Зарядное устройство с регулировкой тока и напряжения своими руками: схема на тиристоре, с регулятором тока

Содержание

схема на тиристоре, с регулятором тока

Содержание

  1. Принцип работы и основные компоненты
  2. Принципиальные схемы зарядных устройств
  3. Простое зарядное устройство для АКБ автомобиля на 12В
  4. Зарядное на тиристоре ку202н
  5. ЗУ для автомобильного аккумулятора на tl494
  6. Схема с автоматическим отключением
  7. Схема мощного ЗУ с регулировкой тока
  8. Технология сборки
  9. Часто задаваемые вопросы

Зарядное устройство для автомобильного аккумулятора — необходимое устройство в любом автохозяйстве. Его можно купить в магазине. А можно сделать самостоятельно.

Принцип работы и основные компоненты

Свинцово-кислотные аккумуляторы заряжают постоянным (выпрямленным) напряжением, стабильным по уровню. Чтобы получить ток, втекающий в батарею, зарядное напряжение должно быть выше напряжения АКБ. Ток заряда в таком режиме зависит от разницы напряжений источника и батареи.

Полностью разряженная АКБ автомобиля выдает напряжение 10,5 вольт (ниже разряжать нельзя), полностью заряженная — 12,6 вольт. В процессе уровень на выходе ЗУ остается постоянным, на клеммах батареи плавно повышается. Поэтому в начале зарядки ток будет максимальным, по окончании – минимальным. Снижение уровня тока служит признаком окончания процесса. Также для автоматического завершения зарядки можно использовать достижение напряжения на АКБ значения 12,5..12,6 вольт.

Процесс зарядки свинцово-кислотной батареи стабильным напряжением.

Стандартная схема построения зарядника содержит:

  1. Сетевой трансформатор;
  2. Выпрямитель;
  3. Регулятор тока (напряжения) — стабилизированный или нет.
Общая схема построения зарядников для автомобильных АКБ.

Очень желательны приборы, индицирующие ток и напряжение. Дополнительно ЗУ может оснащаться:

  • схемой ограничения тока;
  • электрическими защитами;
  • индикацией или автоматическим отключением по окончании зарядки.

Эти функции являются сервисными и повышают удобство работы с ЗУ.

Принципиальные схемы зарядных устройств

Зарядное устройство для автомобильной батареи можно выполнить на разной элементной базе. Все зависит от наличия комплектующих и квалификации мастера.

Простое зарядное устройство для АКБ автомобиля на 12В

Для регулирования тока и напряжения можно применить обычный потенциометр. Вращением его движка можно подстраивать ток в зарядной цепи.

ЗУ с регулирующим потенциометром.

На практике такая схема не используется по двум причинам:

  • через потенциометр идет полный ток нагрузки, элемент такой мощности найти трудно;
  • ток нагрузки идет через подвижный контакт движка переменного резистора, это значительно снижает надежность работы устройства.

Зато по этой схеме легко понять принцип работы простых зарядников.

Схема простого ЗУ.

На практике реализуется другая схема зарядного устройства для сборки своими руками. Здесь потенциометр включен в цепь базы транзистора, и ток через него небольшой. Зарядный же ток идет через коллектор-эмиттер транзистора, а полупроводниковый элемент подобной мощности найти гораздо проще. Но в этом и состоит главный недостаток схемы. Сквозной ток идет через регулирующий элемент, вся излишняя мощность рассеивается на нем. Потребуется радиатор значительной площади.


Зарядное на тиристоре ку202н

Популярна схема самодельного зарядного устройства, где аккумулятор заряжается выпрямленным напряжением, а ток регулируется вручную посредством тиристора (подходит отечественный КУ202Н или зарубежные аналоги).

Схема зарядного устройства на тиристоре.

Сетевое напряжение понижается трансформатором Т1 и выпрямляется мостом VD1..VD4. На однопереходном транзисторе VT2 собран генератор импульсов. Его частота задается цепью из конденсатора C1 и управляемого резистора на VT1. Его сопротивление регулирует потенциометр R5. В начале каждого полупериода генератор запускается через цепь R1VD1, и начинает выдавать импульсы с заданной частотой. Первый импульс открывает тиристор, остальные (следующие до конца полупериода) не имеют значения. Чем раньше открывается ключ на VS1, тем большая часть синусоиды попадает в нагрузку, тем выше усредненное напряжение на аккумуляторе и средний ток, втекающий в него.

Принцип фазоимпульсного регулирования.

Амперметр служит для контроля этого тока. Недостаток схемы в том, что напряжение не стабилизировано, и будет изменяться вслед за изменением напряжения сети 220 вольт (оно может меняться в пределах ±5%). Вслед за напряжением будет меняться ток заряда, потому процесс требует периодического контроля и, при необходимости, подстройки. Кроме того, напряжение на АКБ не измерить обычным вольтметром или мультиметром – они рассчитаны на измерение постоянного напряжения, а зарядник выдает резко отличающуюся от постоянки форму. Погрешность будет очень высокой, поэтому для контроля придется отключать аккумулятор и замерять его напряжение.


Схема ЗУ без однопереходного транзистора.

Если однопереходного транзистора нет, схему можно собрать без него. Она немного усложнится. Но вместо регулируемого сопротивления на транзисторе для задания частоты генерации возможно применить обычный потенциометр.

Зарядное устройство на симисторе.

Существуют различные варианты данной схемы. Например, регулируемое устройство на симисторе. Здесь силовым ключом служит мощный симистор, а тиристор задействован в схеме формирования открывающих импульсов.

Видео версия: Зарядное с десульфатацией на одном тиристоре.

