Индикатор уровень заряда аккумулятора своими руками: Простой индикатор уровня заряда аккумулятора 3,7 В – СВЕТОДИОДНЫЙ ИНДИКАТОР ЗАРЯДА АККУМУЛЯТОРА

Простой индикатор уровня заряда аккумулятора 3,7 В

Простой индикатор уровня заряда аккумулятора 3,7 В
Где только сейчас не применяются литий-ионные аккумуляторы напряжением 3,7 В. Самодельщики особенно часто используют их везде где только это возможно. Такие батареи всем хороши, но имеют ряд недостатков, одним из которых является то, что если батарею разряжать ниже минимального значения, то срок ее работы сокращается в геометрической прогрессии. И чтобы этого избежать, и всегда контролировать уровень ее заряда, предлагаю собрать наипростейший индикатор на одном транзисторе, который всегда подскажет в каком состоянии находится аккумулятор.

Понадобится:


Сборка индикатора уровня для батареи 3,7 В


Закрепляем транзистор и отгибаем коллектор и эмиттер в стороны.
Простой индикатор уровня заряда аккумулятора 37 В
Между базой и эмиттером припаиваем резистор на 220 Ом. А к коллектору резистор 1 кОм.
Простой индикатор уровня заряда аккумулятора 37 В

К резистору 1 кОм допаиваем последовательно резистор 220 Ом. Такая цепь нужна для того, чтобы точно подобрать общее сопротивление.
Простой индикатор уровня заряда аккумулятора 37 В
Припаиваем диод.
Простой индикатор уровня заряда аккумулятора 37 В
Теперь красный светодиод.
Простой индикатор уровня заряда аккумулятора 37 В
А затем и зеленый.
Простой индикатор уровня заряда аккумулятора 37 В
Припаиваем провода питания.
Простой индикатор уровня заряда аккумулятора 37 В

Испытания


Индикатор имеет пороговое значение в районе 3,3 В. Это значит, что если напряжение ниже этого значения - горит красный, а если выше - зеленый.
Простой индикатор уровня заряда аккумулятора 37 В
Простой индикатор уровня заряда аккумулятора 37 В
Очень удобная «малютка», которую можно встроить куда угодно и всегда знать о состоянии батареи.
Цепочкой из двух последовательно включенных резисторов можно регулировать пороговое значение переключения состояния.

Смотрите видео


Как сделать индикатор заряда аккумулятора на светодиодах — MOREREMONTA

Индикатор заряда аккумулятора своими руками

Индикатор заряда аккумулятора своими руками на двух светодиодах — правильно обслуживаемые аккумуляторы будут работать у вас хорошо и долю. Обслуживание подразумевает, в частности, регулярный контроль напряжения аккумулятора. Изображенная на Рисунке 1 схема подходит для большинства типов аккумуляторов. Она содержит опорный светодиод LEDREF, работающий при постоянном токе 1 мА и обеспечивающий эталонный световой поток постоянной интенсивности, не зависящей от напряжения аккумулятора.

Это постоянство обеспечивается резистором R1 включенным последовательно со светодиодом. Поэтому, даже если напряжение полностью заряженного аккумулятора упадет до полного разряда, ток через него изменится всего на 10%. Таким образом, можно считать, что интенсивность излучения остается постоянной в диапазоне напряжений аккумулятора, соответствующем переходу от состояния полного заряда до полного разряда.

Световой поток измерительного светодиода LED

VAR меняется в соответствии с изменениями напряжения аккумулятора. Расположив светодиоды поблизости друг от друга, вы получите возможность легко сравнивать яркость их свечения, и, таким образом, определять статус аккумулятора. Используйте светодиоды с диффузно-рассеивающей линзой, поскольку приборы с прозрачной линзой раздражают ваши глаза. Обеспечьте достаточную оптическую изоляцию светодиодов, чтобы свет одного светодиода не попадал на линзу другого.

Работа измерительного светодиода

Измерительный светодиод работает при токе, меняющемся от 10 мА при полностью заряженном аккумуляторе до значений менее 1 мА при полном разряде. Стабилитрон Dz с последовательным резистором R2 необходимы для того, чтобы ток имел резкую зависимость от напряжения батареи. Сумма напряжения стабилитрона и падения напряжения на светодиоде должна быть чуть меньше, чем самое низкое напряжение аккумулятора. Это напряжение падает на резисторе R2. Изменения напряжения батареи вызывают большие изменения тока резистора R2. Если напряжение равно примерно 1 В, через светодиод LED

VAR течет ток 10 мА, и он светится намного ярче, чем LEDREF. Если напряжение ниже 0.1 В, интенсивность свечения LEDVARvar будет меньше, чем у LEDREF. показывая, что аккумулятор разряжен.

Индикатор заряда аккумулятора своими руками — непосредственно после окончания зарядки аккумулятора напряжение на нем превышает 13 В. Для схемы это безопасно, поскольку ток ограничен значением 10 мА. Если светодиоды горят ярко, быстро отпустите кнопку S11( чтобы не допустить их повреждения (Рисунок 2). Хотя в примере на Рисунке 2 индикатор заряда подключен к 12-вольтовой свинцово-кислотной аккумуляторной батарее, вы без труда можете адаптировать эту схему к другим типам аккумуляторов. Кроме того, вы можете использовать ее для контроля напряжения.

Два зеленых светодиода индуцируют состояние, когда заряд батареи превышает 60%. Набор красных светодиодов показывает, что заряд аккумулятора упал ниже 20%. Светодиоды LED

REFG и LEDREFR подключены через резисторы R1 и R2 сопротивлением 10 кОм. Последовательное измерительными светодиодами, яркость свечения которых изменяется, включены стабилитроны и резисторы R3 и R4 сопротивлением 100 Ом. Диоды D1, D2 и D3 задают требуемое напряжение ограничения. Зависимость яркости свечения светодиодов от состояния аккумулятора показана в Табпице1.

Для расчета интенсивности свечения зеленого измерительного светодиода можно использовать следующее выражение:

При токе зеленого светодиода 1 мА

Падение напряжения на используемых светодиодах при прямом токе 1 мА равно 1.85 В. Если характеристики светодиодов отличаются, сопротивления резисторов необходимо пересчитать. При этом напряжении светодиоды светятся одинаково, что соответствует заряду аккумулятора на 60%. Описание свинцово-кислотных аккумуляторов можно найти в[1]. Для расчета интенсивности свечения красного измерительного светодиода можно использовать следующее выражение:

При токе зеленого светодиода 1 мА

Поскольку при таком напряжении оба красных светодиода светятся одинаково, это означает, что аккумулятор заряжен на 20%. Светодиод LEDVARGvarg не горит. Рисунок 3 показывает, что оба измерительных светодиода светятся ярче опорных, сообщая о том, что аккумулятор заряжен на 100%

В статье предлагаются два варианта индикатора, цвет свечения которого, по мере разряда батареи, изменяется от зеленого до красного. Существует огромное количество схем, предназначенных для выполнения таких функций, но все из них, на мой взгляд, слишком сложны и дороги. Для моего индикатора требуется всего пять компонентов, один из которых – двухцветный светодиод.

Простейший вариант показан на Рисунке 1. Если напряжение на клемме B+ равно 9 В, будет светиться только зеленый светодиод, поскольку напряжение на базе Q1 равно 1.58 В, в то время, как напряжение на эмиттере, равное падению напряжения на светодиоде D1, в типичном случае составляет 1.8 В, и Q1 удерживается в закрытом состоянии. По мере уменьшения заряда батареи напряжение на светодиоде D2 остается практически неизменным, а напряжение на базе уменьшается, и в какой-то момент времени Q1 начнет проводить ток. В результате часть тока станет ответвляться в красный светодиод D1, и эта доля будет увеличиваться до тех пор, пока в красный светодиод не потечет весь ток.

Рисунок 1. Базовая схема монитора напряжения батареи.

Для типичных элементов двухцветного светодиода различие в прямых напряжениях составляет 0.25 В. Именно этим значением определяется область перехода от зеленого цвета свечения к красному. Полная смена цвета свечения, задаваемая соотношением сопротивлений резисторов делителя R1 и R2, происходит в диапазоне напряжений

Середина области перехода от одного цвета к другому определяется разностью напряжений на светодиоде и на переходе база-эмиттер транзистора и равна приблизительно 1.2 В. Таким образом, изменение B+ от 7.1 В до 5.8 В приведет к смене зеленого свечения на красное.

Различия в напряжениях будут зависеть от конкретных комбинаций светодиодов и, возможно, их будет недостаточно для полного переключения цветов. Тем не менее, предлагаемую схему все равно можно использовать, включив диод последовательно с D2.

На Рисунке 2 резистор R1 заменен стабилитроном, в результате чего область перехода становится намного более узкой. Делитель больше не оказывает влияния на схему, и полная смена цвета свечения происходит при изменении напряжения B+ всего на 0.25 В. Напряжение точки перехода будет равно 1.2 В + VZ. (Здесь VZ – напряжение на стабилитроне, в нашем случае равное примерно 7.2 В).

Рисунок 2.
Схема на основе стабилитрона.

Недостатком такой схемы является ее привязка к ограниченной шкале напряжений стабилитронов. Еще больше усложняет ситуацию тот факт, что низковольтные стабилитроны имеют слишком плавный излом характеристики, не позволяющий точно определить, каким будет напряжение VZ при малых токах в схеме. Одним из вариантов решения этой проблемы может быть использование резистора, включенного последовательно со стабилитроном, чтобы иметь возможность небольшой подстройки за счет некоторого увеличения напряжения перехода.

При показанных сопротивлениях резисторов схема потребляет ток порядка 1 мА. Со светодиодами повышенной яркости этого достаточно для использования прибора внутри помещения. Но даже такой небольшой ток весьма значителен для 9-вольтовой батареи, поэтому вам придется выбирать между дополнительным потреблением тока и риском оставить питание включенным, когда необходимости в нем нет. Скорее всего, после первой внеплановой замены батареи вы почувствуете пользу от этого монитора.

Схему можно преобразовать таким образом, чтобы переход от зеленого к красному свечению происходил в случае повышения входного напряжения. Для этого транзистор Q1 надо заменить на NPN и поменять местами эмиттер и коллектор. А с помощью пары NPN и PNP транзисторов можно сделать оконный компаратор.

С учетом довольно большой ширины переходной области, схема на Рисунке 1 лучше всего подходит для 9-вольтовых батарей, в то время как схема на Рисунке 2 может быть адаптирована для других напряжений.

Перевод: AlexAAN по заказу РадиоЛоцман

Данный индикатор заряда аккумулятора основан на регулируемом стабилитроне TL431. С помощью двух резисторов можно установить напряжение пробоя в диапазоне от 2,5 В до 36 В.

Приведу две схемы применения TL431 в качестве индикатора заряда/разряда аккумулятора. Первая схема предназначена для индикатора разрядки, а вторая для индикатора уровня заряда.

Единственная разница — это добавление n-p-n транзистора, который будет включать какой-либо сигнализатор, например, светодиод или зуммер. Ниже приведу способ вычисления сопротивления R1 и примеры на некоторые напряжения.

Схема индикатора разряда аккумулятора

Стабилитрон работает таким образом, что начинает проводить ток при превышении на нем определенного напряжения, порог которого мы можем установить с помощью делителя напряжения на резисторах R1 и R2. В случае индикатора разряда, светодиодный индикатор должен гореть, когда напряжение батареи меньше, чем необходимо. Поэтому в схему добавлен n-p-n транзистор.

Как можно видеть регулируемый стабилитрон регулирует отрицательный потенциал, поэтому в схему добавлен резистор R3, задачей которого является включение транзистора, когда TL431 выключен. Резистор этот на 11k, подобранный методом проб и ошибок. Резистор R4 служит для ограничения тока на светодиоде, его можно вычислить с помощью закона Ома.

Конечно, можно обойтись и без транзистора, но тогда светодиод будет гаснуть, когда напряжение упадет ниже выставленного уровня — схема ниже. Безусловно, такая схема не будет работать при низких напряжениях из-за отсутствия достаточного напряжения и/или тока для питания светодиода. Данная схема имеет один минус, который заключается в постоянном потреблении тока, в районе 10 мА.

Схема индикатора заряда аккумулятора

В данном случае индикатор заряда будет гореть постоянно, когда напряжение больше, чем то, которые мы определили с помощью R1 и R2. Резистор R3 служит для ограничения тока на диод.

Пришло время для того, что всем нравится больше всего — математики

Я уже говорил в начале, что напряжение пробоя может изменяться от 2,5В до 36В посредством входа «Ref». И поэтому, давайте попытаемся кое-что подсчитать. Предположим, что индикатор должен загореться при снижении напряжении аккумулятора ниже 12 вольт.

Сопротивление резистора R2 может быть любого номинала. Однако лучше всего использовать круглые числа (для облегчения подсчета), например 1к (1000 Ом), 10к (10 000 Ом).

Резистор R1 рассчитаем по следующей формуле:

R1=R2*(Vo/2,5В — 1)

Предположим, что наш резистор R2 имеет сопротивление 1к (1000 Ом).

Vo — напряжение, при котором должен произойти пробой (в нашем случае 12В).

R1=1000*((12/2,5) — 1)= 1000(4,8 — 1)= 1000*3,8=3,8к (3800 Ом).

Т. е. сопротивление резисторов для 12В выглядят следующим образом:

А здесь небольшой список для ленивых. Для резистора R2=1к, сопротивление R1 составит:

  • 5В – 1к
  • 7,2В – 1,88к
  • 9В – 2,6к
  • 12В – 3,8к
  • 15В — 5к
  • 18В – 6,2к
  • 20В – 7к
  • 24В – 8,6к

Для низкого напряжения, например, 3,6В резистор R2 должен иметь бОльшее сопротивление, например, 10к поскольку ток потребления схемы при этом будет меньше.

Индикатор разряда для любого аккумулятора

Индикатор разряда для любого аккумулятора
Данная схема характеризуется четким порогом включения при достижении установленного уровня напряжения. Этот индикатор универсален, имеет потенциометр для выставления заданного значения и может работать с любым аккумулятором в диапазоне 3-16 В.

Понадобится


  • Два транзистора PN2222, структуры NPN.
  • Светодиод 3 В.
  • Переменный резистор 10 кОм.
  • Два резистора 4,7 кОм.
  • По одному резистору 56 кОм и 460 Ом.

Особых требований к деталям нет, все без лишних проблем меняются на аналогичные. В плане резисторов - отклонение от номинала может быть на 10 процентов. Это не страшно, берите близкие по значению.

Изготовление универсального индикатора разряда


Берем транзисторы и разгибаем вывода.
Индикатор разряда для любого аккумулятора
Припаиваем к одному к его базе резистор на 4,7 кОм.
Индикатор разряда для любого аккумулятора
Далее берем второй и коллектором припаиваем к этому же резистору.
Индикатор разряда для любого аккумулятора
Теперь припаиваем еще резистор на 4,7 кОм.
Индикатор разряда для любого аккумулятора
Далее паяем на 56 кОм слева и 460 Ом справа.
Индикатор разряда для любого аккумулятора
Припаиваем потенциометр.
Индикатор разряда для любого аккумулятора
В дело идет светодиод.
Индикатор разряда для любого аккумулятора
Полная схема со всеми обозначениями.
Индикатор разряда для любого аккумулятора

Как работает схема?


Потенциометром устанавливается уровень срабатывания, это уже решили. На транзисторе слева собран пороговый элемент, на транзисторе справа - ключ для светодиода.
К примеру, выставим уровень срабатывания 3,5 В. Если напряжение на схеме выше, скажем 3,6 В, то первый транзистор открыт, а ключ заперт. Светодиод в данном случае не горит. Индикатор потребляет минимальный ток.
Если напряжение упало ниже порогового значения, и составляет, скажем 3,48 В, то первый транзистор закрывается и открывается ключ. В результате мы видим свечение светодиода, показывающее условно, что аккумулятор разряжен.
Индикатор разряда для любого аккумулятора
Также схема отлично работает в диапазоне 12 В.
Индикатор разряда для любого аккумулятора
Что дает возможность использовать индикатор для любых аккумуляторов или батарей в промежутке 3-12 В.

Смотрите видео


Простой высокоточный индикатор разряда АКБ

Самая распространённая проблема водителей – это отсутствие в автомобиле индикации разрядки аккумулятора на панели с приборами. Такая проблема создаёт некоторый дискомфорт, в связи с тем, что водитель поздно замечает, разряженный аккумулятор, особенно если большой показатель утечки тока АКБ. Стоит обратить внимание, что собирается такой прибор для индикации довольно легко.

Измерять заряд аккумулятора можно и самому с помощью вольтметра. На сегодняшний день вольтметры очень дорогие, а так, как он не сильно то и обходим, потому что для нас важно лишь значение, до которого может доходить заряд.

Стоит обратить внимание на то, что прибор, с помощью которого будет измеряться заряд аккумулятора можно сделать своими руками и без вольтметра.

Ниже приведена система для создания индикатора разряженного аккумулятора, в качестве индикатора взята светодиодная лампа. Когда напряжение падает и заряд аккумулятора низкий, загорается светодиодная лампа, что и служит индикатором к подзарядке.

система индикатора разряда аккумулятора

Глядя на схему, можно убедиться в том, что собрать её будет несложно. Любой элемент системы легко купить. Как транзисторы можно использовать:

  • КТ 315Б
  • КТ 3102
  • S 9012
  • S 9014
  • S 9016

В качестве светодиодной лампы, можно приобрести любую, главное, чтобы её рабочее напряжение было в пределах 15–20 В.

система индикатора разряда аккумулятора

Главный и незаменимый элемент системы – это переменный резистор R2, с его помощью устанавливается предел, при котором срабатывает индикатор, несмотря на то, что в схеме написано взять его с 1,5 кОм, необходимо брать более мощный в пределах 20 кОм. Потому что если брать R1= 20 кОм, то такого сопротивления будет мало, для того чтобы открыть ключ VT1.

Простой высокоточный индикатор разряда АКБ

Если брать аккумулятор с обыкновенным зарядом в 12 В и больше, то транзистор VT1 будет открывать и шунтировать индикаторную светодиодную лампу HL1. Когда напряжение аккумулятора падает, то VT1 будет со временем уменьшаться, пока не закроется, после его отключения, откроется VT2 и загорится светодиодная лампа HL1, это и служит сигналом о том, что заряд аккумулятора низкий.  Для такой схемы, возможно, подключить любой порог сигнализирования.

В качестве платы можно использовать материал с ПК или старого телевизора. По размерам такая система маленькая и удобная.

Чтобы настроить систему, необходим прибор для питания с индикатором напряжения, с помощью которого будет регулироваться резистор, и выставляться пределы для срабатывания сигнализации.

Простой высокоточный индикатор разряда АКБ

В случае необходимости можно сделать несколько таких схем с разными порогами чувствительности, для более точного измерения.

Автор: Иванов Аркадий, г. Астрахань.


Простые устройства - Индикатор заряженности аккумулятора

Аккумуляторный тестерПонадобилось мне контролировать степень заряда 12 вольтового аккумулятора.

Хотелось сделать схему максимально простой, с индикацией на светодиоде, без разных сложных микросхем, и компараторов.

Минимум деталей, максимум наглядности, чтобы о величине остаточного напряжения на аккумуляторе можно было приблизительно судить по частоте вспышек светодиода.

На этот раз речь пойдет о схеме даже без микроконтроллера attiny13 - решить поставленную задачу удалось всего при помощи одного транзистора!

Принципиальная схема индикатора состояния аккумулятора
Решил собрать классическую схему генератора на транзисторе, работающем в режиме лавинного пробоя. В качестве лавинного транзистора выбрал широко распространённый транзистор NPN-структуры 2SC945P. Чтобы генерация световых вспышек прекращалась при понижении напряжения до 11,8 вольт, в схему был добавлен светодиод HL2, работающий в качестве элемента, понижающего питание схемы на 2 вольта (падение напряжения на открытом светодиоде вычитается из напряжения, питающего схему).

{ads1}

Вследствие этого при напряжении на аккумуляторе +12в и выше схема работает в режиме генератора импульсов с частотой около 1 Гц (одна вспышка в секунду). При понижении до уровня 11,9 вольт частота мигания снижается до одной вспышки в 3 секунды, а при напряжении ниже 11,8 вольт мигание отсутствует, светодиод погашен.

О величине остаточного напряжения на аккумуляторе можно судить по частоте вспышек индикатора светодиода HL1.

На основе этого индикатора можно сделать несложный прибор для тестирования аккумулятора под нагрузкой - «нагрузочную вилку».

Схема нагрузочной вилки
Для проверки нагрузочной способности аккумулятора в схему добавляется мощный проволочный резистор R2, который можно изготовить из куска нагревательной спирали сопротивлением 1,5 Ом. Подключив щупы прибора к плюсу и минусу аккумулятора, наблюдаем за частотой мерцания индикатора HL1, затем нажимаем кратковременно кнопку S1 и смотрим, как изменилась частота мигания светодиода: если после нажатия кнопки частота мигания практически не изменилась, значит аккумулятор достаточно заряжен, если же частота мигания стала значительно ниже, или мигание совсем пропало, то аккумулятор разряжен и требует подзарядки.

Через резистор R2 протекает ток порядка 10А, поэтому контакты кнопки S1 должны быть рассчитаны не менее, чем на такой ток.

{plusone}

Владимир Науменко
г. Калининград

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *