Простой стабилизатор напряжения на 12 в своими руками: схема и разновидности, выбор для светодиодов

Содержание

Стабилизатор напряжения своими руками

Изготовление самодельных стабилизаторов напряжения – практика довольно частая. Однако по большей части создаются стабилизирующие электронные схемы, рассчитанные на относительно малые выходные напряжения (5-36 вольт) и относительно невысокие мощности. Подобные устройства используются в составе конкретной бытовой аппаратуры и не более того.

Поэтому вполне актуальной является задача сделать мощный стабилизатор напряжения своими руками под работу с напряжением бытовой сети 220 вольт. В принципе, такая задача решаема. Посмотрим, каким способом удастся ее выполнить.

Блок: 1/6 | Кол-во символов: 575
Источник: http://sovet-ingenera.com/elektrika/uzo-schet/moshhnyj-stabilizator-napryazheniya-svoimi-rukami.html

Стабилизация напряжения бытовой сети

Стремления владельцев разного вида недвижимости обеспечить стабилизированное напряжение бытовой сети – явление очевидное. Такой подход обеспечивает сохранность эксплуатируемой техники, зачастую дорогостоящей, постоянно необходимой в хозяйстве.

Да и в целом фактор стабилизации – это залог повышенной безопасности эксплуатации электрических сетей.

Промышленная конструкция стабилизатора сетевого напряжения, которую несложно приобрести на рынке. Ассортимент подобного оборудования огромен, но всегда остаётся возможность сделать собственную конструкцию

Решить подобную задачу можно разными способами, самый простой из которых – купить мощный стабилизатор напряжения, изготовленный промышленным способом.

Предложений по такому оборудованию на коммерческом рынке масса. Однако нередко возможности приобретения ограничиваются стоимостью устройств или другими моментами.

Соответственно, альтернативой покупке становится сборка стабилизатора напряжения своими руками из доступных электронных компонентов.

При условии обладания соответствующими навыками и знаниями электромонтажа, теории электротехники (электроники), разводки схем и пайки элементов самодельный стабилизатор напряжения можно реализовать и успешно применять на практике. Такие примеры есть.

Примерно так может выглядеть оборудование стабилизации, изготовленное своими руками из доступных и недорогих радиодеталей. Шасси и корпус можно подобрать от старого промышленного оборудования (например, от осциллографа)

Блок: 2/6 | Кол-во символов: 1509
Источник: http://sovet-ingenera.com/elektrika/uzo-schet/moshhnyj-stabilizator-napryazheniya-svoimi-rukami.html

Характеристика стабилизатора

Прежде чем задавать вопрос, как сделать стабилизатор напряжения своими руками, нужно хорошо разузнать его характеристики.

Диапазон входного напряжения характеризуется двумя порогами – нижним и верхним. Работа между двумя порогами считается нормальной для стабилизатора. Встречаются модели с большой шкалой регулирования входного напряжения, но не стоит их приобретать. Так как чем больше параметр, тем медленнее будет реагировать прибор.

Точность и скорость реагирования также требует особого внимания. Все электроприборы требуют точность электроподачи с небольшим отклонением не больше пяти процентов. Основываясь на этом стоит выбирать стабилизирующее устройство. Но не стоит забывать про скорость реагирования. Например, если к стабилизатору подключено много разных приборов, то он должен реагировать плавно, чтобы не было сильных скачков.

Мощность устройства выбрать, наверно, легче всего. Так как для этого необходимо просто сложить напряжение всех приборов, которые работают в помещении. Это среднее число будет определять, какая мощность понадобиться стабилизатору.

Фазность различают однофазную и трехфазную. Какую выбрать зависит от того, какое количество фаз имеют нагрузки, которые подключаются к стабилизатору. Если хоть один прибор имеет три фазы, это значит устройство тоже должно быть трехфазным.

Что касается дополнительных опции и габаритов с массой, то здесь все зависит от предпочтений покупателя. В основном, выбирают с минимальным количеством ненужных функций, чтобы ремонт стабилизатора напряжения своими руками можно было сделать.

Блок: 3/6 | Кол-во символов: 1583
Источник: https://techsad.com/oborudovanie/stabilizator-napryazheniya-svoimi-rukami/

Схемные решения стабилизации электросети 220В

Рассматривая возможные схемные решения под стабилизацию напряжения с учётом относительно высокой мощности (не менее 1-2 кВт), следует иметь в виду разнообразие технологий.

Существует несколько схемных решений, которыми определяются технологические способности приборов:

  • феррорезонансные;
  • сервоприводные;
  • электронные;
  • инверторные.

Какой вариант выбрать, зависит от ваших предпочтения, имеющихся материалов для сборки и навыков работы с электротехническим оборудованием.

Вариант #1 — феррорезонансная схема

Для самостоятельного изготовления самым простым вариантом схемы видится первый пункт списка — феррорезонансная схема. Она работает на использовании эффекта магнитного резонанса.

Структурная схема простого стабилизатора, выполненного на основе дросселей: 1 – первый дроссельный элемент; 2 – второй дроссельный элемент; 3 – конденсатор; 4 – сторона входного напряжения; 5 – сторона выходного напряжения

Конструкцию достаточно мощного феррорезонансного стабилизатора допустимо собрать всего на трёх элементах:

  1. Дроссель 1.
  2. Дроссель 2.
  3. Конденсатор.

Однако простота в данном варианте сопровождается массой неудобств. Конструкция мощного стабилизатора, собранная по феррорезонансной схеме, получается массивной, громоздкой, тяжелой.

Вариант #2 — автотрансформатор или сервопривод

Фактически речь идет о схеме, где используется принцип автотрансформатора. Трансформация напряжения автоматически осуществляется за счет управления реостатом, ползунок которого перемещает сервопривод.

В свою очередь сервопривод управляется сигналом, получаемым, к примеру, от датчика уровня напряжения.

Принципиальная схема сервоприводного аппарата, сборка которой позволит создать мощный стабилизатор напряжения для дома или на дачу. Однако этот вариант считается технологически устаревшим

Примерно по такой же схеме действует устройство релейного типа с той лишь разницей, что коэффициент трансформации меняется, в случае надобности, подключением или отключением соответствующих обмоток с помощью реле.

Подобного рода схемы выглядят уже более сложными технически, но при этом не обеспечивают достаточной линейности изменения напряжения.

Собрать вручную прибор релейный или на сервоприводе допустимо. Однако разумнее выбрать электронный вариант. Затраты сил и средств практически одинаковые.

Вариант #3 — электронная схема

Сборка мощного стабилизатора по схеме электронного управления при обширном ассортименте радиодеталей в продаже, становится вполне возможной. Как правило, такие схемы собираются на электронных компонентах – симисторах (тиристорах, транзисторах).

Также разработан целый ряд схем стабилизаторов напряжения, где в качестве ключей используются силовые полевые транзисторы.

Структурная схема модуля электронной стабилизации: 1 – входные клеммы устройства; 2 – симисторный блок управления трансформаторными обмотками; 3 – микропроцессорный блок; 4 – выходные клеммы на подключение нагрузки

Изготовить мощный аппарат полностью под электронным управлением руками неспециалиста достаточно сложно.Без опыта и знаний в сфере электротехники не обойтись.

Поэтому под самостоятельное производство рассматривать этот вариант целесообразно, если имеется сильное желание построить стабилизатор, плюс наработанный опыт электронщика. Далее в статье рассмотрим конструкцию электронного исполнения, пригодную для изготовления своими руками.

Блок: 3/6 | Кол-во символов: 3370
Источник: http://sovet-ingenera.com/elektrika/uzo-schet/moshhnyj-stabilizator-napryazheniya-svoimi-rukami.html

Конструкция и принцип действия стабилизатора

Конструкция прибора

Решив собрать прибор самостоятельно придется заглянуть внутрь корпуса промышленной модели. Она состоит из нескольких основных деталей:

  • Трансформатора;
  • Конденсаторов;
  • Резисторов;
  • Кабеля для соединения элементов и подключения устройства.

Принцип действия самого простого стабилизатора основан на работе реостата. Он повышает или понижает сопротивление в зависимости от силы тока. Более современные модели обладают широким набором функций и способны в полной мере защитить бытовую технику от скачков напряжения в сети.

Блок: 2/5 | Кол-во символов: 581
Источник: http://GeneratorVolt.ru/ehlektrogenerator/kak-sobrat-stabilizator-napryazheniya-svoimi-rukami.html

Виды стабилизаторов напряжения

В зависимости от мощности нагрузки в сети и других условий эксплуатации, используются различные модели стабилизаторов:

  • Феррорезонансные стабилизаторы считаются самыми простыми, в них применяется принцип магнитного резонанса. Схема включает в себя всего два дросселя и конденсатор. Внешне он похож на обычный трансформатор с первичной и вторичной обмотками на дросселях. Такие стабилизаторы имеют большой вес и габариты, поэтому почти не используются для бытовой аппаратуры. Благодаря высокому быстродействию, эти приборы применяются для медицинского оборудования;

Схема феррорезонансного стабилизатора напряжения

  • Сервоприводные стабилизаторы обеспечивают регулировку напряжения автотрансформатором, реостатом которого управляет сервопривод, получающий сигналы с датчика контроля напряжения. Электромеханические модели могут работать с большими нагрузками, но имеют малую скорость срабатывания. Релейный стабилизатор напряжения имеет секционную конструкцию вторичной обмотки, стабилизация напряжения производится группой реле, сигналы на замыкание и размыкание контактов которых поступают с платы управления. Таким образом, осуществляется подключение нужных секций вторичной обмотки для поддержания выходного напряжения в пределах установленных величин. Скорость регулировки осуществляется быстро, но точность установки напряжения невысокая;

Пример сборки релейного стабилизатора напряжения

  • Электронные стабилизаторы имеют аналогичный принцип, как и релейные, но вместо реле используются тиристоры, симисторы или полевые транзисторы для выпрямления соответствующей мощности, в зависимости от тока нагрузки. Это значительно повышает скорость переключения секций вторичной обмотки. Бывают варианты схем без трансформаторного блока, все узлы выполнены на полупроводниковых элементах;

Вариант схемы электронного стабилизатора

  • Стабилизаторы напряжения с двойным преобразованием осуществляют регулировку по инверторному принципу. Эти модели преобразуют переменное напряжение в постоянное, потом обратно в переменное напряжение, на выходе преобразователя формируется 220В.

Вариант схемы инверторного стабилизатора напряжения

Схема стабилизатора не преобразует напряжение сети. Инвертор постоянного напряжения в переменное при любом напряжении на входе генерирует на выходе 220В переменного тока. Такие стабилизаторы совмещают высокую скорость срабатывания и точность установки напряжения, но имеют высокую цену по сравнению с ранее рассмотренными вариантами.

Блок: 2/4 | Кол-во символов: 2475
Источник: https://elquanta.ru/teoriya/skhema-stabilizatora-napryazheniya-220v.html

Устройство стабилизатора

Схема устройства стабилизации.

Стабилизатор напряжения по указанной схеме имеет в своем составе следующие части:

  1. Питающий блок, в который входят емкости С2, С5, компаратор, трансформатор, теплоэлектрический диод.
  2. Узел, задерживающий подключение нагрузки потребителя, и состоящий из сопротивлений, транзисторов, емкости.
  3. Выпрямительного моста, измеряющего амплитуду напряжения. Выпрямитель состоит из емкости, диода, стабилитрона, нескольких делителей.
  4. Компаратора напряжения. Его составными частями являются сопротивления и компараторы.
  5. Логического контроллера на микросхемах.
  6. Усилителей, на транзисторах VТ4-12, резисторов, ограничивающих ток.
  7. Светодиодов в качестве индикаторов.
  8. Оптитронных ключей. Каждый из ник снабжается симисторами и резисторами, а также оптосимисторами.
  9. Электрического автомата, либо предохранителя.
  10. Автотрансформатора.

Блок: 3/9 | Кол-во символов: 869
Источник: http://ostabilizatore.ru/shema-stabilizatora-naprjazhenija-220v-svoimi-rukami.html

Видео

Блок: 4/4 | Кол-во символов: 5
Источник: https://elquanta.ru/teoriya/skhema-stabilizatora-napryazheniya-220v.html

Приступаем к сборке: комплектующие, инструменты

Поскольку наиболее эффективным считается симисторный аппарат, то в своей статье мы рассмотрим, как самостоятельно собрать именно такую модель. Сразу следует отметить, что этот стабилизатор напряжения, выполненный своими руками, будет выравнивать ток при условии, что входное напряжение находится в диапазоне от 130 до 270В.

Допустимая мощность приборов, подключаемых к такому оборудованию не сможет превышать 6 кВт. При этом переключение нагрузки будет осуществляться за 10 миллисекунд.

Что касается комплектующих, то для сборки такого стабилизатора понадобятся следующие элементы:

  • Блок питания;
  • Выпрямитель для измерения амплитуды напряжения;
  • Компаратор;
  • Контроллер;
  • Усилители;
  • Светодиоды;
  • Узел задержки включения нагрузки;
  • Автотрансформатор;
  • Оптронные ключи;
  • Выключатель-предохранитель.

Из инструментов буду необходимы паяльник и пинцет.

Блок: 4/5 | Кол-во символов: 888
Источник: http://GeneratorVolt.ru/ehlektrogenerator/kak-sobrat-stabilizator-napryazheniya-svoimi-rukami.html

Принцип работы

Каким же образом работает наш стабилизатор сетевого напряжения, который легко делается своими руками?

После того, как включается питание конденсатор С1 находится в разряженном состоянии, транзистор VT2 открыт, а VT2 является закрытым. Также закрытым является транзистор VT3. Именно через него будет подаваться ток на каждый светодиод и симисторный оптотрон.

Поскольку этот транзистор является закрытым, светодиоды не светятся, каждый симистор является закрытым и нагрузка отключена. В это время электрический ток проходит через резистор R1 и попадает в С1. Далее происходит зарядка этого конденсатора.

Интервал задержки длится всего лишь три секунды. За это время осуществляются все переходные процессы, и после окончания происходит срабатывание триггера Шмитта, основу которого составляют транзисторы VT1 и VT2.

Далее открывается третий транзистор и включается нагрузка.

Напряжение, которое выходит с третьей обмотки Т1, выпрямляется диодом VD2 и конденсатором С2. Далее ток проходит через делитель R13…14. Из R14 напряжение, уровень которого является пропорциональным количеству вольт в сети, входит в каждый неинвертирующий вход компараторов.

Количество компараторов равняется восьми и все они находятся на микросхемах DA2 и DA3. В этот же момент на инвертирующий вход каждого компаратора входит постоянный образцовый ток. Его подают резисторные делители R15…23.

После этого в игру вступает контроллер, который осуществляет обработку сигнала на входе у каждого компаратора.

Блок: 4/5 | Кол-во символов: 1485
Источник: http://electricadom.com/stabilizator-napryazheniya-kak-vse-sdelat-svoimi-rukami-video.html

Выводы и полезное видео по теме

В видеоролике ниже рассматривается одна из возможных конструкций стабилизатора домашнего изготовления.

В принципе, можно взять на заметку этот вариант самодельного аппарата стабилизации:

Сборка блока, стабилизирующего сетевое напряжение, своими руками возможна. Это подтверждается многочисленными примерами, когда радиолюбители с небольшим опытом вполне успешно разрабатывают (или применяют существующую), готовят и собирают схему электроники.

Трудностей с приобретением деталей для изготовления стабилизатора-самлделки обычно не отмечается. Расходы на производство невысоки и естественным образом окупаются, когда стабилизатор вводят в эксплуатацию.

Блок: 6/6 | Кол-во символов: 689
Источник: http://sovet-ingenera.com/elektrika/uzo-schet/moshhnyj-stabilizator-napryazheniya-svoimi-rukami.html

Детали и материалы

Остальные элементы и детали стабилизатора для самостоятельной сборки приобретаются в торговой сети. Перечислим их перечень:

  1. Симисторы (отптроны) МОС 3041 – 7 шт.
  2. Симисторы ВТА 41 – 800 В – 7 шт.
  3. КР 1158 ЕН 6А (DА1) стабилизатор.
  4. Компаратор LМ 339 N (для DА2 и DА3) – 2 шт.
  5. Диоды DF 005 М (для VD2 и VD1) – 2 шт.
  6. Резисторы проволочные СП 5 или СП 3 (для R13, R14 и R25) – 3 шт.
  7. Резисторы С2 – 23, с допуском 1% — 7 шт.
  8. Резисторы любого номинала с допуском 5% — 30 шт.
  9. Резисторы токоограничивающие – 7 шт, для пропускания ими тока 16 миллиампер (для R 41 – 47) – 7 шт.
  10. Конденсаторы электролитические – 4 шт (для С5 – 1).
  11. Конденсаторы пленочные (С4 – 8).
  12. Выключатель, оснащенный предохранителем.

Оптроны МОС 3041 заменяются на МОС 3061. КР 1158 ЕН 6А стабилизатор можно менять на КП 1158 ЕН 6Б. Компаратор К 1401 СА 1 можно установить в качестве аналога LM 339 N. Вместо диодов можно использовать КЦ 407 А.

Микросхему КР 1158 ЕН 6А надо устанавливать на теплоотвод. Для его изготовления применяют алюминиевую пластинку 15 см2. Также на него необходимо установить симисторы. Для симисторов допускается применять общий теплоотвод. Площадь поверхности должна превышать 1600 см2. Стабилизатор необходимо снабдить микросхемой КР 1554 ЛП 5, выступающей в качестве микроконтроллера. Девять светодиодов располагаются так, что попадают в отверстия на панели прибора спереди.

Если устройство корпуса не дает установить их таким образом, как на схеме, то их размещают на другой стороне, где расположены печатные дорожки. Светодиоды необходимо устанавливать мигающего типа, но можно монтировать и немигающие диоды, при условии, что они будут светиться ярким красным светом. Для таких целей применяют АЛ 307 КМ или L 1543 SRC — Е.

Можно выполнить сборку более простых исполнений приборов, но они будут иметь определенными особенностями.

Блок: 7/9 | Кол-во символов: 1841
Источник: http://ostabilizatore.ru/shema-stabilizatora-naprjazhenija-220v-svoimi-rukami.html

Простейший стабилизатор напряжения своими руками

Рассмотрим, каким образом можно изготовить самостоятельно стабилизатор на 220 вольт собственными руками, имея под рукой несколько простых деталей. Если в вашей электрической сети напряжение значительно снижено, то такой прибор подойдет вам как нельзя кстати. Чтобы его изготовить, понадобится готовый трансформатор, и несколько простых деталей. Лучше взять такой пример прибора себе на заметку, так как получается неплохое устройство, обладающее достаточной мощностью, например, для микроволновки.

Для холодильников и различных других бытовых устройств понижение напряжения сети очень вредно, больше чем повышение. Если поднять величину напряжения сети, применяя автотрансформатор, то во время уменьшения напряжения сети на выходе прибора напряжение будет нормальной величины. А если в сети напряжение станет в норме, то на выходе мы получим повышенное значение напряжения. Например, возьмем трансформатор на 24 В. При напряжении на линии 190 В на выходе устройства получится 210 В, при значении сети 220 В на выходе получится 244 В. Это вполне допустимо и нормально для работы бытовых устройств.

Для изготовления нам понадобится основная деталь – это простой трансформатор, но не электронный. Его можно найти готовый, либо изменить данные на уже имеющемся трансформаторе, например, от сломанного телевизора. Трансформатор будем соединять по схеме автотрансформатора. Напряжение на выходе будет получаться примерно на 11% выше напряжения сети.

При этом нужно соблюдать осторожность, так как во время значительного перепада напряжения в сети в большую сторону, на выходе устройства получится напряжение, которое значительно превышает допустимую величину.

Автотрансформатор будет добавлять к напряжению линии сети всего 11%. Это значит, что мощность автотрансформатора берется также на 11% от мощности потребителя. Например, мощность микроволновки равна 700 Вт, значит трансформатор берем 80 Вт. Но лучше брать мощность с запасом.

Регулятор SA1 дает возможность, если нужно, подсоединять нагрузку потребителя без автотрансформатора. Конечно, это не полноценный стабилизатор, но зато для его изготовления не требуется больших вложений и много времени.

Самодельный стабилизатор напряжения

Блок: 9/9 | Кол-во символов: 2308
Источник: http://ostabilizatore.ru/shema-stabilizatora-naprjazhenija-220v-svoimi-rukami.html

Кол-во блоков: 16 | Общее кол-во символов: 18178
Количество использованных доноров: 6
Информация по каждому донору:
  1. http://sovet-ingenera.com/elektrika/uzo-schet/moshhnyj-stabilizator-napryazheniya-svoimi-rukami.html: использовано 4 блоков из 6, кол-во символов 6143 (34%)
  2. http://electricadom.com/stabilizator-napryazheniya-kak-vse-sdelat-svoimi-rukami-video.html: использовано 1 блоков из 5, кол-во символов 1485 (8%)
  3. https://elquanta.ru/teoriya/skhema-stabilizatora-napryazheniya-220v.html: использовано 2 блоков из 4, кол-во символов 2480 (14%)
  4. http://GeneratorVolt.ru/ehlektrogenerator/kak-sobrat-stabilizator-napryazheniya-svoimi-rukami.html: использовано 2 блоков из 5, кол-во символов 1469 (8%)
  5. https://techsad.com/oborudovanie/stabilizator-napryazheniya-svoimi-rukami/: использовано 1 блоков из 6, кол-во символов 1583 (9%)
  6. http://ostabilizatore.ru/shema-stabilizatora-naprjazhenija-220v-svoimi-rukami.html: использовано 3 блоков из 9, кол-во символов 5018 (28%)

Стоит ли собирать стабилизатор напряжения своими руками

Идеальным вариантом работы электросетей является изменение значений тока и напряжения как в сторону уменьшения, так и увеличения не более чем на 10% от номинальных 220 В. Но поскольку в реальности скачки характеризуются большими изменениями, то электроприборам, подключенным к сети напрямую, грозит потеря проектных возможностей и даже выход из строя.

Избежать неприятностей поможет использование специального оборудования. Но поскольку оно отличается весьма высокой ценой, то многие предпочитают собирать стабилизатор напряжения сделанный своими руками. Насколько оправдан такой шаг и что потребуется для его реализации?

Конструкция и принцип действия стабилизатора

Конструкция прибора

Решив собрать прибор самостоятельно придется заглянуть внутрь корпуса промышленной модели. Она состоит из нескольких основных деталей:

  • Трансформатора;
  • Конденсаторов;
  • Резисторов;
  • Кабеля для соединения элементов и подключения устройства.

Принцип действия самого простого стабилизатора основан на работе реостата. Он повышает или понижает сопротивление в зависимости от силы тока. Более современные модели обладают широким набором функций и способны в полной мере защитить бытовую технику от скачков напряжения в сети.

Виды приборов и их особенности

Виды и их применения

Классификация оборудования зависит от методов, используемых для регулировки тока. Поскольку эта величина представляет собой направленное движение частиц, то воздействовать на нее можно одним из способов:

  • Механическим;
  • Импульсным.

Первый основывается на законе Ома. Приборы, работа которых основана на нем называют линейными. Они включают в себя два колена, которые соединяются при помощи реостата. Поданное на один элемент напряжение проходит по реостату и таким образом оказывается на другом, с которого поступает к потребителям.

Приборы этого типа позволяют очень только выставлять параметры выходного тока и могут быть модернизированы дополнительными узлами. Но использовать такие стабилизаторы в сетях, где разница между входным и выходным током велика нельзя, так как они не смогут обезопасить бытовую технику от КЗ при больших нагрузках.

Смотрим видео, принцип работы импульсного прибора:

Импульсные модели работают по принципу амплитудной модуляции тока. В цепи стабилизатора используется выключатель, разрывающий ее через определенные промежутки времени. Такой подход позволяет равномерно накапливать ток в конденсаторе, а после его полной зарядки и далее на приборы.

В отличие от линейных стабилизаторов импульсные не имеют возможности задавать определенную величину. В продаже встречаются модели повышающе-понижающие – это идеальный выбор для дома.

Также стабилизаторы напряжения делятся на:

  1. Однофазные;
  2. Трехфазные.

Но так как большинство бытовых приборов работают от однофазной сети, то в жилых помещениях используют как правило оборудование, относящееся к первому типу.

Приступаем к сборке: комплектующие, инструменты

Поскольку наиболее эффективным считается симисторный аппарат, то в своей статье мы рассмотрим, как самостоятельно собрать именно такую модель. Сразу следует отметить, что этот стабилизатор напряжения, выполненный своими руками, будет выравнивать ток при условии, что входное напряжение находится в диапазоне от 130 до 270В.

Допустимая мощность приборов, подключаемых к такому оборудованию не сможет превышать 6 кВт. При этом переключение нагрузки будет осуществляться за 10 миллисекунд.

Что касается комплектующих, то для сборки такого стабилизатора понадобятся следующие элементы:

  • Блок питания;
  • Выпрямитель для измерения амплитуды напряжения;
  • Компаратор;
  • Контроллер;
  • Усилители;
  • Светодиоды;
  • Узел задержки включения нагрузки;
  • Автотрансформатор;
  • Оптронные ключи;
  • Выключатель-предохранитель.

Из инструментов буду необходимы паяльник и пинцет.

Этапы изготовления

Чтобы собрать стабилизатор напряжения 220В для дома своими руками сначала нужно подготовить печатную плату размером 115х90 мм. Она изготавливается из фольгированного стеклотекстолита. Схема размещения деталей может быть напечатана на лазерном принтере и при помощи утюга перенесена на плату.

Смотрим видео, самодельный несложный прибор:

схема электрическая принципиальная

Далее переходим к сборке трансформаторов. Для одного такого элемента потребуется:

  • магнитопровод площадью сечения 1,87 см²;
  • три кабеля ПЭВ-2.

Первый провод используется для создания одной обмотки, при этом его диаметр составляет 0,064 мм. Число витков должно равняться 8669.

Два оставшихся провода потребуются для выполнения других обмоток. Они отличаются от первого диаметром, составляющим 0,185 мм. Количество витков для этих обмоток будет равно 522.

Если хотите упростить себе задачу, то можно воспользоваться двумя готовыми трансформаторами ТПК-2-2 12В. Их соединяют последовательно.

В случае изготовления этих деталей самостоятельно после того как будет готов один из них переходят к созданию второго. Для него будет нужен тороидальный магнитопровод. Для обмотки выбирают тот же ПЭВ-2, что и в первом случае, только количество витков составит 455.

Также во втором трансформаторе придется выполнить 7 отводов. Причем для первых трех используется провод диаметром 3мм, а для остальных – шины, сечением 18 мм². Это поможет избежать нагревания трансформатора в процессе работы.

соединение двух трансформаторов

Все остальные комплектующие для прибора, создаваемого своими руками лучше приобретать в магазине. После того, как все необходимое закуплено можно приступать к сборке. Начинать лучше всего с установки микросхемы, выполняющей роль контроллера на теплоотвод, который изготавливается из алюминиевой платины площадью более 15 см². На него также монтируются симисторы. Причем теплоотвод, на который предполагается их установка должен иметь охлаждающую поверхность.

Далее необходимо установить на плату светодиоды. Причем лучше выбирать мигающие. Если не получается расположить их согласно схеме, то можно разместить на стороне, где находятся печатные проводники.

Если сборка симисторного стабилизатора напряжения 220В своими руками для вас кажется сложной, то можно остановиться на более простой линейной модели. Она будет обладать аналогичными свойствами.

Эффективность изделия, выполненного своими руками

Что толкает человека на изготовление того или иного прибора? Чаще всего – его высокая стоимость. И в этом смысле стабилизатор напряжения, собранный своими руками, конечно, превосходит фабричную модель.

К преимуществам самодельных устройств можно отнести и возможность самостоятельного ремонта. Человек, собравший стабилизатор разобрался как в его принципе действия, так и строении и поэтому сможет устранить неисправность без посторонней помощи.

Кроме того, все детали для такого прибора предварительно покупались в магазине, поэтому в случае выхода их из строя всегда можно будет найти аналогичную.

Если же сравнивать надежность стабилизатора, собранного своими руками и произведенного на предприятии, то здесь преимущество на стороне заводских моделей. В домашних условиях разработать модель, отличающуюся высокой производительностью практически невозможно, так как нет специального измерительного оборудования.

Заключение

Существуют различные типы стабилизаторов напряжения, причем некоторые из них вполне реально сделать своими руками. Но для этого придется разобраться в нюансах работы оборудования, приобрести необходимые комплектующие и выполнить их грамотный монтаж. Если вы не уверены в своих силах, то лучший вариант – приобретение устройства заводского изготовления. Стоит такой стабилизатор дороже, но и по качеству значительно превосходит модели, собираемые самостоятельно.

С.Б.Шмаков Как создать источники питания своими руками 2013 год. :: Библиотека технической литературы

Описание:

Создание своими руками различных источников питания — большая и практически значимая область технического творчества многих радиолюбителей. Книга призвана оказать им практическую помощь в этом интересном деле.

Собраны воедино и систематизированы наиболее интересные и оригинальные схемы основных групп источников питания: линейных, импульсных, сварочных, а также преобразователей, стабилизаторов, зарядных устройств. Представленные схемные решения не повторяют друг друга, интересны, содержат определенные элементы оригинальности.

Рассмотренные источники питания построены на недорогих компонентах, ко многим из них указаны доступные аналоги. Для удобства восприятия информации описание источников питания идет по единой схеме. Все источники питания, рассмотренные в книге, были проверены их авторами на практике, демонстрировались на выставках, были отмечены призами и дипломами.

Предлагаемая книга рассчитана, в первую очередь, на радиолюбителей средней квалификации. Для самостоятельного изготовления понравившейся конструкции вполне достаточно приводимого описания и представленного схемного материала. Приводятся рисунки монтажа и печатных плат многих описываемых схем.

 

Содержание:

Глава 1. Создаем стабилизированные источники питания с током нагрузки от 30 мА до 200 А

Принцип действия линейных источников питания

Микромощный источник питания с током нагрузки до 30 мА и выходным напряжением 9 В

Стабилизированный источник питания с током нагрузки до 50 мА

Стабилизированный источник питания 60 В 100 мА

Стабилизированный источник питания с током нагрузки до 100 мА

Стабилизированный источник питания на полевом транзисторе с током нагрузки до 100 мА

Низковольтный регулируемый стабилизатор напряжения на 3—5 В и с током нагрузки до 100 мА

Низковольтный стабилизатор напряжения с регулирующим транзистором в минусовом проводнике на 3—5 Вис током нагрузки до 100 мА

Стабилизированный источник питания на полевом транзисторе с током нагрузки до 150 мА

Стабилизатор напряжения на операционных усилителях серии К140 и с током нагрузки до 200 мА

Стабилизированный источник питания на шесть значений выходного напряжения и с током нагрузки до 250 мА

Стабилизатор напряжения, защищенный от коротких замыканий выхода, с током нагрузки до 300 мА и диапазоном выходных напряжений 2—12 В

Стабилизатор напряжения с защитой от короткого замыкания для питания маломощных устройств

Стабилизированный источник питания с регулируемым напряжением на выходе 0—12 В и током нагрузки до 300 мА

Источник питания для детских электрифицированных игрушек током до 350 мА

Простой стабилизатор напряжения на ИМС 142ЕН1Г с выходным напряжением 5 В и током нагрузки 500 мА

Стабилизатор напряжения с защитой и током нагрузки до 500 мА

Комбинированный источник питания с максимальным током нагрузки каждого из источников 500 мА

Простой источник питания для питания стабилизированным напряжением +5 В различных цифровых устройств с током потребления до 500 мА

Простой стабилизатор напряжения с высоким коэффициентом стабилизации и с током нагрузки до 500 мА

Простой источник питания с плавной инверсией выходного напряжения и током нагрузки до 500 мА.

Простой стабилизатор напряжения с током нагрузки до 500 мА

Двуполярный источник питания с выходным стабилизированным

напряжением ±12,6 В и током нагрузки до 500 мА

Стабилизированный источник питания для любительского УНЧ

с током нагрузки до 700 мА

Простой импульсный стабилизатор напряжения с выходным напряжением 5 В

и током нагрузки до 700 мА

Линейный стабилизатор напряжения с высоким КПД, построенный

на дискретных элементах, с током нагрузки до 1000 мА

Стабилизатор напряжения с логическими элементами и током нагрузки до 1000 мА

Стабилизатор напряжения 12 В с током нагрузки до 1000 мА 47

Стабилизатор напряжения 10 В, построенный на полевом транзисторе, с током нагрузки до 1000 мА

Источник питания на транзисторах и трансформаторе кадровой развертки

телевизора ТВК-110 ЛМ с током нагрузки до 10ОО мА

Источник питания «Ступенька» с выходом на наиболее

часто применяемые напряжения и током нагрузки до 10ОО мА

Источник питания с плавным изменением полярности и напряжением от+12 до-12 В

Стабилизированный источник питания 40 В 1200 мА

Комбинированный лабораторный источник питания с током нагрузки до 1200 мА 

Регулируемый двуполярный источник питания с током нагрузки до 2000 мА в каждом плече

Стабилизированный источник питания 1—29 Вис током нагрузки до 2000 мА

Простой стабилизатор напряжения с защитой от КЗ и током нагрузки до 3000 мА

Транзисторный стабилизатор с защитой от КЗ с током нагрузки до 3000 мА

Простой регулируемый стабилизатор напряжения (1,8—32 В) с током нагрузки до 3000 мА

Мощный источник питания для усилителя низкой частоты с током нагрузки до 3000 мА

Стабилизатор напряжения на мощных биполярных транзисторах с возможностью

регулировки выходного напряжения 11,5—14 В и током нагрузки до 4000 мА

Мощный стабилизатор напряжения -5 В с током нагрузки до 5000 мА

Мощный стабилизатор напряжения с током нагрузки до 5000 мА

Мощный стабилизатор с защитой по току с током нагрузки до 5000 мА

Мощный источник питания 12 В и током нагрузки до 6000 мА

Стабилизатор напряжения 20 В и током нагрузки до 7000 мА

Регулируемый стабилизатор тока с напряжением на нагрузке 16 В и током нагрузки до 7000 мА

Стабилизатор напряжения с защитой от перегрузок и током нагрузки до 10 А

Источник питания повышенной мощности с током нагрузки до 20 А

Стабилизатор напряжения для питания УМЗЧ с током нагрузки до 20 А

Стабилизированный источник питания 12 В, построенный на ИМС К142ЕНЗ, с током нагрузки до 20 А

Мощный источник питания на дискретных элементах с регулировкой напряжения от 0 до 15 В и током нагрузки до 20 А

Стабилизатор напряжения на мощном полевом транзисторе с током нагрузки до 20 А

Источник питания для автомобильного трансивера 13 В 20 А

Стабилизатор тока на с плавной регулировкой 100—200 А

Глава 2. Создаем полезные схемы преобразователей напряжения

Как работают преобразователи постоянного напряженияи в постоянное (DC-DC конвертеры)

Как работают преобразователи постоянного напряжения тв переменное (DC-АС конвертеры)

Низковольтный преобразователь напряжения

Стабилизированный сетевой преобразователь напряжения 

Преобразователь напряжения с 1,5 В до 4,5 В для авометра Ц20 

Преобразователь напряжения с 9 В до 400 В

Преобразователь напряжения с ШИ модуляцией

без гальванической развязки цепей нагрузки и управления

Преобразователь напряжения с ШИ модуляцией

с гальванической развязки цепей нагрузки и управления

Универсальный преобразователь напряжения

Трехфазный инвертор

Преобразователь однофазного напряжения в трехфазное

для питания трехфазного электродвигателя.

Преобразователь питания от элемента А316 с напряжением 1,5 В

на питание 9 В (батарейка типа «Крона»)

Формирователь двуполярного напряжения ±8,5 В с допустимой нагрузкой 10 мА

Электроподжиг в газовой плите

высоковольтный преобразователь 220 В — 10 кВ

Модернизированный электроподжиг

высоковольтный преобразователь 220 В — 10 кВ

Источник питания для ионизатора — люстры Чижевского

Источник питания для часов на БИС

Глава 3. Преобразуем напряжение автомобильного аккумулятора 12В в другие величины

«Обратимый» преобразователь напряжения

Тринисторный преобразователь постоянного тока релаксационного типа

Преобразователь напряжения автомобильной бортсети в переменное напряжение 220 В

Преобразователь напряжения 12 В — 220 В

для питания радиоэлектронных устройств с мощностью до 100 Вт

Преобразователь 12 В в 220 В для походов

Преобразователь напряжения бортсети автомобиля

в переменное напряжение 36,127 и 220 В

Несложный бестрансформаторный преобразователь 12В — 220 В

Преобразователь 12В — 220 В на полевых транзисторах

Двухтактный преобразователь напряжения на полевых транзисторах, выполненный с использованием специализированного

ШИМ-контроллера 1114ЕУ4

Мощный тиристорный преобразователь с мощностью в нагрузке до 500 Вт

Импульсный преобразователь с 12 В на 220 В 50 Гц

Мощный малогабаритный преобразователь постоянного напряжения 12 В в постоянное напряжение большей величины

Глава 4. Стабилизаторы напряжения, построенные на интегральных микросхемах

Особенности микросхем серий 142, К142 и КР142

Стабилизатор напряжения на ИМС КР142

защищенный от повреждения разрядным током конденсаторов

Стабилизатор напряжения на ИМС КР142 со ступенчатым включением

Стабилизатор напряжения на ИМС КР142

с выходным напряжением повышенной стабильности

Стабилизатор напряжения на ИМС КР142

с регулируемым выходным напряжением от 0 до 10 В

Стабилизаторы напряжения на ИМС КР142

с внешними регулирующими транзисторами

Стабилизатор напряжения на ИМС КР142

с высоким коэффициентом стабилизации

Двуполярный стабилизатор напряжения на основе однополярной микросхемы

Стабилизатор напряжения на ИМС КР142 с регулируемым выходным напряжением

Импульсный стабилизатор напряжения на ИМС КР142

Стабилизатор тока на ИМС КР142

для зарядки аккумуляторной батареи напряжением 12 В

Стабилизатор тока на ИМС КР142

для зарядки аккумуляторной батареи напряжением 6 В

Глава 5. Создаем импульсные источники питания

Достоинства и недостатки импульсных источников питания

Структурная схема нерегулируемого импульсного источника питания

Структурная схема регулируемого импульсного источника питания

Импульсный источник питания 5 В 0,2 А

Миниатюрный импульсный сетевой источник питания с выходом 5 В 3 Вт

Импульсный источник питания 5 В 6 А, построенный на ИМС КР142ЕН19А

Импульсный стабилизатор напряжения на трех транзисторах

Экономичный импульсный источник питания, формирующий

на выходе двуполярное напряжение + 27 В и -27 В при токе нагрузки до 0,6 А

Импульсный источник питания УЗЧ

Импульсный стабилизатор напряжения на 5 В с высоким КПД

Стабилизатор напряжения 5 В на микросхеме К554САЗ

Импульсный стабилизатор напряжения на 5 В с током нагрузки до 2 А

Ключевой стабилизатор напряжения 5 В 2 А, выполненный по классической схеме

Глава 6. Создаем бестрансформаторные источники питания

Источник питания с гасящим конденсатором

Конденсаторно-стабилитронный выпрямитель

Бестрансформаторный пятивольтовый источник питания общего назначения на ток нагрузки до 0,3 А

Бестрансформаторный источник бесперебойного питания для кварцованных электронно-механических часов

Бестрансформаторный источник питания большой мощности для любительского передатчика

Стабилизированный выпрямитель с малым уровнем пульсаций

Бестрансформаторное зарядное устройство

Бестрансформаторный источник питания с регулируемым выходным напряжением

Маломощный конденсаторный выпрямитель с ШИМ стабилизатором

Бестрансформаторные источники питания с симметричным динистором

Бестрансформаторный источник питания на полевом транзисторе

Высоковольтный преобразователь — электронная ловушка для тараканов

Глава 7. Создаем стабилизаторы сетевого напряжения

Стабилизатор напряжения переменного тока

Релейный стабилизатор напряжения

Мощный транзисторный регулятор сетевого напряжения

Глава 8. Создаем трансформаторные источники сварочного тока

Разновидности источников сварочного тока

Типы сварочных трансформаторов

Сварочный трансформатор со ступенчатой регулировкой тока

Сварочный источник с резонансным конденсатором

Сварочный источник переменного тока с плавной регулировкой

Сварочный источник постоянного тока с электронной регулировкой

Глава 9. Создаем инверторные источники сварочного тока

Принцип действия инверторных сварочных источников

Однотактный прямоходовый преобразователь

Двухтактный мостовой преобразователь

Простой самодельный инверторный сварочный источник

Сварочный инвертор на одном транзисторе

Сварочный источник Большакова

Список литературы и ресурсов сети Интернет

 

принцип работы, импульсная модель, универсальный регулируемый прибор

Чтобы эффективно побороть различные помехи в сети, необходимо использовать простые стабилизаторы тока. Современные производители занимаются промышленным изготовлением таких устройств, благодаря чему каждая модель отличается своими функциональными и техническими характеристиками. В бытовой отрасли нет больших требований к стабилизаторам тока, но высококачественное измерительное оборудование всегда нуждается в стабильном напряжении.

Краткое описание

Опытные мастера прекрасно знают, что простейшие ограничители тока представлены в виде обычных резисторов. Такие агрегаты часто называют стабилизаторами, что не является действительностью, так как они не способны убрать все помехи при колебании напряжения на своём входе. Использование резистора в схеме питания того или иного прибора возможно только в том случае, если всё входное напряжение стабилизируется.

В иной ситуации даже мельчайшие скачки напряжения воспринимаются как повышенная нагрузка, что негативно отражается на работе всего устройства. Эффективность работы резистивных ограничителей тока является довольно низкой, так как потребляемая ими энергия рассеивается в виде тепла.

Более высоким уровнем КПД обладают те конструкции, которые изготовлены на базе готовых интегральных микросхем линейных стабилизаторов. Схемы таких устройств отличаются минимальным набором элементов, простотой настройки и отсутствием помех. Чтобы избежать нежелательного перегрева регулирующего элемента, различия между входным и выходным напряжением должны быть минимальными. В противном случае корпус микросхемы будет вынужден рассеивать всю невостребованную энергию, что в несколько раз снижает итоговый показатель КПД.

Наибольшей эффективностью обладают схемы с широтно-импульсной модуляцией. Их производство основано на использовании универсальных микросхем, где присутствует цепь обратной связи и специальные защитные механизмы, благодаря чему существенно возрастает надёжность всего устройства. Использование импульсного трансформатора ведёт к удержанию схемы, что положительно влияет на уровень КПД и продолжительность эксплуатационного срока. Стоит отметить, что такие стабилизаторы мастера часто изготавливают своими руками, используя для этого специальные детали.

Функциональные возможности

Только тот мастер, который хорошо знает принцип работы стабилизатора тока, сможет эффективно применять это устройство в различных сферах. Основная сложность в том, что электросети насыщены различными помехами, которые негативно влияют на работоспособность оборудования и приборов. Чтобы эффективно преодолеть источники отрицательного воздействия, специалисты повсюду применяют стабилизаторы напряжения и тока.

В каждом таком изделии присутствует незаменимый элемент — трансформатор, который обеспечивает стабильную и безотказную работу всей системы. Даже самая элементарная схема обязательно укомплектована универсальным выпрямительным мостом, который соединён с разными резисторами, а также конденсаторами. К главным эксплуатационным характеристикам относятся предельный уровень сопротивления и индивидуальная ёмкость.

Квалифицированные специалисты отмечают, что простой стабилизатор тока функционирует по самой элементарной схеме. Всё дело в том, что электрический ток поступает на основной трансформатор, благодаря чему меняется его предельная частота. На входе она всегда совпадает с этим показателем в электросети, находясь в пределах 50 герц. Только после того, как произошло преобразование тока, предельная частота будет снижена до оптимальной отметки.

Стоит отметить, что в традиционной схеме присутствуют мощные высоковольтные выпрямители, которые помогают определить полярность напряжения. А вот конденсаторы участвуют в качественной стабилизации тока, резисторы устраняют имеющиеся помехи.

Изготовление простого преобразователя для светодиодов

Опытные мастера согласятся, что собрать качественный и долговечный стабилизатор не так уж и сложно. Главная особенность состоит в том, что на блок может быть установлена целая система низковольтных конденсаторов на 20 вольт, а импульсная микросхема может иметь вход до 35 В. Наиболее простой светодиодный стабилизатор, выполненный своими руками — это вариант LM317. Потребуется только правильно рассчитать резистор для используемого светодиода с помощью специализированного онлайн-калькулятора.

Важным фактом остаётся то, что для слаженной работы такого агрегата отлично подходит подручное питание:

  • Стандартный блок на 19 вольт от ноутбука.
  • На 24 В.
  • Более мощный агрегат на 32 вольт от обычного принтера.
  • Либо на 9 или на 12 вольт от какой-либо бытовой электроники.

К основным преимуществам такого преобразователя всегда относят его доступность, минимальное количество элементов, высокую степень надёжности, а также наличие в магазинах. Собирать самостоятельно более сложную схему весьма нерационально. Если мастер не обладает необходимым опытом, тогда импульсный стабилизатор тока лучше купить в готовом виде. При необходимости его всегда можно усовершенствовать.

Продолжительность работы светодиода без потери яркости зависит от режима. Главное достоинство простейших стабилизаторов (драйверов), таких как микросхема-стабилизатор LM317, — их довольно трудно сжечь. Схема подключения LM317 требует всего двух деталей: самой микросхемы, включаемой в режим стабилизации, и резистора. Сам процесс сборки состоит из нескольких основных этапов:

  1. Потребуется купить переменный резистор сопротивлением в 0.5 кОм (имеет три вывода и ручку регулировки). Заказать его можно через интернет или купить в «Радиолюбителе».
  2. Провода припаиваются к среднему выводу, а также к одному из крайних.
  3. С помощью мультиметра, включённого в режиме измерения сопротивления, замеряется сопротивление резистора. Нужно добиться максимального показания в 500 Ом (чтобы светодиод не перегорел при низком сопротивлении резистора).
  4. После внимательной проверки правильности соединений перед подключением собирается цепь.

Для любого устройства можно добиться подачи 10 А (задаётся низкоомным сопротивлением). Для этих целей можно использовать транзистор КТ825 или установить аналог с лучшими техническими характеристиками и системой охлаждения. Максимальная мощность LM317 — 1.5 ампер. Если есть необходимость увеличить ток, то в схему можно добавить полевой или обычный транзистор.

Универсальная регулируемая модель

Многие мастера сталкиваются с необходимостью использования высококачественного стабилизатора, который позволил бы проводить настройки сети в широком диапазоне. Некоторые современные схемы отличаются тем, что в них предусмотрено наличие токозадающего резистора с пониженными характеристиками. Сами специалисты отмечают, что такое устройство позволяет проводить усиление напряжения в другом резисторе. Это состояние принято называть усиленным напряжением ошибки.

Параметры опорного и ошибочного напряжения можно сравнить при помощи опорного усилителя, благодаря этому мастер осуществляет настройку состояния полевого транзистора. Стоит отметить, что такая схема требует дополнительного питания, которое обязательно должно поступать к отдельному разъёму. Всё дело в том, что питающее напряжение должно обеспечивать слаженную работу абсолютно всех компонентов используемой схемы. Допустимый уровень не должен быть превышен, так как это чревато преждевременной поломкой оборудования.

Чтобы максимально правильно настроить работу регулируемого стабилизатора тока, необходимо использовать специальный ползунок. Именно подстроечный резистор позволяет мастеру выставить максимальное значение тока. Настройка сети получается более гибкой, так как все параметры можно самостоятельно корректировать в зависимости от интенсивности эксплуатации.

Многофункциональный прибор

Среднюю сложность изготовления имеют драйверы для светодиодов на 220 В. Много времени может занять их настройка, требующая опыта по наладке. Такой драйвер извлечь можно из светодиодных ламп, прожекторов и светильников с неисправной светодиодной цепью. Большинство из них также возможно доработать, узнав модель контроллера преобразователя. Параметры обычно задаются одним или несколькими резисторами.

В datasheet указывается уровень сопротивления, необходимый для получения нужного тока. Если установить регулируемый резистор, то количество Ампер будет настраиваемым (но без превышения указанной номинальной мощности).

Ещё недавно высокой популярностью пользовался универсальный модуль XL4015. По своим характеристикам он подходит для подключения светодиодов с высокой мощностью (до 100 Ватт). Стандартный вариант его корпуса припаян к плате, выполняющей функции радиатора. Чтобы улучшить охлаждение XL4015, схема должна быть доработана с установкой радиатора на коробку устройства.

Многие пользователи просто ставят его сверху, однако, эффективность такой установки довольно низкая. Систему охлаждения желательно располагать внизу платы, напротив пайки микросхемы. Для оптимального качества её можно отпаять и установить на полноценный радиатор, используя термопасту. Провода потребуется удлинить. Дополнительное охлаждение можно монтировать и для диодов, что значительно повысит эффективность работы всей схемы.

Среди драйверов наиболее универсальным считается регулируемый. Обязательно устанавливается переменный резистор, который задаёт количество ампер. Эти характеристики обычно указываются в следующих документах:

  • В сопроводительной документации к микросхеме.
  • В datasheet.
  • В стандартной схеме включения.

Без добавочного охлаждения микросхемы такие устройства выдерживают 1—3 А (в соответствии с моделью контроллера широтно-импульсной модуляции). Главный недостаток этих драйверов — чрезмерный нагрев диода и дросселя. Выше 3 А потребуется охлаждение мощного диода и контроллера. Дроссель заменяют более подходящим либо перематывают толстым проводом.

Незаменимое устройство постоянного тока

Даже начинающий мастер знает, что такой агрегат работает по принципу двойного интегрирования. Абсолютно во всех моделях за этот процесс отвечают преобразователи. Универсальные двухканальные транзисторы предназначены для увеличения существующих динамических характеристик. Важно помнить, что для устранения тепловых потерь нужно использовать конденсаторы с большой ёмкостью.

Сделать показатель выпрямления можно только благодаря точному расчёту необходимого значения. Как показывает практика, если при выходном напряжении постоянного тока получается 12 ампер, то предельное значение должно составлять 5 В. Устройство сможет стабильно поддерживать рабочую частоту на отметке 30 Гц. Относительно порогового напряжения — всё зависит от блокировки сигнала, который поступает от трансформатора. Но фронт импульсов не должен превышать 2 МКС.

Только качественное преобразование тока позволяет обеспечить слаженную работу главных транзисторов. В этой схеме допускается использование исключительно полупроводниковых диодов. Если резисторы балластные, то это чревато большими тепловыми потерями. Именно поэтому коэффициент рассевания существенно увеличивается. Мастер может увидеть, что амплитуда колебаний возросла, а процесс индуктивности не произошёл.

Современная схема на базе КРЕН

Такое устройство будет стабильно работать только с элементами LM317 и КР142ЕН12. Это связано с тем, что они выступают в качестве универсальных стабилизаторов напряжения, хорошо справляясь с током до 1.5 А и выходным напряжением до 40 вольт. В классическом тепловом режиме эти элементы способны качественно рассеивать мощность до 10 Ватт. Сами микросхемы отличаются низким собственным потреблением, так как этот показатель составляет всего 8 мА. Главное, что этот показатель остаётся неизменным даже в том случае, если напряжение колеблется.

Отдельного внимания заслуживает микросхема LM317, которая способна удерживать постоянное напряжение на основном резисторе. Этот агрегат с неизменным сопротивлением обеспечивает максимальную стабильность проходящего через него тока, благодаря чему его часто называют токозадающим резистором. Современные стабилизаторы на КРЕН отличаются от своих аналогов относительной простотой, за счёт чего активно эксплуатируются в качестве зарядки для аккумуляторов и для электронной нагрузки.

Стабилизатор напряжения на 2 5 вольта

Схема устройства

Схема, изображенная на рисунке 1, представляет собой регулируемый стабилизатор напряжения и позволяет получить выходное напряжение в пределах 1.25 — 30 вольт. Это позволяет использовать данный стабилизатор для питания пейджеров с 1.5 вольтовым питанием (например Ultra Page UP-10 и т.п.), так и для питания 3-х вольтовых устройств. В моем случае она используется для питания пейджера «Moongose PS-3050», то есть выходное напряжение установлено в 3 вольта.

Работа схемы

При помощи переменного резистора R2 можно установить необходимое выходное напряжение. Выходное напряжение можно рассчитать по формуле Uвых=1.25(1 + R2/R1) .
В качестве регулятора напряжения используется микросхема SD 1083/1084 . Без всяких изменений можно использовать российские аналоги этих микросхем 142 КРЕН22А/142 КРЕН22 . Они различаются только выходным током и в нашем случае это несущественно. На микросхему необходимо установить небольшой радиатор, так как при низком выходном напряжении регулятор работает в токовом режиме и существенно нагревается даже на «холостом» ходу.

Монтаж устройства

Устройство собрано на печатной плате размером 20х40мм. Так как схема очень простая рисунок печатной платы не привожу. Можно собрать и без платы с помощью навесного монтажа.
Собранная плата помещается а отдельную коробочку или монтируется непосредственно в корпусе блока питания. Я разместил свою в корпусе AC-DC адаптера на 12 вольт для радиотелефонов.

Примечание.

Необходимо сначала установить рабочее напряжение на выходе стабилизатора (при помощи резистора R2) и лишь, затем подключать нагрузку.

Другие схемы стабилизаторов.

Это одна из самых простых схем, которую можно собрать на доступной микросхеме LM317LZ . Путем подключения/отключения резистора в цепи обратной связи мы получаем на выходе два разных напряжения. При этом, ток нагрузки может достигать 100 мА.


Только обратите внимание на распиновку микросхемы LM317LZ. Она немного отличается от привычных стабилизаторов.

Простой стабилизатор на различные фиксированные напряжения (от 1,5 до 5 вольт) и ток до 1А. можно собрать на микросхеме AMS1117 -X.X (CX1117-X.X) (где X.X — выходное напряжение). Есть экземпляры микросхем на следующие напряжения: 1.5, 1.8, 2.5, 2.85, 3.3, 5.0 вольт. Также есть микросхемы с регулируемым выходом с обозначением ADJ. Этих микросхем очень много на старых компьютерных платах. Одним из достоинств этого стабилизатора является низкое падение напряжения — всего 1,2 вольта и небольшой размер стабилизатора адаптированный под СМД-монтаж.

Для его работы требуется всего пара конденсаторов. Для эффективного отвода тепла при значительных нагрузках необходимо предусмотреть теплоотводную площадку в районе вывода Vout. Этот стабилизатор также доступен в корпусе TO-252.

Интегральные микросхемы серии LM2931 производства фирм Motorola и Texas Instruments представляют собой линейные стабилизаторы напряжения положительной полярности с малым напряжением насыщения. Эти микросхемы выпускаются в корпусах ТО-220, ТО-263, DIP-8, ТО-92 и рассчитаны на фиксированные выходные напряжения 3,3 В, 5,0В, также есть микросхемы этой серии с регулируемым выходным напряжением. Микросхемы на фиксированное выходное напряжение выпускаются в корпусах с тремя выводами, микросхемы с регулируемым выходным напряжением выпускаются в корпусах с пятью и восемью выводами. Структурный состав микросхем показан на рис. 1, у микросхем на фиксированное выходное напряжение выводы «ADJ» и «ON/OFF» отсутствуют.

Имея в наличии микросхемы типа LM2931AZ-3.3, выпускаемые в трёхвыводном корпусе ТО-92 можно собрать простой стабилизатор на выходное напряжение +3,3 В, рис. 2. Стабилизатор рассчитан на диапазон входных напряжений +4…18 В, максимальный ток нагрузки 100 мА. Рассеиваемая корпусом микросхемы мощность не должна превышать 0,6 Вт. Максимальное входное рабочее напряжение для всех микросхем серии LM2931 26 В. Ток покоя авторского экземпляра стабилизатора составил 0,3 мА при входном напряжении 9 В при отключенной нагрузке.

При токе нагрузки 80 мА напряжение насыщения микросхемы составило 0,35В, это означает, что при выходном напряжении 3,3 В минимальное входное напряжение стабилизатора, при котором сохраняется стабилизация выходного напряжения, будет около 3,65 В. При меньшем токе нагрузки напряжение насыщения регулирующего двухколлекторного p-n-р транзистора Q1 будет меньше. Если напряжение на входе стабилизатора будет меньше суммы выходного напряжения и напряжения насыщения, то ток покоя стабилизатора увеличивается на несколько миллиампер. Малый ток покоя микросхемы LM2931AZ-3.3 и её малое напряжение насыщения позволяет использовать её в качестве стабилизатора напряжения в устройствах с автономным питанием, например, питаемых от литиевых аккумуляторов с номинальным напряжением 3,7В, эксплуатируемых периодически, например, малогабаритные радиоприёмники, радиомикрофоны, измерительные приборы.

Для устройств, работающих круглосуточно от автономных источников энергии, целесообразно применять более экономичные интегральные стабилизаторы напряжения положительной полярности с меньшим током покоя, например, LP2950, LP2951 (75 мкА), МС78ВСхх (50 мкА), MC78FCxx (1,1 мкА).

На рис. 3 представлена схема блока питания с переключаемым выходным напряжением. Это функционально законченное устройство представляет собой блок питания с линейным стабилизатором выходного напряжения, рассчитанным на максимальный ток нагрузки 1,5 А. Выходное напряжение можно установить равным 3,3 В, 5,0 В, 6,5 В или 9,3 В. Напряжение сети переменного тока 220 В поступает на первичную обмотку понижающего трансформатора Т 1 через замкнутые контакты выключателя SA 1, плавкий предохранитель FU1 и защитный резистор R 1. Напряжение переменного тока около 12 В через полимерный самовосстанавливающийся предохранитель FU2 поступает на мостовой диодный выпрямитель VD 1- VD 4, выполненный на диодах Шотки.

Применение таких диодов примерно вдвое уменьшает потери мощности и напряжения на диодам выпрямительного моста, в сравнении, с выпрямительным мостом на обычных кремниевых диодах. Варистор RU 1 защищает трансформатор и диоды Шотки от всплесков напряжения сети. Пульсации выпрямленного напряжения сглаживает конденсатор большой ёмкости С 5. Для увеличения выходного тока и мощности стабилизатора напряжения, установлен мощный дискретный р-п-р транзистор VT 1, который начинает открываться при токе нагрузки более 50 мА. Конденсатор С 7 устраняет самовозбуждение микросхемы DA 1.

Выходное напряжение стабилизатора выбирается с помощью переключателя SA 2. Когда переключаемый контакт находится в верхнем по схеме положении, выходное напряжение стабилизатора будет около 3,3 В. Если переключатель установить на ступеньку ниже, то выходное напряжение стабилизатора увеличится на суммарное рабочее напряжение последовательно включенных диода Шотки VD 5 и светодиода HL 1. Конденсатор С 8 уменьшает броски выходного напряжения при изменении позиции переключателя SA2. Резистор R4 уменьшает ток разрядки конденсатора С8 при переключении выходного напряжения с большего на меньшее. Напряжение насыщения стабилизатора, собранного по схеме рис. 3, без учёта пульсаций напряжения на выводах конденсатора С 5 будет 1,5 В при токе нагрузки 1,5 А, или 1,2 при токе нагрузки 1 А, или 1 В при токе нагрузки 0,5 В.

Это примерно в два…три раза меньше, чем у стабилизаторов напряжения, собранных на распространённых микросхемах интегральных стабилизаторов напряжения серий 78хх, 78Мхх, КР142ЕНхх. При изменении тока нагрузки от 0 до 1,5 А выходное напряжение изменяется не более чем на 10 мВ.

Если в устройстве, собранным по схеме рис. 3, конденсатор С 8 установить ёмкостью 0,047 мкФ, переключатель SA 2 и резистор R4 исключить, а вместо цепочки последовательно включенных светодиодов HL1 — HL3 и диода Шотки VD 5 включить мигающий одноцветный светодиод, зашунтированный маломощным стабилитроном с рабочим напряжением 9 В, например, BZV55C-9V1, и подключить к выходу стабилизатора лампу накаливания на рабочее напряжение 12… 13,5 В, то такая лампа будет вспыхивать в паузах свечения светодиода. В этом случае, желательно конденсатор С 10 установить ёмкостью 47 мкФ.

Большинство деталей блока питания, собранного по схеме рис. 3, можно смонтировать на печатной плате размерами 80×50 мм, рис. 4. Плавкий предохранитель FU1 размещён в держателе предохранителя типа ДВП4-1, закрепленном на корпусе устройства. Варистор FNR-14К471 припаян к клеммам первичной обмотки понижающего трансформатора. Вместо такого варистора можно установить FNR-20K471, MYG20-431, MYG20-471, LF14K471. Постоянные резисторы типов РПМ, МЛТ, С1-4, С2-23, С2-33 или аналогичные общего применения соответствующей мощности. Оксидные конденсаторы типов К50-35, К50-68 или импортные аналоги. Неполярные конденсаторы керамические или малогабаритные плёночные на рабочее напряжение не менее 25 В. Диоды Шотки 1N5822 можно заменить аналогичными MBRS340T3, MBRS360T3, MBRD340, MBR340, MBR350, SR360, 5GWZ47. Диод SB140 можно заменить на любой из 1N5817 — 1N5819, MBRS130LT3, MBR0520LT1, MBR0520LT3.

Упомянутые в вариантах возможных замен диоды Шотки выполнены в различных корпусах. Транзистор VT 1 должен быть с коэффициентом передачи тока базы не менее 40 при токе коллектора 1 А. Можно заменить любым из серий КТ818, 2Т818, КТ855, 2SA1293, 2SA1441, 2SA473. Транзистор устанавливают на дюралюминиевый теплоотвод. Упомянутые транзисторы имеют различия в цоколёвках выводов и типе корпуса. Перед установкой обязательно измеряйте у транзистора коэффициент передачи тока базы, особенно это касается мощных отечественных транзисторов упомянутых серий, среди которых часто встречаются экземпляры с h31э меньше 10. Микросхемы серии LM2931, выпускаемые в корпусах различных типов, имеют различия в цоколёвках выводов.

На принципиальной схеме указана цоколёвка для микросхем в корпусе ТО-92 (КТ-26) — пластмассовый корпус как у отечественных транзисторов КТ502, КТ209. Светодиоды HL1, HL2 отечественные красного цвета свечения с прямым рабочим напряжением около 1,5В. Светодиод RL50-CB744D синего цвета свечения с прямым рабочим напряжением 2,8 В. От рабочего напряжения светодиодов зависят выходные напряжения стабилизатора. Вместо светодиодов можно установить по несколько последовательно включенных маломощных кремниевых диодов, например, КД522, 1N4148, или маломощные стабилитроны на необходимое рабочее напряжение. Выключатель питания SA1 малогабаритный клавишный типа SS21 (4 А, ~250 В). Переключатель SA 2 любого типа на 4 положения свободные группы контактов соединяют параллельно. Полимерный самовосстанавливающийся предохранитель MF-R160 можно заменить на LP30-160, LP60-160.

Унифицированный понижающий трансформатор ТП8-25-220-50 можно заменить на ТП8-26-220-50. Эти трансформаторы имеют по две вторичные обмотки, которые нужно соединить параллельно, соблюдая фазировку. Подойдут и другие трансформаторы с габаритной мощностью 20…30 Вт, вторичная обмотка которых рассчитана на выходное напряжение 11… 14 В при токе нагрузки 1,5 А . Резистор R 1 устанавливают сопротивлением, примерно равным половине сопротивления первичной обмотки трансформатора.

Бутов А.Л.

Литература:

1.Миниатюрные силовые трансформаторы HR. —

  1. Тороидальные силовые трансформаторы HR. — Радиоконструктор, 2011, № 6, № 9.
  2. Бутов А.Л. Стабилизаторы на микросхемах AMS1117- хх. — Радиоконструктор, 2008, № 6, с. 24, 25.
  3. Бутов А.Л. Стабилизаторы напряжения на ИМС L88MS33T. — Радиоконструктор, 2011, №11, с. 14-16.
  4. Бутов А.Л. Мощный низковольтный регулируемый блок питания на LX8384-00CP. —

Радиоконструктор, 2012, №11, с. 13- 16.

Ниже приведены сразу две схемы 3-х Вольтовых блоков питания .
Они собраны на разных элементах, а конкретную вы сможете выбрать сами, познакомившись с их особенностями и исходя из своих потребностей м возможностей.
На первом рисунке приведена простая схема блока питания на 3 В (ток в нагрузкеке 200 мА) с электронной защитой от перегрузки (Iз = 250 мА). Уровень пульсации выходного напряжения не превышает 8 мВ.

Для нормальной работы стабилизатора напряжение после выпрямителя (на диодах VD1…VD4) может быть от 4,5 до 10 В, но лучше, если оно будет 5…6 В, ≈ меньшая мощность источника теряется на тепловыделение транзистором VT1 при работе стабилизатора. В схеме в качестве источника опорного напряжения используется светодиод HL1 и диоды VD5, VD6. Светодиод является одновременно и индикатором работы блока питания.

Транзистор VT1 крепится на теплорассеивающей пластине. Как рассчитать размер теплоотводящего радиатора можно более подробно посмотреть .
Трансформатор Т1 можно приобрести из унифицированной серии ТН любой, но лучше использовать самые малогабаритные ТИ1-127/220-50 или ТН2-127/220-50. Подойдут также и многие другие типы трансформаторов со вторичной обмоткой на 5…6 В. Конденсаторы С1…СЗ типа К50-35.

Вторая схема использует интегральный стабилизатор DA1, но в отличие от транзисторного стабилизатора, приведенного на первом рисунке, для нормальной работы микросхемы необходимо, чтобы входное напряжение превышало выходное не менее чем на 3,5 В. Это снижает КПД стабилизатора за счет тепловыделения на микросхеме.

При низком выходном напряжении мощность, теряемая в блоке питания, будет превышать отдаваемую в нагрузку. Необходимое выходное напряжение устанавливается подстроечным резистором R2. Микросхема устанавливается на радиатор. Интегральный стабилизатор обеспечивает меньший уровень пульсации выходного напряжения (1 мВ), а также позволяет использовать емкости меньшего номинала.

В настоящее время множество домашних устройств требуют подключения напряжения стабильной величины на 3 вольта, и нагрузочный ток 0,5 ампер. К ним могут относиться:

  • Плееры.
  • Фотоаппараты.
  • Телефоны.
  • Видеорегистраторы.
  • Навигаторы.

Эти устройства объединены видом источника питания в виде аккумулятора или батареек на 3 вольта.

Как создать питание от бытовой сети дома, не тратя деньги на аккумуляторы или батарейки? Для этих целей не нужно проектировать многоэлементный блок питания, так как в продаже имеются специальные микросхемы в виде стабилизаторов на низкие напряжения.

Схема стабилизатора на 3 вольта

Изображенная схема выполнена в виде регулируемого стабилизатора, и дает возможность создания напряжения на выходе от 1 до 30В. Следовательно, можно применять этот прибор для питания различных устройств для питания 1,5 В, а также для подключения устройств на 3 вольта. В нашем случае устройство применяется для плеера, напряжение на выходе настроено на 3 В.

Работа схемы

С помощью изменяемого сопротивления устанавливается необходимое напряжение на выходе, которое рассчитывается по формуле: U вых=1.25*(1 + R2 / R1). Вместо регулятора напряжение применяется микросхема SD1083 / 1084. Без изменений применяются отечественные подобные микросхемы 22А / 142КРЕН 22, которые различаются током выхода, что является незначительным фактором.

Для нормального режима микросхемы необходимо смонтировать для нее маленький радиатор. В противном случае при малом напряжении выхода регулятор функционирует в токовом режиме, и значительно нагревается даже без нагрузки.

Монтаж стабилизатора

Прибор собирается на монтажной плате с габаритами 20 на 40 мм. Схема довольно простая. Есть возможность собрать стабилизатор без использования платы, путем навесного монтажа.

Выполненная готовая плата может разместиться в отдельной коробочке, либо прямо в корпусе самого блока. Необходимо в первую очередь настроить рабочее напряжение стабилизатора на его выходе, с помощью регулятора в виде резистора, а потом подсоединять нагрузку потребителя.

Переключаемый стабилизатор на микросхеме

Такая схема является наиболее легкой и простой. Ее можно смонтировать самостоятельно на обычной микросхеме LZ. С помощью отключения и включения сопротивления в цепи обратной связи образуется два различных напряжения на выходе. в этом случае нагрузочный ток может возрасти до 100 миллиампер.


Нельзя забывать про цоколевку микросхемы, так как она имеет отличие от обычных стабилизаторов.

Стабилизатор на микросхеме AMS 1117

Это элементарный стабилизатор с множественными фиксированными положениями регулировки напряжения 1,5-5 В, током до 1 ампера. Его можно монтировать самостоятельно на сериях — X.X (CX 1117 — X.X) (где XX — напряжение на выходе).


Есть образцы микросхем на 1,5 – 5 В, с регулируемым выходом. Они применялись раньше на старых компьютерах. Их преимуществом является малое падение напряжения и небольшие габариты. Для выполнения монтажа необходимы две емкости. Чтобы хорошо отводилось тепло, устанавливают радиатор возле выхода.

Pololu 12V, 1A Понижающий стабилизатор напряжения D24V10F12

Обзор

Понижающие регуляторы напряжения Pololu D24V10Fx и D24V5Fx рядом с регулятором напряжения 7805 в корпусе TO-220.

Семейство понижающих стабилизаторов напряжения D24V10Fx включает синхронный понижающий стабилизатор Intersil ISL85410 1A и генерирует более низкие выходные напряжения при входных напряжениях до 36 В.Это импульсные регуляторы (также называемые импульсными источниками питания (SMPS) или преобразователями постоянного тока в постоянный) с типичным КПД от 80% до 95%, что намного эффективнее, чем линейные регуляторы напряжения, особенно когда разница между входом и выходное напряжение большое. Эти регуляторы имеют режим энергосбережения, который активируется при малых нагрузках и низком потреблении тока покоя (без нагрузки), что делает их хорошо подходящими для приложений, работающих от батареи. Эти регуляторы доступны с пятью различными фиксированными выходными напряжениями:

Доступны альтернативы с вариациями этих параметров: выходное напряжение Выбрать вариант…

Различные версии этого регулятора выглядят очень похоже, поэтому нижняя шелкография включает пустое место, где вы можете добавить свои собственные отличительные знаки или метки.Эта страница продукта относится ко всем пяти версиям семейства D24V10Fx.

Вывод SHDN можно использовать для перевода платы в состояние с низким энергопотреблением, которое снижает ток покоя примерно до 10–20 мкА на вольт на VIN, а выход PG (power good) может использоваться для контроля состояния выходное напряжение регулятора.

Регуляторы оснащены защитой от короткого замыкания / перегрузки по току, а тепловое отключение помогает предотвратить повреждение от перегрева. Платы , а не имеют защиту от обратного напряжения.

Если вам не нужен такой большой ток, рассмотрите очень похожее семейство понижающих стабилизаторов напряжения D24V5Fx, которые могут выдавать до 500 мА в широком диапазоне выходных напряжений:

Доступны альтернативы с вариациями этих параметров: выходное напряжение Выбрать вариант…

На рисунке справа показан регулятор D24V10Fx на 1 А рядом с регулятором D24V5Fx на 0,5 А и обычным линейным регулятором 7805 в корпусе TO-220.

Характеристики

  • Входное напряжение: [выходное напряжение + падение напряжения ] до 36 В (дополнительную информацию о выпадающем напряжении см. Ниже)
  • Исправлено 3.Выход 3 В, 5 В, 6 В, 9 В или 12 В (в зависимости от версии регулятора) с точностью 4%
  • Максимальный выходной ток: 1 А
  • Типичный КПД от 80% до 93%
  • Частота коммутации 500 кГц (вне режима энергосбережения)
  • Плавный пуск за 2 мс снижает пусковой ток при включении питания
  • 200 мкА типичный ток покоя без нагрузки
  • Защита от перегрузки по току и короткого замыкания, отключение от перегрева
  • Малый размер: 0,7 ″ × 0,5 ″ × 0,14 ″ (18 мм × 13 мм × 3.5 мм)

Использование регулятора

Подключения

Понижающий регулятор имеет пять подключений: power good (PG). выключение (SHDN), входное напряжение (VIN), заземление (GND) и выходное напряжение (VOUT).

Индикатор «Power Good», PG , представляет собой выход с открытым стоком, который становится низким, когда выходное напряжение регулятора падает ниже 80% или поднимается выше 120% от целевого выходного напряжения.Этот выход также активно удерживается на низком уровне в течение периода плавного пуска регулятора 2 мс и пока регулятор отключается входом SHDN или из-за перегрева или перегрузки по току. Для использования этого вывода обычно требуется внешний подтягивающий резистор.

На вывод SHDN можно подать низкий уровень (ниже 0,4 В), чтобы отключить выход и перевести плату в состояние низкого энергопотребления. Есть 100 кОм; подтягивающий резистор между контактом SHDN и VIN, поэтому, если вы хотите оставить плату постоянно включенной, контакт SHDN можно оставить отключенным.Пока на выводе SHDN устанавливается низкий уровень, в потребляемом стабилизатором токе преобладает ток, протекающий через подтягивающий резистор, и он будет пропорционален входному напряжению. (При напряжении 36 В он потребляет около 360 мкА.)

Входное напряжение VIN питает регулятор. Напряжения от 3 В до 36 В могут быть приложены к VIN, но эффективный нижний предел VIN равен VOUT плюс падение напряжения регулятора, которое изменяется примерно линейно с нагрузкой (см. Ниже графики выпадающих напряжений в зависимости от нагрузки). .Кроме того, будьте осторожны с деструктивными всплесками LC (дополнительную информацию см. Ниже).

Выходное напряжение VOUT является фиксированным и зависит от версии регулятора: версия D24V10F3 выдает 3,3 В, версия D24V10F5 выдает 5 В, версия D24V10F6 выдает 6 В, версия D24V10F9 выдает 9 В, а версия D24V10F12 выходы 12 В.

Пять соединений помечены на задней стороне печатной платы и расположены с шагом 0,1 дюйма по краю платы для совместимости с беспаечными макетными платами, разъемами и другими устройствами для прототипирования, в которых используется цифра 0.Сетка 1 ″. Вы можете припаять провода непосредственно к плате или припаять либо прямую штыревую полоску 5 × 1, либо полоску штыревой под прямым углом 5 × 1, которая входит в комплект.

Типичный КПД и выходной ток

Эффективность регулятора напряжения, определяемая как (Power out) / (Power in), является важным показателем его производительности, особенно когда речь идет о сроке службы батареи или нагреве. Это семейство импульсных регуляторов обычно имеет КПД от 80% до 93%, хотя фактический КПД в данной системе зависит от входного напряжения, выходного напряжения и выходного тока.См. Диаграмму эффективности внизу этой страницы для получения дополнительной информации.

Для достижения высокого КПД при низких нагрузках этот регулятор автоматически переходит в режим энергосбережения, при котором частота коммутации снижается. В режиме энергосбережения частота переключения регулятора изменяется по мере необходимости, чтобы минимизировать потери мощности. Это может затруднить фильтрацию шума на выходе, вызванного переключением.

Типичное падение напряжения

Падение напряжения понижающего регулятора — это минимальная величина, на которую входное напряжение должно превышать целевое выходное напряжение регулятора, чтобы гарантировать достижение целевого выходного сигнала.Например, если стабилизатор 5 В имеет падение напряжения 1 В, входное напряжение должно быть не менее 6 В, чтобы на выходе были полные 5 В. Как правило, падение напряжения увеличивается с увеличением выходного тока. См. Раздел «Подробности» ниже для получения дополнительной информации о падении напряжения для этой конкретной версии регулятора.

Подробная информация о товаре №2834

На графиках ниже показаны типичный КПД и падение напряжения регулятора 12 В D24V10F12 в зависимости от выходного тока:

При нормальной работе этот продукт может стать достаточно горячим, чтобы вас обжечь.Будьте осторожны при обращении с этим продуктом или другими подключенными к нему компонентами.

Принципиальная схема

Принципиальная схема понижающих регуляторов напряжения на 1 А семейства Pololu D24V10Fx.

Эту схему также можно загрузить в формате pdf (136 КБ pdf).

Пики напряжения LC

При подаче напряжения на электронные схемы первоначальный выброс тока может вызвать скачки напряжения, которые намного превышают входное напряжение.Если эти выбросы превышают максимальное напряжение регулятора (36 В), регулятор может выйти из строя. В наших тестах с типичными проводами питания (тестовые зажимы ~ 30 дюймов) входное напряжение выше 20 В вызывало скачки напряжения более 36 В.

Если вы подключаете напряжение более 20 В, или ваши провода питания или источник питания имеют высокую индуктивность, мы рекомендуем паять электролитический конденсатор емкостью 33 мкФ или больше рядом с регулятором между VIN и GND. Конденсатор должен быть рассчитан минимум на 50 В.

Дополнительную информацию о скачках напряжения LC можно найти в нашем примечании по применению «Общие сведения о деструктивных скачках напряжения LC».

Люди часто покупают этот товар вместе с:

Pololu Регулируемый повышающий / понижающий стабилизатор напряжения 4–12 В S18V20ALV

Уведомление об ограниченных поставках (обновлено 27 мая 2021 г.): Из-за нехватки компонентов во всем мире мы серьезно ограничены в производстве этого изделия.

Обзор

Эти повышающие / понижающие регуляторы принимают входное напряжение от 3 В до 30 В и увеличивают или понижают его по мере необходимости для получения регулируемого выходного напряжения от 4 В до 12 В или от 9 В до 30 В, в зависимости от версии.Это импульсные стабилизаторы (также называемые импульсными источниками питания (SMPS) или преобразователями постоянного тока в постоянный) с топологией несимметричного первичного индуктивного преобразователя (SEPIC), и они имеют типичный КПД от 80% до 90%. Доступный выходной ток является функцией входного напряжения, выходного напряжения и КПД (см. Раздел «Типичный КПД и выходной ток » ниже), но он будет около 2 А, когда входное напряжение близко к выходному напряжению.

Семейство регуляторов S18V20x состоит из двух версий с регулируемым выходом, упомянутых выше, а также пяти версий с фиксированным выходным напряжением 5 В, 6 В, 9 В, 12 В или 24 В.Все разные версии доски выглядят очень похоже, поэтому нижняя шелкография включает пустое место, где вы можете добавить свои собственные отличительные знаки или метки. Эта страница продукта относится к обеим версиям с регулируемым выходом семейства S18V20x.

Гибкость входного напряжения, предлагаемая этими регуляторами, особенно хорошо подходит для приложений с батарейным питанием, в которых напряжение батареи начинается выше желаемого выходного напряжения и падает ниже целевого значения по мере разряда батареи.Без типичного ограничения на то, чтобы напряжение батареи оставалось выше требуемого в течение всего срока службы, можно рассмотреть новые аккумуляторные блоки и форм-факторы. Например:

  • Держатель 4-элементной батареи, который может иметь выход 6 В для свежих щелочей или выход 4,0 В для частично разряженных никель-металлгидридных элементов, может использоваться с версией этого регулятора на 5 В для питания цепи 5 В.
  • Одноразовая батарея на 9 В, питающая цепь 5 В, может быть разряжена до уровня менее 3 В вместо отключения 6 В, как в обычных линейных или понижающих регуляторах.
  • Версия этого регулятора на 6 В может использоваться для включения широкого диапазона вариантов питания для проекта сервопривода хобби.

Покой без нагрузки обычно составляет от 1 мА до 5 мА для большинства комбинаций входного и выходного напряжений, хотя сочетание очень высокого выходного напряжения и очень низкого входного напряжения (например, при повышении с 3 В до 24 В). V out) может привести к токам покоя порядка нескольких десятков миллиампер.

Вывод ENABLE может использоваться для перевода платы в состояние низкого энергопотребления, которое снижает ток покоя до 10-20 мкА на вольт на VIN (например,грамм. приблизительно 30 мкА при 3 В на входе и 500 мкА при 30 В на входе).

Этот регулятор имеет встроенную защиту от обратного напряжения, защиту от перегрузки по току, тепловое отключение (которое обычно активируется при 165 ° C) и блокировку пониженного напряжения, которая вызывает отключение регулятора, когда входное напряжение ниже 2,5 В. (типичный).

Для аналогичных мощных регуляторов только повышающего напряжения рассмотрите наше семейство регуляторов U3V50x, которые обычно более подходят, если вы знаете, что ваше входное напряжение всегда будет ниже, чем ваше выходное напряжение.

Характеристики

  • Входное напряжение: от 2,9 В до 32 В
  • Выход регулируется от 4 В до 12 В или от 9 В до 30 В
  • Типичный максимальный выходной ток: 2 А (когда входное напряжение близко к выходному напряжению; в разделе «Типичный КПД и выходной ток » ниже показано, как достижимый выходной ток зависит от входного и выходного напряжений)
  • Встроенная защита от обратного напряжения (до 30 В), защита от перегрузки по току, отключение при перегреве и блокировка при понижении напряжения
  • Типичный КПД от 80% до 90%, в зависимости от входного напряжения, выходного напряжения и нагрузки
  • Четыре монтажных отверстия для винтов №2 или M2
  • Компактный размер: 1.7 ″ × 0,825 ″ × 0,38 ″ (43 × 21 × 10 мм)
  • Отверстия меньшего размера для штырей разъема 0,1 ″ и отверстия большего размера для клеммных колодок предлагают несколько вариантов подключения к плате.

Использование регулятора

Подключения

Этот повышающий / понижающий регулятор имеет четыре соединения: входное напряжение (VIN), заземление (GND) и выходное напряжение (VOUT) и ENABLE.

Входное напряжение, VIN, должно быть в пределах от 2,9 до 32 В. Более низкие входные напряжения могут привести к отключению или нестабильному поведению регулятора; более высокое входное напряжение может вывести из строя регулятор, поэтому вы должны убедиться, что шум на входе не является чрезмерным.32 В следует рассматривать как абсолютное максимальное входное напряжение. Рекомендуемое максимальное рабочее напряжение составляет 30 В, что является пределом защиты от обратного напряжения. Кроме того, мы рекомендуем держать сумму входного и выходного напряжений ниже 55 В; дополнительные сведения см. в разделе « Установка выходного напряжения » ниже.

Регулятор включен по умолчанию: подтягивающий резистор 100 кОм на плате подключает контакт ENABLE к VIN с обратной защитой. Вывод ENABLE может быть переведен в низкий уровень (ниже 0.7 В), чтобы перевести плату в состояние пониженного энергопотребления. Потребляемый ток покоя в этом спящем режиме определяется током в подтягивающем резисторе от ENABLE до VIN и схемой защиты от обратного напряжения, которая потребляет от 10 до 20 мкA на вольт на VIN, когда ENABLE удерживается на низком уровне. (например, приблизительно 30 мкА при 3 В на входе и 500 мкА при 30 В на входе). Если вам не нужна эта функция, оставьте контакт ENABLE отключенным. Обратите внимание, что топология SEPIC имеет собственный конденсатор от входа до выхода; следовательно, выход не полностью отключается от входа, даже когда регулятор выключен.

Регулируемый повышающий / понижающий регулятор напряжения Pololu S18V20AHV с дополнительными клеммными колодками и штырями в комплекте.

Регулируемый повышающий / понижающий регулятор напряжения Pololu S18V20ALV, в сборе с прилагаемыми клеммными колодками.

Соединения обозначены на задней стороне печатной платы, и плата предлагает несколько вариантов выполнения электрических соединений.Вы можете припаять входящие в комплект 2-контактные клеммные колодки с шагом 5 мм к двум парам больших отверстий на концах платы. В качестве альтернативы, если вы хотите использовать этот регулятор с беспаечной макетной платой, разъемами с шагом 0,1 дюйма или другими прототипами, использующими сетку 0,1 дюйма, вы можете припаять части входящей в комплект прямой штыревой полоски 9 × 1 к 0,1 ″ — расположенные на расстоянии меньшие отверстия (каждое большое сквозное отверстие имеет соответствующую пару этих меньших отверстий). Для максимально компактной установки можно припаять провода прямо к плате.

На плате есть четыре монтажных отверстия, предназначенных для винтов №2 или M2. В тех случаях, когда монтажные винты не используются, а провода припаяны непосредственно к плате, изолированную часть проводов можно пропустить через монтажные отверстия для снятия натяжения. На изображении выше показан пример этого с проводом 20 AWG, что близко к пределу того, что может пройти через монтажные отверстия.

Установка выходного напряжения

Выходное напряжение можно регулировать с помощью мультиметра и легкой нагрузки (например.грамм. резистор от 10 кОм до 100 кОм). Поворот потенциометра по часовой стрелке увеличивает выходное напряжение. На выходное напряжение может повлиять прикосновение отвертки к потенциометру, поэтому при измерении выходного сигнала ничего не должно касаться потенциометра (также обратите внимание, что прикосновение пальцем к частям платы может повлиять на выходное напряжение). На следующем графике показано приблизительное выходное напряжение в зависимости от положения потенциометра:

Настройки выходного напряжения для регулируемых повышающих / понижающих регуляторов Pololu S18V20ALV (синяя линия) и S18V20AHV (красная линия).

Примечание: Мы не рекомендуем использовать этот регулятор в ситуациях, когда сумма входного и выходного напряжений превышает 55 В. Например, если ваше входное напряжение может достигать 30 В, вы должны поддерживать настройку выходного напряжения ниже 25 В. Как правило, не очень практично использовать версию этого регулятора высокого напряжения выше 24 В; Наш повышающий стабилизатор напряжения U3V50AHV обычно будет более подходящим вариантом для приложений с более высоким выходным напряжением.

Подстроечный потенциометр не предназначен для постоянной регулировки вперед и назад; предполагаемое применение — установка выходного напряжения несколько раз в течение срока его службы.

Типичный КПД и выходной ток

Эффективность регулятора напряжения, определяемая как (Power out) / (Power in), является важным показателем его производительности, особенно когда речь идет о сроке службы батареи или нагреве. Как показано на графиках ниже, эти импульсные стабилизаторы имеют КПД от 80% до 90% для большинства комбинаций входного напряжения, выходного напряжения и нагрузки.

S18V20ALV (4-12 В) КПД для различных комбинаций VIN и VOUT:

S18V20AHV (9-30 В) КПД для различных комбинаций VIN и VOUT:

Мы производим эти платы собственными силами на нашем предприятии в Лас-Вегасе, что дает нам возможность производить партии регуляторов с индивидуальными компонентами, чтобы лучше соответствовать потребностям вашего проекта.Например, если у вас есть приложение, в котором входное напряжение всегда будет ниже 20 В, а эффективность очень важна, мы можем сделать эти регуляторы немного более эффективными при высоких нагрузках, заменив полевой МОП-транзистор с защитой от обратного напряжения 30 В на 20 В. Мы также можем настроить установленное выходное напряжение. Если вы заинтересованы в настройке и хотите как минимум несколько десятков единиц, свяжитесь с нами.

Максимально достижимый выходной ток платы зависит от входного напряжения, но также зависит от других факторов, включая температуру окружающей среды, воздушный поток и теплоотвод.На графиках ниже показаны выходные токи, при которых защита от перегрева этого регулятора напряжения обычно срабатывает через несколько секунд. Эти токи представляют собой предел возможностей регулятора и не могут поддерживаться в течение длительного времени, поэтому постоянные токи, которые может обеспечить регулятор, обычно на несколько сотен миллиампер ниже.

При нормальной работе этот продукт может стать достаточно горячим, чтобы вас обжечь.Будьте осторожны при обращении с этим продуктом или другими подключенными к нему компонентами.

Люди часто покупают этот товар вместе с:

Типы регуляторов напряжения

и принцип работы | Статья

.

СТАТЬЯ

Получайте ценные ресурсы прямо на свой почтовый ящик — рассылается раз в месяц

Мы ценим вашу конфиденциальность


Как работает регулятор напряжения?

Стабилизатор напряжения — это схема, которая создает и поддерживает фиксированное выходное напряжение независимо от изменений входного напряжения или условий нагрузки.

Регуляторы напряжения (VR) поддерживают напряжение источника питания в диапазоне, совместимом с другими электрическими компонентами. Хотя регуляторы напряжения чаще всего используются для преобразования мощности постоянного / постоянного тока, некоторые из них также могут выполнять преобразование мощности переменного / переменного или переменного / постоянного тока. В этой статье речь пойдет о регуляторах постоянного / постоянного напряжения.

Типы регуляторов напряжения: линейные и импульсные

Существует два основных типа регуляторов напряжения: линейные и импульсные. Оба типа регулируют напряжение в системе, но линейные регуляторы работают с низким КПД, а импульсные регуляторы работают с высоким КПД.В высокоэффективных импульсных регуляторах большая часть входной мощности передается на выход без рассеивания.

Линейные регуляторы

В линейном стабилизаторе напряжения используется устройство активного прохода (например, BJT или MOSFET), которое управляется операционным усилителем с высоким коэффициентом усиления. Чтобы поддерживать постоянное выходное напряжение, линейный регулятор регулирует сопротивление проходного устройства, сравнивая внутреннее опорное напряжение с дискретизированным выходным напряжением, а затем сбрасывая ошибку до нуля.

Линейные регуляторы — это понижающие преобразователи, поэтому по определению выходное напряжение всегда ниже входного. Однако у этих регуляторов есть несколько преимуществ: они, как правило, просты в конструкции, надежны, экономичны и обладают низким уровнем шума, а также малыми колебаниями выходного напряжения.

Для работы линейных регуляторов, таких как MP2018, требуется только входной и выходной конденсаторы (см. Рисунок 1) . Их простота и надежность делают их интуитивно понятными и простыми устройствами для инженеров, а зачастую и очень рентабельными.

Рисунок 1: Линейный регулятор MP2018

Импульсные регуляторы

Схема импульсного регулятора обычно более сложна в разработке, чем линейный регулятор, и требует выбора значений внешних компонентов, настройки контуров управления для обеспечения стабильности и тщательного проектирования компоновки.

Импульсные регуляторы могут быть понижающими преобразователями, повышающими преобразователями или их комбинацией, что делает их более универсальными, чем линейный регулятор.

Преимущества импульсных регуляторов включают то, что они высокоэффективны, имеют лучшие тепловые характеристики и могут поддерживать более высокие токи и более широкие приложения VIN / VOUT.Они могут достичь эффективности более 95% в зависимости от требований приложения. В отличие от линейных регуляторов, для импульсной системы питания могут потребоваться дополнительные внешние компоненты, такие как катушки индуктивности, конденсаторы, полевые транзисторы или резисторы обратной связи. HF920 является примером импульсного стабилизатора, который обеспечивает высокую надежность и эффективное регулирование мощности (см. Рисунок 2) .

Рисунок 2: Импульсный регулятор HF920

Ограничения регуляторов напряжения

Одним из основных недостатков линейных регуляторов является то, что они могут быть неэффективными, поскольку в определенных случаях использования они рассеивают большое количество энергии.Падение напряжения линейного регулятора сравнимо с падением напряжения на резисторе. Например, при входном напряжении 5 В и выходном напряжении 3 В между клеммами возникает падение 2 В, а эффективность ограничивается 3 В / 5 В (60%). Это означает, что линейные регуляторы лучше всего подходят для приложений с более низкими дифференциалами VIN / VOUT.

Важно учитывать предполагаемое рассеивание мощности линейного регулятора в приложении, поскольку использование более высоких входных напряжений приводит к высокому рассеянию мощности, которое может привести к перегреву и повреждению компонентов.

Еще одно ограничение линейных регуляторов напряжения состоит в том, что они способны только к понижающему (понижающему) преобразованию, в отличие от импульсных регуляторов, которые также предлагают повышающее (повышающее) и понижающее-повышающее преобразование.

Импульсные регуляторы высокоэффективны, но некоторые недостатки включают в себя то, что они, как правило, менее рентабельны, чем линейные регуляторы, больше по размеру, более сложны и могут создавать больше шума, если их внешние компоненты не выбраны тщательно. Шум может быть очень важным для конкретного приложения, поскольку шум может повлиять на работу и производительность схемы, а также на характеристики электромагнитных помех.

Топологии импульсного регулятора

: понижающий, повышающий, линейный, LDO и регулируемый

Существуют различные топологии линейных и импульсных регуляторов. Линейные регуляторы часто используют топологию с малым падением напряжения (LDO). Для импульсных регуляторов существует три распространенных топологии: понижающие преобразователи, повышающие преобразователи и понижающие-повышающие преобразователи. Каждая топология описана ниже:

Регуляторы LDO

Одной из популярных топологий линейных регуляторов является стабилизатор с малым падением напряжения (LDO).Линейные регуляторы обычно требуют, чтобы входное напряжение было как минимум на 2 В выше выходного напряжения. Тем не менее, стабилизатор LDO разработан для работы с очень небольшой разницей напряжения между входными и выходными клеммами, иногда до 100 мВ.

Понижающие и повышающие преобразователи

Понижающие преобразователи

(также называемые понижающими преобразователями) принимают большее входное напряжение и производят более низкое выходное напряжение. И наоборот, повышающие преобразователи (также называемые повышающими преобразователями) принимают более низкое входное напряжение и производят более высокое выходное напряжение.

Пониженно-повышающие преобразователи

Понижающий-повышающий преобразователь — это одноступенчатый преобразователь, который сочетает в себе функции понижающего и повышающего преобразователя для регулирования выхода в широком диапазоне входных напряжений, которые могут быть больше или меньше выходного напряжения.

Управление регулятором напряжения

Четыре основных компонента линейного регулятора — это проходной транзистор, усилитель ошибки, опорное напряжение и цепь обратной связи резистора. Один из входов усилителя ошибки установлен двумя резисторами (R1 и R2) для контроля процентного значения выходного напряжения.Другой вход — это стабильное опорное напряжение (VREF). Если дискретизированное выходное напряжение изменяется относительно VREF, усилитель ошибки изменяет сопротивление проходного транзистора для поддержания постоянного выходного напряжения (VOUT).

Для работы линейных регуляторов обычно требуется только внешний входной и выходной конденсатор, что упрощает их внедрение.

С другой стороны, импульсный стабилизатор требует большего количества компонентов для создания цепи. Силовой каскад переключается между VIN и землей для создания пакетов заряда для доставки на выход.Подобно линейному регулятору, есть операционный усилитель, который производит выборку выходного постоянного напряжения из цепи обратной связи и сравнивает его с внутренним опорным напряжением. Затем сигнал ошибки усиливается, компенсируется и фильтруется. Этот сигнал используется для модуляции рабочего цикла ШИМ, чтобы вернуть выход в режим регулирования. Например, если ток нагрузки быстро увеличивается и вызывает падение выходного напряжения, контур управления увеличивает рабочий цикл ШИМ, чтобы обеспечить больший заряд нагрузки и вернуть шину в режим регулирования.

Приложения для линейных и импульсных регуляторов

Линейные регуляторы часто используются в приложениях, которые чувствительны к затратам, чувствительны к шуму, слаботочны или ограничены в пространстве. Некоторые примеры включают бытовую электронику, такую ​​как наушники, носимые устройства и устройства Интернета вещей (IoT). Например, в таких приложениях, как слуховой аппарат, можно использовать линейный регулятор, поскольку в них нет переключающего элемента, который мог бы создавать нежелательный шум и влиять на работу устройства.

Более того, если проектировщики в основном заинтересованы в создании недорогого приложения, им не нужно так беспокоиться о рассеивании мощности, и они могут полагаться на линейный регулятор.

Импульсные регуляторы полезны для более общих приложений и особенно полезны в приложениях, требующих эффективности и производительности, таких как потребительские, промышленные, корпоративные и автомобильные приложения (см. Рисунок 3) . Например, если приложение требует большого понижающего решения, лучше подходит импульсный стабилизатор, так как линейный регулятор может создать большое рассеивание мощности, которое может повредить другие электрические компоненты.

Рисунок 3: Понижающий регулятор MPQ4430-AEC1

Каковы основные параметры микросхемы регулятора напряжения?

Некоторые из основных параметров, которые следует учитывать при использовании регулятора напряжения, — это входное напряжение, выходное напряжение и выходной ток. Эти параметры используются для определения того, какая топология VR совместима с ИС пользователя.

Другие параметры, включая ток покоя, частоту переключения, тепловое сопротивление и напряжение обратной связи, могут иметь значение в зависимости от приложения.

Ток покоя важен, когда приоритетом является эффективность в режимах малой нагрузки или ожидания. Если рассматривать частоту коммутации как параметр, максимальное увеличение частоты коммутации приводит к меньшим системным решениям.

Кроме того, термическое сопротивление имеет решающее значение для отвода тепла от устройства и его рассеивания по системе. Если контроллер включает в себя внутренний полевой МОП-транзистор, то все потери (проводящие и динамические) рассеиваются в корпусе и должны учитываться при расчете максимальной температуры ИС.

Напряжение обратной связи — еще один важный параметр, который необходимо изучить, поскольку он определяет минимальное выходное напряжение, которое может поддерживать регулятор напряжения. Стандартно смотреть на параметры опорного напряжения. Это ограничивает нижнее выходное напряжение, точность которого влияет на точность регулирования выходного напряжения.

Как правильно выбрать регулятор напряжения

Чтобы выбрать правильный регулятор напряжения, разработчик должен сначала понять их ключевые параметры, такие как V IN , V OUT , I OUT , системные приоритеты (например,грамм. эффективность, производительность, стоимость), а также любые дополнительные ключевые функции, такие как индикация хорошего энергопотребления (PG) или включение управления.

После того, как разработчик определил эти требования, используйте таблицу параметрического поиска, чтобы найти лучшее устройство, отвечающее желаемым требованиям. Таблица параметрического поиска — ценный инструмент для дизайнеров, поскольку она предлагает различные функции и пакеты, доступные для удовлетворения требуемых параметров для вашего приложения.

Каждое устройство MPS поставляется с таблицей данных, в которой подробно описано, какие внешние компоненты необходимы и как рассчитать их значения для достижения эффективной, стабильной и высокопроизводительной конструкции.Таблицу данных можно использовать для расчета таких значений компонентов, как выходная емкость, выходная индуктивность, сопротивление обратной связи и другие ключевые компоненты системы. Кроме того, вы можете использовать инструменты моделирования, такие как программное обеспечение DC / DC Designer или MPSmart, ознакомиться с примечаниями к применению или задать вопросы в местном FAE.

MPS предлагает множество эффективных, компактных линейных и импульсных стабилизаторов напряжения, включая семейство HF500-x, семейство MP171x, MP20056, MP28310, MPQ4572-AEC1 и MPQ2013-AEC1.

Список литературы

Глоссарий по электронике

_________________________

Вы нашли это интересным? Получайте ценные ресурсы прямо на свой почтовый ящик — рассылайте их раз в месяц!

Получить техническую поддержку

Линейный и импульсный стабилизатор напряжения, основная часть 1

% PDF-1.4 % 1 0 obj> поток application / pdfФундаментальная часть линейного и импульсного регулятора напряжения 1

  • Замечания по применению
  • Texas Instruments, Incorporated [SNVA558,0]
  • iText 2.1.7, автор 1T3XTSNVA5582011-12-07T21: 56: 09.000Z2011-12-07T21: 56: 09.000Z конечный поток эндобдж 2 0 obj> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] / Font >>> / MediaBox [0 0 540 720] / Contents [7 0 R 8 0 R 9 0 R 10 0 R] / Type / Страница / Родитель 11 0 R >> эндобдж 3 0 obj> поток

    Импульсные регуляторы | Analog Devices

    Некоторые файлы cookie необходимы для безопасного входа в систему, а другие необязательны для функциональной деятельности.Сбор наших данных используется для улучшения наших продуктов и услуг. Мы рекомендуем вам принять наши файлы cookie, чтобы обеспечить максимальную производительность и функциональность нашего сайта. Для получения дополнительной информации вы можете просмотреть сведения о файлах cookie. Узнайте больше о нашей политике конфиденциальности.

    Принять и продолжить Принять и продолжить

    Файлы cookie, которые мы используем, можно разделить на следующие категории:

    Строго необходимые файлы cookie:
    Это файлы cookie, которые необходимы для работы аналога.com или предлагаемые конкретные функции. Они либо служат единственной цели передачи данных по сети, либо строго необходимы для предоставления онлайн-услуг, явно запрошенных вами.
    Аналитические / рабочие файлы cookie:
    Эти файлы cookie позволяют нам выполнять веб-аналитику или другие формы измерения аудитории, такие как распознавание и подсчет количества посетителей и наблюдение за тем, как посетители перемещаются по нашему веб-сайту. Это помогает нам улучшить работу веб-сайта, например, за счет того, что пользователи легко находят то, что ищут.
    Функциональные файлы cookie:
    Эти файлы cookie используются для распознавания вас, когда вы возвращаетесь на наш веб-сайт. Это позволяет нам персонализировать наш контент для вас, приветствовать вас по имени и запоминать ваши предпочтения (например, ваш выбор языка или региона). Потеря информации в этих файлах cookie может сделать наши службы менее функциональными, но не помешает работе веб-сайта.
    Целевые / профилирующие файлы cookie:
    Эти файлы cookie записывают ваше посещение нашего веб-сайта и / или использование вами услуг, страницы, которые вы посетили, и ссылки, по которым вы переходили.Мы будем использовать эту информацию, чтобы сделать веб-сайт и отображаемую на нем рекламу более соответствующими вашим интересам. Мы также можем передавать эту информацию третьим лицам с этой целью.
    Отклонить печенье

    Электрооборудование и материалы Прочие источники питания Повышающий повышающий преобразователь постоянного тока в постоянный 3,3В 5В Источники питания для регуляторов напряжения с 6В на 12В

    Электрооборудование и материалы Другие источники питания Повышающий повышающий преобразователь постоянного тока в постоянный 3.Источники питания для регуляторов напряжения 3V 5V 6V to 12V

    5V 6V to 12V регулятор напряжения DC-DC повышающий преобразователь повышающего источника питания 3.3V, 12V регулятор напряжения DC-DC повышающий преобразователь повышающего источника питания 3.3V 5V 6V to, Найдите много отличных новых и бывших в употреблении опций и получите лучшее предложения на DC-DC повышающий преобразователь напряжения питания 3,3V 5V 6V to 12V по лучшим онлайн-ценам, Бесплатная доставка для многих продуктов, ГАРАНТИЯ ЛУЧШЕЙ ЦЕНЫ, универмаг, Новое качество, новое качество, Гарантия и БЕСПЛАТНАЯ доставка , и все это с нашей 30-дневной гарантией возврата денег., DC-DC повышающий преобразователь напряжения питания 3.3V 5V 6V to 12V Voltage Regulator.






    в закрытом виде, за исключением случаев, когда товар изготовлен вручную или был упакован производителем в нерызничную упаковку. например, коробка без надписи или полиэтиленовый пакет. См. Список продавца для получения полной информации. См. Все определения условий : Бренд: Небрендированные / универсальные , Модель: : Не применяется : MPN: Не применяется , Номер детали производителя: : Не применяется : Страна / регион производства: : Китай , Значение: : 10A 8.От 5 ~ 48 В до 10 ~ 50 В : выберите: : 3,3 В 3,7 В 5 В от 6 В до 12 В Увеличьте , Марка: Sans marque / Générique : UPC: : Не применяется , Номер производителя: : Неприменимо : EAN: : Имеется Не применяется , ISBN: : Не применяется ,。, Найдите много отличных новых и подержанных опций и получите лучшие предложения на DC-DC повышающий преобразователь напряжения питания 3.3V 5V 6V to 12V Voltage Regulator по лучшим онлайн-ценам на! Бесплатная доставка для многих товаров !. Состояние: Новое: Совершенно новый, неповрежденный товар в оригинальной упаковке (если применима упаковка).Упаковка должна быть такой же, как в розничном магазине, без использования.

    DC-DC повышающий преобразователь напряжения питания 3.3V 5V 6V to 12V Регулятор напряжения



    Drill America 7/16 «Высокоскоростная стальная развертка KFD, черная и золотая, с прямым хвостовиком для продажи в Интернете. Промышленная система управления Cutler-Hammer h2027 для продажи в Интернете. Регулятор напряжения 12 В , 0.36-дюймовый двухпроводной водонепроницаемый цифровой вольтметр постоянного тока 3–30 В со светодиодным дисплеем Автомобиль Лодка, 10 # 6 12,5×19 КОНВЕРТЫ KRAFT BUBBLE MAILERS # 6. Повышающий повышающий преобразователь постоянного тока в постоянный ток 3,3 В, 5 В, 6 В — Регулятор напряжения . ТРОЙНИК ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ ТРУБКА 3/4 «1/2» NPT RT-075-050, NE602 RF Двойной балансный смеситель SA602. Повышающий преобразователь постоянного тока в постоянный повышающий источник питания 3,3 В, 5 В, 6 В в регулятор напряжения , От 12 В до 48 В, 3 А, УСИЛЕННЫЙ ПРЕОБРАЗОВАТЕЛЬ ПОСТОЯННОГО ТОКА 3 А РЕГУЛЯТОР НАПРЯЖЕНИЯ 48 В, Подробная информация о фильтре Festo LF-D-MIDI-A LFDMIDIA.


    DC-DC повышающий преобразователь напряжения питания 3.3V 5V 6V to 12V Регулятор напряжения

    DC-DC повышающий преобразователь напряжения питания 3.3V 5V 6V to 12V Регулятор напряжения

    Регулятор напряжения Повышающий преобразователь напряжения постоянного тока в постоянный 3,3 В, 5 В, 6 В до 12 В, в 12 В Регулятор напряжения Повышающий преобразователь напряжения постоянного тока в постоянный 3,3 В, 5 В, 6 В, повышающий преобразователь источника питания постоянного тока 3.3 V 5V 6V to 12V регулятор напряжения.

    DC 8-35V to 1.5V-24V 5A понижающий понижающий регулятор напряжения 12V в 5V Автомобильные регуляторы и преобразователи мощности Бизнес и промышленность smilesbysmaha.com

    DC 8-35V to 1.5V-24V 5A понижающий понижающий регулятор напряжения 12V в 5V Автомобильные регуляторы и преобразователи мощности Бизнес и промышленность smilesbysmaha.com
    1. Home
    2. Business & Industrial
    3. Электрооборудование и принадлежности
    4. Электронные компоненты и полупроводники
    5. Полупроводники и активные компоненты
    6. Регуляторы мощности и преобразователи
    7. DC 8-35V to 1.Понижающий понижающий стабилизатор напряжения 5–24 В, 5 А От 12 В до 5 В в автомобиле

    , если товар не был изготовлен вручную или не был упакован производителем в не розничной упаковке. закрытый, DC 8-35V до 1.5V-24V 5A понижающий понижающий регулятор напряжения от 12В до 5В автомобильного питания. Выходной ток: 5А МАКС. Повышение температуры при полной загрузке: 50 градусов C. Товары без номера RMA НЕ принимаются. Состояние: Новое: Совершенно новый, неиспользованный, неповрежденный товар в оригинальной упаковке (если применима упаковка). Упаковка должна быть такой же, как в розничном магазине, например, коробка без надписи или полиэтиленовый пакет.См. Список продавца для получения полной информации. См. Все определения условий : Торговая марка: : Fulree , MPN: : Не применяется : Модель: : 3005ADJ , UPC: : Не применяется ,。.









    DC 8-35V до 1.5V-24V 5A понижающий понижающий регулятор напряжения от 12В до 5V автомобильное питание


    5-позиционный 2-позиционный 1/4-дюймовый пневматический рычаг управления клапаном 4h310-08, ЖК-плата контроллера M.NT68676.2A Комплект HDMI + DVI + VGA для светодиода M170ETN01.1 1280X1024, DC 8-35V до 1.5V-24V 5A Понижающий понижающий стабилизатор напряжения от 12V до 5V Автомобильное питание , PQCC-44 1x Motorola MC146805E2FN IC CMOS 8-бит Микроконтроллер 6805 CPU. Рулон фильтровальной бумаги для охлаждающей жидкости 20 дюймов x 200 ярдов подходит для фильтра Хоффмана 30 микрон. DC 8-35V до 1.5V-24V 5A Понижающий понижающий стабилизатор напряжения 12V до 5V Автомобильное питание . R1J 2-1 / 2 «ГНЕЗДО ШАЛЛЫ 1» ПРИВОД 12 PT BLACKHAWK # 80080, 2 трубки из углеродного волокна OD 11 мм X ID 9 мм X 500 мм для RC Самолета Glossy # Mo18 QL. DC 8-35V до 1.5V-24V 5A Понижающий понижающий регулятор напряжения 12V до 5V Автомобильное питание , CASH ACME, предохранительный клапан температуры и давления 3/4 «150 P Водонагреватель 18822A-0150, 1 шт.-PHILIPS 10A мостовой выпрямитель Б / у Старый запас


    DC 8-35V до 1.5V-24V 5A понижающий понижающий регулятор напряжения от 12В до 5V автомобильная мощность

    Сайт работает на WordPress.

    DC 8-35V до 1.5V-24V 5A понижающий понижающий стабилизатор напряжения от 12В до 5В в автомобиле

    Спасибо за вашу поддержку, и мы сделаем все возможное, чтобы помочь вам. Отлично подходит для защиты от солнца и дополнительной защиты на открытом воздухе. подходит для повседневной жизни и отдыха, например, пляжного отдыха, мужская рубашка: мужская одежда. Купить Bestem CBDU-XDVL-FFD Обтекатель переднего крыла из углеродного волокна для Ducati XDiavel 2016 +: Защита крыльев — ✓ БЕСПЛАТНАЯ ДОСТАВКА при подходящих покупках, ИНСТРУКЦИИ — Эти воздушные шары прибудут плоскими и еще не будут надуты.Эта стеклянная кружка весом 16 унций создана по образцу классического стиля biergarten. ДЕРЖАТЬ ВАШИХ ДЕТЕЙ В БЕЗОПАСНОСТИ В ЛЮБУЮ ПОГОДУ с задним фонарем для велосипеда Whole Human, AYMTEL0003S — Обхват груди: 37 / Плечо: 16. Стальные фитинги 1/4 ‘MNPT (упаковка из 10 шт.) ) :. 5-Pack SlimRun Cat6A Ethernet Сетевой патч-кабель 10 футов фиолетовый, от 0 до 10 контактов с левым поворотом Кабель Micro USB для передачи данных: компьютеры и аксессуары, приспособления для магазина KC A04716 Крюк Gridwall. = ‘undefined’) {_ebayItemID = ebayItemID}; include_showcase (‘// open. Волшебный головной убор Point Color Открытый шарф Повязки на голову Бандана Маска Шея Набедренники Маска с запахом Повязка на голову Sweatband в магазине женской одежды.Пожалуйста, проверьте наш собственный размер, затем выберите подходящий. Купите Mini Mini Jewels Розовое золото 14 карат с перидотом Камень, родившийся в августе, Курсивная буква Y Ожерелье с жетоном и другие подвески на. Пожалуйста, обратитесь к нашей таблице размеров в описании продукта (а не в таблице размеров Amazon). Дефлекторы бокового ветра позволяют держать окна частично открытыми для вентиляции салона. Контроллер Xbox One и другие портативные устройства с интерфейсом micro USB, купите Kess InHouse Pom Graphic Design Abstract Journey Circular Tribal.Купите праздничные атрибуты Микки Мауса, воздушные шары и сервизы: праздничные наборы — ✓ Возможна БЕСПЛАТНАЯ ДОСТАВКА для подходящих покупок. например, яркий цветок лотоса в молчаливом озабоченном переулке «Это роман между мужчиной и женщиной. DC 8-35V до 1.5V-24V 5A понижающий понижающий стабилизатор напряжения от 12В до 5V Car Power . Ê Эта линия GP органично сочетает в себе дизайнерский вид с комфортом классической танцевальной обуви, стандартная доставка: около 7-15 дней для срока доставки ускоренная доставка: 3-5 дней для срока доставки.Пожалуйста, проверьте информацию о размерах ниже :). ТОЛЬКО ПРИМЕР, высококачественная печать с изображением Мстителей: Финал выдержит самые первые приключения. Сама сумка сделана в простом размере; 38 см x 41 см (15 дюймов x 16 дюймов) и ручки достигают 61 см (24 дюйма). Укажите стиль и цвет шапочки, а также 2 цвета ниток. Настенные наклейки на футбольном стадионе Flame Italy. Пожалуйста, свяжитесь с нами, прежде чем оставлять отзыв, он может немного отличаться от фотографии. *** Вы можете выбрать, отправлять ли мы вам предварительный просмотр на утверждение или нет.Просто дайте нам знать, какую формулировку вы хотите, чтобы мы изменили в разделе примечаний при оформлении заказа. Отпечатки для заметок приходят незакрепленными / нематированными. Тисненая внутренняя часть крышки с тури-дизайном. • Вы также можете распечатать свои файлы в магазине канцелярских товаров. Пожалуйста, убедитесь, что вы отправили мне свой размер кольца при оформлении заказа❗️. Вы выбираете, какие два инициала вы хотите проштамповать вручную, эта милая шкатулка для драгоценностей — идеальная идея. Серьги с подвесками Читайте нежные серьги с цветком Цветочные. Произведение НЕ доступно для перепродажи.Винтажная ткань — отделка с широкими проушинами, я не пытался их чистить. Можно использовать для создания свадебных букетов. Понижающий понижающий стабилизатор напряжения постоянного тока от 8-35 В до 1,5-24 В, 5 А, от 12 В до 5 В в автомобиле . Все больше и больше мест требуют прозрачных сумок — и они идеально подходят. Если вы купите достаточно, чтобы получить скидку 25%, вам не разрешат воспроизводить. Ваш заказ будет отправлен в случайном цвете. Египетский пьедестал Design Toscano — эксклюзивно для бренда Design Toscano. Пожалуйста, свяжитесь с нами, и мы ответим на ваше сообщение в течение 24 часов, чтобы решить проблему. Купите Suomy Mr Jump Helmet Comfort Liner (средний): Вкладыши для шлема — ✓ Возможна БЕСПЛАТНАЯ ДОСТАВКА при подходящих покупках. Длина плечевых ремней регулируется.Это элегантный эффектный аксессуар для волос, подходящий для сильной и стойкой женщины. Талантливые дизайнеры и инженеры MacNeilAutomotive неустанно работали над разработкой самой современной защиты пола DigitalFitTM, доступной на сегодняшний день. специалисты по обслуживанию клиентов с понедельника по субботу по телефону 1-800-845-3274 или ccc3 @ petsafe. Кольцо изготовлено из серебра 925 пробы, антиаллергенно для ярких аксессуаров. Высококачественный инструмент для твердых полов с колесами, программируемая скорость передачи данных GND от 8 до 80 секунд.Одним из особых преимуществ этого продукта является его цена, а также наши процедуры тестирования, проведенные в Германии. Sony: a100 / a200 / a350 / a450 / a500 / a550 / a700 / a00. 【5】 Помощник по домашней безопасности: с ним. Головные уборы Kingree — это выбор №1 для клиентов Amazon. Простыня для кроватки Heavenly Soft Chenille Fitted Crib для стандартных кроваток и матрасов для малышей от American Baby Company. они очень удобны по конструкции кресла с высокой спинкой. Вы можете поместить сверху небольшое зеленое растение в горшке, Моющийся и многоразовый пылесборник, первичный фильтр и HEPA-выхлопной фильтр: инструменты и предметы домашнего обихода, DC 8-35V to 1.Понижающий понижающий стабилизатор напряжения 5V-24V 5A От 12В до 5В в автомобиле .

    DC 8-35V до 1.5V-24V 5A Понижающий понижающий регулятор напряжения от 12В до 5V Автомобильная мощность

    Понижающий регулятор напряжения от 12 В до 5 В Автомобильное питание от 8-35 В до 1,5-24 В, 5 А, повышение температуры при полной нагрузке: 50 градусов Цельсия, товары без номера RMA не принимаются, выходной ток: 5 А макс., Подлинные товары, получить Ваш собственный стиль, Бесплатная доставка! Наш Интернет-бутик. DC 8-35V до 1.5V-24V 5A понижающий понижающий стабилизатор напряжения от 12V до 5V Автомобильная мощность, DC 8-35V до 1.5V-24V 5A понижающий понижающий регулятор напряжения от 12В до 5В автомобильного питания.

    .

    Author:

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *