Принцип работы автоматической коробки передач: 403 — Доступ запрещён – Автоматическая коробка передач — Википедия

Содержание

Автоматическая коробка передач — Энциклопедия журнала "За рулем"

Автоматическая коробка передач - АКП, механизм изменения передаточного отношения трансмиссии, работающий без непосредственного участия водителя. Автомобиль, оснащенный АКП, имеет сокращенное количество устройств управления, вместо трех педалей («газа», тормоза и сцепления) в нем установлено две педали («газа» и тормоза, педаль выключения сцепления отсутствует). При этом педаль «газа» служит не для увеличения-уменьшения оборотов двигателя, как в автомобиле с механической КП, а для изменения скорости движения автомобиля. В отличие от механической коробки передач АКП оснащается не рычагом переключения, а селектором выбора режима работы.
По устройству АКП разделяются на обычные двух и трехвальные МКП, дополненные гидротрансформатором (вместо сухого сцепления) и системой автоматического переключения (с электронным, электромеханическим или электропневматическим управлением), и на планетарные, в которых планетарный редуктор работает в паре с гидротрансформатором. Наиболее типичные - планетарные АКП с гидротрансформатором.

Устройство

Планетарная АКП состоит из гидротрансформатора, планетарной КП (планетарных редукторов), барабанов, фрикционных и обгонной муфт, соединительных валов. Барабаны АКП оснащаются ленточными тормозами для их остановки и включения нужной передачи планетарного редуктора.

Гидротрансформатор в автоматической трансмиссии выполняет функции сцепления и устанавливается между коленчатым валом двигателя и КП. Гидротрансформатор состоит из ведущей и ведомой турбин и неподвижно закрепленного относительно двигателя статора (иногда статор выполняется вращающимся, в этом случае он оснащается ленточным тормозом - применение подвижного статора добавляет гидротрансформатору гибкости на малых оборотах двигателя и улучшает его характеристики). Ведущая турбина вращается, как и ведущий диск сцепления, с той же частотой, что и коленчатый вал двигателя. Ведомая турбина вращается за счет гидродинамических сил, возникающих из-за вязкости заполняющей внутреннюю полость гидротрансформатора жидкости. Основное назначение гидротрансформатора - передача вращения коленчатого вала на шестерни планетарной КП с проскальзыванием, что обеспечивает плавное переключение передач и начало движения автомобиля. При больших оборотах двигателя ведомая турбина блокируется и гидротрансформатор выключается, передавая крутящий момент с коленчатого вала на шестерни АКП напрямую (соответственно, потерь).
Планетарная КП или планетарный редуктор - комплекс из большой коронной шестерни (эпицикла), малой солнечной шестерни и связывающих их шестерен-сателлитов, закрепленных на водиле. В разных режимах работы редуктора вращаются разные шестерни, а один из блоков (эпицикл, солнечная шестерня или водило с сателлитами) закреплен неподвижно.

Схема АКП: 1 - турбинное колесо;
2 - насосное колесо;
3 - колесо реактора;
4 - вал реактора;
5 - первичный вал планетарного редуктора;
6 - главный масляный насос;
7 - фрикцион II и III передач:
8 - тормоз I и II передач;
9 - фрикцион III передачи и передачи заднего хода;
10 - муфта свободного хода I передачи;
11 - тормоз заднего хода;
12 - первый промежуточный вал;
13 - второй промежуточный вал;
14 - барабан с зубчатым венцом;
15- центробежный регулятор;
16 - вторичный вал;
17 - механизм переключения передач;
18 - дроссельный клапан;
19 - кулачок

Фрикционные муфты предназначены для переключения передач введением в зацепление (или, наоборот, выведением из зацепления) шестерен планетарного редуктора АКП. Муфта состоит из ступицы (хаба) и барабана. На внешней поверхности ступицы и внутренней барабана расположены прямоугольные зубья (на ступице) и такие же шлицы (внутри барабана), которые по форме соответствуют друг другу, но не зацеплены. Между ступицей и барабаном располагается набор (пакет) кольцеобразных фрикционных дисков. Половина дисков выполнена из металла и оснащена выступами, входящими в шлицы внутренней поверхности барабана. Вторая половина дисков - из пластмассы и имеет вырезы, в которые входят зубья ступицы. Таким образом, механическое сцепление ступицы и барабана происходит через трение металлических и пластмассовых дисков пакета фрикционной муфты.

Сообщение и разобщение ступицы и барабана фрикционной муфты происходит после сжатия пакета дисков кольцеобразным поршнем, установленным внутри ступицы. Поршень имеет гидравлический привод. Жидкость в цилиндр привода подается под давлением через кольцевые канавки в барабане, валах и картере АКП.
Обгонная муфта используется для уменьшения ударных нагрузок на фрикционные муфты при переключении передач и для отключения двигателя при движении автомобиля накатом (при некоторых режимах работы АКП). Обгоная муфта устроена таким образом, что свободно проскальзывает при вращении в одном направлении и заклинивает при обратном (передавая деталям АКП вращающий момент). Она состоит из двух колец - внешнего и внутреннего - и расположенных между ними набора роликов, разделенных сепаратором. После увеличения оборотов двигателя и переключения передачи АКП один из блоков планетарного ряда стремится вращаться в обратную сторону - обгонная муфта заклинивает этот блок, предотвращая обратное вращение.

Принцип работы АКП

Рассмотрим работу четырехступенчатой АКП, оснащенной двумя планетарными редукторами.
Первая передача. Солнечная шестерня первого планетарного ряда не подключена к двигателю, первый ряд не участвует в передаче крутящего момента. Солнечная шестерня второго ряда соединена с коленчатым валом двигателя (добавим - через гидротрансформатор). Водило с сателлитами второго планетарного ряда соединено с выходным валом КП. Эпицикл (самая большая коронная шестерня) второго ряда при низких оборотах двигателя прокручивается через обгонную муфту, крутящий момент на механизмы трансмиссии не передается. Как только обороты двигателя повышаются, обгонная муфта блокирует коронную шестерню - начинается передача крутящего момента через сателлиты и водило. Автомобиль трогается с места и начинает движение.

Вторая передача. Солнечная шестерня первого ряда заблокирована и неподвижна. Водило с сателлитами первого ряда входит в зацепление с эпициклом второго ряда через обгонную муфту. Эпицикл первого ряда входит в зацепление с водилом второго ряда, которое соединено с выходным валом КП. Крутящий момент от двигателя передается через солнечную шестерню второго ряда. В этом режиме работают оба планетарных ряда КП.
Третья передача. Шестерни первого ряда не принимают участия в передаче крутящего момента. Солнечная шестерня второго ряда и эпицикл второго ряда соединены со входным валом, крутящий момент передается водилом на выходной вал. Преобразования крутящего момента не происходит - АКП работает в режиме прямой передачи.
В режимах первой, второй и третьей передач водитель не может тормозить двигателем. Для обеспечения возможности торможения двигателем предусмотрена блокировка обгонной муфты фрикционной муфтой. Тогда при отпускании педали «газа» шестерни коробки не будут разобщать механизмы трансмиссии с двигателем.
Четвертая передача. Это режим ускоряющей передачи, когда передаточное число трансмиссии больше единицы. Солнечная шестерня первого ряда остановлена. Крутящий момент передается на водило с сателлитами первого планетарного ряда. Эпицикл первого ряда входит в зацепление с водилом второго ряда, которое, в свою очередь, передает крутящий момент на механизмы трансмиссии. Солнечная шестерня и эпицикл второго ряда в передаче крутящего момента не участвуют.
Задний ход. Солнечная шестерня первого ряда соединена с коленчатым валом двигателя. Водило второго ряда заблокировано фрикционной муфтой. Эпицикл первого ряда входит в зацеплении с водилом второго ряда, которое, в свою очередь, соединено с выходным валом. Выходной вал вращается в обратную сторону.

Системы управления АКП

Система управления режимами работы АКП выполнена в виде гидравлических приводов, передающих давление масла от гидронасоса к поршням исполнительных механизмов фрикционных муфт и тормозных лент барабанов. Поток масла в маслопроводах перераспределяют золотники, которые управляются либо вручную положением селектора АКП, либо автоматически. Блок автоматического управления АКП может быть гидравлическим или электронным.

«Классическая» АКП управляется гидравлическим механизмом, который состоит из центробежного регулятора давления жидкости, установленного на выходном валу двигателя и датчика давления гидравлического привода педали «газа». Золотники перемещаются под давлением обеих гидроцепей, что позволяет АКП переключать передачи в соответствии с частотой вращения коленчатого вала двигателя и положения педали «газа».
В электронной системе автоматического управления вместо гидравлического привода золотников используется электромеханический - золотники перемещаются соленоидами. Команды на перемещения золотников дает блок электронного управления, в современных автомобилях - центральный бортовой компьютер автомобиля. Этот же компьютер обычно управляет и системой зажигания, и впрыском топлива. Команды на перемещение золотников блок электронного управления получает от датчика частоты вращения выходного вала двигателя и положения педали «газа». Переключать передачи можно и в ручном режиме, перемещая селектор в нужное положение.
В большинстве современных АКП предусмотрено ручное управление коробкой даже после полного выхода из строя электронной системы управления. При этом в любом случае вручную можно включить прямую (третью по описанной выше четырехступенчатой схеме) передачу, а если не повреждена электромеханическая часть системы управления - все передачи ручным переводом селектора.

Селектор АКП

В 50-е годы прошлого века общепринятым стандартом системы управления АКП стал селектор «PRNDL» - по перечислению очередности включения режимов автоматической КП. Именно эта последовательность была признана наиболее безопасной и рациональной с точки зрения конструкции АКП.
Режимы работы АКП - положения селектора переключения.

P - парковочный режим. Двигатель отсоединен от трансмиссии. АКП блокирована внутренним механизмом и соединена с трансмиссией, что обеспечивает блокировку всех механизмов трансмиссии. При этом АКП никак не связана со стояночным тормозом и не отменяет необходимость его использования на стоянках.
R - режим заднего хода. Во всех современных АКП селектор в этом положении дополнен блокировочным механизмом, предотвращающим случайное включение заднего хода при движении автомобиля вперед.
N - нейтральный режим АКП. Задействуется при остановках, движении накатом, буксировке.

D - основной режим работы АКП («Драйв»). Задействованы все ступени АКП (обычно и повышающая передача, которая в противном случае может включаться дополнительным положением рукоятки селектора с обозначением «2» или «D2»).
L - режим пониженной передачи, который используется для движения по бездорожью и на крутых подъемах.
Этот порядок переключения селектора АКП был закреплен в США законодательно в 1964 году. Отступление от этого стандарта считается недопустимым с точки зрения безопасности автомобиля.

устройство и принципы работы АКПП

Автоматическая коробка передач имеет ряд неоспоримых достоинств. Она существенно упрощает управление автомобилем. Переключения производятся плавно, без рывков, что улучшает ездовой комфорт и увеличивает срок службы трансмиссии. Современные АКПП имеют возможность ручного переключения передач и режимов работы, могут подстраиваться под стиль вождения конкретного водителя.

Но даже самые совершенные гидромеханические коробки не лишены недостатков. К ним относятся: сложность конструкции, высокая цена и стоимость обслуживания, более низкий КПД, худшая динамика и повышенный расход топлива по сравнению с механической КПП, медлительность переключений.

Содержание статьи

Устройство и принцип работы АКПП

Автоматическая коробка передач состоит из следующих основных узлов: гидротрансформатора, планетарного ряда, системы управления и контроля. Коробка переднеприводных автомобилей дополнительно содержит внутри корпуса главную передачу и дифференциал.

ГидротрансформаторГидротрансформатор

Чтобы понять, как работает АКПП, необходимо представлять себе, что такое гидромуфта и планетарная передача. Гидромуфта – устройство, состоящее из двух лопастных колес, установленных в одном корпусе, который заполнен специальным маслом. Одно из колес, называемое насосным, соединяется с коленвалом двигателя, а второе, турбинное, – с трансмиссией. При вращении насосного колеса отбрасываемые им потоки масла раскручивают турбинное колесо. Такая конструкция позволяет передавать крутящий момент примерно в соотношении 1:1. Для автомобиля такой вариант не подходит, так как нам нужно, чтобы крутящий момент изменялся в широких пределах. Поэтому между насосным и турбинным колесами стали устанавливать еще одно колесо — реакторное, которое в зависимости от режима движения автомобиля может быть либо неподвижно, либо вращаться. Когда реактор неподвижен, он увеличивает скорость потока рабочей жидкости, циркулирующей между колёсами. Чем выше скорость движения масла, тем большее воздействие оно оказывает на турбинное колесо. Таким образом момент на турбинном колесе увеличивается, т.е. мы его трансформируем. Поэтому устройство с тремя колесами это уже не гидромуфта, а гидротрансформатор.

Планетарная передачаПланетарная передача

Но и гидротрансформатор не может преобразовывать скорость вращения и передаваемый крутящий момент в нужных нам пределах. Да и обеспечить движение задним ходом ему не под силу. Поэтому к нему присоединяют набор из отдельных планетарных передач с разным передаточным коэффициентом — как бы несколько одноступенчатых КПП в одном корпусе. Планетарная передача представляет собой механическую систему, состоящую из нескольких шестерён – сателлитов, вращающихся вокруг центральной шестерни. Сателлиты фиксируются вместе с помощью водила. Внешняя кольцевая шестерня имеет внутреннее зацепление с планетарными шестернями. Сателлиты, закрепленные на водиле, вращаются вокруг центральной шестерни, как планеты вокруг Солнца (отсюда и название- планетарная передача), внешняя шестерня – вокруг сателлитов. Различные передаточные отношения достигаются путем фиксации различных деталей относительно друг друга.

Переключение передач осуществляется системой управления, которая на ранних моделях была полностью гидравлической, а на современных на помощь гидравлике пришла электроника.

Режимы работы гидротрансформатора

Движение масла в гидротрансформатореДвижение масла в гидротрансформаторе

Перед началом движения насосное колесо вращается, реакторное и турбинное — неподвижны. Реакторное колесо закреплено на валу при помощи обгонной муфты, и поэтому может вращаться только в одну сторону. Включаем передачу, нажимаем педаль газа — обороты двигателя растут, насосное колесо набирает обороты и потоками масла раскручивает турбинное. Масло, отбрасываемое обратно турбинным колесом, попадает на неподвижные лопатки реактора, которые дополнительно «подкручивают» поток масла, увеличивая его кинетическую энергию, и направляют на лопасти насосного колеса. Таким образом с помощью реактора увеличивается крутящий момент, что и требуется при разгоне автомобиля. Когда автомобиль разогнался, и движется с постоянной скоростью, насосное и турбинное колеса вращаются примерно с одинаковыми оборотами. При этом поток масла от турбинного колеса попадает на лопасти реактора уже с другой стороны, благодаря чему реактор начинает вращаться. Увеличения крутящего момента не происходит, гидротрансформатор переходит в режим гидромуфты. Если же сопротивление движению автомобиля возросло (например, автомобиль едет в гору), скорость вращения ведущих колес, а, соответственно, и турбинного колеса падает. В этом случае потоки масла опять останавливают реактор — крутящий момент возрастает. Таким образом осуществляется автоматическое регулирование крутящего момента в зависимости от режима движения.

Отсутствие жесткой связи в гидротрансформаторе имеет свои достоинства и недостатки. Плюсы: крутящий момент изменяется плавно и бесступенчато, демпфируются крутильные колебания и рывки, передаваемые от двигателя к трансмиссии. Минусы — низкий КПД, так как часть энергии теряется при «перелопачивании масла» и расходуется на привод насоса АКПП, что, в конечном итоге, приводит к увеличению расхода топлива.

Для устранения этого недостатка в гидротрансформаторе применяется режим блокировки. При установившемся режиме движения на высших передачах автоматически включается механическая блокировка колес гидротрансформатора, то есть он начинает выполнять функцию обычного «сухого» сцепления. При этом обеспечивается жесткая непосредственная связь двигателя с ведущими колесами, как в механической трансмиссии. На некоторых АКПП включение режима блокировки предусмотрено и на низших передачах. Движение с блокировкой является наиболее экономичным режимом работы АКПП. При повышении нагрузки на ведущих колесах блокировка автоматически выключается.

При работе гидротрансформатора происходит значительный нагрев рабочей жидкости, поэтому в конструкции АКПП предусматривается система охлаждения с радиатором, который или встраивается в радиатор двигателя, или устанавливается отдельно.

Как работает планетарная передача

Почему в АКПП в подавляющем большинстве случаев применяется планетарная передача, а не валы с шестернями, как в механической коробке? Планетарная передача более компактна, она обеспечивает более быстрое и плавное переключение скоростей без разрыва в передаче мощности двигателя. Планетарные передачи отличаются долговечностью, так как нагрузка передается несколькими сателлитами, что снижает напряжения зубьев.

В одинарной планетарной передаче крутящий момент передается с помощью каких-либо (в зависимости от выбранной передачи) двух ее элементов, из которых один является ведущим, второй — ведомым. Третий элемент при этом неподвижен.

Неподвижный Ведущий Ведомый Передача
Корона Солнце Водило Понижающая
Водило Солнце Повышающая
Солнце Корона Водило Понижающая
Водило Корона Повышающая
Водило Солнце Корона Реверс, понижающая
Корона Солнце Реверс, повышающая

Для получения прямой передачи необходимо зафиксировать между собой два любых элемента, которые будут играть роль ведомого звена, третий элемент при таком включении является ведущим. Общее передаточное отношение такого зацепления 1:1.

Таким образом, один планетарный механизм может обеспечить три передачи для движения вперед (понижающую, прямую и повышающую) и передачу заднего хода.

Передаточные отношения одиночного планетарного ряда не дают возможности оптимально использовать крутящий момент двигателя. Поэтому необходимо соединение двух или трех таких механизмов. Существует несколько вариантов соединения, каждое из которых носит название по имени своего изобретателя.

Механизм СимпсонаМеханизм Симпсона

Планетарный механизм Симпсона, состоящий из двух планетарных редукторов, часто называют двойным рядом. Обе группы сателлитов, каждая из которых вращается внутри своей коронной шестерни, объединены в единый механизм общей солнечной шестерней. Планетарный ряд такой конструкции обеспечивает три ступени изменения передаточного отношения. Для получения четвертой, повышающей, передачи последовательно с рядом Симпсона установлен еще один планетарный ряд. Схема Симпсона нашла наибольшее применение в АКПП для заднеприводных автомобилей. Высокая надежность и долговечность при относительной простоте конструкции – вот ее неоспоримые достоинства.

Механизм РавиньеМеханизм Равинье

Планетарный ряд Равиньё иногда называют полуторным, подчеркивая этим особенности его конструкции: наличие одной коронной шестерни, двух солнечных и водила с двумя группами сателлитов. Главным преимуществом схемы Равиньё является то, что она позволяет получить четыре ступени изменения передаточного отношения редуктора. Отсутствие отдельного планетарного ряда повышающей передачи позволяет сделать редуктор коробки очень компактным, что особенно важно для трансмиссий переднеприводных автомобилей. К недостаткам следует отнести уменьшение ресурса механизма приблизительно в полтора раза по сравнению с планетарным рядом Симпсона. Это связано стем, что шестерни передачи Равиньё нагружены постоянно, на всех режимах работы коробки, в то время как элементы ряда Симпсона не нагружены во время движения на повышенной передаче. Второй недостаток – низкий КПД на пониженных передачах, приводящий к снижению разгонной динамики автомобиля и шумности работы коробки.

Коробка передач Уилсона состоит из 3 планетарных редукторов. Коронная шестерня первого планетарного редуктора, водило второго редуктора, и коронная шестерня третьего постоянно соединены между собой, образуя единое целое. Кроме того, второй и третий планетарные редукторы имеют общую солнечную шестерню, которая приводит в действие передачи переднего хода. Схема Уилсона обеспечивает 5 передач вперед и одну заднего хода.

Планетарная передача Лепелетье объединяет в себе обыкновенный планетарный ряд и пристыкованный за ним планетарный ряд Равинье. Несмотря на простоту, такая коробка обеспечивает переключение 6 передач переднего хода и одну заднего. Преимуществом схемы Лепелетье является ее простая, компактная и имеющая небольшую массу конструкция.

Конструкторы постоянно совершенствуют АКПП, увеличивая количество передач, что улучшает плавность работы и экономичность автомобиля. Современные «автоматы» могут иметь до восьми передач.

Как работает система управления АКПП

Системы управления АКПП бывают двух типов: гидравлические и электронные. Гидравлические системы используются на устаревших или бюджетных моделях, современные АКПП управляются электроникой.

Устройством «жизнеобеспечения» для любой системы управления является масляный насос. Его привод осуществляется непосредственно от коленвала двигателя. Масляный насос создает и поддерживает в гидравлической системе постоянное давление, независимо от частоты вращения коленвала и нагрузки на двигатель. В случае отклонения давления от номинального функционирование АКПП нарушается ввиду того, что исполнительные механизмы включения передач управляются давлением.

Момент переключения передач определяется по скорости автомобиля и нагрузке на двигатель. Для этого в гидравлической системе управления существуют два датчика: скоростной регулятор и клапан – дроссель или модулятор. Скоростной регулятор давления или гидравлический датчик скорости устанавливается на выходном валу АКПП. Чем быстрее едет машина, тем больше открывается клапан, тем больше давление проходящей через этот клапан трансмиссионной жидкости. Предназначенный для определения нагрузки на двигатель клапан — дроссель соединяется тросом либо с дроссельной заслонкой (в бензиновых двигателях), либо с рычагом ТНВД (в дизелях).

В некоторых автомобилях для подачи давления на клапан – дроссель используется не трос, а вакуумный модулятор, который приводится в действие разряжением во впускном коллекторе (при увеличении нагрузки на двигатель разряжение падает). Таким образом, эти клапаны формируют давления, пропорциональные скорости движения автомобиля и загруженности двигателя. Соотношение этих давлений и позволяет определять моменты переключения передач и блокировки гидротрансформатора. В «принятии решения» о переключении передачи участвует и клапан выбора диапазона, который соединен с рычагом селектора АКПП и, в зависимости от его положения, запрещает включение определенных передач. Результирующее давление, создаваемое клапаном — дросселем и скоростным регулятором, вызывает срабатывание соответствующего клапана переключения. Причем, если машина ускоряется быстро, то система управления включит повышенную передачу позже, чем при спокойном разгоне.

Определение момента переключения передачОпределение момента переключения передач

Как это происходит? Клапан переключения находится под давлением масла от скоростного регулятора давления с одной стороны и от клапана – дросселя с другой. Если машина ускоряется медленно, давление от гидравлического клапана скорости нарастает, что приводит к открытию клапана переключения. Поскольку педаль акселератора нажата не полностью, клапан – дроссель не создает большое давление на клапан переключения. Если же машина ускоряется быстро, клапан – дроссель создает большее давление на клапан переключения, препятствуя его открытию. Чтобы преодолеть это противодействие, давление от скоростного регулятора давления должно превысить давление от клапана — дросселя, но это произойдет при достижении автомобилем более высокой скорости, чем при медленном разгоне.

Блок клапанов в сбореБлок клапанов в сбореКорпус блока клапановКорпус блока клапановАКПП в разрезеАКПП в разрезе

Каждый клапан переключения соответствует определенному уровню давления: чем быстрее движется автомобиль, тем более высшая передача включится. Блок клапанов представляет собой систему каналов с расположенными в них клапанами и плунжерами. Клапаны переключения подают гидравлическое давление на исполнительные механизмы: муфты фрикционов и тормозные ленты, посредством которых осуществляется блокировка различных элементов планетарного ряда и, следовательно, включение (выключение) различных передач. Тормоз – это механизм, который осуществляет блокировку элементов планетарного ряда на неподвижный корпус АКПП. Фрикцион же блокирует подвижные элементы планетарного ряда между собой.

Электронная система управления так же, как и гидравлическая, использует для работы два основных параметра: скорость движения автомобиля и нагрузку на двигатель. Но для определения этих параметров используются не механические, а электронные датчики. Основными из них являются датчики: частоты вращения на входе коробки передач, частоты вращения на выходе коробки передач, температуры рабочей жидкости, положения рычага селектора, положения педали акселератора. Кроме того, блок управления АКПП получает дополнительную информацию от блока управления двигателем и других электронных систем автомобиля (например, от АБС). Это позволяет более точно, чем в обычной АКПП, определять моменты переключений и блокировки гидротрансформатора. Программа переключения передач по характеру изменения скорости при данной нагрузке на двигатель может легко вычислить силу сопротивления движению автомобиля и ввести соответствующие поправки в алгоритм переключения, например, попозже включать повышенные передачи на полностью загруженном автомобиле.

АКПП с электронным управлением так же, как и простые гидромеханические коробки, используют гидравлику для включения муфт и тормозных лент, но каждый гидравлический контур управляется электромагнитным, а не гидравлическим клапаном.

Применение электроники существенно расширило возможности АКПП. Они получили различные режимы работы: экономичный, спортивный, зимний. Резкий рост популярности «автоматов» был вызван появлением режима Autostick, который позволяет водителю самостоятельно выбирать нужную передачу. Каждый производитель дал такому типу коробки передач свое название: Audi – Tiptronic, BMW – Steptronic. Благодаря электронике в современных АКПП стала доступна и возможность их «самообучения», т.е. изменение алгоритма переключений в зависимости от стиля вождения. Электроника предоставила широкие возможности для самодиагностики АКПП. И речь идет не только о запоминании кодов неисправностей. Программа управления, контролируя износ фрикционных дисков, температуру масла, вносит необходимые коррективы в работу АКПП.

Неисправности АКПП

Неисправности в работе АКП чаще всего проявляются в вялом разгоне, толчках при переключениях, невключении одной или нескольких передач, беспорядочном их переключении, посторонних шумах при работе. Причиной многих неполадок в работе является недостаточный уровень масла в коробке. На большинстве автомобилей порядок его проверки одинаков. Установив машину на ровную площадку, при заведенном двигателе и нажатой педали тормоза поочередно, на несколько секунд, включаем все режимы. Это позволяет маслу растечься по всем каналам. После этого селектор АКП устанавливаем, в зависимости от конкретной марки, либо в нейтральное положение, либо в положение парковки. Вынимаем щуп и проверяем уровень. На щупе может быть или две метки – минимального и максимального уровня, или четыре – две для холодного масла, две для прогретого.

На некоторых марках процедура проверки отличается от вышеописанной. Например, на «автоматах» Хонды уровень масла проверяют при неработающем двигателе. Не на всех коробках имеются щупы, а может быть только контрольное отверстие, закрытое пробкой. В этом случае уровень проверяется «сервисным» щупом, который есть только в мастерской. Для проверки уровня может использоваться и контрольная пробка в поддоне.

В некоторых автомобилях в главной передаче применяются не цилиндрические, а конические гипоидные шестерни, которые смазываются трансмиссионным маслом. Поэтому если шестерни располагаются в одном корпусе с фрикционами АКП, для масла используется отдельный картер. При доливке важно не перепутать пробки, так как масла для коробки и главной передачи, естественно, несовместимы.

При недостаточном уровне масла из коробки слышны посторонние звуки, начинает шуметь масляный насос. Перелив тоже вреден – лишнее масло вспенивается, подвергается перегреву и окислению. Излишки легко откачать с помощью шприца с надетой на него гибкой трубкой.

После проверки уровня в обязательном порядке следует оценить состояние масла – его цвет и запах. Нормальное, рабочее масло должно быть темно-коричневого или темно-красного цвета и не иметь запаха гари. Оно должно быть текучим и не липким. О наличии неисправностей свидетельствуют механические примеси и помутнение. Примеси попадают в масло в результате износа деталей коробки. Помутнение вызывается попаданием антифриза, если масляный радиатор АКП встроен в радиатор охлаждения двигателя. Кроме того, фрикционы, впитывая антифриз, разбухают, теряя при этом свои свойства. Если масло имеет запах гари, это верный признак подгорания фрикционов. Тяжелые условия эксплуатации приводят к перегреву масла, при этом оно обесцвечивается. Если цвет и запах масла в норме, то его уровень восстанавливают доливкой, если же масло непригодно, его заменяют с обязательной заменой и масляного фильтра. Масло также рекомендуется заменить после 120-150 тысяч километров пробега, даже если производитель обещает его использование на протяжении всего срока службы коробки.

Одна из важнейших деталей АКПП – насос. Они бывают шестеренчатого или лопастного типа. Насос создает давление, необходимое для работы коробки. Если уровень масла недостаточен, в систему попадает воздух. Так как воздух сжимается, давление в гидросистеме падает. В результате передачи переключаются с запозданием, фрикционы пробуксовывают и быстрее изнашиваются. К нарушениям в работе насоса могут привести и повреждения поддона. Если автомобиль ударился днищем, после чего появился громкий шум – в первую очередь проверьте поддон. Деформированная деталь мешает нормальной закачке масла.

В случае, если наблюдаются нарушения в работе коробки, а уровень масла и его качество в норме, необходима более серьезная диагностика. Электроника – самая капризная и непредсказуемая часть АКПП. Все современные коробки имеют собственный блок управления, в котором фиксируются ошибки в ее работе. Но сканеры, способные считывать полную информацию, имеются только у официальных дилеров. Однако некоторые ЭБУ имеют «продвинутую» систему самодиагностики, что упрощает работу диагноста специализированного сервиса. Но вот найти хорошего диагноста непросто. Ведь он должен не только знать, как работает АКПП, но и как она взаимодействует с системой управления двигателем. Например, из-за неисправности датчика массового расхода воздуха на некоторых автомобилях может снижаться давление масла в АКПП. В результате фрикционы «буксуют», а малоопытный специалист будет искать неисправность в самой коробке очень долго. Хороший диагност должен обладать аналитическими способностями, ведь инженеры постоянно совершенствуют конструкции АКП, вводя новые датчики и исполнительные механизмы. Документация по ремонту далеко не всегда отражает эти изменения, специалисту сервиса приходится разбираться в них самостоятельно.

Кроме того, в работе вполне исправной коробки могут возникать временные сбои. Например, при плотном городском движении электроника, перегреваясь, начинает хаотично переключаться с первой на вторую передачу и наоборот. Как только условия движения становятся более равномерными, работа АКП нормализуется. Такую же нелогичную работу может спровоцировать и «спортивный» стиль езды. Владелец обращается в сервис с жалобой, а диагност не находит в памяти ЭБУ никаких ошибок!

Еще один важный узел любой АКПП – гидротрансформатор. Он играет роль сцепления, передавая крутящий момент от двигателя. Наиболее часто встречающиеся его неисправности – поломка муфты свободного хода реактора и износ упорных подшипников. При выходе из строя муфты падает передаваемый гидротрансформатором крутящий момент, разгон автомобиля становится медленным. Износ упорного подшипника проявляется повышенным шумом при положении селектора во всех «ездовых» режимах и его пропадании в положениях «нейтрали» и «парковки». Сильный износ может привести к тому, что турбинное и насосное колесо цепляются друг за друга, и загиб их лопаток неизбежен.

Вообще, при любом ремонте АКПП гидротрансформатор в обязательном порядке вскрывают для проведения профилактики. Такую работу производят высококвалифицированные специалисты. Гидротрансформатор закрепляют и вскрывают по сварочному шву. Особого мастерства требует регулировка зазоров подшипников и окончательная сварка при сборке.

Как работает автоматическая коробка передач: схемы и видео

Как работает автоматическая коробка передач

Содержание:

Каждый автовладелец знает, что выбор трансмиссии является ключевым фактором, который влияет на динамические показатели автомобиля. Разработчики постоянно пытаются совершенствовать коробки передач, но большинство автолюбителей все же отдают предпочтение МКПП, так как, из-за сложившегося стереотипа, считают, что она более надежная и простая в использовании. Однако причина кроется в другом – большинство людей просто не знакомы с принципом работы автомата, поэтому и опасаются ее.

В сегодняшней статье мы попытаемся максимально подробно и доступно описать принцип работы автоматической трансмиссии.

Что такое АКПП?

АКПП – это основной элемент конструкции трансмиссии автомобиля, главной целью которой является изменение крутящего момента, а также изменения скорости движения. Различают три варианта автоматической трансмиссии:

  • Вариатор;
  • Гидроавтомат;
  • Роботизированная;

Что лучше – механика или автомат?

Как многие уже могли заметить, большинство российских автолюбителей отдают предпочтение МКПП. Одни эксперты считают, что это связано с менталитетом нации, другие – с установленными негативными стереотипами.

Другое дело американцы, 95% которых не представляют себе процесс вождения автомобиля, без наличия автоматической коробки. Но это совсем не удивляет, ведь АКПП была придумана американскими инженерами, которые хотели упростить жизнь водителей.

Такая же ситуация и в Европе. Если 15-20 лет назад все поголовно использовали механику, то уже сейчас она почти вытеснена из рынка.

В России также наблюдается рост популярности автомата, но, как утверждают эксперты и аналитики, россияне не умеют правильно использовать автоматическую коробку. Каждый день в автомастерские обращается масса автолюбителей с неисправностями, основной причиной которых как раз и является неправильная эксплуатация.

Как работает АКПП?

Для того, чтобы принцип работы автоматической трансмиссии стал более понятным, мы условно разобьем ее на три части: механическая, электронная и гидравлическая.

Начнем обсуждение, конечно же, с механической, так как именно данный элемент и переключает передачи.

Гидравлическая часть является неким посредником, который является связующим звеном.

И, наконец, электронная, которая считается мозгом трансмиссии, отвечающим за переключение режимов, а также обратную связь.

Все понимают, что сердцем автомобиля является мотор. Трансмиссия вовсе не претендует на эту роль, ведь ее смело можно называть мозгом автомобиля. Главной целью АКПП считается преобразование КМ мотора в силу, которая создает условия для движения ТС. Немаловажную роль в этом процессе выполняет гидротрансформатор и планетарные передачи.

Гидротрансформатор

Гидротрансформатор АКПП

По аналогии с МКПП, гидротрансформатор выполняет функции сцепления, а также регулирует КМ, с учетом частоты вращения и продуцируемой мощности двигателя.

Конструкция гидротрансформатора состоит из трех частей:

  • Центростремительная турбина;
  • Центробежный насос;
  • Направляющий аппарат-реактор;

За счет того, что турбина и насос максимально сближены друг с другом, рабочие жидкости находятся в постоянном движении. Именно благодаря этому удается добиться минимальных потерь энергии. К тому же, гидротрансформатор может похвастаться очень компактными размерами.

Стоит отметить, что коленвал напрямую связан с насосным колесом, а коробочный вал – с турбиной. Именно за счет этого, в гидротрансформаторе отсутствует жесткая связь между ведущими и ведомыми элементами. Рабочие жидкости передают энергию от мотора к трансмиссии, которая, в свою очередь, через лопатки насоса передает ее на лопасти турбины.

Гидромуфта

Гидромуфта АКПП

Если говорить о гидромуфте, то ее принцип работы очень похож – она также передает КМ, не влияя на его интенсивность.

Гидротрансформатор оснащен реактором в первую очередь для того, чтобы изменять КМ. По сути, это такое же колесо с лопатками, разве что жестче посаженное и менее маневренное. По нему масло возвращается из турбины в насос. Некоторые особенности имеют лопатки реактора, каналы которых постепенно сужаются. За счет этого скорость движения рабочих жидкостей существенно увеличивается.

Из чего состоит АКПП?

Схема автоматической КПП

Гидротрансформатор – взаимодействует со сцеплением, и не контактирует с водителем.

Планетарный ряд – взаимодействует с шестернями в коробке, и при переключении передач изменяет конфигурацию трансмиссии.

Тормозная лента, задний и передний фрикцион – напрямую переключают передачи.

Устройство управления – это узел, который состоит из насоса, клапанной коробки и маслосборника.

Гидроблок – система клапанных каналов, которые контролируют и управляют нагрузкой двигателя.

Гидротрансформатор – предназначен для передачи крутящего момента от силового агрегата до элементов автоматической трансмиссии. Расположен он между коробкой и мотором, и таким образом выполняет функцию сцепления. Он наполнен рабочей жидкостью, которая улавливает и передает усилия двигателя в масляный насос, находящейся непосредственно в коробку.

Что касается масляного насоса, то он уже передает рабочую жидкость в гидротрансформатор, создавая, таким образом, наиболее оптимальное давление в системе. Поэтому, миф о том, что автомобиль с коробкой-автомат можно завести без стартера – чистая ложь.

Шестеренчатый насос получает энергию прямо от двигателя, из чего можно сделать вывод, что при выключенном моторе давление в системе полностью отсутствует, даже если рычаг переключения АКПП находиться не в начальном состоянии. Поэтому, принудительное вращение карданного вала не сможет завести двигатель.

Планетарный ряд – используется зачастую в автоматической трансмиссии, так как считается более современным и технологичным, нежели параллельный вал, используемый в механике.

Пакеты фрикционов

Части фрикциона – поршень заставляет двигаться чрезмерное давление масла. Сам поршень очень плотно прижимает ведущие элементы к ведомым, заставляя их вращаться как единое целое, и передавать КМ ко втулке. Стоит отметить, что в АКПП находится сразу несколько таких планетарных механизмов.

Фрикционные диски передают КМ непосредственно колесам автомобиля.

Тормозная лента АКПП

Тормозная лента – используется для блокировки элементов планетарного механизма.

Гидроблок – один из наиболее сложных механизмов в АКПП, который называют «мозгами трансмиссии». Стоит отметить, что ремонт данного элемента очень дорогостоящий.

Виды АКПП

Перманентная гонка технического оснащения автомобилей, заставляет разработчиков придумывать все более изощренные технологии и конструкции, для того, чтобы обогнать конкурентов. Стоит отметить, что это положительно сказывается на развитии ходовой части ТС. Одним из наиболее важных открытий, стало изобретение автоматической коробки передач. Она сразу же начала пользоваться невероятно большим спросом, так как заметно упрощает процесс управления. К тому же она весьма простая в эксплуатации и надежная. Аналитики утверждают, что в скором будущем она полностью вытеснит из рынка МКПП.

На сегодняшний день коробка-автомат используется, как в легковых автомобилях, так и грузовиках, в независимости от типа привода.

Известно, что при управлении автомобилем с МКПП, приходится постоянно держать руку на переключателе передач, что значительно снижает концентрацию на дороге. Коробка-автомат практически лишена подобных недостатков.

Как работает автоматическая коробка передач

Основные преимущества коробки-автомат:

  • Повышается эффективность управления;
  • Более плавный переход между передачами даже на высокой скорости;
  • Двигатель не перегружается;
  • Передачи можно переключать как вручную, так и в автоматическом режиме;

Современные АКПП, с точки зрение системы контроля и управления, можно разделить на два типа:

  • Трансмиссия с гидравлическим устройством;
  • Трансмиссия с электронным устройством, или так называемая роботизированная коробка;

Более понятным это должно стать после ознакомления с приведенным ниже примером:

«Представьте себе ситуацию, что автомобиль двигается по ровной дороге и постепенно приближается к крутому подъему. Если какое-то время просто со стороны наблюдать за этой ситуацией, то можно заметить, что после увеличения нагрузки, машина начинает терять скорость, и, следовательно, интенсивность вращения турбины также снижается. Это приводит к тому, что рабочая жидкость начинает противодействовать движению. В таком случае резко возрастает скорость циркуляции, что способствует увеличению КМ до того показателя, при котором возникнет равновесие в системе».

Такой же принцип работы и в момент начала движения автомобиля. Единственное отличие в том, что в данном случае еще задействуется и акселератор. Благодаря ему увеличивается интенсивность оборотов коленвала и насосного колеса, при том, что турбина остается неподвижной, что позволяет двигателю работать в холостом режиме. Стоит отметить, что КМ резко возрастает, и при достижении определенной отметки, гидротрансформатор начинает выполнять функции звена, которое соединяет воедино ведомый и ведущий элементы. Именно все эти моменты, позволяют во время движения значительно уменьшать уровень потребления горючего, и более эффективно проводить торможение двигателем в случае надобности.

Так для чего же тогда подключать АКПП к гидротрансформатору, если тот самостоятельно способен изменять интенсивность КМ?

Вот почему: коэффициент изменения крутящего момента с помощью гидротрансформатора обычно не превышает 2-3.5. Этого мало для полноценной работы автоматической коробки.

В отличие от механической, автоматическая коробка переключает скорости с помощью фрикционных муфт и ленточных тормозов. Система автоматически определяет нужную скорость с учетом скорости движения и усилия на педаль акселератора.

Помимо планетарного механизма и гидротрансформатора, АКПП включает в себя также насос, который смазывает коробку. Охлаждением масла занимается радиатор охлаждения.

Разница между коробкой-автомат у заднеприводных и переднеприводных ТС

АКПП на заднем приводе

Существует ряд отличий между компоновкой АКПП автомобилей с передним и задним приводом. Автоматическая трансмиссия переднеприводных автомобилей более компактная, и имеет отдельное отделение, которое называют – дифференциал.

Во всех других аспектах обе трансмиссии идентичны, как в конструктивном, так и функциональном плане.

Для эффективного выполнения всех функций, коробка автомат имеет следующие элементы: гидротрансформатор, узел контроля и механизм выбора режима движения.

АКПП на переднем приводе

Надеемся, что наша статья стала максимально полезной для вас, и помогла вам разобраться в принципах работы АКПП.

Видео

Поделитесь с друзьями!

Автоматическая коробка передач (АКПП) - устройство и принцип работы. Гидротрансформатор, планетарный редуктор

Как ни странно, но в настоящее время АКПП (автоматическая коробка переключения передач) набирает популярность у автолюбителей и будущих автовладельцев. (Ваш покорный слуга относится к противникам данного вида коробок). Но об этом ниже.

Итак, АКПП…

Основное назначение АКПП - такое же, как и у механики – прием, преобразование, передача и изменения направления крутящего момента. Различаются автоматы по количеству передач, по способу переключения, по типу сцепления и по типу применяемых актуаторов.

Работу АКПП лучше рассмотреть на конкретном примере, а именно на классической трехступенчатой коробке передач с гидравлическими актуаторами (приводами) и гидротрансформатором. Надо отметить, что существуют и преселективные АКПП.

 

В устройство АКПП входит:

  1. Гидротрансформатор – механизм, обеспечивающий преобразование, передачу крутящего момента, используя рабочую жидкость. Рабочая жидкость для АКПП обычно, готовое трансмиссионное масло для автоматических коробок передач. Но многие автолюбители используют  жидкость для гидравлических приводов большегрузной техники (веретенку), хотя это и неправильно. Веретенка не предназначена для работы в условиях высокой скорости движения шестерен.
  2. Планетарный редуктор – узел, состоящий из «солнечной шестерни», сателлитов, и планетарного водила и коронной шестерни. Планетарка является главным узлом автоматической коробки.
  3. Система гидравлического управления – комплекс механизмов, предназначенных для управления планетарным редуктором.

Для того чтобы более полно объяснить принцип работы АКПП начнем с гидротрансформатора.

 

Гидротрансформатор

Гидротрансформатор служит одновременно сцеплением и гидромуфтой для передачи крутящего момента к планетарному механизму.

Представьте себе две крыльчатки с лопастями, расположенными друг напротив друга на минимальном расстоянии и заключенных в одном корпусе. В нашем случае одна крыльчатка называется насосное колесо, которое соединено жестко с маховиком, вторая крыльчатка называется турбинным колесом и соединено посредством вала с планетарным механизмом. Между лопастными крыльчатками находится рабочая жидкость.

 

Принцип работы гидротрансформатора

 

Во время работы двигателя, при вращении маховика вращается и насосное колесо, его лопасти подхватывают рабочую жидкость и направляют ее на лопасти турбинного колеса, под действием центробежной силы. Соответственно лопасти турбинного колеса приходят в движение, но рабочая жидкость после выполнения работы отлетает от поверхности лопастей и направляется обратно на насосное колесо, тем самым тормозя его. Но не тут то было! Для изменения направления отлетающей рабочей жидкости между колесами располагается реактор, у которого так же имеются лопасти и расположены они под определенным углом. Получается следующее -  жидкость от турбинного колеса возвращаясь через лопасти реактора ударяет вдогонку лопасти насосного колеса, тем самым увеличивая крутящий момент ДВС, потому что сейчас действуют две силы – двигателя и жидкости. Надо отметить, что при начале движения насосного колеса, реактор стоит неподвижно. Так продолжается до тех пор, пока обороты насосного не сравняются с оборотами турбинного колеса и стоящий неподвижно реактор только будет мешать своими лопастям – притормаживать обратное движение рабочей жидкости. Для исключения этого процесса в реакторе находится муфта свободного хода, которая позволяет реактору крутиться со скоростью крыльчаток, этот момент называется точкой сцепления.

Получается, что при достижении номинальных оборотов двигателя, сила от двигателя передается на планетарный механизм через… жидкость. Другими словами гидротрансформатор АКПП превращается в гидромуфту. Значит, крутящий момент уже передался дальше – на планетарный механизм?

Нет! Для того чтобы передать силу от двигателя, необходимо чтобы сработала муфта привода от ведущего вала. Но все по порядку…

 

Планетарный редуктор

Планетарный редуктор состоит из:

  1. планетарных элементов
  2. муфт сцепления и тормозов
  3. ленточных тормозов

Планетарный элемент представляет собой узел из солнечной шестерни, вокруг которой расположены сателлиты, которые в свою очередь крепятся на планетарное водило. Вокруг сателлитов находится коронная шестерня. Вращаясь, планетарный элемент передает крутящий момент на ведомую шестерню.

Муфта сцепления представляет собой набор дисков и пластин, чередующихся друг с другом. Чем-то муфта АКПП представляет собой сцепление мотоцикла. Пластины муфты вращаются одновременно с ведущим валом, а вот диски соединены с элементом планетарного ряда. Для трехступенчатой коробки планетарных рядов два – первой-второй передачи и второй-третьей. Привод в действие муфты обеспечивается сжатием между собой дисков и пластин, этот работу выполняет поршень. Но поршень не может сам двигаться, в действие он приводится гидравлическим давлением.

Ленточный тормоз выполнен в виде обхватывающей пластины одного из элементов планетарного ряда и приводится в действие гидравлическим актуатором.

Для понятия работы всей коробки разберем работу одного планетарного ряда. Представим себе, что затормозилась солнечная шестерня (в центре), значит, в работе остаются коронная и сателлиты на  планетарном водило. В этом случае скорость вращения водило будет меньше, чем скорость коронной шестерни. Если позволить солнечной шестерне вращаться с сателлитами, а затормозить водило, то коронная шестерня изменит направление вращения (задний ход). Если скорости вращения коронной шестерни, водило и солнечной шестерни, будут одинаковые, планетарный ряд будет вращаться как единое целое, то есть, не преобразовывая крутящий момент (прямая передача). После всех преобразований крутящий момент передается на ведомую шестерню и далее на хвостовик коробки. Надо отметить что мы рассматриваем принцип работы автоматической коробки передач у которой ступени расположены на одной оси, такая коробка предназначена для авто с задним приводом и передним расположением двигателя. Для переднеприводных авто, размеры коробки должны быть уменьшены, поэтому как и МКПП вводятся несколько ведомых валов.

Таким образом, затормаживая и отпуская один или несколько элементов вращения можно добиться изменения скорости вращения и изменения направления. Всем этим процессом управляет гидравлическая система управления.

 

Гидравлическая система управления

Гидравлическая система управления состоит из масляного насоса, центробежного регулятора, системы клапанов, исполняющих устройств и масляных каналов. Весь процесс управления зависит от скорости вращения двигателя и нагрузки на колеса. При движении с места масляный насос создает такое давление, при котором обеспечивается алгоритм фиксации элементов планетарного ряда так, что бы крутящий момент на выходе был минимальным, это и есть первая передача (как говорилось выше – затормаживается солнечная шестерня в двух ступенях). Далее при росте оборотов, давление увеличивается и в работу входит вторая ступень на уменьшенных оборотах, первая ступень работает в режиме прямой передачи. Увеличиваем еще обороты двигателя – коробка передач начинает работать вся в режиме прямой передачи.

Как только нагрузка на колеса увеличится, то центробежный регулятор начнет понижать давление от масляного насоса и весь процесс переключения повторится с точностью до наоборот.

При включении пониженных передач на рычаге переключения, выбирается такая комбинация клапанов масляного насоса, при которой включение повышенных передач невозможно.

 

Достоинства и недостатки АКПП

Главным достоинством автоматической коробки передач, конечно, служит комфорт при вождении - дамы просто в восторге! И, бесспорно, с автоматом двигатель не работает в режиме повышенных нагрузок.

Недостатки (и они очевидны) – низкий КПД, полное отсутствие «драйва» при трогании с места, большая цена, а главное – авто с автоматом нельзя завести с «толкача»!

Подводя итоги, скажем, что выбор коробки это дело вкуса и… стиля вождения!

 

РЕКОМЕНДУЕМ ТАКЖЕ ПРОЧИТАТЬ:

 

Разновидности АКПП | Типы автоматических коробок передач

Водителям автомобилей оснащенных механической коробкой переключения передач, время от времени, для того чтобы включить нужную передачу, приходится управлять машиной при помощи лишь одной только руки. В отличие от них счастливые обладатели транспорта с автоматической коробкой переключения передач за рулевое колесо, на протяжении всего движения, могут держаться обеими руками. И сейчас мы рассмотрим основосоставляющие типы автоматических коробок передач.


      Краткое содержание:

  1. Что из себя представляет гидравлическая АКПП;
  2. Робот автомат. Чем отличается робот от автомата;
  3. О коробке ДСГ
  4. Зачем DSG 2 сцепления;
  5. Коробка Вариатор;
  6. Что лучше вариатор или автомат. Отличия и особенности.
  7. Что надежнее: Робот, Вариатор или АКПП?

Разновидности АКПП | Типы автоматических коробок

Классический гидравлический «Автомат» (АКПП) | Гидроавтомат


Ярким примером классической АКПП является именно гидравлический тип акпп, он же гидроавтомат. В отсутствии прямой связи между двигателем и колесами и заключается особенность данного типа акпп. Встает вопрос о том - каким же образом крутящий момент передается? Ответ прост — двумя турбинами и рабочей жидкостью. В последствии дальнейшей «эволюции» такого типа «автомата» роль управления в них взяли на себя специализированные электронные устройства, что позволило добавить в такие АКПП специальные «зимний» и «спортивный» режимы, появилась программа для экономичной езды и возможность переключать передачи «вручную». 


В отличии от механической коробки переключения передач гидравлическому «автомату» топлива требуется несколько больше и времени на разгон нужно больше. Но эта та цена, которую приходится заплатить за комфорт. И именно «гидравлика», бросив вызов «механике», одержала уверенную победу во многих странах, кроме «старушки Европы».

 

Как работает автоматическая коробка передач

 

Водителями в Европе продолжительное время все разновидности АКПП категорически не принималась. Многое пришлось сделать инженерам прежде чем окончательно адаптировали автоматическую коробку переключения передач для Европы. Но все это в итоге послужило повышению экономичности, появлению таких режимов как «зимний» и «спортивный». К тому же коробка научилась подстраиваться индивидуально под стиль вождения водителя, появилась возможность ручного переключения передач на АКПП — что было немаловажно для европейских водителей. 

 


Каждый из производителей предпочитал по своему называть такие трансмиссии, но самым первым из названий появилось — Autostick. Одним из самых распространенных сегодня по праву считается изобретение фирмы АУДИ — Tiptronic. БМВ, например такую трансмиссию назвали — Steptronic, Вольво же сочли подходящим названием для коробки-автомата Geartronic.


Все же при том что водитель включает передачи сам, ручным полностью он не считается. Это больше полуавтоматика, потому как трансмиссионный компьютер продолжает контролировать работу автомобиля вне зависимости от выбранного режима.

 

Роботизированная коробка передач | АКПП робот


МТА (Manual Transmission Automatically Shifted) — или так называемый в народе робот DSG, конструктивно, пожалуй, во многом сходен с «механикой», но с точки зрения управления — это ни что иное как АКПП. И хотя расход топлива здесь более умеренный, чем все на той же МКПП, есть и свои нюансы. «Робот» весьма эффективен лишь на весьма умеренном темпе езды.

 

Чем более агрессивным становится манера езды, тем болезненнее ощущаются переключения передач. Порой при переключениях даже может показаться, что вас как будто кто-то пихает в задний бампер. То есть отличие робота (Дсг) от автомата заключается в принципе работы первого. Однако невысокая стоимость и незначительный вес АКПП вполне компенсируют этот недостаток.

 

О коробке DSG Видео

 

Зачем "Роботу" два сцепления?

Volkswagen Golf R32 DSG с 2 сцеплениями

 

Существующие недостатки серьезно осложняли эксплуатацию роботизированной трансмиссии, особенно остро это отражалось на комфортности движения. Поэтому конструкторы в ходе продолжительных «поисков» пришли в итоге к решению которое решило проблемы — они оснастили «робота» двумя сцеплениями.

 

В 2003 году компания Фольксваген запустила в массовое производство роботизированную трансмиссию с двумя сцеплениями, впервые установив ее на автомобили Гольф R32. Название ему присвоили DSG (Direct Shift Gearbox). Здесь четными передачами управлял один диск сцепления, а нечетными второй. Работу коробки это существенно смягчило, но тут появился другой солидный недостаток — цена этой АКПП довольно высока. Хотя массовое признание автолюбителями такой трансмиссии сможет решить эту проблему.


Вариатор | Вариаторная коробка передач


Вариаторная трансмиссия (Continuously Variable Transmission) — она крутящий момент изменяет плавно, в этом есть ее особенность. Данная разновидность АКПП не имеет ступеней, фиксированное передаточное число у ее передач отсутствует. И если сравнить ее с «гидравликой» - то работу последней мы можем отслеживать по показаниям тахометра, а вот вариатор очень размеренно подхватывает моменты переключения передач при этом скоростной баланс остается неизменным.

 

Вариатор | Бесступенчатая трансмиссия

Полезное видео о том, что из себя представляет вариаторная коробка передач

 

Особенности | Отличия вариатора от АКПП.

Не смогут полюбить такую коробку те водители которые привыкли «слушать» свой автомобиль, потому как подобно троллейбусу, вариаторная акпп не меняет тональности двигателя. Но отказываться от вариатора по этой причине, пожалуй, не стоит. Инженеры нашли выход из этой ситуации, добавив режим, где «виртуальные передачи» можно выбирать вручную. Режим переключения передач имитирует, что позволяет водителю ощущать езду как на обычной автоматической коробке переключения передач.

 

Как определить какая коробка установлена в автомобиле, вариатор или гидроавтомат:

  1. По возможности изучите техническую документацию автомобиля. В большинстве случаев автомат обозначается как AT (Automatic Transmission), вариатор - CVT;
  2. Поищите информацию в интернете. Обычно в технических характеристиках на популярных сайтах Вы обязательно найдете ответ;
  3. Тест-драйв. Если на автомобиле установлен вариатор - то никаких, даже малозаметных толчков, рывков Вы не почувствуете, разгон схож с набором скорости "троллейбуса". На классическом автомате ощущаются переключения передач, хотя на исправном они практически незаметны, не "почувствовать" их невозможно.

 

Что надежнее и лучше: вариаторная коробка, робот или автомат?

 

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *