Светодиодный стробоскоп своими руками
Привет всем любителям самоделок. В данной статье я расскажу, как сделать светодиодный стробоскоп своими руками, он будет основан на кит-наборе, заказать который можно по ссылке в конце статьи. Данный кит-набор будет полезен для сборки начинающим, а также тем, кто хочет сделать мигалку на его основе.
Перед тем, как начать читать статью, предлагаю посмотреть видео с подробным процессом сборки кит-набора и его тестирования в работе.
Для того, чтобы сделать светодиодный стробоскоп своими руками, понадобится:
* Кит-набор
* Паяльник, припой, флюс
* Бокорезы
* Мультиметр
* Блок питания 12 вольт или аккумулятор
* Приспособление для пайки «третья рука»
Шаг первый.
В комплекте радиоконструктора идет два гнезда под установку микросхем, четыре печатные платы со всеми необходимыми обозначениями, а также остальные радиодетали, такие как резисторы,диоды, светодиоды и конденсаторы.
Первым делом устанавливаем резисторы на свои места, их номиналы указаны на плате.
Определить сопротивление резисторов можно при помощи мультиметра, а также цветовой маркировки с таблицей или онлайн-калькулятора. Первый способ самый удобный и быстрый, но если у вас нет мультиметра, то узнать номиналы двумя следующими способами также возможно, затратив немного больше времени. С обратной стороны подгибаем выводы радиодеталей, чтобы при пайке они не выпали. Далее на плату устанавливаем диоды, на их корпусе есть полоска, как и на плате, ориентируемся по ней.
Шаг второй.
Затем вставляем транзисторы, ориентируемся по обозначению на плате, которая повторяет форму корпуса.
Далее устанавливаем конденсаторы, на плате электролитический конденсаторы обозначен кругом, плюс на ней промаркирован, минус конденсатора указан на его корпусе белой полоской, также длинная ножка это плюс.
Затем вставляем неполярный керамический конденсатор с маркировкой 104 и после него подстроечный резистор, который позволит изменять частоту стробоскопа.
Шаг третий.
Для подключения микросхем устанавливаем гнезда.
Вставляем гнезда в отверстия на плате, ориентируясь по ключу в виде выемки на корпусе и на обозначении платы. Контакты для подключения питания и светодиодов установим позже.
Из запасных деталей остался один диод, видимо для перестраховки.
Шаг четвертый.
Теперь соберем плату со светодиодами, в комплекте их три, на каждую плату свой цвет светодиодов.
Устанавливаем сначала резистор, а затем светодиоды, при это соблюдаем полярность, длинная ножка это плюс, короткая-минус, на плате минус обозначен черточкой, плюс-треугольником.
С остальными платами поступаем аналогично. С обратной стороны платы загинаем выводы радиодеталей, после чего закрепляем плату в приспособлении для пайки «третья рука» и наносим флюс на контакты.
Далее при помощи паяльника припаиваем контакты, слегка добавляя припой.
Затем берем основную плату с микросхемами и проделываем то же самое, также к платам припаиваем выводы для подключения.
Шаг пятый.
После пайки удаляем остатки выводов при помощи бокорезов. При откусывании лишних частей ножек будьте аккуратны, можно нечаянно оторвать дорожку с платы.
Далее очищаем плату от оставшегося флюса, для этого хорошо подойдет щетка и бензин «калоша» или другой растворитель, например, ацетон.
Затем устанавливаем в гнезда микросхемы согласно ключу на их корпусе и плате.
После этого подсоединяем платы между собой при помощи проводов, которые шли в комплекте.
Стробоскоп готов, можно проверять в работе. Подключаем блок питания к контактам основной платы, соблюдая полярность.
Светодиоды попеременно начинают загораться, частоту стробоскопа можно изменить простым вращением переменного резистора при помощи отвертки с плоским шлицем.
На этом у меня все, данный светодиодный стробоскоп можно использовать в любых целях, возможно и светомузыке при некоторых доработках, а также для того, чтобы набраться опыта в работе с радиоэлектроникой.
Всем спасибо за внимание и творческих успехов.
Купить Kit-набор на Aliexpress
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.Делаем простой стробоскоп для установки зажигания своими руками
Светодиодный стробоскоп для установки зажигания позволяет быстро и с высокой точностью выставлять оптимальный угол опережения зажигания (УОЗ) в автомобиле. Данный параметр играет важную роль в корректной работе двигателя. Небольшое смещение в момент зажигания приводит к потере мощности, вследствие возросшего расхода топлива и перегрева двигателя.
Несмотря на большой ассортимент промышленно выпускаемых приборов для проверки и установки УОЗ, актуальность создания стробоскопа своими руками не потеряла смысл и в наши дни. Представленная схема самодельного стробоскопа для автомобиля не требует наладки после сборки и изготавливается из доступных деталей.
Принципиальная схема стробоскопа
В принципиальной электрической схеме стробоскопа для авто можно условно выделить 4 части:Схема разработана и представлена в девятом издании журнала «Радио» в далеком 2000 году. Однако, благодаря своей простоте и надежности, остается актуальной и в наши дни.
- Цепь питания, состоящая из выключателя SA1, диода VD1 и конденсатора С2. VD1 защищает элементы схемы от ошибочной смены полярности. С2 блокирует частотные помехи, предотвращая сбои в работе триггера. Для подачи и отключения питания используется выключатель SA1, для этого подойдет любой компактный выключатель или тумблер.
- Входная цепь, которая состоит из датчика, конденсатора С1 и резисторов R1, R2. Функцию датчика выполняет зажим «крокодил», который закрепляется на высоковольтном проводе первого цилиндра. Элементы С1, R1, R2 представляют собой простейшую дифференцирующую цепь.
- Микросхема триггера, собранная по схеме двух однотипных одновибраторов, которые формируют на выходе импульсы заданной частоты. Частотозадающими элементами являются резисторы R3, R4 и конденсаторы С3, С4.
- Выходной каскад, собранный на транзисторах VT1-VT3 и резисторах R5-R9. Транзисторы усиливают выходной ток триггера, что отражается в виде ярких вспышек светодиодов. R5 задаёт ток базы первого транзистора, а R9 – исключает сбои в работе мощного VT3. R6-R8 ограничивают ток нагрузки, протекающий через светодиоды.
Принцип работы
Схема стробоскопа питается от автомобильного аккумулятора. В момент замыкания выключателя SA1, триггер DD1 переходит в исходное состояние. При этом на инверсных выходах (2, 12) появляется высокий потенциал, а на прямых (1, 13) – низкий потенциал. Конденсаторы С3, С4 заряжены через соответствующие резисторы.
Импульс с датчика, пройдя через дифференцирующую цепь, поступает на тактовый вход первого одновибратора DD1.1, что приводит к его переключению. Начинается перезаряд С3, который через 15 мс заканчивается очередным переключением триггера. Таким образом, одновибратор реагирует на импульсы с датчика, формируя на выходе (1) прямоугольные импульсы. Длительность выходных импульсов с DD1.1 определяется номиналами R3 и С3.
Второй одновибратор DD1.2 работает аналогично первому, уменьшая длительность импульсов на выходе (13) в 10 раз (примерно до 1,5 мс). Нагрузкой для DD1.2 служит усилительный каскад из транзисторов, которые открываются на время импульса. Импульсный ток через светодиоды ограничен исключительно резисторами R6-R8 и в данном случае достигает величины 0,8 А.
Не стоит пугаться столь большого значения тока. Во-первых, его импульс не превышает 1 мс, со скважностью в рабочем режиме не менее 15. Во-вторых, современные светодиоды обладают гораздо лучшими техническими характеристиками в сравнении с их предшественниками из 2000 года, когда эта схема впервые получила практическое применение. Тогда нужно было поискать светодиоды с силой света в 2000 мкд. Сейчас белый LED (от англ. Light-emitting diode) типа C512A-5 мм от компании Cree с углом рассеивания 25° способен выдать 18000 мкд при постоянном токе в 20 мА. Поэтому использование сверхъярких светодиодов позволит значительно снизить ток нагрузки путём увеличения сопротивления R6-R8. В-третьих, время пользования стробоскопом обычно не превышает 5-10 минут, что не вызывает перегрев кристаллов излучающих диодов.
Печатная плата и детали сборки
Самодельный стробоскоп для установки зажигания можно собрать как на недорогих отечественных радиоэлементах, так и на более прецизионных импортных элементах. Ниже представлена плата с применением отечественных компонентов для штыревого монтажа.
Плата в файле Sprint Layout 6.0: plata.lay6
Диод VD1 – КД2999В или любой другой с малым падением прямого напряжения. Конденсатор С1 должен быть высоковольтным с емкостью в 47 пФ и напряжением 400 В. Конденсаторы С2-С4 неполярные серии КМ-5, К73-9 на 0,068 мкФ 16 В. Все резисторы, кроме R4, типа МЛТ или планарные с номиналами, указанными на схеме. Подстроечный резистор R4 типа СП-3 или СП-5 на 33 кОм.
Триггер ТМ2 лучше использовать 561 серии, которая отличается высокой помехоустойчивостью и надёжностью. Но можно заменить его микросхемой 176 и 564 серии, учитывая их распиновку. Транзисторы VT1-VT2 подойдут КТ315 Б, В, Г или КТ3102 с большим коэффициентом усиления. Выходной транзистор – КТ815, КТ817 с любой буквенной приставкой. Светодиоды HL1-HL9 лучше взять сверхъяркие с малым углом рассеивания. Их располагают на отдельной плате по три в ряд. При отсутствии каких-либо деталей схемы их можно заменить более современными аналогами, немного усовершенствовав плату.
Готовую плату управления стробоскопа и плату со светодиодами удобно разместить в корпусе переносного фонарика. При этом необходимо предусмотреть отверстие в корпусе под регулятор R4, а в качестве SA1 можно использовать штатный выключатель.
Настройка
В схеме установлен подстроечный резистор R4, регулировкой которого можно добиться нужного визуального эффекта. Вращая ручку регулятора можно наблюдать, что уменьшение импульса тока ведёт к недостатку освещенности меток, а увеличение – к размытости. Поэтому во время первого запуска стробоскопа необходимо подобрать оптимальную длительность вспышек.
Длина экранированного провода от печатной платы к датчику не должна превышать 0,5 м. В качестве датчика подойдет 0,1 м медного проводника, припаянного к центральной жиле экранированного провода. В момент подключения его наматывают на изоляцию высоковольтного провода первого цилиндра автомобиля, делая 3 витка. Для повышения помехоустойчивости намотку производит максимально близко к свече. Вместо медного проводника можно взять зажим типа «крокодил», который также следует припаять к центральной жиле, а его зубья слегка загнуть внутрь, чтобы не повредить изоляцию.
Установка УОЗ стробоскопом
Прежде чем рассмотреть работу автомобильного стробоскопа, нужно понять суть стробоскопического эффекта. Если движущийся в темноте объект на мгновение осветить вспышкой, то он будет казаться застывшим в месте, где произошла вспышка. Если на вращающееся колесо нанести яркую метку и освещать его яркими вспышками, совпадающими по частоте с частотой вращения колеса, то в момент вспышек можно зрительно фиксировать местоположение метки.
Перед регулировкой момента зажигания автомобиля наносят две метки: подвижную на коленчатом валу (маховике) и стационарную – на корпусе двигателя. Затем присоединяют датчик, подают питание на стробоскоп и включают двигатель в режим холостого хода. Если во время вспышек метки совпадают, то УОЗ выставлен оптимально. В противном случае следует произвести корректировку до полного их совпадения.
Представленный стробоскоп для установки зажигания, собранный своими руками, позволит за несколько минут отладить систему зажигания автомобиля. В результате корректировки вырастет КПД двигателя и увеличится срок его службы.
Светодиодный стробоскоп своими руками | all-he
Стробоскоп — всем очень хорошо знакомое устройство, которое нашло достаточно широкое применение во многих отраслях науки и техники. Простой пример стробоскопа — милицейские мигалки. Такие мигалки считаются спецсигналом и их применение незаконно. Но не смотря на это, некоторые авантюристы, которые ищут приключения на свою голову, привыкли использовать незаконное, чтобы отличаться от других. Если честно, я себя считаю одним из них, поэтому решил сделать «МЕНТОВСКОЙ» стробоскоп своими руками и поделится с вами схемой.
Схема стробоскопа на светодиодах
Из всех схем, которые можно найти на просторах интернета, эта самая простая и полностью рабочая. Напомню, что такой стробоскоп отличается от простой мигалки тем, что тут можно задать частоту миганий и число череды миганий светодиодов. Проще говоря, каждый светодиод мигает 2 , 3 (можно до 4-х раз) затем переключается и начинает мигать второй светодиод. Получается полный аналог милицейских стробоскопов, которые лучше использовать в глухих окрестностях вашего района иначе грозит круглый штраф за использование спецсигнала.
Схема стробоскопа не содержит МК. Задающий генератор — всеми любимый таймер 555. Счетчик CD4017 имеет отечественный аналог (К561ИЕ8). Это десятичный счетчик-делитель с 10-ю дешифрованными выходами.
Сигнал с выходов микросхемы усиливается транзисторными ключами, тут выбор очень большой. Если собираетесь подключить светодиоды, то можно вообще исключить транзисторы, для питания более мощных светодиодов или светодиодных сборок можно использовать любые биполярные транзисторы НЧ — КТ819/805/805/829 и т.п.
К стробоскопу можно подключить более мощные лампы, к примеру, галогенные лампы от фар автомобиля с мощностью 100 и более ватт. Для этого только нужно использовать мощные полевые ключи IRFZ44, IRF3205, IRL3705, IRF1405 и другие N-канальные силовые транзисторы соответствующей мощности.
Монтаж стробоскопа делался в корпусе от электронного трансформатора, корпус одновременно служит теплоотводом для транзисторов, хотя перегрева на них не наблюдается.
Такой самодельный стробоскоп может работать часами, схема в дополнительной наладке не нуждается и работает сразу после включения. Устройство питается от бортовой сети автомобиля 12 Вольт, хотя начинает работать от 6 Вольт.
Видео работы самодельного стробоскопа:
Стробоскоп для установки зажигания своими руками
Стробоскопами являются специальные устройства, которые предназначены для того чтобы установить зажигание на двигателе автомобильного средства. Эти приспособления можно купить в специально отведенном магазине, а также сделать самостоятельно из подручных средств. Стоит заметить, что выгоднее всего сделать стробоскоп для установки зажигания своими руками. Потому как это поможет вам сократить расход денежных средств и создать такое приспособление, которое будет подходить именно вашему автомобилю.
Без наличия данного прибора будет сложно отрегулировать должным образом зажигание на двигателе. Однако несмотря на преимущества данного приспособления, далеко не все автолюбителя торопятся в магазины, чтобы его приобрести. Это связано с тем, что цена, за которую продают стробоскоп довольно высокая и бьет по карману водителя. Ведь он содержит дорогую лампу, которая встречается у большого количества моделей, что есть в наличии.
Стоит обратить внимание на то, что замена этой лампы также дорогое удовольствие, ведь стоит она столько же сколько и сам прибор. Благодаря этому устройству процедура настройки существенно облегчается. Это объясняется тем, что оно обладает сигнализаторами, которые оповещают о наличии искры и правильности установленного угла зажигания.
Схема стробоскопаКак сделать стробоскоп
Поэтому из подручных средств можно сделать самодельный стробоскоп (для установки зажигания). Таким образом можно сэкономить большую часть материальных средств. Для его изготовления есть несколько подходящих схем. Из светодиодов и светящихся элементов можно создать данное приспособление и в этом случае не требуется приобретать в специальных магазинах дорогостоящие лампы. Ведь общая сумма затрат на самодельный стробоскоп для зажигания будет в три раза меньше заводских изделий.
Стоит отметить, что цены на самые распространенные стробоскопы довольно высокие, однако некоторые владельцы передвижных средств все же решаются на покупку данного прибора в магазине.
Схемы стробоскопа для зажигания своими руками
В наше время существует довольно много легких и простых схем, с помощью которых можно самостоятельно сделать данный прибор и при этом данный процесс не подразумевает большого расхода денежных средств. Большее количество вариантов схем, предложенных в мировой сети понятные и с их помощью можно легко собрать нужное приспособление.
Для самостоятельного изготовления стробоскопа нам нужны такие приспособления как транзистор, фонарик, конденсаторы, тиристор, а также резистор, шнур питания, диод с низкой частотой, зажимы, реле с индексом и медный провод. Все что нужно, можно купить в специальном магазине или на радиорынке. Они доступны и стоят недорого. Также для установления корпуса приспособления вы можете воспользоваться старыми частями от фонарика или камеры.
Далее мы ознакомимся с этапами сборки стробоскопа для установки зажигания своими руками:
сделать разъем в задней стенке коробки для провода питания;
прикрепить специальные прищепки разных цветов, которые означают «+» и «-» на кончики проводов;
разместить датчик на любой из сторон корпуса, затем сделать отверстие для шнура и протянуть его к указанному контакту;
припаять медный провод, который будет служить датчиком к главному шнуру;
провести изоляцию соединений.
Подобное изделие поможет вам не только при установке зажигания, а также помимо этого может служить для настройки регуляторов и проверки свечей. Своими руками, вы сделаете простейший стробоскоп устанавливающий зажигание и в дальнейшем он может приносить пользу в проверке нескольких систем.
Схема светодиодного стробоскопаПрибор, выставляющий зажигание, из светодиодов
Данное приспособление можно сделать с использованием светодиодов, однако этот стробоскоп содержит в себе определенную микросхему. Запускается он посредствам импульсов, которые содержат минусовую полярность. В структуре данного вида схемы есть определенные сопротивления, они служат ограничителями для того чтобы уменьшить амплитуду входящего сигнала. В данном случае аккумулятор автомобильного средства будет служить источником питания самого прибора.
Подключение стробоскопа, устанавливающего зажигание, производится посредством следующих действий:
- нужно прогреть мотора и оставить его включенным;
- подключить прибор ручной работы к электричеству;
- намотать датчик на провод цилиндра;
- направить свет на определенную точку, расположенную в корпусе;
- оборачивать корпус зажигания до того момента пока эти метки не сойдутся;
- произвести закрепление его в этом состоянии.
Самодельный стробоскоп для настройки зажигания по своим функциям не уступает устройствам, которые сделали на заводе. В этом случае главным фактором является следование всем инструкциям по изготовлению и соблюдение схемы приспособления, сделанного своими руками. Изделия, созданные из подручных и простых материалов, могут потребовать незначительных затрат. Стробоскопы самодельного производства довольно легко починить, если они подверглись износу или поломке.
Прибор для установки зажигания можно найти в любом специализированном магазине, их существует несколько видов и они довольно распространены. Однако стоимость данного приспособления часто отпугивает владельцев транспортных средств, потому как это не дешевое удовольствие.
В случае неисправности или поломки, которые происходят со временем, замена износившейся детали может равняться сумме самого устройства в целом. Именно поэтому автолюбители начали изготовлять стробоскопы собственными руками. Ведь для его создания потребуются детали, которые можно найти в любом магазине.
Стоит заметить, что самодельное приспособление обойдется в несколько раз дешевле заводского устройства. Если же самостоятельно изготовить устройство не получается, то всегда можно найти мастера который выполнит эту работу. Подобные специалисты сегодня работают практически в каждом населенном пункте.
Самостоятельное изготовление стробоскопа позволит вам сэкономить изрядную сумму средств.
Вконтакте
Google+
Мощный стробоскоп на светодиодах. Схема и описание
Данный стробоскоп на светодиодах позволяет получить очень яркие вспышки видимые даже в дневное время со значительного расстояния, благодаря применению 3 мощных светодиодов на 1 Вт или одного на 3Вт.
Схема стробоскопа предоставляет возможность выбора режима работы путем переключения четырех перемычек. Более подробно как производится выбор того или иного режима, а также изменения временных интервалов в прошивке микроконтроллера PIC12F629, можно прочитать в предыдущей статье о светодиодном стробоскопе.
Hantek 2000 — осциллограф 3 в 1
Портативный USB осциллограф, 2 канала, 40 МГц….
Cтробоскоп на мощных светодиодах. Описание работы
Принцип работы обеих схем идентичен, стой лишь разницей, что в данном варианте применен мощный светодиод, и как следствие этого, более мощный транзисторный ключ. Поскольку мощный светодиод управляется очень короткими импульсами и относительно большими интервалами между ними, поэтому ни светодиод, ни транзистор не нуждаются в радиаторе для отведения тепла.
Светодиоды высокой мощности нужно управлять источником стабильного тока. В данном случае в качестве драйвера светодиода применен простой линейный ограничитель тока возле транзисторов VT1 и VT2. Резисторы R6 и R7 являются ограничителями тока. В случае, если в схеме стробоскопа применяется LED с током 700 мА, то на место резистора R6 необходимо установить перемычку, а резистор R7 должен быть мощностью 0,5 Вт. Для LED с током 350 мА необходимо установить оба резистора (R6, R7 по 0,25 Вт каждый).
Так же в схеме стробоскопа предусмотрена возможность остановки его работы путем подачи низкого уровня на вход 2 микроконтроллера PIC12F629.
Предупреждение. Светоотдача от мощных LED очень большая. Не следует смотреть прямо на светодиод при его работе.
Скачать файлы к схеме мощного светодиодного стробоскопа (1,1 MiB, скачано: 2 015)
www.picprojects.org/projects/strobe/powerstrobe
СВЕТОДИОДНЫЙ СТРОБОСКОП ДЛЯ ИЗМЕРЕНИЯ ОБОРОТОВ
Представленная схема является измерителем скорости вращения электродвигателей, его особенность: освещение вращающегося объекта светодиодом большой мощности. Измерение заключается в установке частоты вспышек, совместимых с частотой вращения (установки неподвижного изображения при освещении светом стробоскопа из светодиодов). Измерение можно проводить без остановки исследуемого устройства — прямо на ходу. Стробоскоп был построен на основе микроконтроллера ATMEGA8, а обороты отображаются на ЖК-дисплее. Управление осуществляется с помощью энкодера и кнопочек сенсорных. Все устройство может питаться от батареи, потому что из-за импульсного характера работы светодиода он не потребляет много энергии. Система с успехом питается от обычного аккумулятора 9 В типа Крона.
Принципиальная схема LED стробоскопа
Как нетрудно догадаться глядя на схему — основой системы является микроконтроллер U1 (ATMEGA8-16AU), который работает от кварцевого резонатора X1 (16 МГц). Дополнительные конденсаторы C1 (22pF) и C2 (22pF) необходимы для правильной работы резонатора.
Для прошивки программы используется разъем Prog. Разъем необходим, так как микроконтроллер в корпусе SMD, что делает сложным программирование подпайкой проводов.
Конденсатор C5 (100nF) фильтрует питание микроконтроллера. Конденсаторы C6 (100nF) и C7 (100nF) снимают управляющий сигнал, сгенерированный энкодером IMP, обеспечивая безотказную работу в программе. Кнопки S1 — S6 представляют собой дополнительную клавиатуру устройства. Элемент генерации вспышек света — светодиод мощностью 0.5 Вт, его ток ограничен через резистор R4 (30R/2W), а управляется он с помощью транзистора T2 (BC337) и резистора R3 (330R).
Светодиод подключен непосредственно к батарее, в обход стабилизатора, чтобы свести к минимуму воздействие импульсов тока на работу микроконтроллера и разгрузить стабилизатор напряжения U2 (78L05). Конденсаторы C3 (220uF) и C4 (47uF) необходимы для правильной работы стабилизатора.
Показываются результаты измерения на экране W1 (LCD 16×2). Контрастность настраивается с помощью P1 (10k) и подсветку можно включить или выключить программно транзистором T1 (BC556), R1 (47R) и R2 (3,3 к).
Принцип работы
Данные из таблицы делятся на две части, от 60 до 480 об/мин и второй интервал от 480-42000 об/мин. Это разделение вытекает из работы программы, в которой работают два диапазона измерения.
На графиках видно, точки измерения (зависимость оборотов от теоретических вращения, измеренных, переведены с измерения частоты) вместе с соответствующими кривыми калибрования.
В таблице результаты измерений частоты, генерируемой системой в зависимости от показанной на дисплее.
Сборка светодиодного стробоскопа
Схема проста в монтаже, но содержит элементы SMD которые паять надо аккуратно специальным паяльником с насадкой. Сборку следует начинать с двух перемычек. Далее конденсаторы и резисторы SMD (в корпусах 0805 2х1.2 мм). Следующим припаиваем микроконтроллер U1. Кнопки должны иметь длину оси 15 мм и их следует впаивать, чтобы они минимально выступали за ЖК-дисплеем — это будет важно при установке платы в корпус.
Плата спроектирована так, что с легкостью вписывается в любой подходящий пластиковый корпус. При выпиливании отверстий в корпусе можно воспользоваться рисунком с расположением отверстий, специально подготовленном для этой цели. Его следует вставить в корпуса при помощи скотча и просверлить рисунок. Это значительно облегчит выполнение корпуса.
Стробоскоп предназначен для питания от 9 В аккумулятора, но можно использовать другой источник питания с напряжением 7-12 В. Все файлы проекта (прошивка, рисунки плат) — скачайте напрямую с сервера Элво.ру
Мощный стробоскоп своими руками. Светодиодный стробоскоп своими руками Полицейский стробоскоп топология печатной платы
Данную конструкцию может собрать даже начинающий радиолюбитель. Схема не содержит дефицитных радиодеталей и имеет высокую взаимозаменяемость компонентов.
Устройство состоит из двух генераторов: задающего генератора, собранного на элементах VT1, VT2 и стробоскопического генератора VT3, VT4, создающего короткие импульсы. Задающий генератор поочередно переключает стробоскопический генератор на синий и красный светодиоды. Рабочая частота этих генераторов определяется параметрами конденсаторов C1-C4 и резисторов R5, R6, R8, R9. Переменными резисторами R7 и R10 можно изменять частоты соответствующих генераторов.
Мощность транзисторов VT1-VT3 и резисторов R1, R2 зависит от мощности используемых светодиодов. Конструкция работает с напряжением от 5 до 12 вольт.
Список радиоэлементов
Обозначение | Тип | Номинал | Количество | Примечание | Магазин | Мой блокнот |
---|---|---|---|---|---|---|
VT1, VT2 | Биполярный транзистор | КТ815А | 1 | КТ817, КТ961, КТ805 | В блокнот | |
VT3 | Биполярный транзистор | КТ814А | 1 | КТ816, КТ835 | В блокнот | |
VT4 | Биполярный транзистор | КТ361А | 1 | КТ3107 | В блокнот | |
C1, C2 | Конденсатор | 47 мкФ | 2 | В блокнот | ||
C3 | Конденсатор | 1 мкф | 1 | В блокнот | ||
C4 | Конденсатор | 22 мкФ | 1 | В блокнот | ||
R1,R2 | Резистор | 100 Ом | 2 | Зависит от светодиодов | В блокнот | |
R5, R6, R8, R9 | Резистор | 10 кОм | 4 | В блокнот | ||
R7, R10 | Подстроечный резистор | 22 кОм | 1 | В блокнот | ||
R11 | Резистор |
Очень мощный светодиодный стробоскоп, который отлично дополнит любой танцпол дискотеки. Построен стробоскоп на трех светодиодных матрицах общей мощностью 150 Вт.
Принцип работы устройства состоит в том, чтобы давать очень короткие импульсы света (вспышки) через заданный промежуток времени. По действию очень сильно напоминает молнию во время дождя, когда полностью темное помещение на миллисекунды озаряет яркий свет.
Во время дискотеки это выглядит особенно завораживающе.
Детали:
- Светодиодная матрица –
- Источник 12 В –
- Транзистор K2543 –
- Диодный мост –
- Микросхема NE555 –
- Резисторы и конденсаторы –
Схема стробоскопа
Я бы не сказал, что схема сложная, скорее простая. Но она не имеет гальванической развязки по напряжению, что означает – нельзя прикасаться ни к одному элементы схемы во время её работы и во время сборки быть особо внимательным.
Визуально схему можно разделить на блок питания 12 В, генератор импульсов, выпрямитель и линейку светодиодов.
Работа стробоскопа
На микросхеме NE555 собран генератор коротких импульсов. Время между импульсами можно менять вращая ручку переменного резистора R3.К выходу этого генератора подключен ключ на полевом транзисторе, который коммутирует напряжение 220 В, в цепи питания светодиодных матриц, включенных параллельно друг другу.
Светодиодные матрицы питаются постоянным током, который выпрямляется диодным мостом. Это нужно для того, чтобы можно было коммутировать цепь полевым транзистором, который работает только с постоянным напряжением.
Сборка стробоскопа
Стробоскоп собран в кожухе от кабельканала. Светодиоды прикручены к широкой стороне, без радиаторов. Так как светодиод используется где-то на 2-5% от своей мощности (импульсная работа), то надобность в теплоотводах отпадает.Боковые стенки вырезаны из того же кабельканала и приклеены клеем. Сверху выведен переменный резистор для регулировки частоты мерцания.
Блоки схемы в корпусе:
Предостережение
Светодиоды очень мощные и могут повредить ваши глаза, так что смотреть на них при работе не рекомендуется. Стробирующие вспышки особенно опасны, так как глаз расслабляется в темноте, а яркий импульс проникает напрямую в сетчатку глаза.Так же не забываем, что вся схема находиться под сетевым напряжением, опасным для жизни.
Результат работы
Работу стробоскопа, к сожалению, не передать ни через фото, ни через видео. Так как даже видеокамера очень плохо улавливает короткий импульс и её в итоге просто засвечивается.Но я от себя могу сказать, что стробоскоп получился отличный, вспышки короткие и очень яркие. Смотрится очень эффектно, в общем все как надо.
Стробоскоп — всем очень хорошо знакомое устройство, которое нашло достаточно широкое применение во многих отраслях науки и техники. Простой пример стробоскопа — милицейские мигалки. Такие мигалки считаются спецсигналом и их применение незаконно. Но не смотря на это, некоторые авантюристы, которые ищут приключения на свою голову, привыкли использовать незаконное, чтобы отличаться от других. Если честно, я себя считаю одним из них, поэтому решил сделать «МЕНТОВСКОЙ» стробоскоп своими руками и поделится с вами схемой.
Схема стробоскопа на светодиодах
Из всех схем, которые можно найти на просторах интернета, эта самая простая и полностью рабочая . Напомню, что такой стробоскоп отличается от простой мигалки тем, что тут можно задать частоту миганий и число череды миганий светодиодов. Проще говоря, каждый светодиод мигает 2 , 3 (можно до 4-х раз) затем переключается и начинает мигать второй светодиод. Получается полный аналог милицейских стробоскопов, которые лучше использовать в глухих окрестностях вашего района иначе грозит круглый штраф за использование спецсигнала.
Схема стробоскопа не содержит МК. Задающий генератор — всеми любимый таймер 555. Счетчик CD4017 имеет отечественный аналог (К561ИЕ8). Это десятичный счетчик-делитель с 10-ю дешифрованными выходами.
Сигнал с выходов микросхемы усиливается транзисторными ключами, тут выбор очень большой. Если собираетесь подключить светодиоды, то можно вообще исключить транзисторы, для питания более мощных светодиодов или светодиодных сборок можно использовать любые биполярные транзисторы НЧ — КТ819/805/805/829 и т.п.
К стробоскопу можно подключить более мощные лампы, к примеру, галогенные лампы от фар автомобиля с мощностью 100 и более ватт. Для этого только нужно использовать мощные полевые ключи IRFZ44, IRF3205, IRL3705, IRF1405 и другие N-канальные силовые транзисторы соответствующей мощности.
Монтаж стробоскопа делался в корпусе от электронного трансформатора, корпус одновременно служит теплоотводом для транзисторов, хотя перегрева на них не наблюдается.
Такой самодельный стробоскоп может работать часами, схема в дополнительной наладке не нуждается и работает сразу после включения. Устройство питается от бортовой сети автомобиля 12 Вольт, хотя начинает работать от 6 Вольт.
Видео работы самодельного стробоскопа:
Интерес современного автомобилиста не ограничивается вниманием к авто как средству перемещения. Во многом важен тот эффект и впечатление, которые можно произвести на всех участников движения. После повсеместного запрета на имитаторы мигалок правоохранителей и служебных авто, как-то неожиданно мода на стробоскоп на решетке и двойной сигнал стала набирать силу.
Большинство приведенных схем не предназначены для полной имитации сигналов служебных авто, это, скорее, чисто спортивный интерес. А кому и за что платить штрафы, решает каждый сам, исходя из своих возможностей.
Существует несколько простых способов организовать стробоскоп на авто, все зависит от количества сил и средств, которые позволительно потратить для постройки автомобильного стробоскопа. Чаще всего стараются получить максимально реалистичное мерцание ламп стробоскопа.
Проверено на практике несколько простых схем светодиодных стробоскопов для авто:
- по самой простой схеме с использованием двух реле 494.3787;
- на основе таймера 555 и схемы к561ие8;
- на микроконтроллере PIC12F675;
- на элементной базе транзисторах 315 серии.
К сведению! Самый безопасный и популярный способ — использовать мигающий эффект путем установки светодиодов в фары авто. Это красиво и стильно.
Собираем автомобильный стробоскоп своими руками
Самым простым способом построить надежную схему на авто будет использование парочки реле от системы индикации поворотов газели, стартерного реле и парочки подстроечных резисторов. Такую схему стробоскопа легко собрать своими руками, при этом не потребуется даже специальных знаний или навыков.
Указанная схема предусматривает подключение к системе дневных огней авто. При желании можно переключать подключенные дневные ходовые огни или мигалки стробоскопа. Преимуществом подобного подхода является отсутствие в схеме чувствительных к перегрузке электронных компонентов. Релюшки, даже в случае перегрузки электроцепи, в большинстве случаев останутся целыми, хотя могут привести к перегоранию предохранителей.
Для построения схемы стробоскопа требуется следующее.
- Вначале разбираем корпус реле поворотов и аккуратно удаляем постоянный резистор белого цвета с многочисленными поперечными цветными полосками.
- В переменном сопротивлении в 20-25 кОм подпаиваем средний электрод к одному из боковых.
- Впаиваем переменное сопротивление вместо удаленного элемента таким образом, чтобы после обратной сборки поворотный шток переменного резистора можно было бы свободно вращать.
- Собираем схему, аналогичную процедуру проводим со вторым реле.
- Собираем изображенную на рисунке схему, и после подачи питающего напряжения поворотом управляющих штоков, подбираем и синхронизируем частоту мигания лампочек стробоскопа на авто.
Если использовать переменное сопротивление в 450 кОм, частота миганий будет значительно меньше, но для более точного подбора частоты мигания можно подобрать несколько разных сопротивлений и добиться необходимой частоты.
Построение схемы на основе микропроцессора
Наиболее «продвинутые» в основах микроэлектроники автолюбители считают, что самой эффективной будет схема стробоскопа на основе контроллера. На микроконтроллере PIC12F675 схема будет иметь возможность обеспечить импульсы тока до одного ампера с регулируемой длительностью.
Схема стробоскопа для авто проста в сборке своими руками. В качестве нагрузки чаще всего применяют пакет из светоэлементов, с возможностью изменять частоту мерцаний стробоскопа на светодиодах. Сам процессор управляет двумя мощными транзисторами КТ817 и может выдать семь различных комбинаций сигналов. Сама система достаточно распространена в промышленных схемах служебных мигалок, особенно для простых систем стробоскопов на решетке радиатора авто.
Самым неприятным в подключении подобных схем является высокая чувствительность любых микропроцессоров к превышению напряжения или возникновению режима короткого замыкания. Поэтому при сборке и пайке обязательным условием является использование хорошего заземления. Кроме того, в работе обязательно использование стабилизированного питания, обычно для этих целей используется схема на спаренном низковольтном стабилитроне.
При подключении схемы стробоскопа в цепь электропроводки авто необходимо предварительно полностью отключить питание от аккумуляторной батареи, запуск и испытание схемы категорически запрещается проводить при отсутствии нагрузки.
Полицейский стробоскоп своими руками на логическом счетчике
Для получения эффекта, сходного с мерцанием светодиодов в стробоскопе на служебных моторах правоохранителей, можно воспользоваться интересным вариантом на логическом счетчике 561 серии и 555 таймера. Схема получается несколько сложнее предыдущих разработок, но при наличии пары часиков свободного времени и умения паять, можно собрать небольшую самоделку на печатной плате.
В качестве нагрузки используются пакеты из светодиодов с общим потребляемым током не более 3А, при желании можно заменить маломощными галогенными лампами с общей потребляемой мощностью до 30 Вт.
Спецификой построения подобной схемы стробоскопа на светодиодах является интересная особенность формирования управляющего сигнала. Микросхема на 555 сборке выступает в роли источника управляющего сигнала, поступающего на вход счетчика. Не вдаваясь в особенности работы стробоскопа, можно только отметить, что схема зажигания и гашения светодиодов скопирована с стробоскопа полицейского авто.
Импульсы прямоугольной формы подаются на счетчик и суммируются. После определенного программируемого времени потенциал на управляющем контакте меняется с высокого на низкий.
Работает стробоскоп примерно так: каждый из пакетов светодиодов вспыхивает, дает некоторое запрограммированное количество вспышек и гаснет, далее сигнал передается следующему пакету светодиодов и так в циклическом режиме.
Важно! В качестве управляющих ключей в схеме стробоскопа использованы мощные КТ819 или биполярные КТ818, что позволяет управлять большими токами в нагрузке.
Для питания 555 микросхемы максимальное напряжение питания нельзя увеличивать более 18 Вольт, на больший диапазон работы стабилизатор не рассчитан, и сохраняет работоспособность схемы даже при падении напряжения до 5 В.
Как сделать стробоскоп своими руками на простых запчастях
Самым бюджетным способом построить стробоскоп на светодиодах своими руками будет не покупать кучу запчастей на радиорынке за пару тысяч, а попытаться использовать старые советские или китайские запчасти.
В качестве источника сигнала используем микруху 155 серии, можно АГ1. После подачи питания микросхема устанавливает на управляющем выводе положительный потенциал, и по мере зарядки конденсатора потенциал падает и открывает управляющий сигнал на КТ315. Емкость конденсатора определяет длину вспышки, при 0,1 мкФ это примерно составит 0,01 сек, что вполне достаточно для получения необходимого оптического эффекта.
На 6-й ноге 155 микросборки будет формироваться серия импульсов, сопряженная с импульсами системы зажигания. Они попадают на управляющие электроды двух транзисторов КТ 829. Далее транзистор открывается, и через нагрузку из светодиодов потечет значительный по величине ток.
Если схема стробоскопа потребляет более 60 Вт, для охлаждения транзисторов используйте штатные алюминиевые радиаторы.
Итог, или оформление светодиодов стробоскопа для авто
Для большинства любителей самодельных стробоскопов иногда важнее скрыть факт обладания самодельной светоиллюминацией, сходной с полицейской. Поэтому зачастую сам пакет лампочек или светодиодов выполняют съемным, чтобы легко установить на капот или крышу авто. Иногда для пущей маскировки сверху такого блока одевают легкосъемный пластиковый чехол, по внешнему виду сильно напоминающий фонарь такси.
Преимуществом подобного конструктивного решения является то, что приспособление стробоскопа легко снять и даже выбросить. Стробоскоп с одетым поверх пластиковым чехлом будет напоминать фонарь таксиста и не привлечет внимания полицейских на стоянке или при случайной остановке авто на дороге.
Вторым вариантом установки является монтаж пакета светодиодов стробоскопа в область радиаторной решетки авто или в полость лампы-фары. Это более дорогой и эффектный способ, так как потребует некоторой переделки оптики авто, и в случае конфликта с правоохранителями может стать основанием для помещения машины на штрафстоянку.
Как превратить любой свет в стробоскоп, используя всего два транзистора
Если вы чувствуете, что стробоскопы очень интересны, но разочарованы тем фактом, что эти чудесные световые эффекты могут быть получены только с помощью сложной ксеноновой лампы, то, вероятно, вы сильно ошибаетесь.
Очень возможно сделать любой свет стробоскопом, если у вас есть соответствующая схема управления, способная работать с различными осветительными устройствами для создания желаемого эффекта стробоскопа.
В данной статье показано, как такая базовая схема, как мультивибратор, может быть модифицирована различными способами и сделана совместимой с обычными лампами, лазерами, светодиодами для получения впечатляющих световых импульсов.
Стробоскопический свет можно использовать для предупреждения, научного анализа или в качестве развлекательного устройства, независимо от области применения, эффекты просто ослепительны. Фактически, можно сделать любой свет стробоскопом с помощью правильной схемы управления. Объясняется электрическими схемами.
Разница между миганием и стробированием
Мигающий или мигающий свет действительно выглядит довольно привлекательно, и именно поэтому они используются во многих местах в качестве предупреждающих устройств или для украшения.
Однако, в частности, стробоскопический свет можно также рассматривать как мигающий свет, но он однозначно отличается от обычных световых мигалок. В отличие от них в стробоскопе, схема включения / выключения настолько оптимизирована, что дает резкие, ослепляющие импульсные вспышки света.
Несомненно, почему их чаще всего используют в сочетании с быстрой музыкой, чтобы улучшить настроение вечеринки. В настоящее время зеленые лазеры широко используются в качестве стробирующих устройств в залах для вечеринок и собраний и стали горячими фаворитами среди нового поколения.
Будь то светодиоды, лазеры или обычная лампа накаливания, все это можно заставить мигать или, скорее, стробировать, используя электронную схему, способную производить необходимое импульсное переключение в подключенном осветительном элементе. Здесь мы увидим, как с помощью простой электронной схемы сделать любой свет стробоскопом.
Следующий раздел познакомит вас с деталями схемы. Давай пройдем через это.
Пульсация любого света для создания эффекта стробинга
В одной из моих предыдущих статей мы натолкнулись на симпатичную небольшую схему, способную создавать интересные эффекты стробирования на нескольких подключенных светодиодах.
Но эта схема подходит только для управления светодиодами малой мощности и поэтому не может применяться для освещения больших площадей и помещений.
Предлагаемая схема позволяет управлять не только светодиодами, но и мощными осветительными приборами, такими как лампы накаливания, лазеры, КЛЛ и т. Д.
На первой схеме показана простейшая форма схемы мультивибратора с транзисторами в качестве основных активных компонентов. Подключенные светодиоды можно заставить мигать, соответствующим образом отрегулировав два потенциометра VR1 и VR2.
ОБНОВЛЕНИЕ:
В этой статье я объяснил несколько схем транзисторных стробоскопов, однако показанная ниже конструкция является самой простой и проверена мной. Так что вы можете начать с этого дизайна и настроить его в соответствии со своими предпочтениями и предпочтениями.
Видеоиллюстрация
Обсуждаемая выше простая конструкция может быть дополнительно модифицирована, как описано ниже, для большего контроля и улучшенных выходных данных.
Вышеупомянутая схема образует основу для всех следующих схем посредством некоторых подходящих модификаций и дополнений.
Использование лампы фонарика в качестве стробоскопа
Например, если вы хотите осветить и пульсировать с ее помощью лампочку фонарика, вам просто нужно будет внести простые изменения, как показано на второй диаграмме.
Здесь, добавив силовой транзистор PNP и запустив его через коллектор T2, лампу фонарика легко заставить стробировать. Конечно, оптимальный эффект достигается только при правильной настройке двух горшков.
Как уже говорилось в предыдущем разделе, зеленые лазерные указки сейчас довольно популярны; проиллюстрированная схема показывает простой метод преобразования вышеуказанной схемы в пульсирующий зеленый стробоскоп лазерной указки.
Здесь стабилитрон вместе с транзистором работают как цепь постоянного напряжения, гарантируя, что на лазерную указку никогда не будет подаваться напряжение, превышающее его максимальное номинальное значение.
Это также гарантирует, что ток лазера никогда не может превышать номинальное значение.
Стабилитрон и транзистор работают как постоянное напряжение, а также как драйвер постоянного тока для лазера.
Использование лампы переменного тока 220 В или 120 В в качестве стробирующего света
На следующей схеме показано, как сетевую лампу переменного тока можно использовать в качестве источника стробирующего света с использованием указанной выше схемы.Здесь симистор образует главный переключающий компонент, получающий необходимые импульсы затвора от коллектора Т2.
Таким образом, мы видим, что с помощью вышеупомянутых схемных решений становится очень легко сделать любой свет стробоскопом, просто выполнив соответствующие модификации в простой транзисторной схеме, как объяснено в приведенных выше примерах.
Список деталей
- R1, R4, R5 = 680 Ом,
- R2, R3 = 10K
- VR1, VR2 = 100K потенциометра
- T1, T2 = BC547,
- T3, T4 = BC557
- C1, C2 = 10 мкФ / 25 В
- Симистор = BT136
- Светодиоды = по выбору
Цепь полицейского стробоскопа
Для медленной нестабильности используйте следующие детали:
- R1, R4 = 680 Ом
- R2, R3 = 18K
- C1 = 100 мкФ
- C2 = 100 мкФ
- T1, T2 = BC547
Для Fast Astable используйте следующие детали:
- R1, R4 = 680 Ом
- R2, R3 = 10K
- предустановка = 100K
- C1 = 47 мкФ
- C2 = 47 мкФ
- T1, T2 = BC547
Светодиодный стробоскоп с регулируемым током мощностью 36 Вт
Эта схема светодиодного стробоскопа мощностью 36 Вт с функцией управления током была запрошена одним из преданные читатели сайта, г-н.Рохит.
Идею дизайна можно понять из следующего объяснения:
Я пытаюсь сделать светодиодный стробоскоп с быстрой вспышкой, подобный тем, которые используют операторы для фотографии. Я видел на вашем веб-сайте несколько схем, касающихся светодиодов, таких как драйвер постоянного тока, питание светодиодных ламп высокой мощности, светодиодный стробоскоп. Однако я думаю, что мое приложение представляет собой комбинацию этих проектов.
Итак, что я хочу сделать, так это включить светодиоды мощностью 18 Вт или 36 Вт для вспышки в 1 микросекунду и мне нужен драйвер постоянного тока, чтобы каждая вспышка имела одинаковую интенсивность.
Надеюсь вскоре получить известие от вас. Не стесняйтесь обращаться ко мне, если у вас есть какие-либо вопросы по электронной почте или позвоните мне для дальнейшего обсуждения
Полную принципиальную схему мощного светодиодного стробоскопа мощностью 36 Вт с функцией контроля тока можно увидеть на следующем изображении:
Светодиодный стробоскоп и габаритные огни
Получите высококачественное светодиодное освещение за меньшие деньги с этими наборами для самостоятельного изготовления. Создайте свой собственный светодиодный стробоскоп и габаритное освещение законцовки крыла за несколько часов за меньшие деньги!DIY Kit — построен вами.Вам нужно припаять все компоненты к платам.
Это займет у вас всего 4–5 часов.
Вам понадобятся только основные ручные инструменты, такие как плоские или боковые кусачки и плоскогубцы (~ 10 долларов каждый), но у вас должен быть паяльник с регулируемой температурой и острым наконечником. Даже что-то вроде дешевого из этой подборки подойдет. (Однако ваш паяльник мощностью 200 Вт, который вы используете для заделки отверстий в крыше, не подойдет!) Мы включили в комплект для вас кусок припоя.
Предоставляются пошаговые инструкции, поэтому, даже если вы новичок в пайке, мы проведем вас через каждый шаг.
Эти огни разработаны таким образом, чтобы превосходить минимальные требования к освещению для предотвращения столкновений для сертифицированных воздушных судов; вас будут видеть светодиодные индикаторы положения и стробоскопы Flyleds.
Стробоскопы можно настроить переключателем для нескольких шаблонов мигания.
Кроме того, доступен дополнительный режим WigWag, который увеличивает продолжительность мигания и улучшает вашу видимость для других во время дневного полета.
Общий вес 450 грамм / 16 унций. (Это всего лишь 200 грамм на крыло!)
В комплект входят левая и правая крылья, плата контроллера и все детали, необходимые для того, чтобы сделать его ярким! Вы можете дополнить этот комплект нашим светодиодным хвостовым стробоскопом.
Уже установлены посадочные фонари с законцовками крыла? Подключайтесь к нашим тонким доскам в своем наборе и сохраните настройку без изменений.Теперь у нас есть подходящие доски:
RV-10 и 14 (номер детали фургона W-1015)
RV-9 (W-915)
RV-7 и 8 (W-715-1 Новые модели законцовок крыла с прямым задняя кромка)
RV-7 и 8 (W-715 «Batwing», законцовки крыльев старой модели с изогнутой задней кромкой)
RV-4, 6 и 8 (W-415 с плоским верхом или законцовки крыла Hoerner).** свяжитесь с нами для получения информации о наличии
СКОРО В ПРОДАЖЕ: Платы для
Falcomposite Furio
Lancair
Просто выберите тип крыла при оформлении заказа, и мы пришлем вам подходящие.
Примечание: Не входит в комплект:
Экранированный кабель 18-22 AWG для соединения крыльев и хвоста свет на плату контроллера.
Мы поставляем 15-контактный разъем D под пайку для вашего жгута проводов, однако мы рекомендуем вам заменить эту деталь вилкой обжимного типа и обработанными обжимными штырями.
Цепь стробоскопа СИД высокой интенсивности
Цепь строба СИД высокой интенсивности
Стробоскопическое устройство должно производить регулярные вспышки света, и оно может создавать стробоскопический эффект
. Схема светодиодного стробоскопа высокой интенсивности, разработанная с таймером IC 555 и несколькими внешними компонентами. Здесь мы использовали белый светодиод мощностью 1 Вт для получения света высокой интенсивности.
Таймер IC 555 сконфигурирован как нестабильный мультивибратор, и он будет производить непрерывный прямоугольный импульс в зависимости от временного резистора и емкости синхронизирующего конденсатора.
Принципиальная схема
Необходимые компоненты
- IC 555
- Белый светодиод 1 Вт
- Переменный резистор 100 кОм
- Резистор 10 кОм, 10 Ом / 1 Вт каждый
- Конденсатор 0,1 мкФ, 0,01 мкФ каждый
- Батарея
Этот белый светодиод мощностью 1 Вт будет иметь две клеммы, названные анодом (+) и катодом (-). Если вы хотите, чтобы эта схема работала непрерывно, используйте светодиодный радиатор со светодиодом мощностью 1 Вт.
Строительство и работа
Конструкция этой схемы начинается с таймера IC 555 и синхронизирующих элементов резистора R1 и RV1, затем конденсатора C1.Таймер IC Контакты 8 и 4 подключены к положительной клемме батареи, а контакт 1 — к отрицательной клемме питания, контакт 5 подключен к отрицательной клемме питания через конденсатор C2. Резистор R1, RV1 и конденсатор C1 подключены последовательно между разрядным контактом 7, пороговым контактом 6 и триггером 2. Выходной контакт 3 таймера IC 555 подключен к белому светодиоду мощностью 1 Вт через резистор R2.
Выходное время (t) = 0,693 (R1 + 2RV1) .C Здесь значение RV1 представляет собой текущее значение сопротивления позиции (потому что его переменный резистор), а не полное значение сопротивления RV1.
Зависит от значения элементов синхронизации, прямоугольный импульс включения и выключения, генерируемый таймером IC 555 (узнайте больше о нестабильном мультивибраторе 555), и выходной сигнал с контакта 3 подается на белый светодиод, теперь светодиод начинает мигать в соответствии с включением и ВЫКЛ импульсы.
Мощный светодиодный стробоскоп | Проект полной электроники
Стробоскоп — удобный и достаточно точный прибор для измерения скорости вращающихся объектов в домах или на производстве. Его можно использовать для определения скорости вентиляторов, двигателей или любого другого вращающегося объекта.
Стробоскоп — это не что иное, как мигающий свет, который может обеспечивать резкие световые импульсы с переменной скоростью. Если вращающийся объект наблюдается в мощном пучке импульсного света с частотой, соответствующей оборотам в секунду вращающегося объекта, вращающийся объект кажется неподвижным. Таким образом, скорость любого вращающегося объекта может быть рассчитана путем изменения частоты пульса до тех пор, пока вращающийся объект не станет неподвижным. Как только это состояние будет достигнуто, число оборотов в минуту (об / мин) вращающегося объекта будет равно времени импульса.
Схема и рабочая
На рис. 1 представлена схема светодиодного стробоскопа на базе микроконтроллера. Он состоит из микроконтроллера PIC16F73 (IC1), регулятора 7805 (IC2), трехзначного 7-сегментного дисплея с общим анодом KLT363 (DIS1) и нескольких дискретных компонентов.
Микроконтроллер. PIC16F73 (IC1) является сердцем стробоскопа и обеспечивает широкий диапазон коротких импульсов. Это мощный микроконтроллер, который представляет собой идеальное решение для хобби и промышленного развития.
Инжир.1: Схема светодиодного стробоскопаPIC16F73 — это 8-битный высокопроизводительный маломощный RISC-процессор. Его основные характеристики: 4 КБ флэш-памяти, 192 байта ОЗУ, три порта ввода / вывода (I / O), 8-битный 5-канальный аналого-цифровой преобразователь (АЦП), три таймера и сторожевой таймер с собственным встроенным чипом. RC-генератор для надежной работы. Микроконтроллер может распознать и выполнить всего 35 простых инструкций. Все инструкции, кроме веток, одноцикловые.
Контакты порта с RB0 по RB7 микроконтроллера IC1 подключены к сегментам «a» — «g» и «dp» трехзначного 7-сегментного дисплея DIS1, как показано на рис.1.
Контакты порта RC1, RC2 и RC3 подключены к базам транзисторов T4, T3 и T2 для управления выводами 12, 9 и 8 с общим анодом DIS1 соответственно. Когда эти выводы порта становятся низкими, транзистор T2 приводится в состояние насыщения, обеспечивая питание выводов с общим анодом DIS1.
МикроконтроллерIC1 одновременно выдает сегментные данные и сигналы разрешения отображения в мультиплексированном режиме с временным разделением для отображения определенного числа на 7-сегментном дисплее. Сегментные данные и импульсы включения дисплея обновляются очень быстро.Таким образом, дисплей выглядит непрерывным, даже если его сегменты загораются один за другим.
Многооборотный подстроечный резистор VR1 используется для изменения периода импульса стробоскопа. Контакт порта RC0 микроконтроллера IC1 управляет полевым МОП-транзистором T5 для генерации импульсного света через светодиод 2 для измерения скорости. Резистор R11 ограничивает ток через LED2. Его значение зависит от используемого светодиода.
Период времени импульсов варьируется от 0,5 мс до 100 мс, который состоит из двух этапов: когда переключатель S2 замкнут, контакт порта RC4 становится низким, и отображаемая частота импульсов составляет одну четвертую фактического значения.Затем, если на дисплее отображается 20 мс, фактическая частота импульсов составляет 80 мс. Точно так же, если S3 закрыт после замораживания объекта, отображаемая частота пульса будет вдвое больше фактического значения.
Switch S4 используется для измерения скольжения асинхронных двигателей. Когда он удерживает контакт порта RC6 на высоком логическом уровне, дисплей становится неактивным, и импульсы выводятся в соответствии с входной прямоугольной волной, подаваемой на контакт RC5 порта. Эта прямоугольная волна генерируется из вторичного переменного напряжения трансформатора X1 с помощью транзистора T1 с частотой, равной частоте сети.Следовательно, под действием этого светового импульса любой двигатель переменного тока будет казаться неподвижным, если он работает точно на синхронных скоростях. Из-за скольжения вал двигателя медленно движется в противоположном направлении. Поскольку движение очень медленное, это можно посчитать с помощью часов. При разных нагрузках на вал асинхронного двигателя скольжение меняется. Внешний импульс также может подаваться на контакт RC5 порта с соответствующей установкой перемычки CON1.
Коммутатор S5 сопряжен с контактом порта RA4. Когда она нажата, дисплей напрямую показывает количество оборотов в секунду на дисплее DIS1.В противном случае он показывает временной период импульсов.
Кристалл 20 МГц (XTAL) вместе с двумя конденсаторами 22 пФ обеспечивает основную тактовую частоту для микроконтроллера. Резистор R3 и конденсатор C3 используются для сброса питания микроконтроллера. Переключатель S1 используется для ручного сброса.
Чтобы обеспечить питание схемы, напряжение сети 230 В переменного тока понижается трансформатором X1 для обеспечения вторичного выхода 12 В-0-12 В, 2 А. Выход трансформатора выпрямляется двухполупериодным выпрямителем, содержащим диоды D1 и D2, фильтруемые конденсатором C1 и регулируемые IC 7805 (IC2).Конденсатор C2 обходит пульсации, присутствующие в регулируемом питании. LED1 действует как индикатор питания, а резистор R12 ограничивает ток через LED1.
Изготовление и тестирование светодиодного стробоскопа
Односторонняя печатная плата для светодиодного стробоскопа на базе микроконтроллера показана на рис. 2, а расположение компонентов — на рис. 3. Соберите схему на печатной плате, так как это экономит время и сводит к минимуму ошибки сборки. Тщательно соберите компоненты и дважды проверьте, нет ли пропущенных ошибок. Используйте базу IC для микроконтроллера.
Рис. 2: Односторонняя печатная плата светодиодного стробоскопа Рис. 3: Компоновка компонентов печатной платыЗагрузите файлы печатной платы и компоновки компонентов в формате PDF:
щелкните здесьПеред тем, как вставить IC1, проверьте напряжение питания в контрольной точке TP1. Должно быть 5В. Отражатель, доступный для светодиода высокой мощности, будет направлять вспышку должным образом на исследуемый объект.
Вырежьте круглый диск из картона и сделайте на нем темное пятно. Установите диск на мотор-шпиндель. Когда вы включаете двигатель, диск начинает вращаться.Теперь включите цепь. Светодиод высокой мощности начинает мигать. Прямой мигающий свет от светодиодного стробоскопа на вращающийся диск с маркировкой. Отрегулируйте частоту мигания светодиода, изменяя подстроечный резистор VR1, пока патч не станет неподвижным. Период времени импульса мигающей лампы в миллисекундах (мс) отображается на 7-сегментном дисплее. Вы можете увидеть частоту пульса на дисплее, нажав переключатель S5.
Чтобы проверить правильность работы цепи, проверьте контрольные точки на соответствие уровням напряжения, как показано в таблице контрольных точек.
Программное обеспечение
Программа написана на языке Ассемблер и собрана с использованием PIC simulator IDE программного проекта Oshon. Он хорошо прокомментирован и прост для понимания. Сгенерированный шестнадцатеричный код записывается в микроконтроллер с помощью подходящего программатора. Симулятор предоставляет все аксессуары для моделирования программы, такие как контакты микроконтроллера, семисегментный дисплей, а также прямоугольный сигнал. Дисплей программатора PIC Kit 2 показан на рис. 4 с выбранными битами конфигурации.
Рис. 4: Бит конфигурации для микроконтроллераСкачать исходный код:
щелкните здесьПрограмма для стробоскопа с этими функциями и дисплеем довольно сложна. Таймер PIC используется для генерации прерывания каждые 256 тактов таймера. Часы таймера выводятся из системных часов устройством предварительного масштабирования, которое содержится в «регистре опций» микросхемы.
Порт C полностью используется для генерации импульсов, выбора режима и отображения.Порт B используется для управления семью сегментами и десятичной точкой. Здесь используется один канал АЦП. С помощью многооборотного потенциометра напряжение от 0 до 5 В подается на аналоговый вход — вывод RA0 микросхемы IC1. Это позволяет плавно регулировать частоту мигания светодиода LED2.
Импульс вспышки исходит от контакта RC0 порта. Ширина импульса должна регулироваться пропорционально скорости. Слишком большая ширина приведет к смазыванию при замораживании движущегося объекта. Частота следования импульсов изменяется путем регулирования количества раз, которое должно истечь прерывание таймера перед запуском нового импульса.Таким образом, число может изменяться от 0 до 255.
После инициализации таймера и портов программа проверяет состояние контакта RC6 порта. В зависимости от этого состояния программа решает, следует ли использовать переменный импульс или фиксированный импульс 50 Гц. Для фиксированного импульса 50 Гц на контакт RC5 порта подается прямоугольная волна 5 В с частотой 50 Гц.
Сегменты дисплея выбираются один за другим. Программа использует поисковую таблицу для определения различных отображаемых шаблонов сегментов (от 0 до 9). Выбор цифр осуществляется через контакты порта RC1 — RC3.
Профессор К. Падманабхан — почетный профессор технологического колледжа Алагаппа, Гуинди, Ченнаи, а д-р С. Ананти — руководитель отдела измерительных приборов в Университете Мадраса
Этот проект был впервые опубликован 22 июня 2015 г. и обновлен 4 мая 2020 г.
Схема цепи светодиодного стробоскопаВ этом проекте мы разработаем схему светодиодного стробоскопа с использованием популярной микросхемы таймера 555. Стробоскопическая лампа или стробоскопическая лампа могут производить регулярные вспышки света.Мы разрабатываем эту схему с использованием таймера 555 для установки задержки между каждой вспышкой и мощным светодиодным светом в качестве источника света. В конце этого проекта мы узнаем, как использовать таймеры 555 в моностабильном режиме и как рассчитать задержку для такой схемы.
Необходимые компоненты:Компоненты, необходимые для этого проекта, перечислены ниже
- 555 Таймер
- Светодиод высокой мощности
- Резистор 10к
- 0.01 мкФ, 0,1 мкФ конденсатор
- Потенциометр 10M (или резисторы 1M, 2M)
- Макет
- Соединительные провода
- Батарея 9 В
Полная принципиальная схема показана на изображении выше. Вы можете построить их на макете или припаять к Perf Board. Описание схемы дано ниже.
Описание цепей:
Сердцем схемы стробоскопа является таймер 555, который работает в моностабильном режиме.Таймер 555 может работать в 3 различных режимах, таких как нестабильный, моностабильный и бистабильный режим. Все эти три режима производят три разных типа импульсов, которыми можно управлять в определенной точке. В моностабильном режиме генерируются импульсы, время высокого состояния которых может быть установлено с помощью триггера на выводе 2. Выход (вывод 3) микросхемы 555 обычно остается низким, всякий раз, когда срабатывает вывод 2, вывод 3 переходит в высокий уровень в течение определенного интервала. времени.
Этой задержкой можно управлять, изменяя значения резистора (потенциометра) и конденсатора (C2), показанных в схеме.Формулы для расчета задержки показаны ниже
.T = 1,1 × R × C
Где сопротивление R выражено в омах, емкость C — в фарадах, а время — в секундах. Я использовал значение резистора как 1 МОм и значение конденсатора как 0,1 мкФ, чтобы получить задержку около 0,1 секунды. Вы можете изменить задержку, варьируя потенциометр.
Моделирование цепи:Для дальнейшего понимания работы этого проекта.Попробуем смоделировать проект с помощью программы Proteus. Используя DSO в Proteus, мы можем визуализировать плюсы таймера 555. Вы можете скачать файл дизайна Proteus отсюда.
После загрузки нажмите кнопку воспроизведения, и вы должны увидеть график, как показано на изображении ниже.
Вы можете изменить резистор R2 и заметить, что количество импульсов меняется в зависимости от номинала резистора. Это изменение повлияет на скорость включения и выключения светодиода.Форма волны увеличена на изображении ниже.
Рабочий:После того, как соединения установлены, просто запитайте схему, используя батарею 9 В. Вы должны заметить, что ваш светодиод мигает. Если выглядит стабильно, значит, мигает так быстро, что невооруженным глазом не видно. Поэтому постепенно регулируйте потенциометр, чтобы изменить, насколько быстро он должен мигать. Полноценную работу над проектом вы можете посмотреть в видео ниже.
То есть у нас работает светодиодный стробоскоп .Надеюсь, вам понравился проект и он заработал, если не опубликуйте свои проблемы в разделе комментариев, и я помогу вам.
Как сделать стробоскопы своими руками. Самодельный стробоскоп для регулировки зажигания. Сборка строба своими руками пошагово, самый простой вариант
Светодиодный стробоскоп для установки зажигания позволяет быстро и с высокой точностью установить оптимальный угол опережения зажигания (УАЗ) в автомобиле. Этот параметр играет важную роль в правильной работе двигателя.Небольшое смещение в момент зажигания приводит к потере мощности из-за повышенного расхода топлива и перегрева двигателя.
Несмотря на большой ассортимент промышленных устройств для проверки и установки женщин, актуальность создания стробоскопа не потеряла смысла и сегодня. Представленная схема самодельного стробоскопа для автомобиля не требует настройки после сборки и изготовлена из имеющихся деталей.
Концепт Strobeconopa
Схема разработана и представлена в девятом выпуске журнала Радио в далеком 2000 году.Однако, благодаря своей простоте и надежности, он остается актуальным и сейчас.
В принципиальной электрической схеме Стробоскоп для автомобиля условно можно выделить 4 части:
- Силовая цепь, состоящая из переключателя SA1, диода VD1 и конденсатора С2. VD1 защищает элементы схемы от ошибочной смены полярности. С2 блокирует частотные помехи, предотвращая сбои в работе триггера. Для питания и выключения питания используется переключатель SA1, для этого подойдет любой компактный переключатель или тумблер.
- Входная цепь, состоящая из датчика, конденсатора С1 и резисторов R1, R2. Функцию датчика выполняет зажим «крокодил», который закреплен на высоковольтном проводе первого цилиндра. Элементы C1, R1, R2 представляют собой простейшую дифференцирующую схему.
- Микросхема триггера собрана по схеме из двух однотипных блоков, формирующих на выходе импульсы заданной частоты. Грузовые элементы — резисторы R3, R4 и конденсаторы C3, C4.
- Выходной каскад собран на транзисторах VT1-VT3 и резисторах R5-R9. Транзисторы усиливают выходной ток триггера, что отражается в виде ярких вспышек светодиодов. R5 задает ток БД первого транзистора, а R9 — устраняет сбои в работе мощного VT3. R6-R8 ограничивают ток нагрузки, протекающий через светодиоды.
Принцип действия
Схема стробоскопа питается от автомобильного аккумулятора. При срабатывании выключателя SA1 триггер DD1 переходит в исходное состояние.В то же время на обратных выходах (2, 12) появляется высокий потенциал, а на прямых (1, 13) — низкий. Конденсаторы С3, С4 заряжаются через соответствующие резисторы.
Импульс с датчика, проходя через дифференцирующую цепь, поступает на тактовый вход первого однотракторного DD1.1, что приводит к его переключению. Начинается перезагрузка C3, которая через 15 мс заканчивается еще одним переключением триггера. Таким образом, симулятор реагирует на импульсы с датчика, формируя на выходе прямоугольные импульсы (1).Длительность выходных импульсов с DD1.1 определяется скоростями R3 и C3.
Второй программный DD1.2 работает аналогично, уменьшая длительность импульса на выходе (13) в 10 раз (примерно на 1,5 мс). Нагрузка для DD1.2 представляет собой усилительный каскад транзисторов, открывающихся в момент импульса. Импульсный ток через светодиоды ограничивается исключительно резисторами R6-R8 и в этом случае достигает значения 0,8 А.
Не бойтесь такого большого тока.Во-первых, его импульс не превышает 1 мс, при штатном режиме работы не менее 15. Во-вторых, современные светодиоды имеют гораздо лучшие технические характеристики по сравнению с их предшественниками 2000 года, когда эта схема впервые получила практическое применение. Тогда нужно было искать светодиоды с мощностью света в 2000 мк. Теперь белый светодиод (от англ. Light-Emitting DIODE) типа C512A-5 мм от фирмы с углом рассеяния 25 ° способен выдавать 18 000 мкД при постоянном токе 20 мА.Поэтому использование супервоенных светодиодов позволит значительно снизить ток нагрузки за счет увеличения сопротивления R6-R8. В-третьих, время использования стробоскопа обычно не превышает 5-10 минут, что не вызывает перегрева кристаллов излучающих диодов.
Печатная плата и детали сборки
Самодельный стробоскоп для установки зажигания можно собрать как на недорогих отечественных радиоэлементах, так и на более точных импортных элементах. Ниже указана плата с использованием отечественных комплектующих для штифтового крепления.
Доска в досье. Макет спринта. 6.0: Plata.Lay6.
Диод VD1 — CD2999B или любой другой с небольшим падением постоянного напряжения. Конденсатор С1 должен быть высоковольтным емкостью 47 ПФ и напряжением 400 В. Конденсаторы С2-С4 неполярные серии КМ-5, К73-9 по 0,068 мкФ 16 В. Все резисторы, кроме R4, такие как MLF или планарный со ставками, указанными на схеме. R4 Тип SP-3 или SP-5 резистор смачивания на 33 ком.
ТриггерTM2 лучше использовать 561 серию, которая отличается высокой помехозащищенностью и надежностью.Но можно заменить на микросхему 176 и 564 серий с учетом их распиновки. Транзисторы VT1-VT2 подойдут CT315 b, B, g или CT3102 с большим коэффициентом усиления. Выходной транзистор — КТ815, КТ817 с любой буквенной консолью. Светодиоды HL1-HL9 лучше брать superwear с малым углом рассеивания. Они размещаются на отдельной доске по три в ряд. При отсутствии каких-либо деталей схемы их можно заменить на более современные аналоги, немного улучшенную плату.
Готовая плата управления стробоскопом и плата со светодиодами удобно размещаются в корпусе переносного фонаря.В этом случае необходимо предусмотреть отверстие в корпусе под контроллер R4, а штатный выключатель можно использовать как SA1.
Настройка
На схеме установлен резистор хода R4, регулировкой которого можно добиться визуального эффекта. Вращая ручку регулятора, можно заметить, что уменьшение импульса тока приводит к недостаточной подсветке этикеток, а увеличение — к размытию. Поэтому при первом запуске стробоскопа необходимо выбрать оптимальную продолжительность вспышек.
Длина экранированного провода от печатной платы Датчик не должен превышать 0,5 м. В качестве датчика подойдет медный провод 0,1 м, припаянный к центральному корпусу экранированного провода. В момент подключения он наматывается на изоляцию высоковольтного провода первого цилиндра автомобиля, делая 3 витка. Для повышения помехозащищенности обмотку производят как можно ближе к свече. Вместо медного проводника можно взять зажим типа «крокодил», который тоже следует припаять к центральному жилью, а его зубцы будут слегка загнуты внутрь, чтобы не повредить изоляцию.
Установка стробоскопа Узень
Прежде чем рассматривать работу автомобильного стробоскопа, необходимо понять суть стробоскопического эффекта. Если объект, движущийся в темноте, на мгновение засветится вспышкой, то он будет казаться застывшим в том месте, где произошла вспышка. Если наклеить на вращающееся колесо яркую метку и осветить ее яркими вспышками, совпадающими по частоте с частотой вращения колеса, то в момент мигания можно визуально зафиксировать расположение метки.
Перед регулировкой борта автомобиля наносятся две метки: подвижный вал (маховик) и неподвижный — на картере двигателя. Затем включите датчик, подайте питание на стробоскоп и включите двигатель на холостой ход. Если во время вспышек метки совпадают, то узлы обнажены оптимально. В противном случае следует довести до их полного совпадения.
Представленный стробоскоп для установки зажигания, собранный своими руками, позволит за несколько минут отладить систему зажигания автомобиля.В результате регулировка повысит КПД двигателя и увеличится срок службы.
Читать так же
Очень мощный светодиодный стробоскоп, который прекрасно дополнит любой дискотечный танцпол. Стробоскоп построен на трех светодиодных матрицах общей мощностью 150 Вт.
Принцип работы устройства заключается в выдаче очень коротких световых импульсов (вспышек) в заданный промежуток времени. По действию он очень сильно напоминает застежку-молнию во время дождя, когда совершенно темная комната на миллисекунды освещает ярким светом.
Во время дискотеки это выглядит особенно завораживающе.
Детали:
- Светодиодная матрица —
- Источник 12 В —
- Транзистор K2543 —
- Диодный мост —
- Микросхема NE555 —
- Резисторы и конденсаторы —
Схема конструктора строба
Я бы не сказал, что схема сложная, достаточно простая. Но у него нет гальванического натяжного спая, а значит — нельзя прикасаться к каким-либо элементам схемы во время ее работы и при сборке, чтобы быть особенно внимательными.
Визуально схему можно разделить на блок питания 12 В, генератор импульсов, выпрямитель и линейку светодиодов.
Рабочий Стрелобоскоп
Генератор коротких импульсов собран на микросхеме NE555. Время между импульсами можно изменять вращением ручки переменного резистора R3.Ключ к выходу этого генератора подключен к полю транзистора, коммутирующего напряжение 220 В, в цепи питания светодиодных матриц, включенных параллельно друг другу. Светодиодные матрицы
питаются от постоянного тока, выпрямляющего диодный мост.Это необходимо для того, чтобы переключить цепь полевого транзистора, который работает только с постоянным напряжением.
Сборка строба
Стробоскоп собирается в кабельный кабель. Светодиоды прикручиваются к широкой стороне, без радиаторов. Поскольку светодиод используется где-то на 2-5% своей мощности (импульсная работа), необходимость в радиаторах отпадает.Боковые стенки вырезаны из этого же кабеля и приклеены. Сверху выведен переменный резистор для регулировки частоты мерцания.
Схема блоков в корпусе:
Внимание Светодиоды
очень мощные и могут повредить глаза, поэтому смотреть на них не рекомендуется. Особенно опасны стробирующие вспышки, так как в темноте глаз расслабляется, а яркий пульс проникает прямо на сетчатку.Также не забываем, что вся схема находится под угрозой для жизни в сети.
Результат работы
Работа стробоскопа, к сожалению, не проходит ни через фото, ни через видео.Так как даже видеокамера очень плохо проходит короткий импульс и он просто кричит.Но от себя могу сказать, что стробоскоп отличный, вспышки короткие и очень яркие. Смотрится очень эффектно, в целом все как надо.
Карбюраторные автомобилисты не знакомы со сложностями процесса регулировки зажигания. Обычно это делается на слух, что не очень удобно. С помощью стробоскопа можно облегчить этот процесс.Однако промышленные устройства довольно дороги, поэтому многие делают стробоскоп для розжига своими руками.
Недостатки промышленных моделей
Промышленные устройства часто имеют определенные недостатки, из-за которых полезность устройства весьма сомнительна.
Начнем с того, что цена на них довольно значительная. Например, современные цифровые модели обойдутся автомобилисту в 1000 р. Более функциональные модели уже из 1700. Продвинутые стробоскопы стоят порядка 5 500 р.Надо сказать, что стробоскоп автомобильный (сделанный своими руками) обойдется автомобилисту в 100-200 рублей.
Часто в заводских устройствах производитель применяет особо дорогие газоразрядные лампы. У лампы есть определенный ресурс, и через некоторое время ее придется заменить. А это само по себе равносильно приобретению нового заводского устройства.
Почему стробоскоп должен делать самому?
Недостатки заводских и технологических устройств подталкивают автолюбителя к самостоятельному изготовлению данного устройства.К тому же намного дешевле за счет оснащения этого оборудования светодиодами вместо дорогой лампы. В качестве источника диодов или донора подойдет обычная лазерная указка или фонарик.
Остальные реквизиты тоже будут в копейке. Специальных инструментов не будет. Бюджет процесса изготовления стробоскопа составит не более 100 рублей.
Как сделать стробоскоп своими руками?
Схем и вариантов изготовления существует огромное количество.Однако в большинстве своем все проекты по созданию этого гаджета похожи. Посмотрим, что понадобится для сборки.
Нам понадобится простой транзистор КТ315. Его легко найти в старой советской магнитоле. Обозначение может немного отличаться, но это не беда. Тиристор КУ112А без проблем извлекается из блока питания старого телевизора. Также можно найти небольшие резисторы. Поскольку светодиодный стробоскоп мы делаем своими руками, то, естественно, вам понадобится светодиодный фонарик.Для этого лучше покупать самые дешевые, в Китае. Кроме того, необходимо запастись конденсатором на 16 в любой низкочастотный диод, маленькое реле на 12 А, провода-крокодилы, экранированные проводом длиной 0,5 м, а также небольшой кусок медной проволоки.
Собрать аппарат
Схема небольшая, и разместить ее можно прямо в том самом китайском фонарике. Итак, через отверстие в фонарике желательно пропустить провода для питания устройства. На концах проводов лучше насыпать крокодилов.В боковой стенке нужно проделать отверстие, если китайцы его еще не сделали. Через это отверстие будет пропущен экранированный провод. На противоположном конце необходимо заизолировать оплетку и припаять сам кусок медной проволоки к основной опоре провода. Это будет датчик.
Схема устройства и принцип работы
После прохождения тока по проводам питания конденсатор очень быстро заряжается через резистор. Когда будет достигнут определенный порог заряда, резистор напряжения потечет на размыкающий контакт транзистора.Здесь будет работать реле. Когда реле замкнуто, оно образует цепочку из тиристора, светодиода и конденсатора. Тогда через делитель импульс попадет на управляющий выход тиристора. Далее тиристор открывается, и конденсатор разряжается на светодиоды. В результате стробоскоп, сделанный своими руками, ярко мигает.
Через резистор и тиристор база транзистора подключается к общему проводу. Из-за этого транзистор закроется, а реле выключится.Увеличивается время свечения светодиодов, так как контакт разводится не сразу. Но контакт разорвется, и тиристор обесточится. Схема вернется в исходное положение до тех пор, пока не пойдет новый импульс.
Изменяя емкость конденсатора, можно изменять время свечения. Если выбрать конденсатор большей емкости, то светодиод стробоскоп, своими руками, будет ярче и светится дольше.
Устройство на микросхеме
Основной частью этой несложной схемы является микросхема DD1.Это так называемый атигнер 155Ag1. В этой схеме он запускается только от отрицательных импульсов. Управляющий сигнал пойдет на транзистор CT315, и он будет формировать эти отрицательные импульсы. Резисторы 150 к ОМ, 1 к ОМ, 10 к ОМ, а также Стабилитрон КС139 работают как ограничители амплитуды входящего сигнала от зажигания автомобиля.
Конденсатору 0,1 МПа вместе с сопротивлением 20 кОм будет придана желаемая длительность импульса, которую будет формировать микросхема. При такой емкости конденсатора длительность импульса будет примерно до 2 мс.
Тогда с 6-го плеча микросхемы импульсы, которые будут синхронизированы с зажиганием автомата до этой точки, попадут на базовый вывод транзистора CT 829. Он здесь как ключ. Результат — импульсный ток через светодиоды.
Как работает этот стробоскоп для автомобилей? Своими руками нам нужно провести пару проводов к клеммам автомобильного аккумулятора. Необходимо следить за уровнем заряда аккумулятора.
Если вы наверняка соберете эту простую схему, вы сразу увидите, как работает устройство.Если вдруг яркости не хватит, это регулируется подбором соответствующего сопротивления.
В качестве устройства для устройства можно использовать старый или китайский фонарик.
Еще одна схема стробоскопа
Этот стробоскоп на светодиодах, своими руками сделанный по этому принципу, также может питаться от автомобильного аккумулятора. Диоды позволят защитить от неправильной полярности. В качестве застежки здесь используется обычный крокодил. Его необходимо прикрепить к высоковольтному контакту первой свечи на моторе.Далее импульс пройдет через резисторы и конденсатор и поступит на вход триггера. К тому времени эта запись уже будет включена симулятором.
Пульс в обычном режиме. Доходность прямого срабатывания триггера имеет низкий уровень. Обратный вход, соответственно — высокий. Конденсатор, подключенный плюсом к инверсному выводу, заряжается через резистор.
Импульс высокого уровня запускает симулятор, который включает триггер и служит для зарядки конденсатора через резистор.Через 15 мс конденсатор полностью зарядится, и курок перейдет в нормальный режим.
В результате симулятор отреагирует на это синхронной последовательностью прямоугольных импульсов длительностью около 15 мс. Продолжительность можно отрегулировать, заменив резистор и конденсатор.
Импульсы второй микросхемы составляют до 1,5 мс. На этот период открываются транзисторы, являющиеся электронным переключателем. Затем ток течет через светодиоды. По такому принципу работает стробоскоп для автомобиля (изготовлен он своими руками или нет, не важно — оба прибора светятся одинаково).
Ток, проходящий через светодиоды, намного больше паспортного. Но, поскольку вспышки короткие, то и светодиоды не выйдут из строя. Яркости хватит, чтобы пользоваться этим полезным устройством даже днем.
Этот стробоскоп можно собрать в футляр от того же многострадального карманного фонарика.
Как работать с устройством?
Собрав на одной из схем схемы, легко и просто, а главное точно отрегулировать зажигание на карбюраторных двигателях, проверить правильность работы свечей и катушек, контролировать работу опережения регуляторы угла.
Чтобы максимально выставить зажигание, обычно исходят из того, что смесь зажигается на пару градусов до того, как поршень подойдет к верхней точке. Этот угол называется «Угловым углом». При увеличении оборотов коленчатого вала угол тоже должен увеличиваться. Итак, этот угол выставляется на холостом ходу, после чего необходимо проконтролировать правильность настройки на всех режимах работы агрегата.
Выставляю зажигание
Запустить и прогреть двигатель. Теперь запитываем наш стробоскоп на светодиоды и подключаем датчик.Теперь нужно отправить прибор на этикетку на корпусе GDM и найти этикетку на маховике. Если момент сорвался, метки будут достаточно далеко друг от друга. Способ вращения корпуса MRR, добиться отметок. Когда вы нашли это положение, зафиксируйте резину.
Тогда пора наращивать обороты. Теги разойдутся, но это вполне нормальная ситуация. Так выполняется настройка зажигания с помощью стробоскопа.
Итак, мы выяснили, как делается стробоскоп на светодиодах своими руками.
Стробоскоп — это оборудование, способное непрерывно воспроизводить световые импульсы. В настоящее время самым распространенным является стробоскоп на светодиодах. Он нашел свое широкое применение в самых разных сферах нашей жизни. Например, это устройство незаменимо в сфере строительства и ремонта (выделение домов, зданий и сооружений), в индустрии рекламы, машиностроении, а также при проектировании ресторанных и гостиничных комплексов, кафе, ночных клубов и прочего. .
Благодаря довольно простой конструкции стробоскоп на светодиодах легко сделать своими руками.Для этого требуется только принципиальная схема, микроконтроллер, защитное устройство, а также датчики в зависимости от функционального назначения устройства.
Этот автомобильный стробоскоп достаточно мощный и может содержать несколько светодиодов. Для сборки устройства следует купить таймер на микросхеме NE555 и полевой транзистор. Наиболее подходящими могут быть транзисторы типа IRFZ44, IRF3205, KP812B1 и ряд других.
Искомое устройство получается достаточно компактным и мощным.Кроме того, вы можете регулировать частоту мигания светодиодов. Из-за того, что на переходе происходит небольшой спад напряжений, лучше всего применять диод Шоттки. Также необходимо создать необходимую герметичность пластикового корпуса, в котором находится борт. В этом случае незаменим будет синтетический силикон.
Полевой транзистор при длительной работе обычно перегревается, поэтому его следует устанавливать на радиатор. Схема может питать светодиоды, напряжение которых не превышает 12 вольт.Иначе горит проводка.
Самодельный стробоскоп изготавливает достаточно большое количество автолюбителей и профессионалов, так как эта процедура практически не требует особых знаний и навыков. Чтобы сделать стробоскоп своими руками и при этом соответствовать всем требованиям и предпочтениям, необходимо получить качественный способ выбора светодиода. В настоящее время наибольшей популярностью пользуются светодиодные устройства, так как их срок службы, а также яркость свечения значительно превосходит любые другие типы излучателей.
В интернете очень долго пытался найти схему светодиодного стробоскопа. Понимающие в электронике люди теперь скажут: «Подумай, стробоскоп, а что там сложного». Стробоскопы разные, и все ранее известные схемы мне не подходили, так как единственной целью было получить эффект полицейского стробоскопа. Может не все заметили, но мигалка Militia работает очень интересно — каждая лампочка несколько раз мигает, потом переключается. В результате мы получаем эффект, более известный под названием «Мигание полиции».
Стробоскоп можно собрать по разным схемам с помощью мультивибратора, но ни один из них не дает желаемого эффекта или эффект нестабильный. Эта задача вполне выполнима, если можно перенести МК, но в моем случае такой возможности не было (недружелюбно к микроконтроллерам). Оставалось найти альтернативу на простых и доступных элементах. На зарубежных сайтах была обнаружена очень интересная скорость электрического молота с использованием таймера серии 555. Микросхема работает как генератор прямоугольных импульсов.
В схеме также использовался счетчик К561И8 (в моем случае используется импортный аналог, в общем не критично). Чип представляет собой счетчик десятичного делителя, то есть имеет 10 расшифрованных выходов. Он состоит из высокоскоростных счетчиков и декодеров. Работа счетчика, думаю, всем понятна, объяснять не буду. Чтобы получить эффект мигания, когда каждый светодиод мигает дважды, необходимо использовать два близких выхода измерителя. Когда сигнал поступает на счетчик, на выходах поочередно формируются импульсы.Сначала на первом выходе формируется импульс, затем переключается на второй, третий и так до конца, затем процесс повторяется первым. Частоту и интенсивность вспышек можно регулировать, если регулировать их номиналом резистора от 6 до 7 выходов таймера. В выходном каскаде можно использовать практически любые мощные питающие транзисторы проводимости, в моей версии использовалось 13007 (сброшено с платы Балласта LDS).
Вы также можете настроить количество миганий для каждой лампы (1-5 миганий перед переключением).Для этого просто добавляем диоды на выходы микросхемы. Например, один канал — это выводы 4 и 2, а второй, соответственно, 7 и 9, для тройной вспышки одного канала, просто нужны выводы 1,3,5 (Первый канал) и 6.8.0 (второй канал) диоды для подключения друг. Мощность подключенной нагрузки зависит от силовых клавиш. Если на светодиодах планируется маломощный стробоскоп, то на выходе можно использовать маломощный CT315, при более мощных нагрузках в качестве выходных ключей следует использовать полевые транзисторы.
Устройство имеет достаточно широкий диапазон входных напряжений, начинает работать с 4,5-5 вольт, при этом частота миганий не меняется в зависимости от номинального входного напряжения. Такой стробоскоп стоил всего 1,5 доллара (транзисторы были в наличии). Из схемы также можно исключить стабилизатор напряжения на 5 вольт, микросхема отлично работает от автомобильного аккумулятора. Если вы планируете использовать светодиоды, не забудьте про ограничительные резисторы, и вы будете наблюдать помутнение кристалла светодиода.
Вся установка выполнена в алюминиевом корпусе от китайского электронного трансформатора Для питания галогена от 12 вольт.
Корпус оказался очень подходящим. Девайс прям с завода не отличить, хотя установка комплектующих производилась на самосвальной плате. Комплект для сборки DIY
Police Strobe Light — Circuit-Pop
Осветите комнату с помощью этого набора для сборки самодельного полицейского стробоскопа! Мигание чередуется между красным и синим, имитируя огни полицейской машины.В этот комплект входит все, включая печатную плату, светодиоды, микросхему и различные диоды. Схема показана ниже для лучшего понимания того, как работает схема. Отлично подходит для новичков и энтузиастов!
Уровень сложности : Начинающий
Время сборки : 15-30 минут
Инструкции : Каждый компонент указан на печатной плате для удобства использования и установки.
Рекомендуемые инструменты : мультиметр, паяльник, запасной провод.
Напряжение питания : 9-12 В постоянного тока
Список компонентов
Компонент | Номер | Параметр | Кол-во |
Резистор металлопленочный | R1, R4, R5 | 10 кОм | 3 |
Резистор металлопленочный | R2, R3 | 10-100 Ом | 2 |
Синий светодиод | L1-L12 | 5 мм | 12 |
Красный светодиод | L13-L24 | 5 мм | 12 |
Диод 1N4148 | D1-D6 | 6 | |
NE555 | IC1 | ДИП-8 | 1 |
CD4017 | IC2 | ДИП-16 | 1 |
S8050 | Q1, Q2 | К-92 | 2 |
Регулируемый резистор | RP1 | 200К-1М | 1 |
Конденсатор электролитический | C1 | 0.1 мкФ-1 мкФ | 1 |
Конденсатор керамический | C2 | 0,01 мкФ 103 | 1 |
Печатная плата | 1 |
Ссылочная схема :
Отказ от ответственности за доставку
Мы считаем, что хорошие условия доставки — это то, что заставляет наших клиентов возвращаться.