ЗУ для автомобильного аккумулятора на tl494

Зарядник можно построить на микросхеме TL494. Эта микросхема используется не совсем стандартно – обычно на ней строят полностью импульсные источники питания с выпрямлением сетевого напряжения и «нарезанием» из полученной постоянки высокочастотных импульсов (как в компьютерных БП). Здесь же присутствует и сетевой трансформатор, и выпрямитель вторичного напряжения. Импульсным является только регулируемый стабилизатор. Его достоинство в том, что регулирующий элемент (транзистор) открывается на определенные промежутки времени, через него не течет сквозной ток (равный току нагрузки), поэтому размеры теплоотвода можно значительно уменьшить.

Схема ЗУ на TL494.

Микросхема генерирует импульсы, частота которых задается цепью R4C3, а ширина зависит от разницы между уровнями на входах 1 и 2. Импульсы управляют транзистором VT1, который, открываясь, подпитывает энергией дроссель L1. Запасенная энергия расходуется в нагрузку. Чем больше нагрузка, тем быстрее расходуется запас, тем быстрее падает напряжение на выходе, что приводит к увеличению длительности импульсов с выхода 8 микросхемы. К этому же приводит вращение потенциометра R9 — так регулируется выходное напряжение.

Ток заряда регулируется разницей напряжений между АКБ и выходом ЗУ, но микросхема TL494 позволяет выполнить дополнительное ограничение тока. Для этого используется второй усилитель ошибки. Ток ограничителя устанавливается потенциометром R3, а фактический ток замеряется, как падение напряжения на шунте R11. Если ток выше заданного, длительность импульсов уменьшается, напряжение на выходе снижается до достижения необходимого тока. Такой режим полезен при зарядке сильно разряженных батарей, а также позволяет осуществить режим зарядки стабилизированным током. В совокупности с широким диапазоном регулировки напряжения, возможность ограничения тока делает ЗУ универсальным и позволяет заряжать аккумуляторы, сделанные по различным технологиям. Также ограничитель осуществляет защиту силовых элементов от сверхтока.

Номиналы деталей указаны на схеме. Дроссель лучше изготовить на сердечнике из альсифера.

При настройке подбирают число витков так, чтобы свист обмотки наблюдался только при среднем токе нагрузки, а при его увеличении исчезал. Если свист исчезает рано (уже при небольших токах) и выходной транзистор греется, количество витков надо увеличить. Ориентироваться надо на 20..100 витков провода диаметром 2 мм. Также при сборке в электросхему надо добавить вольтметр и амперметр (можно цифровой или стрелочный) – пользоваться будет намного удобнее. Напряжение на выходе сглаживается конденсатором C6, его форма близка к постоянному.

Рекомендуем: Как из БП компьютера сделать зарядное устройство

Схема с автоматическим отключением

Удобно, чтобы батарея отключалась по окончании процесса пополнения энергии. Один из вариантов схемы такой автоматики приведен на рисунке.

Схема автоматического отключения.

Принцип действия основан на контроле напряжения заряжаемой батареи. Как только оно достигнет номинального уровня (он подстраивается потенциометром), транзистор откроется, сработает реле и отключит напряжение с АКБ. При этом загорится светодиод, сигнализирующий об окончании зарядки. Реле можно применить любое с напряжением срабатывания 12 вольт и током контактов не менее 15 ADC.

Достоинство схемы в том, что ее можно собрать на отдельной плате и использовать совместно с любым готовым зарядником. Недостатком является необходимость измерять напряжение непосредственно на клемме аккумулятора, поэтому цепь измерения (выделена красной линией) надо выполнять отдельным проводом с зажимом и подключать непосредственно к плюсовому выводу АКБ.

От этого недостатка свободны схемы с контролем зарядного тока, отключающие ЗУ при снижении тока ниже установленного предела. Для измерения тока в заряднике должно быть установлено измерительное сопротивление (шунт).

Схема мощного ЗУ с регулировкой тока

Схема мощного зарядного устройства.

Заслуживает внимания еще одна схема ЗУ, обеспечивающая ток не менее 10 А. Ее особенности:

  • схема управления собрана по стороне 220 вольт;
  • первичная обмотка трансформатора служит одновременно индуктивностью, накапливающей энергию, а затем отдающей ее в нагрузку через вторичные обмотки.

Принцип регулирования – фазоимпульсный, ключом служит симистор VS1. Ток устанавливается потенциометром R1 и регулируется от нуля до 10 А. Первичная обмотка трансформатора должна иметь достаточную индуктивность. Для его изготовления можно применить ЛАТР-2. Его обмотка будет служить первичкой. Сверху надо обустроить изоляцию (достаточно 3 слоя лакоткани), а поверх намотать вторичную обмотку проводом сечением 3 кв.мм 40+40 витков. Резистор R6 служит нагрузкой выпрямителя и создает импульсы разряда батареи. Считается, что такой режим продлевает период эксплуатации АКБ. Вместо него можно установить автомобильную лампу накаливания на 12 вольт мощностью 10 ватт.

Читайте также

Схема и сборка самодельного блока питания с регулировкой напряжения и тока

 

Технология сборки

Большинство электронных компонентов лучше собрать на печатной плате. В домашних условиях плату можно изготовить методом ЛУТ или фотоспособом. Разработать рисунок можно в бесплатных программах, например LayOut или условно-бесплатной Eagle. А можно нарисовать дедовским способом на бумаге и нанести рисунок лаком на поверхность фольги. Плата травится в растворе хлорного железа или в следующем составе:

  1. 100 мл аптечной перекиси водорода.
  2. 30 г лимонной кислоты.
  3. Две чайные ложки поваренной соли.

Силовые элементы монтируются на радиаторы достаточной площади. Устанавливать их надо на теплопроводящую пасту. Если теплоотводящая поверхность элемента не соединена с общим выводом, на теплоотвод деталь крепят через изолирующую прокладку – слюдяную или из упругого материала. Радиатором может служить металлическая стенка корпуса. Также можно сделать теплоотвод частью конструкции. Можно организовать обдув радиаторов – тогда их площадь можно значительно уменьшить. Для этого понадобится вентилятор на 12 вольт, который можно подключить к выходу диодного моста.

Корпус подбирается готовым или изготавливается самостоятельно. На передней панели крепятся:

  • измерительные приборы;
  • органы регулирования напряжения и тока;
  • индикаторы включенного состояния.

Для подключения проводов, отходящих к аккумулятору, клеммы и разъемы лучше не использовать. Токи через них идут большие, поэтому потенциальный источник дополнительного переходного сопротивления нежелателен. Провода лучше подпаять к плате и вывести через отверстия в передней панели. Сечение проводников должно достаточным – не менее 2 кв.мм, а лучше 4 кв.мм. С другой стороны проводов надо припаять зажимы «крокодил».

Зарядное устройство в самодельном корпусе.

Это не полный обзор схем зарядок для автомобильного аккумулятора – их существует великое множество. По представленным конструкциям можно понять принципы построения ЗУ, требования к ним, разобраться в несложной схемотехнике. Отработав на практике сборку этих зарядных устройств, впоследствии можно перейти к более серьезным схемам, в том числе с использованием микроконтроллеров.

Похожая статья: Самодельное зарядное устройство для литий ионных аккумуляторов

Часто задаваемые вопросы

Каковы должны быть пределы регулировки по напряжению

Изменением уровня напряжения изменяют зарядный ток. Если предстоит зарядка автомобильных свинцово-кислотных батарей, то можно выбрать нижний предел регулировки, равный нижнему напряжению разряженной батареи – 10,5 вольт. Верхний предел надо установить по верхнему уровню 12,5 вольт плюс 1,5..2 вольта. На практике неплохо иметь запас по лимитам регулирования. Пределы от 10 до 16 вольт обеспечиат полный диапазон практически используемых зарядных токов.

Где можно взять трансформатор для автомобильного зарядного

Трансформатор можно подобрать промышленного изготовления. Ориентироваться надо на выходное напряжение и ток. Первый параметр должен составлять 12-14 (или 18..24 в зависимости от схемотехники) вольт, второй – от 4 до 10 ампер. Характеристики нескольких подходящих трансформаторов приведены в таблице.

Тип промышленного трансформатораВыходное напряжение, ВНаибольший ток, А
ТТП-100127,5
ТТП-1501212
ТН8-127/220-502х6,3 (обмотки соединяются последовательно)4,8
ТН28-127/220-502х6,3 (обмотки соединяются последовательно)4,8

Если есть трансформатор подходящей габаритной мощности, но вторичная обмотка не подходит по току или напряжению, ее можно смотать и намотать новую. Габаритная мощность определяется по сечению железа по формуле P=0,8..0,88*S2*/14000, где:

  1. P – габаритная мощность, ВА.
  2. 0,8..0,88 – коэффициент, учитывающий материал стали (если он неизвестен, выбирается значение 0,8).
  3. S — площадь сечения сердечника в квадратных сантиметрах.

Площадь сечения для тороидального сердечника вычисляется как (D-d)*h/2 (см.рис), для других типов – a*b.

Площадь сечения для разных типов сердечников

Для тока 4..10 А габаритная мощность должна быть не менее, соответственно, 50..120 ВА. Если железо подходит, вторичная обмотка перематывается медным проводом. Его сечение выбирается по упрощенной формуле d=0,72√I, где:

  • d – диаметр провода в мм;
  • I – потребный ток в амперах.

Число витков выбирается по формуле N=(50/S)*V (где V – требуемое выходное напряжение в вольтах) или подбирается экспериментально. Также для расчета можно воспользоваться различными программами-калькуляторами, в том числе размещенными на веб-сервисах.

Можно ли с помощью самодельных ЗУ заряжать АКБ без снятия с автомобиля

Этого делать не стоит. При зарядке на аккумулятор подается напряжение, уровнем и формой отличающееся от напряжения бортсети машины. Есть риск повреждения автомобильной электроники. Клеммы от АКБ надо отключить. Сам аккумулятор при этом можно не демонтировать, но это не очень удобно, да и длины проводов от ЗУ может не хватить.

Зарядное с регулировкой тока и напряжения

Дневники Файлы Справка Социальные группы Все разделы прочитаны. Зарядное устройство с регулировкой выходного тока. Добрый день уважаемые форумчане. Месяца два «рыл» интернет в поисках хорошей и простой схемы ЗУ. Три раза делал разные схемы с применением микросхемы TL с регулировкой выходного тока и напряжения ничего не получалось. Так вот хотелось бы попросить у вас помощи в создании ЗУ, желательно с регулировкой выходного тока чтобы был стабилен, по мере заряда не падал и напряжение при заряде было бы 13,8 В.


Поиск данных по Вашему запросу:

Зарядное с регулировкой тока и напряжения

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Уважаемый Пользователь!
  • Как сделать зарядку для автомобильного аккумулятора
  • Современные автоматические зарядные устройства своими руками для аккумулятора автомобиля
  • Щось пішло не так 🙁
  • ПРИБОРЫ ДЛЯ ЗАРЯДКИ АКБ
  • Зарядное устройство из советских деталей для АКБ
  • Зарядные устройства
  • Импульсное зарядное устройство Шторм 2 с плавной регулировкой напряжения и тока

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Лабораторный блок питания с регулировкой тока и напряжения

Уважаемый Пользователь!


Действует персональная, дисконтная промо-код и накопительная система скидок для зарегистрированных покупателей. Курьер — 50 грн или бесплатно Самовывоз — бесплатно. Согласно тарифам грузоперевозчика или бесплатно. Возврат или обмен товара в течение 14 дней с момента покупки. Гарантия на товар: 12 месяцев. Вы можете купить импульсное зарядное устройство Шторм 2 с плавной регулировкой напряжения и тока в Киеве, Харькове, Одессе, Днепре и других городах самовывоз или доставка курьером по городу и Украине.

При стоимости товара от грн. На некоторые товары магазином предоставляется рассрочка без переплат. Импульсное зарядное устройство Шторм 2 используется для заряда аккумуляторов с напряжением 12В, обладает функциями стабилизации и плавной регулировки тока и напряжения. Кроме того, данное устройство оснащено комбинированным способом подзарядки аккумуляторных батарей и опцией лабораторного БП. Данная модель зарядного устройства оборудована амперметром, возможно регулирование тока вручную, в пределах А.

С его помощью можно контролировать процесс заряда. Возможно осуществление подзарядки любого типа аккумуляторных батарей. Возможно использование комбинированного метода заряда, а также есть режим хранения АКБ.

При необходимости, можно заряжать данным устройством старые и полностью разряженные батареи. Устройство оснащено следующими видами защит — от неправильной полярности, короткого замыкания, перегрузки. Несмотря на небольшие размеры устройства, оно обладает достаточной эффективностью, также простое и удобное в использовании. Зарядное устройство выполнено в двойном металлическом корпусе, который защищает его от механических воздействий. А наличие наружного корпуса из нержавеющей стали дает возможность избежать появления ржавчины или других повреждений.

На данный момент отзывы клиентов об этом товаре отсутствуют. Другим людям очень важно ваше мнение — будьте первым и поделитесь с ними своими впечатлениями о покупке прямо сейчас!

Написать отзыв. Показать список сравнения 1. Сравнение Скрыть Артикул:. Мой багажник пуст. Укр Рус Eng. Как выбрать?

Методы оплаты Способы доставки Условия гарантии О магазине Багажник Войти Зарегистрироваться. Зарядные, АКБ, инверторы. Пуско-зарядные устройства. Купить Быстрый заказ. Скидка Действует персональная, дисконтная промо-код и накопительная система скидок для зарегистрированных покупателей.

Доставка по Киеву Курьер — 50 грн или бесплатно Самовывоз — бесплатно. Доставка по Украине Согласно тарифам грузоперевозчика или бесплатно. Условия оплаты Вы можете купить импульсное зарядное устройство Шторм 2 с плавной регулировкой напряжения и тока в Киеве, Харькове, Одессе, Днепре и других городах самовывоз или доставка курьером по городу и Украине. Скачать инструкцию бесплатно на русском языке Скачать инструкцию бесплатно на украинском языке. Описание импульсного зарядного устройства Шторм 2 с плавной регулировкой напряжения и тока Эффективность подзарядки и отличная производительность Импульсное зарядное устройство Шторм 2 используется для заряда аккумуляторов с напряжением 12В, обладает функциями стабилизации и плавной регулировки тока и напряжения.

Особенности ЗУ Данная модель зарядного устройства оборудована амперметром, возможно регулирование тока вручную, в пределах А. Все товары Шторм — Пуско-зарядные устройства Шторм 1. Введите число, изображенное на рисунке. Найдено: 0 товаров Показать товары. Ваш номер телефона. Для совершения покупок разрешите, пожалуйста, принимать cookie в своем браузере.


Как сделать зарядку для автомобильного аккумулятора

Универсальный источник питания «ШТОРМ-2» далее устройство предназначен для работы в качестве зарядного устройства и лабораторного блока питания. По заказу характеристики могут быть изменены, расширен предел изменения тока или напряжения с сохранением указанной мощности. Выполнено в нержавеющем корпусе, что придаёт ему привлекательный вид и может быть хорошим подарком. Устройство обеспечивает автоматический процесс заряда любых 6 вольтовых, гелиевых, литиевых батарей с плавной регулировкой зарядного тока и снабжено индикатором тока зарядки и напряжения на батарее. Заряд аккумулятора производится в автоматическом режиме.

реализовать ручную регулировку с двумя будет меняться ток зарядки. Один из них используется для определения напряжения в сети.

Современные автоматические зарядные устройства своими руками для аккумулятора автомобиля

Автоматическое зарядное устройство для автомобильного аккумулятора состоит из источника электропитания и схем защиты. Собрать его самостоятельно можно, владея навыками электромонтажных работ. При сборке используют как сложные электросхемы, так и конструируют более простые варианты устройства. Чтобы зарядка автоматически могла восстановить АКБ автомобиля, к ней предъявляются жесткие требования:. Если аппарат полностью сделать своими руками, несоблюдение требований навредит не только зарядному прибору, но и аккумулятору. Владимир Кальченко подробно рассказал о переделке ЗУ и об использовании подходящих для этой цели проводов. Простейший образец зарядного приспособления конструктивно включает в себя главную деталь — понижающее трансформаторное устройство. В этом элементе производится снижение параметра напряжения с до 13,8 вольт, которое требуется для восстановления заряда аккумулятора. Но трансформаторное устройство может снижать только эту величину. А преобразование переменного тока на постоянный осуществляется специальным элементом — диодным мостом.

Щось пішло не так 🙁

Технические параметры:. Технические параметры зарядного устройства:. Технические параметры устройства:. Технические параметры пуско-зарядного устройства:. Разряженный аккумулятор — это та проблема, которая приходит неожиданно.

Единственное на рынке зарядное устройство с Wi-Fi модулем и возможностью удаленного управления с компьютера, планшета, телефона. Имеет настраиваемые режимы работы в качестве зарядного устройства и регулируемого блока питания.

ПРИБОРЫ ДЛЯ ЗАРЯДКИ АКБ

Всех приветствую. Решение сделать самому зарядное устройство далее — ЗУ для аккумулятора родилось после публикации здесь одного самодельного ЗУ. Понравилось, все просто и надежно. За основу взята всем известная схема тиристорного фазоимпульсного регулятора мощности на аналоге однопереходного транзистора, эта схема в различных вариантах номиналов элементов гуляет по журналам и форумам давно. На одном радиофоруме нашел эту схему, но с защитой от перенапряжения, к ней дополнил защиту от переполюсовки и КЗ на реле. Защиту от перенапряжения мой коллега-однокашник по институту Николай Брониславович Мальков за что отдельное спасибо предложил сделать на оптотранзисторе по его оригинальной схеме в дополнение к имеющейся на реле.

Зарядное устройство из советских деталей для АКБ

В конечном итоге мы получим зарядное устройство с линейной характеристикой выходного тока. Это означает, что зарядка будет происходить в два этапа — постоянным заданным вручную током до набора заданного напряжения, затем постоянным заданным напряжением. При этом выходной ток будет плавно снижаться вплоть до нуля, когда заряд будет полностью окончен. Это самый правильный способ зарядки. Также мы добавим режим десульфатации аккумуляторной батареи. Такой функцией обладают некоторые заводские зарядные устройства, например, Кедр-Авто Такой зарядник у меня так же имеется, и его режим работы мне не очень нравится: во-первых, он не производит должным образом зарядку постоянным напряжением, а просто падает в дозарядку малым током.

С-Петербург, Вымпел 20 автоматическое зарядное устройство, плавная регулировка тока от 0 до 6 А, три режима работы, напряжение — 6 В, 12 В, 18 В.

Зарядные устройства

Зарядное с регулировкой тока и напряжения

Зарядные устройства для всех типов автомобильных аккумуляторов с напряжением 12В, 24В. Всегда в наличии универсальные устройства с регулировкой для заряда разных типов батарей. Зарядное устройство Орион оснащено защитой в зависимости от модели от короткого замыкания, переплюсовки, перегрева. Многие модели можно использовать в качестве блока питания для разнообразного оборудования.

Импульсное зарядное устройство Шторм 2 с плавной регулировкой напряжения и тока

ВИДЕО ПО ТЕМЕ: Простые схемы регуляторов тока.

Действует персональная, дисконтная промо-код и накопительная система скидок для зарегистрированных покупателей. Курьер — 50 грн или бесплатно Самовывоз — бесплатно. Согласно тарифам грузоперевозчика или бесплатно. Возврат или обмен товара в течение 14 дней с момента покупки.

Русский: English:.

Чтобы собрать даже самый простой стабилизатор напряжения к зарядному устройству необходимо обладать хоть маломальскими знаниями по физике. Иначе сложно будет понять зависимость физических величин, например, то, как по мере заряда сопротивление аккумулятора увеличивается, ток заряда падает и напряжение растет. Существует огромное число готовых схем и конструкций, позволяющих заряжать автомобильный аккумулятор. Эта статья на тему переделки компьютерного блока питания под автоматическое зарядное устройство автомобильного аккумулятора. В ней рассказывается о том, как собрать автоматический стабилизатор тока с возможностью регулировки выходного тока.

Схема стабилизатора, используемая в нашем собираемом зарядном устройстве, довольно проста и основана на базе операционного усилителя ОУ без обратной связи с большим коэффициентом усиления. В качестве такого операционного усилителя, или правильнее будет его назвать компаратором, используется микросхема LM

Всех приветствую, сегодня мы соберем зарядное устройство для автомобильных аккумуляторов, но зарядка эта весьма непростая. Во-первых я буду использовать только и только советские компоненты для сборки, во-вторых несмотря на то, что схема довольно старая, обладает весьма неплохими параметрами и по классу может тягаться с хорошими, промышленными устройствами. Основой схемы является мощный, железный трансформатор, что повышает надежность зарядного устройства, сейчас как мы знаем все делают на базе импульсных источников питания, но они даже рядом не стоят с хорошим железным трансформатором.


6 Объяснение полезных схем зарядного устройства постоянного тока для сотовых телефонов

Зарядное устройство для сотового телефона или мобильного телефона постоянного тока — это устройство, которое заряжает мобильный телефон от доступного источника питания постоянного тока. Устройство преобразует нерегулируемый источник постоянного тока в постоянный ток и постоянное выходное напряжение, что становится безопасным для зарядки любого мобильного телефона.

В этой статье мы узнаем, как создавать схемы зарядных устройств для мобильных телефонов с постоянным током, используя 6 уникальных концепций. В первой концептуальной концепции используется IC 7805, во второй концепции используется один BJT, в третьей идее используется IC M2575, в четвертом методе мы пробуем LM338 IC, 5-я схема показывает, как заряжать несколько мобильных телефонов от одного источника, в то время как последний или шестой метод показывает нам, как использовать ШИМ для реализации эффективной зарядки мобильного телефона.

Предупреждение: хотя все концепции проверены и технически правильны, автор не несет никакой ответственности за результаты, пожалуйста, делайте это на свой страх и риск.

Содержание

Введение

Простая схема зарядного устройства постоянного тока для сотового телефона является одним из тех помощников сотового телефона, который нельзя игнорировать, потому что сотовый телефон не работает без зарядного устройства.

Обычно схема зарядного устройства постоянного тока для сотового телефона является составной частью комплекта сотового телефона, и мы используем ее вместе с нашей сетью переменного тока.

Но что произойдет, если ваш сотовый телефон перестанет заряжаться в середине пути, возможно, когда вы едете на машине или велосипеде по середине шоссе?

Как это работает

В этой статье обсуждается очень простая, но достаточно эффективная схема зарядного устройства постоянного тока для сотового телефона, которую может легко собрать дома даже неспециалист.

Хотя предлагаемая схема зарядного устройства не будет заряжать ваш сотовый телефон со скоростью, равной обычному зарядному устройству от переменного тока к постоянному, тем не менее, оно безотказно выполнит свою функцию и точно вас не подведет.

Предлагаемую схему зарядного устройства постоянного тока для мобильного телефона можно понять по следующим пунктам:

Все мы знаем общие характеристики аккумулятора мобильного телефона, это около 3,7 вольт и 800 мАч.

Это означает, что сотовому телефону потребуется около 4,5 вольт для начала процесса зарядки.

Однако литий-ионный аккумулятор, который используется в сотовых телефонах, очень чувствителен к плохому напряжению и может просто взорваться, что приведет к серьезным проблемам с жизнью и имуществом.

Имея это в виду, внутренняя схема сотового телефона имеет очень строгие размеры.

Параметры просто не допустят напряжения, которое может хоть немного выходить за диапазон технических характеристик батареи.

Использование в схеме универсальной микросхемы 7805 просто идеально отвечает на поставленный выше вопрос, так что зарядное напряжение на ее выходе становится идеально подходящим для зарядки аккумулятора сотового телефона.

Резистор высокой мощности, подключенный к выходу микросхемы, гарантирует, что ток, подаваемый на сотовый телефон, остается в пределах заданного диапазона, хотя в любом случае это могло бы не быть проблемой, сотовый телефон просто отказывался бы заряжаться, если бы резистор не был включен.

1) Схема зарядного устройства постоянного тока для мобильного телефона

Иллюстрированная схема

Вы можете использовать эту схему зарядного устройства постоянного тока для зарядки вашего мобильного телефона в чрезвычайных ситуациях, когда нет розеток сети переменного тока, цепь может питаться от любого 12-вольтового свинцово-кислотного аккумулятора. аккумулятор или аналогичный источник питания постоянного тока

Список деталей

R1 = 5 Ом, 2 Вт,
C1, C2 = 10 мкФ/ 25 В,
D1 = 1N4007,
IC1 = 7805, установленный на радиаторе,
Батарея, любая 12 В автомобильный аккумулятор

Использование LM123/LM323

В приведенной выше концепции для зарядки используется микросхема 7805, которая может обеспечить максимальный ток 1 ампер. Этого тока может быть недостаточно для зарядки смартфонов или мобильных телефонов с большей емкостью мАч в диапазоне 4000 мАч. Поскольку этим сильноточным батареям может потребоваться ток до 3 ампер для зарядки с достаточно высокой скоростью.

A 7805 может быть совершенно бесполезен для таких приложений.

Тем не менее, IC LM123 является одним из кандидатов, который может выполнить вышеуказанное требование, обеспечивая точность 5 В на выходе с хорошим током 3 ампера. Вход может быть от любого источника 12 В, такого как аккумулятор автомобиля/мотоцикла или солнечная панель. Схему простого зарядного устройства для мобильного телефона на 3 ампера можно увидеть ниже:

Как видно из вышеизложенного, схема зарядного устройства на 3 ампера не требует внешних компонентов для реализации процедур, при этом она чрезвычайно точна при регулировании выходного напряжения и тока и практически не разрушается благодаря множеству внутренних функций защиты.

2) Зарядное устройство для сотового телефона постоянного тока с использованием одного транзистора

Следующая конструкция объясняет, что зарядное устройство для сотового телефона постоянного тока с использованием одного биполярного транзистора, вероятно, является самым простым по своей форме и может быть построено очень дешево и использоваться для зарядки любого стандартного сотового телефона от Внешний источник постоянного тока 12 вольт.

Схема работы

Принципиальная схема иллюстрирует довольно простую конструкцию, включающую очень мало компонентов для реализации предлагаемых действий по зарядке сотового телефона.

Здесь основная активная часть представляет собой обычный силовой транзистор, который был сконфигурирован с другой активной частью, зенет-диодом, для формирования небольшой цепи постоянного тока для зарядного устройства сотового телефона.

Резистор является единственным пассивным компонентом, кроме указанной выше пары активных частей, который был связан в цепи.

Таким образом, нужно использовать всего три компонента, и полноценная схема зарядного устройства для сотового телефона будет готова за считанные минуты.

Резистор действует как компонент смещения для транзистора, а также действует как «стартер» для транзистора.

Стабилитрон был включен, чтобы запретить транзистору проводить больше напряжения, чем указанное, определяемое напряжением стабилитрона.

Хотя сотовому телефону в идеале требуется всего 4 вольта для начала процесса зарядки, здесь напряжение стабилитрона, а затем и выходное напряжение зафиксировано на уровне 9V, потому что способность высвобождения тока этой схемы не очень эффективна, и, по-видимому, мощность должна падать до требуемого уровня 4 В, когда сотовый телефон подключен к выходу.

Однако ток может быть уменьшен или увеличен соответствующим увеличением или уменьшением сопротивления резистора соответственно.

Если сотовый телефон «отказывается» заряжаться, можно немного увеличить значение резистора или попробовать другое более высокое значение, чтобы сотовый телефон реагировал положительно.

Пожалуйста, обратите внимание, что схема была разработана мной только на основе предположений, и схема не была проверена или подтверждена на практике.

Принципиальная схема

3) Использование 1-A Простой импульсный регулятор напряжения с понижением напряжения

Если вас не устраивает зарядное устройство с линейным стабилизатором, вы можете выбрать это 1 Простой импульсный регулятор напряжения с понижением напряжения на основе элемента постоянного тока Схема зарядного устройства для телефона, работающая по принципу переключаемого понижающего преобразователя, который позволяет схеме заряжать сотовый телефон с высокой эффективностью.

Как это работает

В одном из моих предыдущих постов мы узнали об универсальном стабилизаторе напряжения IC LM2575 от TEXAS INSTRUMENTS.

Как видно, на схеме почти не используются какие-либо внешние компоненты для обеспечения работоспособности схемы.

Пара конденсаторов, диод Шоттки и катушка индуктивности — все, что нужно для создания этой схемы зарядного устройства для сотового телефона.

На выходе вырабатывается точное напряжение 5 вольт, которое очень подходит для зарядки сотового телефона.

Входное напряжение имеет широкий диапазон, прямо от 7В до 60В, может применяться любой уровень, который дает требуемые 5 вольт на выходе.

Катушка индуктивности введена специально для получения импульсного выходного сигнала на частоте около 52 кГц.

Половина энергии катушки индуктивности используется обратно для зарядки сотового телефона, гарантируя, что микросхема остается включенной только в течение половины периода цикла зарядки.

Это обеспечивает охлаждение микросхемы и ее эффективную работу даже без использования радиатора.

Это обеспечивает энергосбережение, а также эффективную работу всего устройства по назначению.

Входной сигнал может быть получен от любого источника постоянного тока, такого как автомобильный аккумулятор.

Предоставлено и исходная схема: ti.com/lit/ds/symlink/lm2575.pdf

4) Двойное зарядное устройство постоянного тока для мобильного телефона

Недавний запрос от одного из моих подписчиков г-на Раджи Гилсе (по электронной почте) мне разработать схему двойного зарядного устройства постоянного тока для мобильных телефонов, которая может облегчить зарядку многих мобильных телефонов одновременно, давайте научимся делать схему.

Я уже говорил о нескольких цепях зарядки мобильных телефонов с постоянным током, однако все они предназначены для зарядки одного мобильного телефона. Для зарядки более чем одного сотового телефона от внешнего источника постоянного тока, такого как автомобильный аккумулятор, требуется сложная схема.

Технические характеристики

Уважаемый господин. Пожалуйста, скажите мне, какие изменения я должен сделать, чтобы заряжать два мобильных телефона одновременно от вашей «ЦЕПИ ЗАРЯДНОГО УСТРОЙСТВА ДЛЯ СОТОВОГО ТЕЛЕФОНА НА АККУМУЛЯТОРНОЙ БАТАРЕЕ 12 В» (от Bright Hub). Я использую схему за последние 8 месяцев, все в порядке. Пожалуйста, опубликуйте эту статью в своем новом блоге.

Уважаемый сэр, я так много раз пытался опубликовать этот комментарий в вашем блоге в «простой схеме зарядного устройства постоянного тока для сотового телефона», но тщетно. Пожалуйста, ответьте здесь~ Сэр, я использовал еще один резистор 10 Ом мощностью 2 Вт параллельно существующему, так как у меня нет резистора большей мощности. Это работает нормально. Большое спасибо, у меня есть одно сомнение, ранее в ярком хабе в той же статье вы говорили использовать резистор 10 Ом, а здесь 5 Ом, который подходит?

У меня есть еще один вопрос из этой статьи; Пожалуйста, помогите мне, могу ли я использовать три кремниевых диода 1N4007 вместо одного кремниевого диода 1N5408? Моя цель — разрешить ток 3А только в одном направлении. Но у меня нет диода на 3А т.е. 1N5408. Поскольку 1N4007 имеет емкость 1 ампер, можно использовать три 1N4007 параллельно и аналогично для 5А пять 1N4007 параллельно, потому что у меня есть номер 1N4007

rajagilse

Решение запроса схемы

Привет, Раджагилсе, Используйте следующую схему двойного зарядного устройства постоянного тока для мобильного телефона, приведенную ниже: будет заряжать сотовый телефон быстрее, чем 10 Ом, и так далее. Я проверю проблему с комментированием в своем блоге… однако другие комментарии приходят нормально, как обычно! Посмотрим. Спасибо и С уважением.

Список деталей
  • R1 = 0,1 Ом 2 Вт,
  • R2 = 2 Ом 2 Ватта
  • R3 = 3 Ом 1 Вт
  • C1 = 100UF/25V
  • C2 = 0,151 = BD14150 = BD1410101010101010101010101010101010101010101010101010101010101010101010101010101010151 =
  • . = 7805
Конструкция печатной платы

Схема двойного зарядного устройства постоянного тока для сотового телефона была успешно опробована и построена г-ном Аджаем Дюссой на печатной плате, разработанной в домашних условиях. Следующие изображения макета печатной платы и прототипа были отправлены г-ном Аджаем. .

5) Схема зарядного устройства для сотового телефона на базе LM338

Следующая схема может использоваться для зарядки до 5 сотовых телефонов одновременно. В схеме используется универсальная микросхема LM338 для получения необходимой мощности. Вход выбран на 6 В, но может достигать 24 В. От этой цепи также можно заряжать один сотовый телефон.
Схема была запрошена мистером Рамом.

Цепь зарядного устройства для нескольких мобильных телефонов с использованием IC 7805

Любое желаемое количество мобильных телефонов можно заряжать с помощью параллельного подключения IC 7805, как показано на следующем рисунке. Поскольку все микросхемы установлены на одном радиаторе, тепло распределяется между ними равномерно, обеспечивая равномерную зарядку всех подключенных мобильных устройств.

Здесь 5 интегральных схем используются для зарядки сотовых телефонов среднего размера, можно добавить большее количество микросхем для размещения большего числа мобильных телефонов в зарядном массиве.

6) Использование ШИМ для зарядки аккумулятора сотового телефона

Эту схему может легко сделать дома любой школьник и использовать для демонстрации на научной выставке. Схема представляет собой простое зарядное устройство для сотового телефона, которое может работать в сочетании с любым источником постоянного тока, от аккумулятора автомобиля или мотоцикла или от любого обычного адаптера постоянного тока на 12 В переменного тока.

В настоящее время мы находим, что большинство транспортных средств имеют встроенные зарядные устройства для мобильных телефонов, что, безусловно, очень удобно для путешественников, которые в основном остаются на улице, путешествуя в своем автомобиле.

Предлагаемая схема зарядного устройства для сотового телефона так же хороша, как и обычные зарядные устройства, которые устанавливаются в автомобилях и мотоциклах.

Кроме того, схема может быть легко интегрирована в собственное транспортное средство, если эта функция изначально недоступна в транспортном средстве.

В качестве альтернативы можно подумать о производстве настоящего устройства и продаже его на рынке в качестве автомобильного зарядного устройства для сотового телефона и заработать немного денег.

Circuit Operation

Сотовые телефоны, как мы все знаем, по своей природе очень сложные устройства, и когда дело доходит до зарядки сотовых телефонов, параметры, несомненно, также должны соответствовать очень высоким стандартам.

Зарядные устройства для мобильных телефонов переменного/постоянного тока, которые поставляются с мобильными телефонами, основаны на SMPS и очень хороши с их выходами, и именно поэтому они так эффективно заряжают мобильный телефон.

Однако, если мы попытаемся сделать свою версию, она может вообще выйти из строя, и сотовые телефоны могут просто не реагировать на ток и отображать на экране «не заряжается».

Аккумулятор сотового телефона нельзя просто зарядить, подав 4 вольта постоянного тока, если ток не подобран оптимально, зарядка не начнется.

ШИМ против линейного

Использование ИС стабилизатора напряжения для создания зарядного устройства постоянного тока, которое я обсуждал в одной из своих предыдущих статей, является хорошим подходом, но ИС имеет тенденцию нагреваться во время зарядки аккумулятора сотового телефона и, следовательно, требует адекватного теплоотвода, чтобы оставаться прохладным и работоспособным.

Это делает устройство немного более громоздким и, кроме того, значительное количество энергии теряется в виде тепла, поэтому конструкцию нельзя считать очень эффективной.

Настоящая схема зарядного устройства постоянного тока для сотового телефона с ШИМ-управлением является выдающейся в своем отношении, потому что использование импульсов ШИМ помогает поддерживать выходной сигнал, очень подходящий для схемы сотового телефона, а также концепция не предполагает нагрева выходного устройства, что делает вся схема действительно эффективна.

Глядя на схему, мы обнаруживаем, что снова нам на помощь приходит рабочая лошадка IC 555, которая выполняет важную функцию генерации необходимых импульсов ШИМ.

Вход в схему осуществляется через стандартный источник постоянного тока, в идеале от автомобильного аккумулятора.

Напряжение питает микросхему, которая мгновенно начинает генерировать ШИМ-импульсы и подает их на компоненты, подключенные к выходному контакту №3.

На выходе силовой транзистор используется для переключения постоянного напряжения на его коллекторе непосредственно на сотовый телефон.

Однако в конечном итоге на сотовый телефон подается только среднее постоянное напряжение из-за наличия конденсатора 10 мкФ, который эффективно фильтрует пульсирующий ток и обеспечивает стабильные стандартные 4 вольта на сотовый телефон.

После того, как схема будет построена, данный потенциометр необходимо будет идеально оптимизировать, чтобы на выходе вырабатывалось напряжение правильного размера, которое может идеально подходить для зарядки сотового телефона.

Схема

Простая схема USB-зарядного устройства — своими руками

by Shagufta Shahjahan

7635 просмотров

В этом уроке мы демонстрируем портативное зарядное устройство USB. Который можно использовать для зарядки мобильного телефона, iPod, MP3-плеера и т. д. всего с 9батарея В. Так что в следующий раз, когда вы столкнетесь с проблемой, и вам нужно зарядить устройство в экстренной ситуации. Просто купите 9-вольтовую батарею в магазине на углу, и у вас будет достаточно емкости, чтобы справиться с чрезвычайными обстоятельствами.

Это универсальная схема USB-зарядного устройства с питанием от аккумулятора. Эта схема может заряжать ваши КПК, iPod, MP3-плееры и любые гаджеты, которые подключаются к USB-порту ПК для зарядки. Если вы поместите эту схему в небольшую коробку с батареей на 9 В, она станет портативным аварийным USB-зарядным устройством.

Buy From Amazon

Hardware Components

The following components are required to make USB Charger Circuit

S. no Components Value Qty
1 Voltage regulator IC LM7805 1
2 Female USB Plug 1
3 LED 1
4 Resistor 1K 1
5 Ceramic Capacitor 100nF 2
6 Electrolytic Capacitor 100µF, 47µF
7 Аккумулятор 9 В 1

LM7805 Распиновка

Для получения подробного описания схемы выводов, размеров и технических характеристик загрузите техническое описание LM7805

Схема зарядного устройства USB

Принцип работы

Схема изготовлена ​​с помощью микросхемы LM7805.

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *