоединяется к длинной ножке (+) светодиода.
  4. Подсоедините один зажим «крокодил» черного тестового провода к короткой ножке (-) светодиода.
  5. Другой конец черного измерительного провода зажимается на одной ножке резистора 330 Ом.
  6. Закрепите одну сторону другого черного измерительного провода на другой ножке резистора 330 Ом.
  7. Противоположный конец черного щупа подключается к черному проводу аккумуляторной батареи.

ВАЖНО — Никогда не подключайте светодиод напрямую к батарее 9 В без резистора в цепи. Это сделать с повреждением / разрушением светодиода. Однако вы можете подключить светодиод к батарее 3 В или меньше без резистора.

Еще один способ создать и протестировать схему — это построить ее на макетной плате. Эти платы необходимы для тестирования и создания прототипов схем, поскольку пайка не требуется. Компоненты и провода вставляются в отверстия, образуя временную цепь. Поскольку это не навсегда, вы можете экспериментировать и вносить изменения, пока не будет достигнут желаемый результат.

Под отверстиями каждого ряда находятся металлические зажимы, которые соединяют отверстия друг с другом. Средние ряды идут вертикально, как показано, в то время как внешние столбцы соединяются горизонтально.Эти внешние колонны называются силовыми шинами и используются для приема и подачи питания на плату.

На макетные платы необходимо подавать питание, и это можно сделать несколькими способами. Один из самых простых способов — вставить провода от держателя батареи в шины питания. Это будет подавать напряжение только на ту шину, к которой он подключен.

Для питания обеих шин потребуется перемычка, соединяющая (+) и (-) с рейкой на противоположной стороне.

Теперь мы научимся создавать схему на макетной плате. Эта схема точно такая же, как и раньше, но мы не будем использовать измерительные провода.

Необходимые детали:

Принципиальная схема

Этапы проекта

  1. Прикрепите зажим аккумулятора к верхней части аккумулятора 9 В.
  2. Поместите красный провод от зажима аккумулятора в F9 макета.
  3. Вставьте черный провод зажима аккумулятора в разъем J21 на макетной плате.
  4. Согните ножки резистора 330 Ом и поместите одну ножку в F21.
  5. Поместите другую ногу резистора в F15.
  6. Вставьте короткую ножку светодиода в J15, а длинную — в J9.

Красные стрелки на изображении ниже помогают показать, как в этой цепи течет электричество. Все компоненты соединены друг с другом по кругу, как при использовании тестовых проводов.

ВАЖНО — Никогда не подключайте светодиод напрямую к батарее 9 В без резистора в цепи. Это сделать с повреждением / разрушением светодиода.

Если вы хотите сделать свою схему постоянной, вам нужно спаять ее вместе. Подробное руководство по пайке электроники можно найти в нашей публикации «Как паять» с полным пошаговым руководством.

В Интернете есть множество отличных мест, где можно найти электронные компоненты, детали и инструменты.Ниже приведен список наших любимых мест для покупок электроники.

Электроника для начинающих: простое введение

Они хранят ваши деньги. Они следят ваше сердцебиение. Они несут звук вашего голоса в чужие дома. Они привозят самолеты на землю и безопасно направлять машины к месту назначения — они даже стреляют подушки безопасности, если у нас возникнут проблемы. Удивительно подумать, сколько вещи, которые на самом деле делают «они».«Они» — электроны: крошечные частицы внутри атомов, которые движутся по определенным путям, известным как цепи, несущие электрическую энергию. Одна из величайших вещей людей в 20 веке научились использовать электроны для управления машины и информацию о процессе. Революция электроники, как это как известно, разгонял компьютер революции, и обе эти вещи изменили многие области нашей жизни. Но как именно наноскопически маленькие частицы, слишком маленькие? видеть, достигать таких грандиозных и драматичных вещей? Возьмем присмотритесь и узнайте!

Фото: Компактная электронная плата веб-камеры.Эта плата содержит несколько десятков отдельных электронных компонентов, в основном небольшие резисторы и конденсаторы, плюс большой черный микрочип (внизу слева), который выполняет большую часть работы.

В чем разница между электричеством и электроникой?

Если вы читали нашу статью об электричестве, вы узнаете, что это своего рода энергия — очень универсальный вид энергии, который мы можем производить и использовать всевозможными способами во многих других. Электричество — это создание электромагнитной энергии обтекать цепь так, чтобы она приводила в движение что-то вроде электродвигателя или нагревательного элемента, электропитание таких устройств, как электромобили, чайники, тостеры и лампы.Как правило, электрические приборы нуждаются в большом количестве энергии, чтобы производить они работают, поэтому они используют довольно большие (и часто довольно опасные) электрические токи. Нагревательный элемент мощностью 2500 ватт внутри электрочайника работает от силы тока около 10 ампер. Напротив, электронные компоненты используют токи скорее всего, будет измеряться в долях миллиампер (что составляет тысячные доли ампера). Другими словами, типичный электрический прибор, вероятно, будет использовать токи в десятки, сотни или тысячи раз больше, чем типичный электронный.

Электроника — это гораздо более тонкий вид электричества, в котором крошечные электрические токи (и, по идее, отдельные электроны) тщательно направлен на гораздо более сложные схемы для обработки сигналов (например, те, которые носят радио и телепрограммы) или хранить и обрабатывать Информация. Подумайте о чем-то вроде микроволновки духовка и легко увидеть разницу между обычным электричество и электроника. В микроволновой печи электричество обеспечивает мощность, генерирующая высокоэнергетические волны для приготовления пищи; электроника контролирует электрическую цепь, которая выполняет приготовление пищи.

Изображение: микроволновые печи питаются от электрических кабелей (серых), которые подключаются к стене. По кабелям подается электричество, питающее сильноточные электрические цепи и слаботочные электронные цепи. Сильноточные электрические цепи питают магнетрон (синий), устройство, которое создает волны, которые готовят вашу еду. и поверните поворотный стол. Слаботочные электронные схемы (красные) управляют этими мощными цепями, и такие вещи, как числовой дисплей.

Аналоговая и цифровая электроника

Есть два очень разных способа хранения информации, известные как аналоговый и цифровой.Это звучит как довольно абстрактная идея, но это действительно очень просто. Предположим, вы сделали старомодный снимок кто-то с пленочной камерой. Камера фиксирует поток света в через заслонку спереди в виде светового узора и темные участки на химически обработанном пластике. Сцена, в которой ты фотографирование превращается в своего рода мгновенную химическую живопись — «аналогия» того, на что вы смотрите. Вот почему мы говорим, что это аналог способ хранения информации. Но если сфотографировать именно то та же сцена с цифровой камерой, камера хранит совсем другую запись.Вместо того, чтобы сохранять узнаваемый узор из светлого и темного, он преобразует светлое и темное области в числа и вместо этого сохраняет их. Хранение числового, закодированного версия чего-то известна как цифровая.

Фото: Цифровые технологии: такие большие цифровые часы, как эти, легко и быстро читают бегуны. Фото Джи Л. Скотта любезно предоставлено ВМС США.

Электронное оборудование обычно работает с информацией в любом аналоге. или в цифровом формате. В старомодном транзисторном радиоприемнике широковещательные сигналы поступают в схему радиоприемника через торчащую антенну вне корпуса.Это аналоговые сигналы: это радиоволны, путешествовать по воздуху от дальнего радиопередатчика, который вибрировать вверх и вниз по шаблону, который точно соответствует словам и музыку они несут. Так громкая рок-музыка означает больше сигналов, чем тихая классическая музыка. Радио сохраняет сигналы в аналоговой форме, так как принимает их, усиливает и превращает обратно в звуки, которые вы можете слышать. Но в современном цифровом радио все происходит по-другому. Во-первых, сигналы передаются в цифровом формате. формат — в виде кодированных чисел.Когда они приходят к вашему радио, числа преобразуются обратно в звуковые сигналы. Это совсем другой способ обработки информации и имеет как преимущества, так и недостатки. Как правило, большинство современных форм электронного оборудования (включая компьютеры, сотовые телефоны, цифровые фотоаппараты, цифровые радиоприемники, слуховые аппараты и телевизоры) использовать цифровая электроника.

Электронные компоненты

Если вы когда-нибудь смотрели на город из окна небоскреба, вы восхищались всеми крошечными зданиями под вами и улицы, соединяющие их воедино множеством замысловатых способов.Каждый здание имеет функцию и улицы, по которым люди могут путешествовать из одной части города в другую или посещать разные здания в поверните, заставьте все здания работать вместе. Коллекция здания, их расположение и множество связей между это то, что делает яркий город намного больше, чем сумма его отдельные части.

Цепи внутри электронного оборудования немного похожи на города тоже: они забиты компонентами (похожий на здания), которые выполняют разные работы, и компоненты связаны между собой вместе кабелями или печатными металлическими соединениями (похожий на улицы).В отличие от города, где практически каждое здание уникально. и даже два предположительно идентичных дома или офисных блока могут быть тонко разные, электронные схемы состоят из небольшого количества стандартные компоненты. Но, как и LEGO®, вы можете поставить эти компоненты вместе в бесконечном количестве разных мест, поэтому они выполнять бесконечное количество разных работ.

Вот некоторые из наиболее важных компонентов, с которыми вы столкнетесь:

Резисторы

Это самые простые компоненты в любой схеме.Их задача — ограничить поток электронов и уменьшить ток или напряжение, протекающие путем преобразования электрической энергии в тепло. Резисторы бывают разных форм и размеров. Переменные резисторы (также известные как потенциометры) имеют дисковый регулятор, поэтому они измените количество сопротивления, когда вы их поворачиваете. Регуляторы громкости в в аудиоаппаратуре используются такие переменные резисторы.

Подробнее читайте в нашей основной статье о резисторах.

Фото: Типовой резистор на печатной плате от магнитолы.

Диоды

Электронные эквиваленты улиц с односторонним движением, диоды, пропускающие электрический ток. через них только в одном направлении. Их также называют выпрямителями. Диоды могут использоваться для изменения переменного тока (обратного тока). и далее по кругу, постоянно меняя направление) на прямое токи (те, которые всегда текут в одном направлении).

Подробнее читайте в нашей основной статье о диодах.

Фото: Диоды похожи на резисторы, но работают по-другому. и делать совершенно другую работу.В отличие от резистора, который можно вставить в цепь в любом случае диод должен быть подключен в правильном направлении (соответствует стрелке на этой плате).

Конденсаторы

Эти относительно простые компоненты состоят из двух частей проводящего материала (например, металла), разделенных перемычкой. непроводящий (изолирующий) материал, называемый диэлектриком. Они есть часто используются в качестве таймеров, но они могут преобразовывать электрические токи и другими способами. На радио одна из самых важных работ, настройка на станцию, которую вы хотите слушать, осуществляется конденсатором.

Подробнее читайте в нашей основной статье о конденсаторах.

Фото: Маленький конденсатор в транзисторной радиосхеме.

Транзисторы

Транзисторы — самые важные компоненты компьютеров. включать и выключать крошечные электрические токи или усиливать их (преобразовывать небольшие электрические токи в гораздо большие). Транзисторы, которые работают поскольку переключатели действуют как память в компьютерах, в то время как транзисторы работают поскольку усилители увеличивают громкость звуков в слуховых аппаратах.Когда транзисторы соединены вместе, они образуют устройства, называемые логическими вентилями, которые могут выполнять очень простые формы принятия решений. (Тиристоры немного похожи на транзисторы, но работать по-другому.)

Подробнее читайте в нашей основной статье о транзисторах.

Фотография: Типичный полевой транзистор (FET) на электронной плате.

Оптоэлектронные (оптико-электронные) компоненты

Существуют различные компоненты, которые могут превращать свет в электричество или наоборот.Фотоэлементы (также известные как фотоэлементы) генерируют крошечные электрические токи, когда на них падает свет, и они используются как лучи «волшебных глаз» в различных типах измерительного оборудования, включая некоторые виды дымовых извещателей. Светодиоды (LED) работают наоборот, преобразовывая небольшие электрические токи в свет. Светодиоды обычно используются на приборных панелях стереосистемы. оборудование. Жидкокристаллические дисплеи (ЖК-дисплеи), например, используемые в ЖК-телевизоры с плоским экраном и ноутбуки компьютеры, являются более сложными примерами оптоэлектроники.

Фото: Светодиод, установленный в электронной схеме. Это один из Светодиоды, излучающие красный свет внутри оптической компьютерной мыши.

У электронных компонентов есть нечто очень важное. Какую бы работу они ни выполняли, они работают, управляя потоком электронов. через их структуру очень точным образом. Большинство этих компонентов сделаны из цельных частей частично проводящих, частично изолирующих материалы, называемые полупроводниками (описаны подробнее в нашем статья о транзисторах).Потому что электроника предполагает понимание точные механизмы того, как твердые тела пропускают через себя электроны, это иногда называют физикой твердого тела. Вот почему вы часто будете видеть части электронного оборудования, описанные как «твердотельные».

Схемы электронные и печатные платы

Ключ к электронному устройству — это не только его компоненты. содержит, но то, как они расположены в цепях. Простейший возможная схема представляет собой непрерывный цикл, соединяющий два компонента, например на одно колье крепятся две бусины.Аналоговые электронные приборы как правило, имеют гораздо более простые схемы, чем цифровые. Базовый транзистор радио может состоять из нескольких десятков различных компонентов и печатной платы вероятно, не больше, чем обложка книги в мягкой обложке. Но в чем-то как компьютер, в котором используются цифровые технологии, схемы намного больше плотные и сложные и включают сотни, тысячи или даже миллионы отдельный пути. Вообще говоря, чем сложнее схема, тем больше сложные операции, которые он может выполнять.

Фото: Электронная плата внутри компьютерного принтера. Какие электронные компоненты ты видишь здесь? Я могу различить конденсаторы, диоды и интегральные схемы (большие черные детали, которые описаны ниже).

Если вы экспериментировали с простой электроникой, вы знаете, что Самый простой способ построить схему — просто соединить компоненты вместе с короткими отрезками медного кабеля. Но чем больше компонентов вам нужно подключать, тем сложнее становится.Вот почему дизайнеры электроники обычно выбирают более систематический способ размещения компонентов на том, что называется монтажная плата. Базовая схема доска просто прямоугольник из пластика с медными соединительными дорожками с одной стороны и участками просверленных отверстий. Вы можете легко соединить компоненты вместе просунув их в отверстия и используя медь, чтобы связать их вместе, удаляя при необходимости кусочки меди и добавляя дополнительные провода сделать дополнительные подключения. Платы этого типа часто называется «макетной платой».

Электронное оборудование, которое вы покупаете в магазинах, развивает эту идею в дальнейшем с использованием печатных плат, которые производятся автоматически на заводах. Точный макет схемы нанесен химическим способом на пластиковый плате, при этом все медные дорожки создаются автоматически во время производственный процесс. Затем компоненты просто проталкиваются предварительно просверлил отверстия и закрепил на месте своего рода электрически проводящий клей, известный как припой. Схема, изготовленная таким образом известна как печатная плата (PCB).

Фото: Пайка компонентов в электронный схема. Дым, который вы видите, исходит от плавления припоя и превращения его в пар. Синий пластиковый прямоугольник, на который я припаиваю здесь, представляет собой типичную печатную плату, и вы видите, как из нее торчат различные компоненты, в том числе связка резисторов спереди и большая интегральная схема наверху.

Хотя печатные платы — большой шаг вперед по сравнению с печатными платами с ручной разводкой, их все еще довольно сложно использовать, когда нужно подключать сотни, тысячи или даже миллионы компонентов вместе.Причина рано компьютеры были такими большими, энергоемкими, медленными, дорогими и ненадежными. потому что их компоненты были соединены вместе вручную в этом по старинке. Однако в конце 1950-х инженеры Джек Килби и Роберт Нойс самостоятельно разработал способ создания электронных Компоненты в миниатюрной форме на поверхности кусочков кремния. С использованием эти интегральные схемы, это быстро стало можно выжать сотни, тысячи, миллионы, а затем и сотни миллионов миниатюрные компоненты на кремниевых микросхемах размером с ноготь пальца.Так компьютеры стали меньше, дешевле и намного более надежный с 1960-х годов.

Фото: Миниатюризация. Больше вычислительной мощности в микросхеме обработки, которая лежит на моем пальце здесь, чем вы могли бы найти в комнате размером с комнату компьютер 1940-х годов!

Для чего используется электроника?

Электроника сейчас настолько распространена, что о ней почти легче думать вещи, которые не используют, чем вещи, которые используют.

Развлечения были одной из первых областей, которые извлекли выгоду из радио (и позже телевидение) оба критически в зависимости от прибытия электронные компоненты.Хотя телефон была изобретена до того, как электроника была должным образом развита, современные телефонные системы, сети сотовой связи, и компьютерные сети в сердце Интернета извлекает выгоду из сложная цифровая электроника.

Попробуйте придумать что-нибудь, что не связано с электроникой. и вы можете бороться. Ваш автомобильный двигатель вероятно, есть электронные схемы в нем — а как насчет спутника GPS навигационное устройство, которое подскажет, куда идти? Даже подушка безопасности в твоей рулевое колесо приводится в действие электронной схемой, которая определяет, когда вам нужна дополнительная защита.

Электронное оборудование спасает нам жизнь и другими способами. Больницы упакованы всевозможными электронными гаджетами, от пульса от мониторов и ультразвуковых сканеров до сложных сканеров головного мозга и рентгеновских машины. Слуховые аппараты были одними из первых устройств, в которых разработка крошечных транзисторов в середине 20-го века, и интегральные схемы все меньшего размера позволили слуховым аппаратам стать с тех пор меньше и мощнее в последующие десятилетия.

Кто бы мог подумать, что у вас есть электроны. мог бы когда-либо вообразить — изменит жизни людей во многих важных пути?

Краткая история электроники

Фото: сэр Дж.Дж. Томсон, который открыл, что электроны являются отрицательно заряженными частицами, в Кембриджском университете в 1897 году. Томсон получил Нобелевскую премию по физике в 1906 году за свою работу. Фото Bain News Service любезно предоставлено Библиотекой Конгресса США.

  • 1874: ирландский ученый Джордж Джонстон Стоуни (1826–1911) предполагает, что электричество должно быть «построено» из крошечных электрических обвинения. Он придумал название «электрон» примерно 20 лет спустя.
  • 1875: американский ученый Джордж Р. Кэри строит фотоэлемент, который вырабатывает электричество, когда светит Это.
  • 1879: англичанин сэр Уильям Крукс (1832–1919) разрабатывает свою электронно-лучевую трубку (похожую на старинную, «ламповое» телевидение) для изучения электроны (которые тогда были известны как «катодные лучи»).
  • 1883: Продуктивный американский изобретатель Томас Эдисон (1847–1931) обнаружил термоэлектронную эмиссию (также известную как Эдисон эффект), где электроны испускаются нагретой нитью накала.
  • 1887: немецкий физик Генрих Герц (1857–1894) узнал больше о фотоэлектрическом эффекте, связь между светом и электричеством, на которую Кэри наткнулся предыдущее десятилетие.
  • 1897: британский физик Дж. Дж. Томсон (1856–1940) показывает, что катодные лучи представляют собой отрицательно заряженные частицы. Томсон называет их «корпускулами», но вскоре их переименовывают в электроны.
  • 1904: Джон Эмброуз Флеминг (1849–1945), английский ученый, создал клапан Флеминга (позже переименовал диод). Он становится незаменимым компонентом радиоприемников.
  • 1906: американский изобретатель Ли Де Форест (1873–1961), идет на один лучше и разрабатывает улучшенный клапан, известный как триод (или аудион), значительно улучшающий конструкцию радиоприемников.Де Фореста часто называют отцом современного радио.
  • 1947: американцы Джон Бардин (1908–1991), Уолтер Браттейн (1902–1987) и Уильям Шокли (1910–1989) разработать транзистор в Bell Laboratories. Это революция в электронике и цифровых технологиях. компьютеры во второй половине 20 века.
  • 1958: Работая независимо, американские инженеры Джек Килби (1923–2005) из Texas Instruments и Роберт Нойс (1927–1990) из Fairchild Компания Semiconductor (а позже и компания Intel) разрабатывают интегральные схемы.
  • 1971: Марсиан Эдвард (Тед) Хофф (1937–) и Федерико Фаггин (1941–) удается втиснуть все ключевые компоненты компьютера в один чип, на котором производится первый в мире универсальный микропроцессор Intel 4004.
  • 1987: американские ученые Теодор Фултон и Джеральд Долан из Bell Laboratories разрабатывают первый одноэлектронный транзистор.
  • 2008: Исследователь Hewlett-Packard Стэнли Уильямс создает первый рабочий мемристор, новый своего рода компонент магнитной цепи, который работает как резистор с памятью, впервые представленный американским физиком Леоном Чуа почти четырьмя десятилетиями ранее (в 1971 году).

Изучите электронику с помощью этих 10 простых шагов

Вы хотите изучать электронику, чтобы создавать свои собственные гаджеты?

Существует масса ресурсов по изучению электроники — так с чего же начать?

А что вам собственно нужно?

А в каком порядке?

Если вы не знаете, что вам нужно изучить, вы легко можете потратить много времени на изучение ненужных вещей.

И если вы пропустите некоторые простые, но важные первые шаги, вам придется долго бороться даже с простыми схемами.

Если ваша цель — создать собственные идеи с помощью электроники, то этот контрольный список для вас.

Хотите, чтобы в этом пошаговом контрольном списке в формате PDF были указаны точные шаги, которые я рекомендую для изучения электроники с нуля?
Щелкните здесь, чтобы загрузить контрольный список сейчас >>

Следуя приведенному ниже контрольному списку, вы быстро наберете скорость, даже если у вас не было предыдущего опыта.

Хотя на выполнение некоторых из этих шагов у вас могут уйти выходные, другие можно выполнить менее чем за час — если вы найдете подходящий учебный материал.

Начните с прочтения всех шагов до конца, чтобы получить общее представление.

Затем решите, какой учебный материал вы будете использовать для выполнения каждого шага.

Тогда приступайте к изучению электроники.

Шаг 1. Изучите замкнутый цикл

Если вы не знаете, что нужно для работы схемы, как вы можете построить схемы?

Самое первое, что нужно изучить — это замкнутый цикл.

Важно, чтобы схема работала.

После завершения этого шага вы должны знать, как заставить работать простую схему. И вы сможете исправить одну из самых распространенных ошибок в цепи — отсутствие соединения.

Это простые, но необходимые знания при изучении электроники.

Шаг 2. Получите базовое представление о напряжении, токе и сопротивлении

Ток течет, сопротивление сопротивляется, напряжение подталкивает.

И все они влияют друг на друга.

Это важно знать для правильного изучения электроники.

Разберитесь, как они работают в цепи, и этот шаг вам будет гарантирован.

Но нет необходимости углубляться в закон Ома — этому шагу можно научиться с помощью простых мультфильмов.

После завершения этого шага вы сможете взглянуть на очень простую схему и понять, как протекает ток и как напряжение распределяется между компонентами.

Шаг 3. Изучите электронику, построив схемы по принципиальным схемам

Не нужно больше ждать — вы должны начать строить схемы прямо сейчас.Не только потому, что это весело, но и потому, что это то, чему вы хотите научиться, чтобы преуспеть.

Если вы хотите научиться плавать, вы должны заниматься плаванием. То же самое и с электроникой.

После завершения этого шага вы должны знать, как работают принципиальные схемы и как использовать макетную плату для построения из них схем.

Вы можете найти бесплатные принципиальные схемы практически для всего в Интернете — для радиоприемников, MP3-плееров, открывателей гаражей — и теперь вы сможете их построить!

Шаг 4. Общие сведения об этих компонентах

Наиболее распространенные компоненты, которые вы увидите вначале при изучении электроники:

Вы можете быстро получить общее представление о каждом из них, если у вас есть хорошие учебные материалы.

Но обратите внимание на последнее утверждение «если у вас есть хороший учебный материал» — потому что существует много ужасного учебного материала.

После выполнения этого шага вы должны знать, как эти компоненты работают и что они делают в цепи.

Вы должны увидеть простую принципиальную схему и подумать:

«Ага, вот это и есть эта схема!».

Шаг 5. Получите опыт использования транзистора в качестве переключателя

Транзистор — важнейший отдельный компонент электроники.

На предыдущем шаге вы узнали, как это работает. Пришло время использовать это.

Создайте несколько различных схем, в которых транзистор действует как переключатель. Как и схема LDR.

После выполнения этого шага вы должны знать, как управлять такими вещами, как двигатели, зуммеры или свет с помощью транзистора.

И вы должны знать, как использовать транзистор, чтобы определять такие вещи, как температура или свет.

Шаг 6: Узнайте, как паять

Прототипы, построенные на макете, легко и быстро построить.Но они не выглядят хорошо, и связи могут легко выпасть.

Если вы хотите создавать устройства, которые хорошо выглядят и служат долго, вам нужно паять.

Паять — это весело, и этому легко научиться.

После выполнения этого шага вы должны знать, как сделать хороший паяный шов, чтобы вы могли создавать свои собственные устройства, которые будут хорошо выглядеть и прослужат долгое время.

Шаг 7. Изучение поведения диодов и конденсаторов в цепи

На этом этапе у вас будет хороший фундамент, и вы сможете строить схемы.

Но ваши усилия по изучению электроники не должны останавливаться на достигнутом.

А теперь пора узнать, как работают более сложные схемы.

После выполнения этого шага — если вы видите принципиальную схему с резистором, конденсатором и диодом, соединенными каким-либо образом — вы должны увидеть, что произойдет с напряжениями и токами при подключении батареи, чтобы вы могли понять что делает схема.

Примечание. Если вы также понимаете, как работает нестабильный мультивибратор, значит, вы прошли долгий путь.Но не беспокойтесь об этом, большинство объяснений этой схемы ужасны.

Шаг 8: Создание схем с использованием интегральных схем

До сих пор вы использовали отдельные компоненты для построения забавных и простых схем. Но вы по-прежнему ограничены самыми основными функциями.

Как вы можете добавить в свои проекты классную функциональность, такую ​​как звук, память, интеллект и многое другое?

Тогда вам нужно научиться использовать интегральные схемы (ИС).

Эти схемы могут выглядеть очень сложными и трудными, но это не так уж и сложно, если вы научитесь правильно их использовать. И это откроет для вас целый новый мир!

После выполнения этого шага вы должны знать, как использовать любую интегральную схему.

Шаг 9: Создайте свою собственную печатную плату

К этому моменту вы должны были построить довольно много схем.

И вы можете оказаться немного ограниченными, потому что некоторые схемы, которые вы хотите построить, требуют большого количества подключений.

Для правильного изучения электроники вам обязательно нужно проделать этот шаг.

А теперь пора узнать, как создать свою собственную печатную плату (PCB)!

Спроектировать печатную плату проще, чем вы думаете. А производство печатных плат стало настолько дешевым, что больше нет причин возиться с травлением.

Я создал пошаговое руководство, которое вы можете прочитать в Интернете или загрузить в виде PDF-файла, под названием «Сделайте свою первую печатную плату».

Учебное пособие проведет вас через все этапы. Он показывает вам все, на что вам нужно нажать, чтобы перейти от незнания к созданию собственной печатной платы.

И вам не нужно разбираться в схеме, чтобы ее построить. Не стесняйтесь найти классную схему для сборки из любого места в Интернете и спроектировать для нее свою собственную печатную плату.

После выполнения этого шага вы должны знать, как спроектировать печатную плату на компьютере и как заказать дешевые прототипы печатной платы в Интернете.

Шаг 10: Научитесь использовать микроконтроллеры в своих проектах

С интегральными схемами и вашим собственным дизайном печатной платы вы можете многое.

Но все же, если вы действительно хотите свободно создавать все, что хотите, вам нужно научиться использовать микроконтроллеры. Это действительно выведет ваши проекты на новый уровень.

Научитесь использовать микроконтроллер, и вы сможете создавать расширенные функциональные возможности с помощью нескольких строк кода вместо того, чтобы использовать огромную цепь компонентов для того же.

После завершения этого шага вы должны знать, как использовать микроконтроллер в проекте, и вы будете знать, где найти информацию, чтобы узнать больше.

Хотите, чтобы в этом пошаговом контрольном списке в формате PDF были указаны точные шаги, которые я рекомендую для изучения электроники с нуля?
Щелкните здесь, чтобы загрузить контрольный список сейчас >>

Нужна помощь по любому из шагов?

С помощью этого контрольного списка вы можете самостоятельно изучить электронику. Вы можете найти свои собственные учебные материалы где угодно.

Вы можете найти информацию в книгах, статьях и курсах, которые помогут вам в вашем путешествии.

Я рекомендую найти кого-нибудь, у кого стиль преподавания вам нравится, и избегать тех, кто преподает так, как вам не нравится.

Мне нравится преподавать просто и практично. Я стараюсь объяснять вещи как можно проще, чтобы это мог понять даже ребенок. Кстати, я также написал «Электронику для детей» — книгу по электронике для детей.

Если вам нравится мой стиль преподавания, вы можете изучить все эти шаги и многое другое — и стать частью сообщества, полного энтузиазма изучающих электронику, присоединившись к моему членскому сайту Ohmify.

Введение в основные электронные схемы

Эта статья представляет собой введение в очень простые электронные схемы. Я сделал эту вводную статью максимально простой для читателей, которые плохо знакомы с электроникой.

Оценка технической сложности: 6 из 10

В моей предыдущей статье Введение в базовую электронику вы узнали все о различных электронных компонентах. Но для реального использования электронные компоненты должны быть соединены вместе, чтобы образовать электронные схемы.

В этой статье есть несколько уравнений, но пусть они вас не пугают. Все используемые уравнения относительно легко понять, и они помогут дать вам более фундаментальное понимание обсуждаемой схемы.

Если вы не отличите конденсатор от диода, обязательно прочтите статью по базовой электронике, ссылка на которую указана выше.

Цепь резистора

Мы собираемся начать с рассмотрения простейшей из возможных схем, а именно схемы, которая включает только источник напряжения и резистор (рис. 1).


Рисунок 1 — Схема простого резистора

Показанный символ источника напряжения представляет собой батарею, но можно заменить любой источник питания постоянного тока. Ток, обозначенный буквой «I» со стрелкой, будет течь от положительной клеммы источника напряжения V1 через провод вниз через R1 и затем в землю.

Самым фундаментальным уравнением во всей электронике является закон Ома. Закон Ома — это простое уравнение, которое показывает, как связаны напряжение, ток и сопротивление.Используя небольшую алгебру, закон Ома можно записать в трех формах:

I = V / R
В = I * R
R = V / I

где I = ток в амперах, V = напряжение в вольтах и ​​R = сопротивление в омах. Например, если V1 = 3 В и R = 1 кОм, протекающий ток будет 3 В / 1 кОм = 3 мА. Как увеличение напряжения, так и уменьшение сопротивления увеличивают протекающий ток.

Резисторный делитель

Следующая схема, которую мы рассмотрим, называется резистивным делителем.Самый простой тип резистивного делителя состоит всего из двух резисторов. Как следует из названия, резисторный делитель обеспечивает простой метод точного деления напряжения.


Рисунок 2- Схема резисторного делителя

Уравнение для расчета выходного напряжения резисторного делителя:

Vout = [R2 / (R1 + R2)] * Vin

Как показывает это уравнение, выходное напряжение пропорционально отношению R1 и R2.

Давайте рассмотрим несколько простых случаев. Часто, когда вы хотите понять математическое уравнение, полезно посмотреть на некоторые из крайних пределов. Это может помочь вам лучше понять уравнение, а также обеспечить проверку правильности уравнения.

Я собираюсь рассмотреть три различных варианта, которые упростят визуализацию:

Случай № 1: R1 = 0, R2> 0

Если сопротивление R1 становится равным нулю, то это короткое замыкание. Это означало бы, что V1 закорочен непосредственно на выход.На самом деле не имеет значения, что такое R2, если это не короткий.

В этом случае уравнение резисторного делителя упрощается до

Vout = [R2 / (0 + R2)] * Vin
Vout = Vin

Нет деления напряжения, а выходное напряжение просто равно входному.

Случай № 2: R1> 0, R2 = 0

Если R2 = 0 (короткое замыкание) и сопротивление R1 превышает 0 Ом, то в этом случае выход просто закорочен на массу. В этом случае уравнение упрощается следующим образом:

Vout = [0 / (R1 + 0)] * Vin
Vout = 0 * Vin = 0

Случай № 3: R1 = R2

Если уравнять R1 и R2, уравнение упростится до:

Vout = [R2 / (R2 + R2)] * Vin
Vout = [1/2] * Vin

Таким образом, в случае равенства R1 и R2 выходное напряжение резистивного делителя будет ровно половиной входного напряжения.

Цепь конденсатора

Следующая схема, которую мы рассмотрим, — это источник напряжения и конденсатор.


Рисунок 3 — Простая конденсаторная схема

Мгновенный ток через конденсатор зависит от скорости изменения напряжения на этом конденсаторе. Уравнение для тока через конденсатор выглядит следующим образом:

i = C * dv / dt

В этом уравнении «i» равняется току через конденсатор (строчная буква обычно используется для обозначения мгновенного параметра, который изменяется со временем, а не значения постоянного тока).«C» — это емкость в фарадах, а dv / dt указывает скорость, с которой напряжение на конденсаторе изменяется со временем.

Предположим, что при первом включении источника напряжения оно возрастает с 0 до 3 вольт за 1 секунду. Это будет скорость нарастания (dv / dt) 3 В / с. Чтобы вычислить мгновенный ток конденсатора, вы просто умножаете эту скорость нарастания на емкость.

Когда конденсатор полностью заряжен, он выглядит как разрыв цепи для постоянного тока, поэтому ток не течет.Когда на конденсаторе имеется стабильное постоянное напряжение, коэффициент dv / dt в приведенном выше уравнении становится равным нулю, поскольку напряжение не меняется со временем.

Но вкратце, перед зарядкой конденсатора это выглядит как короткое замыкание (или низкий импеданс). Если вы установите член dt в уравнении 5 равным нулю (для нулевого времени), ток приблизится к бесконечности, что просто означает короткое замыкание.

При первом включении схемы, показанной на Рисунке 3, конденсатор выглядит как короткое замыкание, потому что конденсатор еще не заряжен.На самом деле это не будет настоящее короткое замыкание, потому что источник напряжения, цепь и конденсатор имеют небольшое паразитное сопротивление.

Как только источник напряжения достигнет своего конечного напряжения и конденсатор полностью заряжен, ток перестанет течь (кроме небольшого количества тока утечки). Это связано с тем, что скорость нарастания напряжения (dv / dt) теперь равна нулю.

Ток протекает только тогда, когда источник напряжения нарастает, и это уравнение позволяет рассчитать ток через этот конденсатор во время этого процесса нарастания.

Конденсатор последовательно по сравнению с параллельным

Мы рассмотрим еще две простые конденсаторные схемы, чтобы помочь вам лучше понять, как конденсаторы могут работать.


Рисунок 4 — Конденсатор с двигателем, включенным параллельно

В этой схеме у нас есть источник напряжения, подключенный параллельно конденсатору и двигателю постоянного тока. Двигатель не особо важен для того, что мы здесь обсуждаем, и это может быть что угодно, от микроконтроллера до регулятора напряжения.В этом случае на двигатель подается полное напряжение V1. Когда конденсатор заряжается, весь ток проходит через двигатель.

Теперь, если мы изменим эту схему и вместо того, чтобы подключать двигатель параллельно C1 и V1, давайте соединим их все последовательно.


Рисунок 5 — Конденсатор с двигателем последовательно

В этом случае двигатель может действительно работать очень короткое время, пока источник напряжения нарастает, но как только V1 достигает своего конечного напряжения и C1 заряжается, ток через двигатель не течет.Таким образом, в этой схеме двигатель, скорее всего, не будет работать должным образом.

Диодные схемы

Теперь мы рассмотрим схему, состоящую из последовательно соединенных источника напряжения, резистора и диода. По сути, диод позволяет току течь через него только в одном направлении (если вам нужно вспомнить диоды и транзисторы, см. Введение в базовую электронику).

Диод с прямым смещением

Символ диода выглядит как стрелка, указывающая в направлении, в котором может течь ток.Если диод ориентирован в цепи, чтобы позволить току течь через него, тогда этот диод смещен в прямом направлении.


Рисунок 6 — Схема диода с прямым смещением

Если вы хотите рассчитать ток, протекающий через диод, показанный на рисунке 6, вы должны использовать закон Ома. Однако вам нужно сделать что-то немного другое из-за диода.

При прямом смещении диод имеет примерно фиксированное падение напряжения на нем, которое обычно составляет около 0.7В. Но существует много разных типов диодов с немного разными перепадами напряжения. Например, тип диода, называемый диодом Шоттки, имеет падение напряжения, близкое к 0,5 В.

Чтобы рассчитать ток, протекающий в этой цепи, необходимо определить напряжение на R1. Назначение этого резистора — установить и ограничить ток в этой цепи. Самая первая схема, которую мы рассмотрели, имела только источник напряжения и резистор. Источник полного напряжения был приложен к резистору, потому что другой конец резистора подключен к земле.

В данном случае дело обстоит не так, потому что этот другой вывод резистора привязан к диоду, а не к земле. Это означает, что падение напряжения на диоде снижает величину напряжения на резисторе. Напряжение на резисторе V1 — 0,7В.

Уравнение для расчета тока для этой цепи:

I = (V1 — 0,7) / R

Например, если источник напряжения 3 В, а сопротивление резистора 1 кОм, то ток будет (3 — 0,7) / 1 кОм = 2.3 / 1к = 2,3 мА

Обратно-смещенный диод

Следующая схема выглядит идентично, за исключением того, что диод направлен в противоположную сторону. Из-за полярности источника напряжения ток снова хочет течь в направлении стрелки, но теперь диод смещен в обратном направлении.


Рисунок 7 — Схема обратного смещения диода

Эту схему действительно легко проанализировать, поскольку при обратном смещении диода не будет протекать ток.

Ничто не бывает идеальным, и всегда есть небольшой ток утечки, который проходит через диод с обратным смещением. Кроме того, если V1 превысит максимальное номинальное напряжение обратного смещения диода, диод может выйти из строя, что приведет к протеканию тока.

Светоизлучающий диод (LED)

Рассмотрим еще одну диодную схему. Эта схема похожа на схему диода с прямым смещением, которую мы рассмотрели выше. Однако вместо обычного диода в этой схеме используется особый тип диода, называемый светоизлучающим диодом (LED).

Как следует из названия, светодиод излучает свет, когда через него проходит ток, будучи смещенным в прямом направлении. Светодиод также по-прежнему действует как обычный диод и пропускает ток только в одном направлении.


Рисунок 8 — Простая светодиодная схема

Если вы вставите этот диод в обратном направлении, и он будет смещен в обратном направлении, то ток не будет течь и свет не будет. Количество света, излучаемого светодиодом, зависит от протекающего через него тока, а не от напряжения на нем.

Чтобы рассчитать ток для этой схемы, вы должны сделать то же самое, что и для схемы с прямым смещением, рассмотренной ранее, используя уравнение I = (V1-VD) / R, где VD — напряжение на диоде.

ПРИМЕЧАНИЕ: Обязательно загрузите бесплатное руководство в формате PDF 15 шагов для разработки нового электронного оборудования .

Имейте в виду, что прямое падение напряжения светодиода может сильно различаться в зависимости от цвета светодиода и, вероятно, будет больше 0.7В.

Фильтрующие контуры

Теперь мы рассмотрим схемы фильтров, предназначенные для пропускания и / или подавления определенных частот. Фильтры — одна из самых важных и фундаментальных схем, которые имеют почти бесконечное количество применений.

У вас может быть, например, фильтр нижних частот, который пропускает низкочастотные сигналы, но отклоняет более высокие частоты. Фильтр высоких частот делает прямо противоположное. Он пропускает высокие частоты и блокирует низкие частоты.

Полосовой фильтр пропускает только частоты в определенном диапазоне.Наконец, режекторный фильтр будет отклонять частоты в определенном диапазоне и пропускать все частоты за пределами этого диапазона.

Частота измеряется в циклах в секунду или в герцах. Например, человеческий слух достигает примерно 10-20 кГц (10-20 тысяч раз в секунду). С другой стороны, радиосигнал Bluetooth или WiFi колеблется с частотой 2,4 ГГц (2,4 миллиарда раз в секунду).

RC-фильтр нижних частот

Простейший фильтр нижних частот состоит только из резистора и конденсатора и соответственно называется RC-фильтром.


Рисунок 9 — RC-фильтр нижних частот

В этой схеме сигнал поступает в R1, а отфильтрованный выходной сигнал снимается с узла между R1 и C1.

Конденсатор пропускает высокие частоты и блокирует низкие частоты. Таким образом, в RC-фильтре нижних частот низкие частоты будут воспринимать C1 как очень высокий импеданс (разомкнутую цепь), а высокие частоты будут воспринимать конденсатор как низкое сопротивление относительно земли.

В RC-фильтре нижних частот все высокие частоты проходят через C1 на землю.По сути, это удаляет высокочастотные составляющие, а низкие частоты передаются на выход.

Частота среза — это частота, с которой фильтр начинает фильтрацию. Для фильтра нижних частот частоты ниже частоты среза пропускаются, а частоты выше частоты среза отклоняются.

Ни один фильтр не идеален, и будут некоторые частоты около частоты среза, которые передаются на выход с сильным ослаблением (понижением).

Уравнение для расчета частоты среза для RC-фильтра:

F = 1 / (2 * PI * R * C)

Частота среза задается по существу R умноженной на C.Коэффициент R * C обычно называют постоянной времени фильтра.

RC-фильтр высоких частот

Для RC-фильтра верхних частот мы просто меняем местами резистор и конденсатор. Конденсатор по-прежнему имеет высокий импеданс на низких частотах и ​​низкий импеданс на высоких частотах.

Но при перестановке двух компонентов низкие частоты теперь блокируются конденсатором (они не проходят через C1 на выход), тогда как высокие частоты могут проходить на выход.


Рисунок 10 — RC-фильтр верхних частот

Частота среза соответствует тому же уравнению, что и RC-фильтр нижних частот, за исключением того, что теперь пропускаются частоты выше этой частоты среза. Отсюда и название фильтр верхних частот.

LC фильтр нижних частот

Следующим шагом на пути к RC-фильтрам являются LC-фильтры, в которых резистор заменен на катушку индуктивности. Катушка индуктивности работает прямо противоположно конденсатору. Катушка индуктивности пропускает низкие частоты и блокирует высокие частоты.

Для RC-фильтра резистор просто устанавливает частоту среза. Если резистора нет, частота среза становится бесконечной — это означает, что пропускается каждая частота и никакой фильтрации не происходит. Для простого RC-фильтра только импеданс конденсатора изменяется с частотой и выполняет фильтрацию.


Рисунок 11 — LC-фильтр нижних частот

С другой стороны, в LC-фильтре оба компонента участвуют в фильтрации.В LC-фильтре нижних частот, помимо того, что конденсатор посылает высокие частоты на землю, высокие частоты также блокируются индуктором от достижения выхода.

Таким образом, для низких частот L1 выглядит как короткое замыкание, а C1 как разомкнутая цепь, поэтому эти частоты передаются на выход без ослабления.

Для высоких частот L1 выглядит как обрыв, а C1 — как замыкание на землю, поэтому высокие частоты не будут передаваться на выход.

Уравнение для частоты среза LC-фильтра аналогично RC-фильтру, за исключением того, что вместо простого R * C множитель становится квадратным корнем из L * C.

F = 1 / [2 * PI * SQRT (L * C)]

ЖК-фильтр верхних частот

Так же, как мы сделали для RC-фильтра верхних частот, для LC-фильтра верхних частот мы просто меняем местами индуктивность и конденсатор. Теперь конденсатор блокирует низкие частоты и пропускает высокие частоты, в то время как катушка индуктивности отправляет низкие частоты на землю. Следовательно, на выход будут передаваться только частоты выше частоты среза.


Рисунок 12 — LC фильтр верхних частот

Заключение

Теперь вы на правильном пути к пониманию основ работы электронных схем.Я намеренно сделал эту вводную статью довольно простой, чтобы не ошеломить вас.

Но эта статья дает вам основу, необходимую для начала изучения более сложных электронных схем. Схемы, которые мы рассмотрели в этой вводной статье, не обладают достаточной независимой функциональностью, но они будут использоваться в качестве строительных блоков в бесчисленных схемах.

В следующей статье мы рассмотрим более сложные схемы, включая некоторые базовые схемы на транзисторах.

Наконец, не забудьте загрузить бесплатный PDF-файл : Окончательное руководство по разработке и продаже нового электронного оборудования .Вы также будете получать мой еженедельный информационный бюллетень, в котором я делюсь премиальным контентом, недоступным в моем блоге.

Другой контент, который может вам понравиться:

Схем — Урок — TeachEngineering

(2 Рейтинги)

Быстрый просмотр

Уровень оценки: 9 (9-11)

Требуемое время: 15 минут

Зависимость урока: Нет

Тематические области: Физические науки, физика

Поделиться:

Резюме

Студенты знакомятся с несколькими ключевыми понятиями электронных схем.Они используют сопутствующие практические занятия, чтобы узнать о некоторых физических принципах, лежащих в основе схем, о ключевых компонентах схемы и их распространении в наших домах и повседневной жизни. Студенты узнают о законе Ома и о том, как он используется для анализа цепей.

Инженерное соединение

Для проектирования и создания бесконечного количества устройств и процессов, использующих электричество и схемы, инженерам требуется базовое понимание электричества и физики, лежащей в основе схем.Инженеры-электрики разрабатывают схемы для продуктов, которые мы используем каждый день. Они также проектируют компьютеры и телекоммуникационные устройства, освещение и электропроводку для зданий и действующих электростанций. Инженеры-электрики занимаются энергосбережением в наших домах и на предприятиях, разрабатывая более эффективные способы проектирования и реализации схем и электронных устройств для эффективного использования и, в конечном итоге, экономии энергии.

Цели обучения

После этого урока учащиеся должны уметь:

  • Определите электрический ток и напряжение.
  • Объясните взаимосвязь между напряжением, током и сопротивлением (закон Ома).
  • Перечислите несколько различных компонентов схемы.

Образовательные стандарты

Каждый урок или задание TeachEngineering соотносится с одним или несколькими научными дисциплинами K-12, образовательные стандарты в области технологий, инженерии или математики (STEM).

Все 100000+ стандартов K-12 STEM, охватываемых TeachEngineering , собираются, обслуживаются и упаковываются сетью стандартов достижений (ASN) , проект D2L (www.achievementstandards.org).

В ASN стандарты иерархически структурированы: сначала по источникам; например , по штатам; внутри источника по типу; например , естественные науки или математика; внутри типа по подтипу, затем по классу, и т. д. .

Международная ассоциация преподавателей технологий и инженерии — Технологии
ГОСТ Предложите выравнивание, не указанное выше

Какое альтернативное выравнивание вы предлагаете для этого контента?

Больше подобной программы

Предварительные знания

Базовое понимание электричества, включая замкнутые и разомкнутые цепи.

Введение / Мотивация

Знаете ли вы, почему в сотовом телефоне должна быть батарея или почему для работы компьютер должен быть подключен к розетке? (Ответ: Этим устройствам для работы требуется электричество.) Знаете ли вы, что аккумулятор или питание, идущее из розетки в стене, является частью электрической цепи? Когда аккумулятор вставляется в сотовый телефон или когда к нему подключен компьютер, цепь в устройстве замыкается или «замыкается», позволяя протекать электрическому току.

Электрические цепи можно найти повсюду вокруг нас — в наших домах, школах и на предприятиях. Инженеры-электрики чаще всего связаны с разработкой схем, но они не единственные инженеры, которые работают со схемами и знают о них. Большинство инженеров должны понимать электричество и физику электрических цепей, чтобы они могли проектировать любые устройства, использующие электричество. Например, инженеры-механики используют схемы при проектировании двигателей. Аэрокосмические инженеры используют схемы при разработке средств управления космическими кораблями.Сегодня мы собираемся узнать о некоторых физических принципах, лежащих в основе схем, а также о некоторых ключевых компонентах, которые используются для создания схем.

Схема внутри вашего компьютера может выглядеть примерно так. Авторское право

Copyright © 2008 Дениз У. Карлсон, Программа ITL, Университет Колорадо в Боулдере

Чтобы начать разбираться в схемах и электричестве, давайте начнем с электрического тока. Электрический ток — это поток положительного заряда. По сути, это мера количества положительных зарядов, которые проходят через заданную границу (точка в пространстве, поперечное сечение провода и т. Д.).) в единицу времени. (Примечание: в реальной цепи движущиеся заряды — это электроны, которые содержат отрицательный заряд. Поэтому электрический ток фактически определяется как движущийся против пути, по которому проходят электроны.)

Единица электрического тока — это единица заряда ( кулон, ) в секунду. Кулон в секунду также называется ампер, (А) или, для краткости, ампер. Сила тока в бытовых устройствах обычно составляет около 1 А. Однако в электронных устройствах, таких как стереосистемы и компьютеры, ток часто измеряется в миллиамперах (1 мА = 10 -3 А) или микроампер (1 мкА = 10 -6 А).

Два типа тока: переменного тока и постоянного тока . Переменный ток выходит из обычных настенных розеток в домах, школах и на предприятиях. Он называется «переменным», потому что направление тока постоянно меняется. В США переменный ток от настенных розеток составляет 60 Гц (Герц). Это означает, что ток меняет направление 60 раз каждую секунду. Постоянный ток — это ток, вырабатываемый батареями. Он всегда движется в одном направлении.Ток важен, потому что движущиеся заряды несут энергию и могут совершать работу.

Напряжение — это мера разницы электрических потенциалов между любыми двумя точками. Единица измерения напряжения — джоули на кулон (энергия на заряд), получившая название вольт и (В). Электрический потенциал — это потенциальная энергия на единицу заряда (джоулей / кулон), связанная с электрическим полем. Напряжение аналогично разнице в гравитационной потенциальной энергии объекта из-за его высоты.Как и в случае с гравитационной потенциальной энергией, электрический потенциал полезен только тогда, когда мы анализируем разницу между двумя точками. Каждый раз, когда выполняется измерение напряжения, оно измеряется между двумя точками (поэтому мультиметр имеет два контакта). Напряжение также имеет так называемую полярность , или положительный и отрицательный полюсы (аналогично магниту с северным и южным полюсами). Полярность важна для определения того, поглощает ли элемент в цепи энергию или передает ее.

В качестве наглядного примера напряжения давайте посмотрим, как работает аккумулятор.Каждая батарея имеет соответствующее номинальное напряжение, например 1,5 В для батареи D, 9 В, 12 В для автомобильных аккумуляторов. Это означает, что 9-вольтовая батарея, помещенная в электронное устройство, имеет 9 джоулей электрической потенциальной энергии между двумя своими выводами. Эта батарея обеспечивает устройство 9 джоулями энергии на каждый кулон заряда, который он перемещает по длине батареи.

Теперь, когда мы определили и обсудили напряжение и электрический ток, давайте немного поговорим о схемах.Одно из основных физических соотношений, используемых для анализа всех цепей, известно как закон Ома . Закон Ома гласит, что напряжение на резисторе пропорционально току, протекающему через резистор. В форме уравнения это выглядит так:

В = ИК

, где V — напряжение на резисторе, I — ток, протекающий через резистор, а R — сопротивление резистора.

Единица измерения сопротивления — Ом (Ом). Закон Ома дает нам определение резистора.Резистор — это объект, который вызывает падение напряжения на своих выводах, чтобы противостоять прохождению через него электрического тока. Обратите внимание, что закон Ома работает только при постоянном сопротивлении компонента. Многие компоненты, такие как лампочка или диод, не имеют постоянного сопротивления. Компоненты с постоянным R называются омическими, а компоненты, в которых R меняется, считаются неомическими. Отношения, описываемые законом Ома, дают нам возможность вычислять такие переменные, как ток через резистор или напряжение на резисторе в цепи.Закон Ома важен при анализе цепей, когда ток или напряжение на резисторе неизвестны.

В схему можно встроить несколько компонентов для различных целей. Некоторые из этих компонентов включают резисторы (любые два оконечных объекта, которые обеспечивают падение напряжения, чтобы противодействовать прохождению через него тока), конденсаторы (хранят энергию в электрическом поле), индукторы (хранят энергию внутри электрического поля) и транзисторы. (обычно используется как усилитель или переключатель).Интегральная схема — это схема, которая была разработана для выполнения данной задачи и часто состоит из нескольких других компонентов, таких как резисторы, конденсаторы, катушки индуктивности и транзисторы. Отдельные компоненты интегральной схемы все производятся на одном кристалле кремния (чипе) одновременно. И транзисторы, и интегральная схема являются неотъемлемой частью современной электронной революции, которая привела к появлению сотовых телефонов, компьютеров и многих электронных устройств, которые мы используем каждый день.

Схемы выполняют множество функций при проектировании энергоэффективных домов.Они могут быть предназначены для включения света, когда человек входит в комнату, и выключения после того, как в течение некоторого времени никого нет рядом. Они используются для регулирования температуры воздуха внутри зданий путем управления оборудованием для отопления и кондиционирования воздуха (обратитесь к упражнению «Проектирование термостата», чтобы студенты исследовали компоненты контура и спроектировали собственное приложение термостата). Их даже можно использовать для контроля температуры воды, количества света, попадающего в комнату, и хранения энергии от фотоэлектрических систем для последующего использования.

Предпосылки и концепции урока для учителей

Как работают батареи

Способ, которым аккумуляторы производят заряд, — это вопрос химии. В батарее электроны перемещаются от положительной клеммы к отрицательной через провода и схемы устройства и обратно в положительную клемму батареи. Это называется замкнутым контуром . За один кулон заряда стоит электрон (-1.601 x 10 -19 кулонов заряда) перемещается от положительной клеммы к отрицательной клемме аккумулятора, происходит увеличение энергии, равное 9 джоулей. Расчет для этого показан ниже, где EP — электрический потенциал.

(Примечание: значения для EP 1 и EP 2 могли быть любыми, если их разница равнялась 9, поскольку это напряжение батареи; как и потенциальная энергия, необходимо установить данные, на основании которых все остальные измерения сняты.В случае напряжения инженеры часто используют землю или 0 вольт в качестве исходной точки отсчета. Таким образом, на одном терминале 0 EP. Кроме того, заряд отрицательный, потому что электроны имеют отрицательный заряд.) На отрицательной клемме 1 кулон заряда электронов имеет определенную энергию; после перехода к положительному выводу энергия увеличилась на 9 джоулей из-за разницы в электрическом потенциале, обнаруженном в батарее. Этот процесс показан на Рисунке 1.

Рисунок 1.Как работает напряжение в батарее. Авторское право

Авторское право © 2008 Тайлер Малин, Программа ITL, Инженерный колледж, Университет Колорадо в Боулдере

Этот расчет также включает полярность. Каждое напряжение и, следовательно, каждая батарея имеет положительную и отрицательную клеммы; отрицательный вывод — это нижний (часто заземляющий или нулевой) электрический потенциал. Если электроны в цепи текут от положительной клеммы к отрицательной клемме любого источника напряжения (как показано на рисунке 1), источник напряжения подает энергию.Но если электроны движутся в противоположном направлении, в отрицательном направлении и выходят из положительного полюса, источник поглощает энергию. Это основная идея аккумуляторных батарей.

Компоненты общей цепи

Однако каждая цепь в мире состоит не только из источника напряжения (например, батареи) и одного или двух резисторов. Могут быть добавлены многочисленные компоненты схемы, позволяющие решать некоторые увлекательные задачи. Ниже приведены некоторые из наиболее распространенных компонентов схемы.

Конденсаторы — это компоненты, накапливающие энергию в электрическом поле. Это часто достигается за счет одинаковой, но противоположной зарядки двух параллельных пластин. В этом случае одна пластина имеет избыток протонов, а другая — электронов. Этот сценарий приводит к возникновению электрического поля между двумя пластинами из-за разницы в заряде. Это электрическое поле накапливает энергию для последующего высвобождения. Конденсаторы не могут создавать энергию, они просто накапливают энергию, полученную при протекании тока между пластинами.На рисунке 2 показан весь процесс, от момента, когда конденсатор впервые накапливает заряд и, следовательно, энергию, до полного заряда.

Рис. 2. Конденсатор с параллельными пластинами, заряжаемый батареей. Авторское право

Авторское право © 2008 Тайлер Малин, Программа ITL, Инженерный колледж, Университет Колорадо в Боулдере

Емкость (C) конденсатора является важной величиной, связанной с конденсаторами. Он определяется как отношение заряда (Q) к напряжению конденсатора:

Единица измерения емкости — фарад, определяемый как 1 кулон на вольт.Большинство конденсаторов никогда не имеют емкости в одну фараду, и часто большинство конденсаторов измеряется в микрофарадах (мкФ). Одно из классических применений конденсатора — вспышка камеры. Энергия для создания вспышки хранится в конденсаторе. Чтобы создать вспышку при фотографировании, конденсатор разряжается, высвобождая накопленную энергию в виде света.

Катушки индуктивности — это обычные компоненты схемы, в которых для хранения энергии используется магнитное поле. Индукторы чаще всего создаются путем наматывания катушки проволоки на какой-либо сердечник, называемый соленоидом.Они используются для создания индуктивности . Индуктивность аналогична конденсатору, а емкость — способ измерения количества энергии, запасенной в магнитном поле, возникающем, когда ток проходит через катушки соленоида. Единица индуктивности — генри (Гн). В отличие от резисторов и напряжения, уравнения, определяющие физику катушек индуктивности и конденсаторов, требуют знания исчисления одной переменной, что является более сложным, чем этот урок.

Транзисторы — это компоненты схемы, изготовленные из полупроводника (материала, который иногда действует как изолятор, а иногда как проводник) и часто используются в качестве усилителя или переключателя.Транзисторы считаются строительными блоками для всех современных электронных устройств, включая компьютеры и сотовые телефоны. Они часто встречаются в интегральных схемах; например, усовершенствованный микропроцессор в компьютере содержит более 1,7 миллиарда транзисторов. Они являются самой большой причиной развития электроники в 20 годах.

Интегральные схемы — распространенные компоненты электронных схем. Эти специализированные схемы предназначены для выполнения определенной задачи и часто состоят из нескольких других компонентов, таких как резисторы, конденсаторы, катушки индуктивности, транзисторы и диоды.Отдельные компоненты интегральной схемы все производятся на одном кристалле кремния (чипе) одновременно. Примеры интегральных схем включают операционные усилители, микропроцессоры и логические схемы. Все более эффективное и быстрое производство интегральных схем привело к низкой стоимости каждой микросхемы, что открыло путь к быстрому технологическому развитию электронных устройств.

Сопутствующие мероприятия

Закрытие урока

Сегодня мы начали изучение цепей с того, что сначала узнали об электрическом токе и напряжении.Какое важное математическое выражение в физике связывает напряжение и ток? Правильно — закон Ома, который описывает взаимосвязь между током и напряжением и дает нам определение резистора.

Схемы — это основа электроники. Без схем у нас не было бы многих вещей, которые мы принимаем как должное в повседневной жизни. Цепи также хороши для автоматизации процессов и повышения энергоэффективности за счет управления многими рутинными задачами.Могут быть разработаны схемы для включения света, когда человек входит в комнату, и выключения его после того, как люди уйдут. Они могут регулировать и контролировать системы отопления и охлаждения для создания желаемой температуры воздуха в домах и зданиях. Они могут сказать вашему компьютеру, когда выключить экран, если он не использовался какое-то время. Что еще вы знаете о схемах?

Словарь / Определения

переменный ток: ток, который постоянно меняет направление, например, электрический ток, доступный через настенные розетки в наших домах и на предприятиях.

ампер: единица измерения электрического тока. Определяется как 1 кулон в секунду.

емкость: способность электрического поля в конденсаторе накапливать энергию. Основное измерение конденсаторов. Определяется как соотношение заряда и напряжения конденсатора.

конденсатор: компонент схемы, который хранит энергию внутри электрического поля.

замкнутая цепь: цепь, по которой течет ток.

кулон: единица измерения заряда.

постоянный ток: ток, который движется только в одном направлении, например, ток, поступающий от батареи.

электрический ток: поток положительных зарядов через проводник (провод, пластину, электрическое поле).

электрический потенциал: мера потенциальной энергии, содержащейся в электрическом поле.

фарад: Единица измерения емкости или электрической емкости.Назван в честь физика-инженера Майкла Фарадея.

индуктивность: способность магнитного поля накапливать энергию. Основная мера индуктивности.

индуктор: компонент схемы, который хранит энергию внутри магнитного поля.

Интегральные схемы: схемы, построенные на кремниевом кристалле или микросхеме, которые содержат множество общих схемных компонентов и предназначены для выполнения определенных задач.

Закон Ома: утверждение о физическом соотношении, согласно которому для любой цепи сила электрического тока (I) прямо пропорциональна напряжению (V) и обратно пропорциональна сопротивлению (R) цепи.V = ИК

сопротивление: мера способности объекта ограничивать прохождение тока через него.

резистор: любые два контактных объекта, которые обеспечивают падение напряжения, чтобы противодействовать прохождению через него тока.

Транзистор: полупроводник, который обычно используется в качестве усилителя или переключателя. Это строительный блок всех современных схем, включая компьютеры и сотовые телефоны.

вольт: единица измерения напряжения.Определяется как джоуль на кулон.

напряжение: мера разницы в электрическом потенциале между двумя точками в электрическом поле.

Оценка

Оценка перед уроком

Вопрос для обсуждения : запрашивайте, объединяйте и обобщайте ответы студентов, записывая их ответы на доске. Спросите у студентов:

  • Что вы используете каждый день с электрическими цепями? (Возможные ответы: компьютеры, мобильные телефоны, плееры iPod, стереосистемы, телевизоры, автомобили и т. Д.)

Оценка после введения

Мозговой штурм : В классе предложите учащимся участвовать в открытом обсуждении. Напомните им, что в ходе мозгового штурма нет «глупых» идей или предложений. Все идеи следует с уважением выслушать. Занять некритическую позицию, поощрять дикие идеи и препятствовать критике идей. Попросите учащихся поднять руки, чтобы ответить. Напишите их идеи на доске. Спросите у студентов:

  • Как можно использовать электрические цепи, чтобы сделать устройство или дом более энергоэффективным? (Возможные ответы: цифровой термометр с точкой включения / выключения, схема, которая автоматически выключает свет, когда он не нужен, заставки компьютера / монитора / копира / спящий режим, которые потребляют меньше энергии, если какое-то время бездействуют, автоматический кофе горшок, который отключается сам по себе и т. д.)
  • Многие автоматические процессы используют схемы для выполнения задачи. В термостатах, автоматических выключателях света, двигателях и системах домашней безопасности используются электрические цепи. Помимо обычных электронных устройств, таких как стереосистемы, плееры iPod, компьютеры, сотовые телефоны, видеоигры, телевизоры, DVD-плееры, что еще в нашем мире использует схемы? (Возможные ответы: автомобили, термостаты, автоматические выключатели света, спринклерные системы, автоматические двери, светофоры, кнопки перехода, пульты дистанционного управления, голосовая почта, двигатели, выключатели домашней безопасности, сборочные линии / фабрики / заводы и т. Д.)

Этот цифровой термостат регулирует отопление и охлаждение дома для обеспечения эффективного использования энергии. Авторское право

Авторские права © 2008 Дениз В. Карлсон, Программа ITL, Университет Колорадо в Боулдере

Итоги урока Оценка

Math Application : Напишите на доске уравнение I = V ÷ R. Напомните студентам, что это называется законом Ома. Объясните, что I = ток = поток электрического заряда через цепь (он остается постоянным в замкнутой цепи), V = напряжение = используемые батареи и R = сопротивление = используемые лампы.Предложите студентам ответить на следующие вопросы с точки зрения закона Ома:

Чтобы повысить энергоэффективность своего дома, семья из Колорадо установила на крыше солнечную панель. Они хотят добавить еще одну солнечную панель, чтобы увеличить свою способность накапливать энергию на зиму.

  • Что происходит с током (I), когда они добавляют еще одну солнечную панель (V)? (Ответ: Ток увеличивается.)
  • Что происходит с током (I), когда они добавляют прибор в свою цепь (R)? (Ответ: ток уменьшается.)
  • Что происходит с током (I), когда у них разомкнутый переключатель? (Ответ: ток (I) = 0, поскольку электроны не могут двигаться по цепи.)

Дополнительные задания к уроку

Поручите студентам изучить различные типы термостатов. Существует несколько типов электрических и механических термостатов. Попросите их описать, как работает цифровой термостат.

Инженеры-электрики часто работают с элементами управления системами, включая элементы управления телекоммуникациями.Вовлеките студентов в обсуждение телекоммуникаций и их важности в современном обществе.

использованная литература

Hambley, Allan R., Электротехника: принципы и приложения, Третье издание. Река Аппер Сэдл, Нью-Джерси: Pearson Education Inc., 2005.

авторское право

© 2007 Регенты Университета Колорадо.

Авторы

Тайлер Малин; Лорен Купер; Малинда Шефер Зарске; Дениз В. Карлсон

Программа поддержки

Интегрированная программа преподавания и обучения, Инженерный колледж, Университет Колорадо в Боулдере

Благодарности

Содержание этой учебной программы по цифровой библиотеке было разработано за счет гранта Фонда улучшения послесреднего образования (FIPSE), U.S. Министерство образования и Национальный научный фонд ГК-12, грант No. 0338326. Однако это содержание не обязательно отражает политику Министерства образования или Национального научного фонда, и вам не следует предполагать, что оно одобрено федеральным правительством.

Последнее изменение: 14 декабря 2021 г.

Узнайте об электронике — Домашняя страница

Сайт для изучения электронной техники.Используйте меню выше или выберите тему из окон предварительного просмотра ниже — вы находитесь не более чем в трех щелчках мыши от наиболее важной информации о том, что вам нужно знать.

Посетите наш новый раздел «Неисправности транзисторов» и узнайте, почему транзисторы выходят из строя и как их проверить с помощью мультиметра. Простые тесты для биполярных переходных транзисторов (BJT) и полевых транзисторов (JFET и MOSFET).

Learnabout Electronics, уже являющийся одним из самых популярных образовательных онлайн-сайтов по электронике, насчитывающий около 300 страниц и более 1700 иллюстраций и видео по широкому кругу тем, связанных с электроникой, превратился в крупный международный образовательный сайт, которым пользуются миллионы независимых учащихся. образовательные издательства, учебные заведения вооруженных сил, а также колледжи и университеты по всему миру.Используется для занятий электроникой. Чтобы узнать больше о сайте Learnabout Electronics, щелкните здесь.

Изучите основы электроники — закон Ома, простые схемы и резистивные сети — как последовательные, так и параллельные, объясните шаг за шагом. Все самое необходимое; объяснение напряжения тока, проводимости и сопротивления. Как температура влияет на сопротивление? Все это здесь, вместе с распознаванием компонентов для 4-, 5- и 6-полосных резисторов, а также кодами SMT и простым поиском неисправностей.Некоторые из наиболее полных данных по резисторам в сети!

Наши страницы о компонентах и ​​схемах переменного тока предназначены для обучения основам теории переменного тока с помощью 11 простых для изучения модулей. Используйте их как полный курс или изучите любую отдельную тему, включая конденсаторы, катушки индуктивности, реактивное сопротивление, импеданс, формы сигналов и векторы.

Каждый модуль имеет резервную копию бумажной версии, которую можно загрузить, распечатать и сохранить. На онлайн-страницах также используются интерактивные видео, что делает наши популярные пояснительные страницы одними из самых популярных в Интернете.

Узнаешь об электронике? Затем вам нужно знать о компонентах, включая диоды, JFET, MOSFT, биполярные транзисторы, тиристоры, симисторы и диаки, оптопары и основы теории полупроводников. Найдите полные и простые объяснения многих распространенных типов. Посмотрите наши анимированные видеоролики, чтобы прояснить работу транзисторов. В чем разница между соединениями с общим эмиттером, общей базой и общим коллектором? Найдите правильный способ проверки транзисторов в нашем разделе «Идентификация неисправностей» и получите помощь с математическими задачами, которые могут понадобиться вам, когда вы только начинаете заниматься электроникой.

Узнайте, как спроектировать и построить рабочий транзисторный усилитель, используя минимум математики. Классы усилителей, объясненные от A до D, вместе с многокаскадными усилителями, практичными усилителями мощности и схемами операционных усилителей. Разберитесь с отрицательной обратной связью, входным импедансом и контролем полосы пропускания. Все, от базовых фактов об усилителях до сложных профессиональных конструкций, можно найти на сайте Learnabout Electronics.

Каждая цепь (почти) нуждается в блоке питания, поэтому вам нужно знать, как работают блоки питания.Узнайте об этих жизненно важных схемах — от базовых схем выпрямителя до источников питания с переключаемым режимом, от базовых компонентов до интегральных схем — и все это в наших простых в освоении модулях.

Модули питания также имеют обширные ссылки на ключевые страницы с подробной информацией и основными терминами, с которыми вам необходимо ознакомиться. Воспользуйтесь мощностью сотен страниц с информацией об электронике Learnabout-electronics, которая поможет вам разобраться в том, что вам нужно знать, , а важные спецификации компонентов источников питания также находятся на расстоянии одного клика, чтобы связать вас с данными производителей.

Начните изучать реальные схемы прямо сейчас с Learnabout Electronics.

Узнайте о цифровой электронике с ПЯТЬЮ МОДУЛЯМИ, наполненными информацией и схемами по цифровой технологии! Начните с двоичной арифметики — булевой алгебры, карт Карно, всего необходимого. Пошаговые инструкции по упрощению логических выражений, чтобы упростить логические выражения!

Логические вентили, логические семейства и цифровые схемы объяснены, от базовых вентилей до сложных схем, которые заставляют компьютеры работать.Мультиплексоры, сумматоры, счетчики, регистры сдвига и многое другое. Загрузите бесплатное программное обеспечение Logisim и более 60 интерактивных симуляторов обычных цифровых схем.

.

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *