Защита КЗ
Комплекс мер и схемотехнических решений по защите оборудования или устройства от тока короткого замыкания
2005 г.Защита блока питания от КЗ
Для питания собираемых конструкций радиолюбители нередко используют простейшие блоки, состоящие из понижающего трансформатора и выпрямителя с конденсатором фильтра. И, конечно, в таких блоках нет никакой защиты от короткого замыкания (КЗ) в нагрузке, хотя оно подчас приводит к выходу из строя выпрямителя и даже трансформатора.
Автор: Нечаев И.
0
0 [0]
Похожие статьи: 2006 г.Блок питания с защитой от короткого замыкания
Данная схема представляет собой простейший блок питания на транзисторах, оборудованный защитой от короткого замыкания (КЗ). Основные параметры: выходное напряжение — 0..12В; максимальный выходной ток — 400 мА.
Автор:
none
25
0 [0]
Похожие статьи: 2011 г.БП с плавной регулировкой напряжения
Как известно, каждому радиолюбителю приходится сталкиваться с самыми различными напряжениями питания: 1.5, 3, 6, 12В. Предлагаю вам схему БП дающего постоянное напряжение от 1 до 12 В. А величина тока, потребляемого различными устройствами от этого БП может достигать 0,2-0,3 А. Главным преимуществом этого блока является то, что он не боится КЗ (коротких замыканий), что немаловажно для радиолюбителей, начинающих свою практику.
Автор:
Колесник Алексей
6
0 [0]
Похожие статьи: 2005 г.Стабилизатор напряжения с защитой от КЗ
Многим радиолюбителям знакома схема этого простого стабилизатора напряжения с защитой от перегрузок и коротких замыканий цепи выхода.
Он обладает рядом положительных качеств и поэтому получил широкую популярность у радиолюбителей.Автор:
none
1
0 [0]
Похожие статьи:Простой стабилизированный блок питания | Все своими руками
Опубликовал admin | Дата 6 июня, 2012Добрый день. В этой заметке я хочу предложить вашему вниманию блок питания дополнительного усилителя мощности для портативной радиостанции «Веда-ЧМ» . Выходное напряжение блока питания 24В, номинальный ток нагрузки – 3,5А, порог тока срабатывания защиты от короткого замыкания – 5,5А, ток короткого замыкания – 0,06А.
Общий вид комплекта показан на фото 1.
Схема блока питания представлена на рисунке 1.
Силовой трансформатор блока – перемотанный сетевой трансформатор от старого телевизора ТС-90-1, в качестве первичной обмотки — используются все витки сетевой обмотки трансформатора.
Новая вторичная обмотка содержит 2×65 витков провода ПЭТВ-2 диаметром 1,25мм. При отсутствии провода данного диаметра, можно на каждой из катушек намотать по 130 витков проводом диаметром 0,9мм. При этом катушки потом соединяют синфазно параллельно при сохранении схемы мостового выпрямителя. Если эти катушки соединить последовательно, то от двух диодов можно избавиться (Рис.2).
Схема стабилизатора собрана навесным монтажом (1 на фото 2). Конденсаторы С3 и С4 у меня находятся в корпусе усилителя мощности. Цифрой два обозначен дополнительный регулируемый стабилизатор напряжения для питания «Веда-ЧМ», собранного на микросхеме КРЕН12А. Меняя напряжение питания самой радиостанции, можно менять в некоторых пределах выходную мощность излучения усилителя. Схему этого стабилизатора можно найти в рубрике «Блоки питания» — «Стабилизатор напряжения на КР142ЕН12А». Индикатор перегрузки работает следующим образом. Напряжение на конденсаторах фильтра выпрямителя С1и С2 примерно равно 37 вольт, учитывая, что выходное напряжение – 24В, напряжение между точками 1 и 2 будет находиться в районе13 вольт, которого не хватит для пробоя стабилитронов VD5, VD6, так как их суммарное напряжение стабилизации равно 15В.
При «коротыше» напряжение между этими точками возрастет, через стабилитроны потечет ток и светодиод HL1 загорится, а светодиод HL2 – погаснет. Обратите внимание на то, что на «земле» находятся коллектора мощных транзисторов, что, ну просто очень удобно, размещая транзисторы непосредственно на корпусе изделия. Блок питания и усилитель мощности висят на стене чердака под антенной, что значительно уменьшает потери мощности в кабеле. До свидания. К.В.Ю. Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».
Просмотров:48 416
Токовая защита блока питания схема
Это интересно
Страницы
Ярлыки
понедельник, 5 января 2015 г.
Схема защиты блока питания и зарядных устройств
Представлена конструкция защиты для блока питания любого типа. Данная схема защиты может совместно работать с любыми блоками питания – сетевыми, импульсными и аккумуляторами постоянного тока.
Схематическая развязка такого блока защиты относительна проста и состоит из нескольких компонентов.
Схема защиты блока питания
Силовая часть – мощный полевой транзистор – в ходе работы не перегревается, следовательно в теплоотводе тоже не нуждается. Схема одновременно является защитой от переплюсовки питания, перегруза и КЗ на выходе, ток срабатывания защиты можно подобрать подбором сопротивления резистора шунта, в моем случае ток составляет 8 Ампер, использовано 6 резисторов 5 ватт 0,1 Ом параллельно подключенных. Шунт можно сделать также из резисторов с мощностью 1-3 ватт.
Более точно защиту можно настроить путем подбора сопротивления подстроечного резистора. Схема защиты блока питания, регулятор ограничения тока Схема защиты блока питания, регулятор ограничения тока
При КЗ и перегрузе выхода блока, защита мгновенно сработает, отключив источник питания. О срабатывании защиты осведомит светодиодный индикатор. Даже при КЗ выхода на пару десятков секунд, полевой транзистор остается холодным
Полевой транзистор не критичен, подойдут любые ключи с током 15-20 и выше Ампер и с рабочим напряжением 20-60 Вольт.
Отлично подходят ключи из линейки IRFZ24, IRFZ40, IRFZ44, IRFZ46, IRFZ48 или более мощные – IRF3205, IRL3705, IRL2505 и им подобные.
Данная схема также отлично подходит в качестве защиты зарядного устройства для автомобильных аккумуляторов, если вдруг перепутали полярность подключения, то с зарядным устройством ничего страшного не произойдет, защита спасет устройство в таких ситуациях.
Благодаря быстрой работе защиты, ее можно с успехом применить для импульсных схем, при КЗ защита сработает быстрее, чем успеют сгореть силовые ключи импульсного блока питания. Схематика подойдет также для импульсных инверторов, в качестве защиты по току. При перегрузе или кз во вторичной цепи инвертора, мигом вылетают силовые транзисторы инвертора, а такая защита не даст этому произойти.
Комментарии
Защита от короткого замыкания, переплюсовки полярноси и перегруза собрана на отдельной плате. Силовой транзистор использован серии IRFZ44, но при желании можно заменить на более мощный IRF3205 или на любой другой силовой ключ, который имеет близкие параметры.
Можно использовать ключи из линейки IRFZ24, IRFZ40, IRFZ46, IRFZ48 и другие ключи с током более 20 Ампер. В ходе работы полевой транзистор остается ледяным,. поэтому в теплоотводе не нуждается.
Схема срисована из зарядника аккумуляторной отвертки. Красный индикатор свидетельствует о том, что имеется выходное напряжение на выходе БП, зеленый индикатор показывает процесс заряда. С таким раскладом компонентов, зеленый индикатор будет постепенно потухат и окончательно потухнет, когда напряжение на аккумуляторе будет 12,2-12,4 Вольт, когда аккумулятор отключен, индикатор гореть не будет.
Комментарий
Схема своего рода “НОУ-ХАУ”, по простоте и надежности. Плюс в том, что не нужно использовать мощное реле, или тиристор, на котором падение напряжения около двух вольт. Схема как самостоятельное устройство может быть встроена в любое зарядное устройство и блок питания. Выход из режима защиты автоматический, как только устранится короткое замыкание или преполюсовка.
При срабатывании светится светодиод “ошибка подключения”. Описание работы: При нормальном режиме напряжение через светодиод и резистор R9 отпирает VT1 и все напряжение со входа поступает на выход. При коротком замыкании или переполюсовке ток импульсно резко возрастает, падение напряжения на полевике и шунте резко увеличивается, что приводит к открыванию VT2, который в свою очередь шунтирует затвор исток. Добавочное отрицательное напряжение по отношению к истоку (падение на шунте) прикрывает VT1. Далее происходит лавинный процесс закрытия VT1. Светодиод засвечивается через открытый VT2. Схема может находиться в данном состоянии сколь угодно долго, до устранения замыкания.
собирал сегодня сие) Родная защита Дашенга даже не успевает сработать)
Принцип работы прост – при резком скачке напряжения, на шунте появляется падение напряжения, которое отпирает vt2 полевик закрывается (т.к. затвор садится на землю). При этом загорается св. диод (т.к. получает минус на затворе).
В нормальном состоянии затвор открывает положительным напряжением с цепочки св.диод-R9 Тот же принцип и при переплюсовке – от скачка тока.
Работает быстро, но криво – при выключенном блоке и подключенном аккумуляторе, на блок валит напряжение, т.к. полевик открывает акк. Я думаю, нужно делать какую-нить защиту, чтоб при пропадании напряжения зарядки, акк отключался от схемы.
Вот та же схема, только перевернутая по правильному. Использовал в зарядке, результатом доволен. Единственный недостаток (а может – фича!) – защелкивается, то есть после сработки требует полного отключения нагрузки. В принципе, это схема защиты от тока перегрузки, но при переполюсовке именно это и случается. Кстати, при нагрузке не на аккумулятор, а на резистор у меня почему-то сразу защелкивалась на защиту. С акком – нормально. Расчет максимального тока – напряжение на шунте и канале исток-сток должно быть 0.6в для срабатывания биполярника.
>>Единственный недостаток (а может – фича!) – защелкивается, то есть после сработки требует полного отключения нагрузки.
достаточно кнопку сброса сделать с базы биполярника на землю
Лабораторный блок питания с защитой от КЗ
Здравствуйте, друзья! Лабораторный блок питания является прибором первой необходимости для начинающего радиолюбителя и по этому я хочу представить вашему вниманию свою новую самоделку. Очень простой и надежный лабораторный блок питания с регулятором напряжения от 1,5 до 30 вольт, максимальной силой тока 5А и защитой от короткого замыкания с звуковой сигнализацией. Источником питания для приведенной ниже схемы может служить любой трансформатор или импульсный блок питания, например от ноутбука с выходным напряжением от 16 до 40 вольт и максимальной силой тока до 5А.
Схема лабораторного блока питания 1,5-30В 5А с защитой от КЗ
Как работает блок питания?
Напряжение от источника питания проходя через диодный мост Br1 выпрямляется и поступает на регулятор напряжения состоящий из транзистора Т1, резистора R1 и переменного резистора Р1.
На выходе из регулятора получается 12 вольт. Этим напряжением постоянно питается вентилятор, реле К1 и вольт амперметр V/A1.
В режиме ожидания от диодного моста Br1 через постоянно замкнутые контакты реле К1 подается напряжение на звуковой сигнализатор короткого замыкания в результате чего в бипере SP1 раздается постоянный звуковой сигнал, что свидетельствует о исправной системе защиты от короткого замыкания.
При кратковременном нажатии кнопки START S1 подается напряжение через резистор R2 на базу транзистора Т2 в результате, чего транзистор Т2 открывается и подает питание на обмотку реле К1, контакты реле К1 переключаются и происходит самоблокировка реле К1. В момент срабатывания реле К1 отключается звуковой сигнализатор короткого замыкания, а в место него подключается регулятор напряжения на микросхеме LM338T. Далее напряжение через шунтирующий диод D2 поступает на выход блока питания. Регуляция напряжения на выходе из блока питания выполняется переменным резистором Р2. Контроль напряжения и силы тока осуществляется вольт амперметром V/A1.
В случае короткого замыкания происходит падение напряжения на базе транзистора Т2, транзистор закрывается в следствии чего, контакты реле переключаются. Нагрузка отключается, а на звуковой сигнализатор короткого замыкания подается питание и раздается звуковой сигнал. После устранения короткого замыкания следует кратковременно нажать кнопку START S1 и блок питания снова перейдет в рабочий режим. И так может продолжаться до бесконечности.
Список радиодеталей для сборки лабораторного блока питания:
- Источник питания любой подходящий трансформатор или импульсный блок питания от 16 до 40 вольт
- Транзисторы Т1, Т2 TIP41C, КТ819Г и их аналоги
- Микросхема LM338T на 5А или LM350T на 3А, LM317T на 1,5А все зависит от мощности источника питания
- Микросхема NE555
- Диодный мост Br1 любой не менее 6А можно заменить диодами.
- Диоды любые D1 0,5А, D2 от 1,5А до 10А зависит от нагрузки возможно параллельное соединение диодов
- Конденсаторы С1, С2, С4 100нф, С3 470мкф 35в, С5 1000мкф 50в
- Резисторы R1, R4 1k, R2 5,1k, R3 270, R5 10k, R6 330, R7 150, R8 200
- Переменные резисторы Р1 10К, Р2 5К
- Реле SRD12VDC-SL-C 12В 10А
- Кнопка START S1 без фиксации на замыкание
- Вентилятор М1 от компьютера
- Бипер SP1 от компьютера или маленький динамик
- Вольт амперметр китайский универсальный с Alliexpress
Внимание: При сборке лабораторного блока питания не изменяйте номиналы конденсаторов С1, С4, С5 иначе не будет срабатывать система защиты от короткого замыкания.
Цоколевка применяемых транзисторов
Возможно вам это пригодиться…
Все детали следует разместить на печатной плате изготовленной по лазерно-утюжной технологии.
Печатная плата лабораторного блока питания 1,5-30В 5А с защитой от КЗ
Как настроить блок питания?
Схема лабораторного блока очень простая, но все равно требуется небольшая настройка. Поставьте переменный резистор Р1 в среднее положение. Включите блок питания в сеть, подключите мультиметр параллельно вентилятору, резистором Р1 установите напряжение 12 вольт. Резистором R3 регулируется напряжение питания звукового сигнализатора короткого замыкания, смотрите по схеме напряжение на входе сигнализатора должно быть 12 вольт.
Тональность сигнализатора изменяется резистором R4 и конденсатором С2. Громкость регулируется подбором резистора R6. Порог срабатывания системы защиты от короткого замыкания подбирается резистором R2. Напряжение на выходе из блока питания изменяется переменным резистором Р2 его ручка выведена на лицевую панель блока питания.
В процессе работы транзистор Т1, микросхема LM338T и диодный мост будут сильно нагреваться, поэтому их следует установить на радиатор, перед установкой обязательно изолировать от радиатора. Как это сделать читайте здесь: Как изолировать транзисторы от радиатора?
Для контроля напряжения и силы тока лучше всего установить вот такой универсальный вольт амперметр.
Кстати, его надо откалибровать. С обратной стороны прибора находится два маленьких переменных резистора один отвечает за вольтаж, второй за ампераж. Делаем так, подключаем параллельно к выходу блока питания мультиметр, включаем в режим вольтметра и сравниваем показания приборов, если показания не соответствуют крутим переменный резистор в разные стороны, чтобы добиться наиболее точных показаний прибора. Чтобы откалибровать амперметр переключите мультиметр в режим амперметра. К блоку питания подключите лампочку последовательно с мультиметром и сверьте показания приборов.
Все компоненты лабораторного блока питания легко помещаются в корпусе от компьютерного блока питания.
Так выглядит готовое устройство. Для чего я установил два выключателя и кнопку на крыше блока питания? Красный выключатель сеть, он отключает трансформатор от сети 220В. Синяя кнопка START предназначена для перевода блока питания в рабочий режим.
Черный выключатель линия, чтобы отключать потребители от блока питания без откручивания проводов от разъемов. Справа два разъема типа «Banana» для подключения потребителей. На передней панели находится переменный резистор Р2 для регулировки выходного напряжения. И очень важная деталь это универсальный вольт амперметр.
В своем лабораторном блоке питания я установил трансформатор на 1,5 ампера. Его мощности вполне хватает, чтобы зарядить небольшой 12 вольтовый аккумулятор от бесперебойника емкостью 7А, его я установил на аккумуляторный шуруповерт. Если вы хотите собрать мощное зарядное устройство для автомобильного аккумулятора своими руками, тогда надо увеличить мощность лабораторного блока питания до 10 ампер.
Как увеличить мощность лабораторного блока питания до 10 ампер?
Чтобы увеличить мощность лабораторного блока питания достаточно параллельно микросхеме LM388T подключить мощный 12 амперный транзистор MJE13009.
И соответственно заменить источник питания на более мощный трансформатор или импульсный блок питания. Схема будет выглядеть так.
Схема лабораторного блока питания 1,5-30В 10А с защитой от КЗ
Печатная плата будет выглядеть так.
Печатная плата лабораторного блока питания 1,5-30В 10А с защитой от КЗ
А для любителей чего либо измерять, я решил снять пару осциллограмм в разных режимах работы блока питания.
На этой осциллограмме напряжение на выходе из блока питания снижено до 12 вольт.
Осциллограмма трансформаторного лабораторного блока питания. Напряжение на выходе 12 вольт.
А здесь максимальное напряжение на выходе из блока питания 25 вольт.
Осциллограмма трансформаторного лабораторного блока питания. Напряжение на выходе 25 вольт.
P. S. Все схемы и печатные платы в этой статье я разработал самостоятельно. И прежде чем написать я убедился в 100% работоспособности лабораторного блока питания во всех режимах.
Если у вас, что то не получилось, проверьте все ли вы сделали правильно…
Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!
Рекомендую посмотреть видеоролик о том, как работает лабораторный блок питания.
Токовая защита блока питания схема
Надёжная токовая защита для БП и ЗУ на IR2153 и электронном трансформаторе.
Автор: Blaze, cornage@bk.ru
Опубликовано 09.02.2016
Создано при помощи КотоРед.
На создание данной статьи меня спровоцировал опыт создания блоков питания и зарядных устройств на основе простых импульсных блоков питания, которыми являются как иип на IR2153, так и переделанный различными способами под блок питания электронный трансформатор. Данные источники питания являются простыми, нестабилизированными импульсными блоками питания без каких-либо защит.
Не смотря на данные недостатки, такие источники питания довольно просты в изготовлении,не требуют сложной настройки, времени на создание такого блока питания требуется меньше чем на полный ШИМ БП с узлами стабилизации и защиты.
Обьединив такой блок питания и простейший ШИМ- регулятор на NE555, получам регулируемый блок питания как для экспирементов, так и для зарядки АКБ. Радости нашей нет предела до того момента, пока данный девайс не попробовать на искру, или по ошибке, размышляя над созданием очередного аппарата перепутать полярность заряжаемого АКБ. Окрикивая громким хлопком и орошая едким дымом помещение,в котором произошол данный конфуз, изобретение сообщает нам, что простой импульсный блок питания, который собран по упрощённо-ознакомительной схеме не может быть надёжным.
Тут пришла мысль о том, чтобы найти не просто ввести тот или инной узел защиты в конкретный экземпляр блока питания, а найти или создать универсальную быстродействующую схему, которую можно внедрять в любой вторичный источник питания.
Требования к узлу защиты:
-плата защиты должна занимать мало места
-работоспособной при больших токах нагрузки
-высокая скорость срабатывания
Одним из заинтересовавших вариантов была такая схема, найденная в интерете:
При замыкании выхода данной схемы, разряжается ёмкость затвора VT1 через диод VD1, что приводит к закрытию VT1 и ток через транзистор не протекает, блок питания остаётся целым и невредимым. Но что же произойдёт если на выход данной схемы подключить нагрузку, в 300вт, когда наш иип может выдать всего 200вт? Не смотря на то что у нас присутствует схема защиты, замученный блок питания снова взрывается.
Недостатки данной схемы:
1. Необходимо точно подбирать сопротивление шунта, чтобы максимально допустимый ток блока питания создал такое падение напряжения на выбранном шунте, при котором VT2, открываясь полностью закроет VT1.
2. В данной схеме может наступить момент, когда ток проходящий через шунт, приоткроет VT2, вследствии чего VT1 начнёт закрываться и останется в таком состоянии, что будет недозакрыт, а учитывая что через VT1 протекает немалый ток, то данный линейный режим вызовет его сильный перегрев, врезультате которого VT1 будет пробит.
В блоке питания на IR2153 однажды применял триггерную защиту, остался доволен её работой. Прицепим к схеме триггерной защёлки на комплиментарной паре транзисторов шунт в качестве датчика тока и n-канальный транзистор в роли ключевого элемента получаем такую схему:
После подачи питания на схему, транзистор Q3, через светодиод и R4 открывается, стабилитрон D3 ограничивает напряжение на затворе полевого транзистора. D4 защищает Q3 от выбросов высокого напряжения, при подключении индуктивной нагрузки (электродвигатель). На паре транзисторов Q1, Q2 собран аналог тиристора. Ток, протекающий через шунт R1, вызывает падение напряжения, которое с движка переменного резистора R10, и цепочку R2, С2, поступает на базу транзистора Q2. Величину напряжения с шунта, которое пропорционально току, протекающему через этот шунт можно регулировать прерменным резистором R10. В момент, когда напряжение на базе Q2 станет больше 0.5-0.7в транзистор Q2 начнёт открываться, тем самым открывая Q1, в свою очередь транзистор Q1открываясь, будет открывать Q2.
Данный процесс происходит очень быстро, за доли секунды транзисторы откроют друг друга и останутся в таком устойчивом состоянии. Через открытый аналог тиристора затвро Q3, а также резистор R4 окажутся подключены к общему проводнику схемы, что приведёт к закрытию Q3 и свечение светодиода D1 сообщит о том что сработала защита. Снять защиту можно как отключив кратковременно питание, так и кратковременным нажатием на кнопку S1.
Универсальная схема защиты была создана и проверена в работе, шунт R1 был составлен из двух резисторов 0.22 Ом 5Вт. Остался последний шаг – вводим в нвшу схему защиту от переполюсовки клемм АКБ.
Схема с защитой от переполюсовки :
Наша схема дополнилась диодом D2, резисторами R6, R5. Кнопка S1 была убрана из схемы по причине того, что при срабатывании защиты она не выводила схему из защиты, после доработки.
Токовая защита осталась без изменений, снять защиту можно отключив питание на 2-3 секунды. При подключении к выходу схемы АКБ, перепутав полярность, напряжение с АКБ через диод D2, резистор R6 поступает на базу Q2, срабатывает защита Q3 закрывается, светодиод D1 сигнализирует о срабатывании защиты.
На этой волне я заканчиваю поиски защиты для своих простых иип. Работой своих схем доволен, надеюсь они пригодятся и вам.
Блок питания 1…20 В с защитой по току
При наладке различных электронных устройств необходим блок питания (БП), в котором имеется регулировка выходного напряжения и возможность регулирования уровня срабатывания защиты от превышения по току в широких пределах. При срабатывании защиты, нагрузка (подключенное устройство) должна автоматически отключаться.
Поиск в интернете дал несколько подходящих схем блоков питания. Остановился на одной из них. Схема проста в изготовлении и наладке, состоит из доступных деталей, выполняет заявленные требования.
Предлагаемый к изготовлению блок питания выполнен на базе операционного усилителя LM358 и имеет следующие характеристики:
Входное напряжение, В – 24. 29
Выходное стабилизированное напряжение, В – 1. 20 (27)
Ток срабатывания защиты, А – 0,03. 2,0
Фото 2. Схема БП
Описание работы БП
Регулируемый стабилизатор напряжения собран на операционном усилителе DA1.
1. На вход усилителя (вывод 3) поступает образцовое напряжение с движка переменного резистора R2, за стабильность которого отвечает стабилитрон VD1, а на инвертирующий вход (вывод 2) напряжение поступает с эмиттера транзистора VT1 через делитель напряжения R10R7. С помощью переменного резистора R2, можно изменять выходное напряжение БП.
Блок защиты от перегрузок по току выполнен на операционном усилителе DA1.2, он сравнивает напряжения на входах ОУ. На вход 5 через резистор R14 поступает напряжение с датчика тока нагрузки – резистора R13. На инвертирующий вход (вывод 6) поступает образцовое напряжение, за стабильность которого отвечает диод VD2 с напряжением стабилизации около 0,6 в.
Пока падение напряжения, создаваемое током нагрузки на резисторе R13, меньше образцового, напряжение на выходе (вывод 7) ОУ DA1.2 близко к нулю. В том случае, если ток нагрузки превысит допустимый установленный уровень, увеличится напряжение на датчике тока и напряжение на выходе ОУ DA1.2 возрастет практически до напряжения питания.
При этом включится светодиод HL1, сигнализируя о превышении, откроется транзистор VT2, шунтируя стабилитрон VD1 резистором R12. Вследствие чего, транзистор VT1 закроется, выходное напряжение БП уменьшится практически до нуля и нагрузка отключится. Для включения нагрузки нужно нажать на кнопку SА1. Регулировка уровня защиты выполняется с помощью переменного резистора R5.
1. Основу блока питания, его выходные характеристики определяет источник тока – применяемый трансформатор. В моем случае нашел применение тороидальный трансформатор от стиральной машины. Трансформатор имеет две выходные обмотки на 8в и 15в. Соединив обе обмотки последовательно и добавив выпрямительный мост на имеющихся под рукой диодах средней мощности КД202М, получил источник постоянного напряжения 23в, 2а для БП.
Фото 3. Трансформатор и выпрямительный мост.
2. Другой определяющей частью БП является корпус прибора. В данном случае нашел применение детский диапроектор мешающийся в гараже. Удалив лишнее и обработав в передней части отверстия для установки показывающего микроамперметра, получилась заготовка корпуса БП.
Фото 4. Заготовка корпуса БП
3. Монтаж электронной схемы выполнен на универсальной монтажной плате размером 45 х 65 мм. Компоновка деталей на плате зависит от размеров, найденных в хозяйстве компонентов. Вместо резисторов R6 (настройка тока срабатывания) и R10 (ограничение максимального напряжения на выходе) на плате установлены подстроечные резисторы с увеличенным в 1,5 раза номиналом. По окончании настройки БП их можно заменить на постоянные.
Фото 5. Монтажная плата
4. Сборка платы и выносных элементов электронной схемы в полном объеме для испытания, настройки и регулировки выходных параметров.
Фото 6. Узел управления БП
5. Изготовление и подгонка шунта и дополнительного сопротивления для использования микроамперметра в качестве амперметра или вольтметра БП. Дополнительное сопротивление состоит из последовательно соединенных постоянного и подстроечного резисторов (на фото сверху). Шунт (на фото ниже) включается в основную цепь тока и состоит из провода с малым сопротивлением. Сечение провода определяется максимальным выходным током. При измерении силы тока, прибор подключается параллельно шунту.
Фото 7. Микроамперметр, шунт и дополнительное сопротивление
Подгонка длины шунта и величины дополнительного сопротивления производится при соответствующем подключении к прибору с контролем на соответствие по мультиметру. Переключение прибора в режим Амперметр/Вольтметр выполняется тумблером в соответствии со схемой:
Фото 8. Схема переключения режима контроля
6. Разметка и обработка лицевой панели БП, монтаж выносных деталей. В данном варианте на лицевую панель вынесен микроамперметр (тумблер переключения режима контроля A/V справа от прибора), выходные клеммы, регуляторы напряжения и тока, индикаторы режима работы. Для уменьшения потерь и в связи с частым использованием, дополнительно выведен отдельный стабилизированный выход 5 в. Для чего напряжение, от обмотки трансформатора на 8в, подается на второй выпрямительный мост и типовую схему на 7805 имеющую встроенную защиту.
Фото 9. Лицевая панель
7. Сборка БП. Все элементы БП устанавливаются в корпус. В данном варианте, радиатором управляющего транзистора VT1 служит алюминиевая пластина толщиной 5 мм, закрепленная в верхней части крышки корпуса, служащего дополнительным радиатором. Транзистор закреплен на радиаторе через электроизолирующую прокладку.
Фото 10. Сборка БП без крышки
Фото 11. Общий вид БП.
Операционный усилитель LM358N имеет в своем составе два ОУ.
Транзистор VT1 можно заменить на любой из серий КТ827, КТ829. Транзистор VT2 любой из серии КТ315. Стабилитрон VD1 можно использовать любой, с напряжением стабилизации 6,8…8,0в и током 3…8 мА. Диоды VD2-VD4 из серии КД521 или КД522Б. Конденсаторы С3, C4 – пленочные или керамические. Оксидные конденсаторы: C1 – К50-18 или аналогичный импортный, остальные — из серии К50-35. Постоянные резисторы серии МЛТ, переменные — СП3-9а.
Налаживание блока питания – движок переменного резистора R2 перемещают в верхнее по схеме положение и измеряют максимальное выходное напряжение, устанавливают его равным 20 В, подбирая резистор R10. После этого подключают к выходу нагрузку и производят замеры тока срабатывания защиты. Для уменьшения уровня срабатывания защиты, уменьшить сопротивление резистора R6. Для увеличения максимального уровня срабатывания защиты – уменьшить сопротивление резистора R13 — датчика тока нагрузки.
Устройства защиты стабилизаторов напряжения (5 схем, 24В, 0-27В)
Схемы устройств для защиты от перегрузки стабилизированного выпрямителя при коротком замыкании или по другой причине.
Перегрузка стабилизированного выпрямителя при коротком замыкании в нагрузке или по другой причине обычно приводит к выходу из строя регулирующего транзистора. Защитить стабилизатор от перегрузки можно с помощью защитного устройства.
Простое защитное устройство
Защитное устройство, входящее в стабилизатор блока питания, схема которого показана на рис. 1, обладает высоким быстродействием и хорошей «релейностью», т. е. малым влиянием на характеристики блока врабочем режиме и надежным закрыванием регулирующего транзистора V2 в режиме перегрузки. Защитное устройство состоит из тринистора V3, диодов V6, V7 и резисторов R2 и R3.
Рис. 1. Схема простого защитного устройства по линии питания +24В.
В рабочем режиме тринистор V3 закрыт и напряжение на базе транзистора V1 равно напряжению стабилизации цепочки стабилитронов V4, V5.
При перегрузке ток через резистор R2 и падение напряжения на нем достигают значений, достаточных для открывания тринистора V3 по цепи управляющего электрода. Открывшийся тринистор замыкает цепочку стабилитронов V4, V5, что приводит к закрыванию транзисторов V1 и V2.
Для того чтобы восстановить рабочий режим после устранения причины перегрузки, нужно нажать и отпустить кнопку S1. При этом тиристор закроется» а транзисторы V1 и V2 снова откроются. Резистор R3 и диоды V6, V7 защищают управляющий переход тринистора V3 от перегрузок по току и напряжению соответственно.
Стабилизатор обеспечивает коэффициент стабилизации около 30, защита срабатывает при токе, превышающем 2 А.
Транзистор V2 можно заменить на КТ802А, КТ805Б, а V1 — П307, П309, КТ601, КТ602 с любым буквенным индексом. Тринистор V3 может быть любым из серии КУ201, кроме КУ201А и КУ201Б.
Стабилизатор с защитой для блока питания
Стабилизатор блока питания, схема которого изображена на рис. 2 может быть защищен от перегрузок и коротких замыканий нагрузки добавлением всего двух элементов — тиристора V3 и резистора R5.
Рис. 2. Принципиальная схема стабилизатора для блока питания с защитой (0-27В).
Защитное устройство срабатывает, когда ток нагрузки превысит пороговое значение, определяемое сопротивлением резистора R5. В этот момент падение напряжения на резисторе R5 достигает напряжения открывания тиристора V3 (около 1 В), он открывается, и напряжение на базе транзистора V2 уменьшается почти до нуля. Поэтому транзистор V2, а затем и V4 закрывают, отключая цепь нагрузки.
Для возвращения стабилизатора в исходный режим нужно кратковременно нажать на кнопку S1. Резистор R3 служит для ограничения тока базы транзистора V4.
Резистор R5 наматывают медным проводом. Выходное сопротивление стабилизатора можно уменьшить, если R5 включить так, как показано на схеме штриховой линией. Если при включении стабилизатора будут наблюдаться ложные срабатывания, конденсатор С2 следует исключить из устройства.
Максимальный ток нагрузки — 2 А. Вместо транзистора П701А можно использовать КТ801А, КТ801Б. Транзистор V2 можно заменить на КТ803А, КТ805А, КТ805Б, П702, П702А.
Стабилизатор с установкой порогового тока для защиты
Защитное устройство, изображенное на рис. 3, собрано на транзисторах V1 и V2 (в его состав входят также резисторы R1—R4, стабилитрон V3, переключатель S1 и лампа накаливания h2).
Требуемое значение тока срабатывания устанавливают переключателем S1. В рабочем режиме за счет базового тока, протекающего через резистор R1 (R2 или R3), транзистор V1 открыт и падение напряжения на нем невелико.
Рис. 3. Принципиальная схема стабилизатора с установкой порогового тока для защиты.
Поэтому ток в базовой цепи транзистора V2 очень мал, стабилитрон V3, включенный в прямом направлении, и транзистор V2 закрыты.
С увеличением тока нагрузки стабилизатора падение напряжения на транзисторе V1 увеличивается. В некоторый момент стабилитрон V3 открывается, вслед за ним открывается транзистор V2, что приводит к закрыванию транзистора V1. Теперь на этом транзисторе падает почти все входное напряжение, и ток через нагрузку резко уменьшается до нескольких десятков миллиампер.
Лампа Н1 загорается, указывая на срабатывание предохранителя. В исходный режим его возвращают, кратковременно отключая от сети. Коэффициент стабилизации — около 20.
Транзисторы V1 и V7 установлены на теплоотводах с эффективной площадью теплового рассеяния около 250 см2 каждый. Стабилитроны V4 и V5 укреплены на медной теплоотводящей пластине размерами 150 X 40 X 4 мм. Налаживание электронного предохранителя сводится к подбору резисторов R1—R3 по требуемому току срабатывания.
Лампа h2 типа КМ60-75.
Электронно-механическое устройство защиты от перенагрузки
Электронно-механическое устройство защиты, схема которого изображена на рис. 4, срабатывает в два этапа — сначала выключает питание электронного устройства, затем полностью блокирует нагрузку контактами К1.1 электромеханического реле К1. Оно состоит из транзистора V3, нагруженного двухобмоточным электромагнитным реле К1, стабилитрона V2, диодов V1, V4 и резисторов R1 и R2.
Рис. 4. Электронно-механическое устройство защиты, принципиальная схема.
Каскад на транзисторе V3 сравнивает напряжение на резисторе R2, пропорциональное току нагрузки стабилизатора, с напряжением на стабилитроне V2, включенном в прямом направлении.
При перегрузке стабилизатора напряжение на резисторе R2 становится больше напряжения на стабилитроне, и транзистор V3 открывается. Благодаря действию положительной обратной связи между цепями коллектора и базы этого транзистора в системе транзистор V3 — реле К1 развивается блокинг-процесс.
Длительность импульса — около 30 мс (в случае применения реле РМУ, паспорт РС4.533.360СП). Во время импульса напряжение на коллекторе транзистора V3 резко уменьшается.
Это напряжение через диод V4 передается на базу регулирующего транзистора V5 (напряжение на базе транзистора становится положительным относительно эмиттера), транзистор закрывается, и ток через цепь нагрузки резко уменьшается.
Одновременно с открыванием транзистора V3 начинает увеличиваться ток через коллекторную обмотку реле К1, и через 10 мс оно срабатывает, самоблокируется и отключает цепь нагрузки контактами К1.1. Для восстановления рабочего режима на короткое время отключают напряжение сети. Защита срабатывает при токе 0,4 А, коэффициент стабилизации равен 50.
Защита от перенагрузки по току с использованием динисторного оптрона
В защитном устройстве, схема которого изображена на рис. 5, используют динисторный оптрон V6, что повышает быстродействие защиты. При токе нагрузки, меньшем порогового, электронный ключ на транзисторах V1—V3 открыт, индикаторная лампа h2 горит, а оптрон выключен (светодиод не горит, фототиристор закрыт).
Рис. 5. Схема защиты от перенагрузки по току с использованием динисторного оптрона.
Как только ток нагрузки достигнет порогового значения, падение напряжения на резисторах R5, R6 возрастает настолько, что включится оптрон, через фототиристор которого на базу транзистора V1 поступит положительное напряжение, и электронный ключ закроется. В рабочее состояние устройство возвращают кратковременным нажатием на кнопку S1.
Напряжение на нагрузке возрастает медленно, со скоростью зарядки конденсатора C1. Это устраняет броски тока, вызывающие либо ложное срабатывание защиты» либо выход из строя деталей нагрузки при включении питания.
Порог срабатывания устанавливают резистором R5. Для транзисторов V2, V3 требуется теплоотвод площадью 100. 200 см2. Максимальный ток нагрузки 5 А, минимальный ток срабатывания 0,4 А.
Источник: Борноволоков Э. П., Фролов В. В. – Радиолюбительские схемы.
Защита в блоках питания ATX для компьютеров
Опубликовано 12.11.2018 автор Андрей Андреев — 0 комментариев
Приветствую вас, друзья! При работе любого электронного устройства могут возникнуть «завихрения», которые при отсутствии страховки, способны вывести его из строя, а в случае с БП в ПК – еще и несколько компонентов в придачу. Тема сегодняшней публикации – защита в блоках питания, с описанием всех необходимых опций. И так начнем.
Power Good
Из-за специфики конструкции устройства, при включении, напряжение на выходе достигает необходимой величины не мгновенно, а по истечении 0,02 секунд.
Для того, чтобы исключить подачу пониженного напряжения к потребителям энергии, что может негативно сказаться на их работе, и обеспечить необходимые номиналы в 3,3, 5 и 12 Вольт, в блоках ATX выделена специальная линия, которая подает сигнал о нормальной работе БП.
Маркируется такой кабель серым цветом и, как и остальные, подключается к материнской плате. При отсутствии сигнала на линии, компьютер попросту не включится.
Защита от перепадов напряжения
От перенапряжения и его недостатка, компьютер защищает одна и та же схема, отключающая девайс, если напряжение на любой из линий не соответствует номинальному. Обозначается функция английской аббревиатурой UVP / OVP.
Некоторое неудобство в том, что контрольные точки, при достижении которых срабатывает защита, могут находиться на некотором удалении от номинального напряжения, но при этом устройство будет соответствовать спецификации ATX.
Например, допускается подача напряжения до 15 Вольт, однако при длительной работе в таком режиме, комплектующие могут попросту перегореть.
Защита от перегрузки по току
Как мы помним, сила тока – еще одна, не менее важная его характеристика. Согласно международным стандартам оргтехники, один проводник не может передавать более 240 Вольт-Ампер, то есть 240 Ватт, в случае с постоянным током.
Максимально нагруженная цепь с напряжением 12 Вольт передаст не более 20 Ампер. При таком раскладе создать БП мощностью более 300 Ватт, не получится.
Для обхода этого ограничения, выводы 12 Вольт разбиваются на несколько групп с отдельной защитой по току (OCP) для каждой. При этом некоторые производители откровенно халтурят, используя только одну защитную схему, к которой подключаются все выводы, а срабатывает защита уже при 40 Амперах.
Определить «на глаз», какой именно подход использован, возможно только при разборке устройства и проверке его электрических цепей. Поэтому советую покупать комплектующие только тех брендов, в качестве продукции которых, вы уверены.
Защита от короткого замыкания
От КЗ блок питания защищает простая схема SCP, которая используется уже пару десятков лет. Для активации, достаточно пары транзисторов, при этом вовсе необязательно задействовать систему мониторинга рабочих параметров устройства.
Защита от перегрева
OTP выключает девайс, когда его температура достигает заданного значения. Схема присутствует только в качественных устройствах и базируется на паре термисторов, прикрепленных к радиатору или печатной плате.
Более сложный вариант – когда при превышении температуры, термистор заставляет быстрее вращаться кулер, регулируя рабочие параметры.
Защита по питанию
OPP или OPL – опциональный вид защиты, реализованный, с помощью специального контроллера или мониторинговой микросхемы. Схема контролирует количество тока, потребляемого из сети, и отключает БП при превышении определенного порога.
Найти любые по мощности и прочим характеристикам блоки питания для компьютера, а также все остальные комплектующие, вы можете в этом интернет-магазине.
Также советую ознакомиться с публикациями «Что значит PFC в блоке питания» и «Сертификаты БП для ПК». Рейтинг лучших устройств вы найдете здесь.
Спасибо за внимание и до следующих встреч на страницах моего блога! Подпишитесь на новостную рассылку, чтобы быть в курсе последних обновлений.
С уважением, автор блога Андрей Андреев
РЕГУЛИРУЕМЫЙ БЛОК ПИТАНИЯ С ЗАЩИТОЙ
У каждого радиолюбителя, регулярно занимающегося конструированием электронных устройств, думаю, имеется дома регулируемый блок питания. Штука действительно удобная и полезная, без которого, испробовав его в действии, обходиться становится трудно. Действительно, нужно ли нам проверить, например светодиод, то потребуется точно выставлять его рабочее напряжение, так как при значительном превышении подаваемого напряжения на светодиод, последний может просто сгореть. Также и с цифровыми схемами, выставляем выходное напряжение по мультиметру 5 вольт, или любое другое нужное нам и вперед.
Многие начинающие радиолюбители, сначала собирают простой регулируемый блок питания, без регулировки выходного тока и защиты от короткого замыкания. Так было и со мной, лет 5 назад собрал простой БП с регулировкой только выходного напряжения от 0,6 до 11 вольт. Его схема приведена на рисунке ниже:
Но несколько месяцев назад решил провести апгрейд этого блока питания и дополнить его схему небольшой схемкой защиты от короткого замыкания. Эту схему нашел в одном из номеров журнала Радио. При более детальном изучении выяснилось, что схема во многом напоминает приведенную выше принципиальную схему, собранного мной ранее блока питания. При коротком замыкании в питаемой схеме светодиод индикации КЗ гаснет, сигнализируя об этом, и выходной ток становится равен 30 миллиампер. Было решено, взяв часть этой схемы дополнить свою, что и сделал. Оригинал, схему из журнала Радио, в которую входит дополнение, привожу на рисунке ниже:
На следующем рисунке показывается часть этой схемы, которую нужно будет собрать.
Номинал некоторых деталей, в частности резисторов R1 и R2, нужно пересчитать в сторону увеличения. Если у кого-то остались вопросы, куда подсоединять выходящие провода с этой схемы, приведу следующий рисунок:
Еще дополню, что в собираемой схеме, вне зависимости, будет это первая схема, или схема из журнала Радио необходимо поставить на выходе, между плюсом и минусом резистор 1 кОм. На схеме из журнала Радио это резистор R6. Дальше осталось протравить плату и собрать все вместе в корпусе блока питания. Зеркалить платы в программе Sprint Layout не нужно. Рисунок печатной платы защиты от короткого замыкания:
Примерно месяц назад мне попалась на глаза схема приставки регулятора выходного тока, которую можно было использовать совместно с этим блоком питания. Схему взял с этого сайта. Тогда собрал эту приставку в отдельном корпусе и решил подключать её по мере необходимости для зарядки аккумуляторов и тому подобных действий, где важен контроль выходного тока. Привожу схему приставки, транзистор кт3107 в ней заменил на кт361.
Но впоследствии пришла в голову мысль соединить, для удобства, все это в одном корпусе. Открыл корпус блока питания и посмотрел, места осталось маловато, переменный резистор не поместится. В схеме регулятора тока используется мощный переменный резистор, имеющий довольно большие габариты. Вот как он выглядит:
Тогда решил просто соединить оба корпуса на винты, сделав соединение между платами проводами. Также поставил тумблер на два положения: выход с регулируемым током и нерегулируемым. В первом случае, выход с основной платы блока питания соединялся с входом регулятора тока, а выход регулятора тока шел на зажимы на корпусе блока питания, а во втором случае, зажимы соединялись напрямую с выходом с основной платы блока питания. Коммутировалось все это шести контактным тумблером на 2 положения. Привожу рисунок печатной платы регулятора тока:
На рисунке печатной платы, R3.1 и R3.3 обозначены выводы переменного резистора первый и третий, считая слева. Если кто-то захочет повторить, привожу схему подключения тумблера для коммутации:
Печатные платы блока питания, схемы защиты и схемы регулировки тока прикрепил в архиве. Материал подготовил AKV.
Originally posted 2018-11-23 07:09:50. Republished by Blog Post Promoter
УСТРОЙСТВО ЗАЩИТЫ ДЛЯ ЛЮБОГО БЛОКА ПИТАНИЯ
Это небольшой блок универсальной защиты от короткого замыкания, что предназначен для использования в сетевых источниках питания. Она специально разработана так, чтобы вписаться в большинство блоков питания без переделки их схемы. Схема, несмотря на наличие микросхемы, очень проста для понимания. Сохраните её на компьютер, чтоб увидеть в лучшем размере.
Схема блока защиты БП
Чтобы спаять схему вам понадобится:
- 1 — TL082 сдвоенный ОУ
- 2 — 1n4148 диод
- 1 — tip122 транзистор NPN
- 1 — BC558 PNP транзистор BC557, BC556
- 1 — резистор 2700 ом
- 1 — резистор 1000 ом
- 1 — резистор 10 ком
- 1 — резистор 22 ком
- 1 — потенциометр 10 ком
- 1 — конденсатор 470 мкф
- 1 — конденсатор 1 мкф
- 1 — нормально закрытый выключатель
- 1 — реле модели Т74 «G5LA-14»
Подключение схемы к БП
Здесь резистор с низким значением сопротивления соединен последовательно с выходом источника питания. Как только ток начинает течь через него, появится небольшое падение напряжения и мы будем использовать это падение напряжения, чтобы определить, является ли питание результатом перегрузки или короткого замыкания. В основе этой схемы операционный усилитель (ОУ) включенный в качестве компаратора.
- Если напряжение на неинвертирующем выходе выше, чем на инвертирующем, то на выходе устанавливается «высокий» уровень.
- Если напряжение на неинвертирующем выход ниже, чем на инвертирующем, то на выходе устанавливается «низкий» уровень.
Правда это не имеет ничего общего с логическим 5 вольтовым уровнем обычных микросхем. Когда ОУ находится в «высоком уровне», его выход будет очень близким к положительному потенциалу напряжения питания, поэтому, если питание +12 В, «высокий уровень» будет приближаться к +12 В. Когда ОУ находится в «низком уровне», его выход будет почти на минусе напряжения питания, поэтому, близко к 0 В.
При использовании ОУ в качестве компараторов, мы обычно имеем входной сигнал и опорное напряжение для сравнения этого входного сигнала. Итак, у нас есть резистор с переменным напряжением, которое определяется в соответствии с током, который течет через него и опорным напряжением. Этот резистор является наиболее важной частью схемы. Он подключен последовательно с питанием выходного. Вам необходимо выбрать резистор, падение напряжения на котором составляет примерно 0.5~0.7 вольт при перегрузке тока, проходящего через него. Ток перегрузки появляется в тот момент, когда схема защиты срабатывает и закрывает выход питания для предотвращения повреждений на нем.
Вы можете выбрать резистор, используя закон Ома. Первое, что нужно определить, является перегрузка током блока питания. Для этого надо знать максимальный допустимый ток блока питания.
Допустим, ваш блок питания может выдать 3 ампера (при этом напряжение блока питания не имеет значения). Итак, мы получили Р= 0,6 В / 3 А. Р = 0.2 Ом. Следующее, что вы должны сделать, это рассчитать рассеиваемую мощность на этом резисторе по формуле: Р=V*I. Если мы используем наш последний пример, то получим: Р=0.6 В * 3 А. Р = 1,8 Вт — 3 или 5 Вт резистора будет более чем достаточно.
Чтобы заставить работать схему, вы должны будете подать на неё напряжение, которое может быть от 9 до 15 В. Для калибровки подайте напряжение на инвертирующий вход ОУ и поверните потенциометр. Это напряжение будет увеличиваться или уменьшаться в зависимости от стороны, куда вы поворачиваете его. Значение необходимо скорректировать согласно коэффициента усиления входного каскада 0.6 Вольт (что-то около 2.2 до 3 вольт если ваш усилительного каскада похож на мой). Эта процедура занимает некоторое время, и лучший способ для калибровки это метод научного тыка. Вам может потребоваться настроить более высокое напряжение на потенциометре, так чтоб защита не срабатывала на пиках нагрузки. Скачать файл проекта.
Поделитесь полезными схемами
ЭЛЕКТРОННЫЙ ЗАМОК ДЛЯ ВХОДНОЙ ДВЕРИ Электронные дверные замки для дома. Развитие высоких технологий уже прочно и надежно вошло в нашу жизнь, и захватила все ее сферы. Разработки в этой сфере проявляются в полную силу в окружающем мире, ведь в нашем мире практически невозможно встретить человека который бы не пользовался мобильными телефонами, компьютерами и другой оргтехникой.
СХЕМА ИНВЕРТОРА По сути инвертор — это преобразователь постоянного тока в переменный ток. Причем получить на выходе можно любой ток, с практически любыми необходимыми параметрами.
ПРОСТАЯ САМОДЕЛЬНАЯ РАЦИЯ Схема простой самодельной радиостанции состоит из ВЧ генератора и ЗЧ-усилителя. Обе части работают как на прием, так и на передачу. Приемник – сверх регенеративный детектор. Сигнал снимается с коллектора транзистора VT1. Передатчик представляет собой ЗЧ-усилитель, нагруженный ВЧ-генератором, с выходом сигнала на телескопическую антенну.
УСТРОЙСТВО ТРАНСФОРМАТОРА Схема включения, устройство и принцип действия стандартного сетевого трансформатора на входное напряжение 220 В.
ПАЯЛЬНЫЕ ПРИНАДЛЕЖНОСТИ ДЛЯ ПАЙКИ
Как показывает практика, паяльные компоненты времен нерушимого союза были самыми хорошими и со мной согласятся все радиолюбители. Радиолюбительский паяльник должен иметь оптимальную мощность 20-35 ватт.
Принцип и применение схемы защиты от сверхтока
Теплые советы: Слово в этой статье составляет около 2800, а время чтения — около 15 минут.
Сводка
Многие электронные устройства имеют номинальный ток. Как только устройство превысит номинальный ток, он сожжет устройство. Таким образом, эти устройства делают модуль защиты по току, когда ток превышает установленный ток, устройство автоматически отключается, чтобы защитить устройство, которое является защитой от перегрузки по току.Такие, как интерфейс USB на материнской плате компьютера, защита от перегрузки по току USB, как правило, должна защищать материнскую плату, не сгорает. В этой статье вы узнаете, что такое максимальная токовая защита, типы защиты от сверхтока; его принцип и применение.
Каталог
I Что такое защита от перегрузки по току
Защита от перегрузки по току (Over Current Protection) — это действие устройства защиты по току, когда ток превышает заранее установленный максимум.Когда ток, протекающий через защищаемый оригинал, превышает заданное значение, срабатывает защитное устройство, и время используется для обеспечения селективности действия, отключения автоматического выключателя или подачи сигнала тревоги.
Многие электронные устройства имеют номинальный ток. Как только устройство превысит номинальный ток, он сожжет устройство. Таким образом, эти устройства делают модуль защиты по току, когда ток превышает установленный ток, устройство автоматически отключается, чтобы защитить устройство, которое является защитой от перегрузки по току.Такие, как интерфейс USB на материнской плате компьютера, защита от перегрузки по току USB, как правило, должна защищать материнскую плату, не сгорает.
Цепь питания с функцией максимальной токовой защиты
Защита от перегрузки по току включает защиту от короткого замыкания и защиту от перегрузки. Защита от короткого замыкания характеризуется большим током уставки и мгновенным действием. Расцепители электромагнитного тока (или реле), предохранители часто используются в качестве компонентов защиты от короткого замыкания.Защита от перегрузки характеризуется меньшим током уставки, обратнозависимой выдержкой времени. Тепловые реле, реле электромагнитного тока с задержкой, обычно используемые в качестве компонентов защиты от перегрузки.
Предохранители также обычно используются в качестве компонентов защиты от перегрузки без значительного ударного тока.
В системе TN, при использовании предохранителей для защиты от короткого замыкания, номинальный ток расплава должен быть менее 1/4 фазного тока короткого замыкания. с защитой автоматического выключателя ток уставки расцепителя максимального тока мгновенного срабатывания или срабатывания с короткой задержкой должен быть меньше 2/3 тока однофазного короткого замыкания
более интуитивно изучите информацию о максимальной токовой защите:
Как защитить цепи от скачков максимального тока
II Как работает защита от сверхтока?
В случае межфазного короткого замыкания, ненормального увеличения нагрузки в электросети или снижения уровня изоляции, ток внезапно возрастет, а напряжение внезапно упадет.Защита от перегрузки по току предназначена для установки рабочего тока реле тока в соответствии с требованиями селективности линии. Когда ток короткого замыкания в линии достигает значения срабатывания реле тока, реле тока действует в соответствии с избирательными требованиями устройства защиты, выборочно отключая линию короткого замыкания и запуская реле времени через свои контакты. После заданной задержки реле времени касается точки замкнутой, катушки отключения автоматического выключателя включается, автоматический выключатель срабатывает, линия неисправности отключена, и одновременно срабатывает сигнальное реле, сигнальная панель падает, и включается световой или звуковой сигнал.
При возникновении непредвиденных условий, таких как короткое замыкание нагрузки, перегрузка или отказ цепи управления, через переключающий транзистор в регуляторе протекает чрезмерный ток, что увеличивает потребляемую мощность лампы и выделяет тепло. Если нет устройства защиты от сверхтока, мощный переключающий транзистор может быть поврежден. Поэтому в импульсных регуляторах обычно используется максимальная токовая защита. Самый экономичный и удобный способ — использовать предохранитель.Из-за небольшой теплоемкости транзисторов обычные предохранители, как правило, не могут обеспечить защиту. Обычно используются быстродействующие предохранители. Преимущество этого метода заключается в простоте защиты, но необходимо выбирать характеристики предохранителя в соответствии с требованиями безопасной рабочей зоны конкретного переключающего транзистора. Недостатком этой меры защиты от сверхтоков является неудобство частой замены предохранителей.
Схема максимальной токовой защиты инвертора
Токоограничивающая защита и защита от отключения по току, обычно используемые в линейных регуляторах, могут применяться в импульсных регуляторах.Однако в соответствии с характеристиками импульсного регулятора выход этой схемы защиты не может напрямую управлять переключающим транзистором, но выход максимальной токовой защиты должен быть преобразован в импульсную команду для управления модулятором для защиты переключающего транзистора. Чтобы обеспечить защиту от перегрузки по току, обычно необходимо использовать в цепи последовательно включенный резистор выборки, что повлияет на эффективность источника питания, поэтому он в основном используется в импульсных стабилизаторах малой мощности.В импульсных регулируемых источниках питания большой мощности, учитывая потребляемую мощность, следует по возможности избегать использования резистора выборки. Поэтому защиту от сверхтока обычно преобразуют в защиту от повышенного и пониженного напряжения.
Защитное устройство предусмотрено в начале рассматриваемой цепи (см. Следующий рисунок)
Действует для отключения тока за время короче, чем указано характеристикой I2t кабельной проводки цепи
Но позволяя максимальному току нагрузки IB течь бесконечно
Характеристики изолированных проводов при токах короткого замыкания в течение периодов до 5 секунд после возникновения короткого замыкания можно приблизительно определить по формуле:
I2t = k2 S2
, который показывает, что допустимое количество выделяемого тепла пропорционально квадрату площади поперечного сечения кондуктора.
где
t = Продолжительность тока короткого замыкания (секунды)
S = Площадь поперечного сечения изолированного проводника (мм2)
I = ток короткого замыкания (среднеквадратичное значение)
k = постоянная изолированного проводника (значения k приведены на рисунке 5)
Максимально допустимый ток для данного изолированного проводника зависит от окружающей среды. Например, для высокой температуры окружающей среды (θa1> θa2) Iz1 меньше Iz2 (см. Рис. 5). θ означает «температура».
Примечание:
ISC = трехфазный ток короткого замыкания
ISCB = номинальный 3-фазн. ток отключения выключателя при коротком замыкании
Ir (или Irth) [1] = регулируемый «номинальный» уровень тока; например автоматический выключатель с номинальным током 50 А может регулироваться таким образом, чтобы он имел защитный диапазон, то есть уровень обычного отключения при перегрузке по току, аналогичный уровню автоматического выключателя на 30 А.
III Типы максимальной токовой защиты
Комплексный тип: разнообразные защиты в линейке.
Ограниченный тип мощности: ограниченный выход общей мощности
Перемотанный тип: начальный ток постоянный, напряжение падает до определенного значения, ток начал уменьшаться.
Тип игры: перегрузка по току, текущее напряжение упало до 0, а затем начало снова и снова расти.
Постоянный ток: постоянный ток, падение напряжения
Сравнение нескольких методов защиты от сверхтоков
В таблице 1 перечислены несколько методов защиты от сверхтоков.
Режим цепи
Используемые компоненты
Сложность отладки
Степень защиты
Потребляемая мощность
Влияние на эффективность
Резистор первичной цепи ограничения тока
несколько
легкий
Плохо
большой
больше
Цепь ограничения тока основного привода
меньше
проще
хуже
крупнее
большой
Нет цепи ограничения тока питания
подробнее
проще
лучше
меньше
меньше
555 таймер цепи ограничения тока
много
легкий
хорошо
малая
малая
IV Примеры применения схемы защиты от перегрузки по току
Защита от перегрузки по току — это когда ток короткого замыкания в цепи достигает значения срабатывания реле тока, ток реле тока устанавливается в соответствии с требованиями селективности линии.Термисторы PTC для максимальной токовой защиты уменьшают остаточный ток, ограничивая потребление всей линии путем внезапного изменения их сопротивления. Они могут заменить традиционный предохранитель, широко используемый в двигателях, трансформаторах, импульсных источниках питания, электронных схемах, тепловой защите от сверхтоков, традиционный предохранитель не может быть восстановлен после перегорания линии, а защита от сверхтока с помощью термистора PTC после неисправность устранена. Может быть восстановлена до состояния предварительной защиты, когда неисправность возникает снова, может быть достигнута функция защиты от перегрузки по току.
4.1 Трансформатор
Первичное напряжение трансформатора напряжения составляет 220 В, вторичное напряжение — 16 В, вторичный ток — 1,5 А, первичный ток вторичной аномалии составляет около 350 мА, состояние защиты должно быть введено через 10 минут, рабочая температура трансформатора составляет -10-40 ℃, 15 ~ 20 ℃, термистор PTC установлен рядом с трансформатором, выберите термистор PTC для первичной защиты.
При напряжении трансформатора 220 В, с учетом колебаний мощности максимальное рабочее напряжение должно достигать 220 В × (1 + 20%) = 264 В
Выбор максимального рабочего напряжения термистора PTC 265 В.
После расчета и фактического измерения первичный ток трансформатора составляет 125 мА, когда он работает нормально. Учитывая, что температура окружающей среды термистора PTC составляет до 60 ℃, можно определить, что нерабочий ток должен составлять 130 ~ 140 мА при 60 ℃.
Принимая во внимание положение установки термистора PTC, температура окружающей среды может достигать -10 ℃ или 25 ℃, рабочий ток может быть определен при -10 ℃ или 25 ℃, должно быть 340 ~ 350 мА, время работы около 5 минут.
Термистор PTC последовательно в первичной обмотке, результирующее падение напряжения должно быть как можно меньше, сам термистор PTC, мощность нагрева должна быть как можно меньшей, общее падение напряжения термистора PTC должно быть менее 1% от общей мощности , R25 Вычислено:
220 В × 1% ÷ 0,125 А = 17,6 Ом
Фактическое измерение, короткое замыкание вторичной обмотки трансформатора, первичный ток до 500 мА, с учетом короткого замыкания первичной обмотки, когда проходит большая часть тока, термистор PTC для определения максимального тока выше 1 А.
С учетом того, что температура окружающей среды термистора PTC в месте установки может достигать 60 ℃, выбранная температура Кюри должна быть на основе 100 ℃. Но, учитывая низкую стоимость и термистор PTC, который не установлен в корпусе трансформаторной линии, более высокая температура поверхности не окажет неблагоприятного воздействия на трансформатор. Таким образом, температура может быть выбрана для температуры Кюри 120 ℃, так что термистор PTC может уменьшить диаметр, и можно снизить стоимость.
В соответствии с вышеуказанными требованиями см. Лист технических данных, выбранный стандарт, как показано ниже:
А именно: максимальное рабочее напряжение 265 В, номинальное сопротивление нулевой мощности 15 Ом ± 25%, рабочий ток 140 мА, рабочий ток 350 мА, максимальный ток 1,2 А, температура Кюри 120 ℃ и максимальный размер 11,0 мм.
4.2 Двигатель
Когда двигатель запускается, нажмите кнопку блокировки SBi, запуск завершен (после стабилизации скорости двигателя), снова нажмите SBi, и схема защиты сработает.Для двигателей с коротким временем пуска (например, несколько секунд) SBi также может использовать обычные кнопки, если SBi удерживается нажатой во время процесса запуска.
Когда двигатель работает нормально, вторичный индуцированный потенциал трансформатора тока TAi ~ TA3 невелик, и его недостаточно для срабатывания тиристора V. Как показано ниже.
Схема защиты от перегрузки по току В в конструкции импульсного источника питания
Импульсный источник питания обычно используется в схеме защиты от перегрузки по току.
Через преобразователь вторичный ток, полученный преобразователем I / V, преобразуется в напряжение. После того, как напряжение принимает форму постоянного тока, оно сравнивается с установленным значением компаратором напряжения. Если напряжение постоянного тока больше установленного значения, выдается идентификационный сигнал. Однако этот датчик обнаружения обычно используется для контроля индукционного источника питания тока нагрузки. Поэтому мы должны принять следующие меры. Поскольку пусковой ток в несколько раз превышает номинальный ток при запуске индуктивного источника питания и намного больше, чем ток в конце запуска.в случае простого контроля текущей батареи, необходимый выходной сигнал должен быть получен при запуске индуктивного источника питания. Мы должны использовать таймер, чтобы установить время запрета, чтобы индукционный источник питания не получал ненужный выходной сигнал до окончания запуска. По истечении таймера блок питания перейдет в состояние запланированного мониторинга.
Импульсный источник питания генерирует высокий пусковой ток при включении питания. Следовательно, устройство плавного пуска для предотвращения броска тока должно быть установлено на входе источника питания, чтобы эффективно снизить пусковой ток до допустимого диапазона.Пусковой ток в основном вызван зарядкой конденсатора фильтра, конденсатор на обмене показал меньшее сопротивление в начале включения переключателя. При отсутствии каких-либо защитных мер пусковой ток может приближаться к сотням А.
Импульсный вход источника питания обычно использует схему фильтрации конденсаторов, показанную на рисунке 6, конденсатор фильтра C может использовать низкочастотные или высокочастотные конденсаторы, низкочастотный конденсатор должен быть параллелен емкости высокочастотных конденсаторов, чтобы нести заряд и ток разряда.На рисунке резистор ограничения тока Rsc, который вставлен между выпрямлением и фильтрацией, предназначен для предотвращения воздействия пускового тока. Замыкание Rsc ограничивает зарядный ток конденсатора C. И через некоторое время напряжение на C достигает заданного значения или напряжение на конденсаторе C1 достигает рабочего напряжения реле T, и Rsc замыкается. В то же время SCR может также использоваться для включения Rsc. При замыкании из-за отключения тринистора конденсатор C заряжается через Rsc.По прошествии некоторого времени SCR включается, замыкая токоограничивающий резистор Rsc.
Схема ограничения тока, изображенная на рисунке ниже, подходит для источников питания различных цепей. Выходная часть этой схемы делит землю с цепью управления.
Принцип работы: при нормальных рабочих условиях, Il, протекающий в Rsc, не будет производить большого падения напряжения, тогда Q1 не будет включен. Если ток нагрузки достаточно велик, на Rsc будет генерироваться напряжение, обеспечивающее проводимость Q1.Если Q1 находится в выключенном состоянии, а C1 будет полностью разряжен, когда Ic1 = 0, Q2 также будет в выключенном состоянии. Если ток Il постепенно увеличивается, то Il * Rsc = VbeQ1 + Ib1R1
В это время через коллектор будет протекать ток Ic1, и следующая постоянная времени будет заряжать C1 T = R2 * C1
Тогда напряжение на C1 равно: Vc1 = Ib2R3 + VbeQ2
Чтобы минимизировать нагрузочное влияние напряжения конденсатора, мы можем использовать табуретную трубку Дарлинга с более высоким HFE вместо Q2, так что базовый ток может быть ограничен до микроампер.Выбирая резистор R4, мы должны Намного больше, чем R3. Таким образом, при перегрузке по току конденсатор C1 быстро разрядится.
Значение R2 следующее:
IBL = (V1-VBEQ1) / R1
и Ic1 = HfeQ1IBLMAX
Итак, R2 «= (V1-VCEMAX) R1 / (V1-VBEQ1)
При правильной конструкции схемы VCE может быстро достичь своего значения напряжения и перевести транзистор Q2 во включенное состояние, так что управляющий сигнал регулятора может быть отключен.
Когда перегрузка будет устранена, цепь автоматически вернется в рабочее состояние.Если используется схема управления IC PWM с фиксированным компаратором ограничения тока (схема, показанная на рисунке 1B), мы помещаем резистор ограничения тока RSC на положительный вывод выхода, и можно получить хороший эффект ограничения тока.
Когда выходная мощность имеет перегрузку или короткое замыкание, значение IGBT Vce становится больше. По этому принципу мы можем принять меры защиты в цепи. Обычно для этого используется специальный привод EXB841, внутренняя схема которого может быть выполнена хорошо до затвора и плавного отключения, и имеет функцию внутренней задержки.Вы можете устранить помехи, вызванные неисправностью. Его принцип работы показан на рисунке 8. Информация о перегрузке по току Vce с IGBT не отправляется непосредственно на вывод 6 контроля напряжения коллектора EXB841, а быстро восстанавливается диодом VD1. Затем подключается к выводу 6 EXB841 через выход компаратора IC1. Устранение прямого падения напряжения зависит от текущей ситуации, использование порогового компаратора для повышения точности определения тока. В случае перегрузки по току драйвер: Схема низкоскоростного отключения EXB841 будет медленно отключать IGBT, чтобы не допустить повреждения устройств IGBT скачками тока коллектора.
VI Заключение
В последнее время широкое распространение получил импульсный источник питания, к надежности которого также предъявляются повышенные требования. После выхода из строя электронного продукта, если входной конец электронного продукта закорочен или выходной конец открыт, источник питания должен отключить выходное напряжение, чтобы защитить силовой MOSFET и выходное устройство от повреждения. В противном случае электронное изделие может получить дальнейшее повреждение или даже стать причиной поражения электрическим током и возгорания операторов.Следовательно, необходимо улучшить защиту импульсного источника питания от перегрузки по току.
Рекомендация книги
Руководство по внедрению защиты электроэнергии как в новых, так и в существующих системах на индивидуальных и коммерческих объектах. Сосредоточившись на системах в диапазоне низкого и среднего напряжения, книга помогает в решении проблем защиты и координации с использованием микрокомпьютеров, а также более традиционных методов. В тексте приведены пошаговые инструкции для быстрого решения проблем.В нем показано, как проектировать интеллектуальное распределительное устройство, и представлена важная информация по настройке рабочей станции защиты и координации. Текст должен соответствовать требованиям Национального электротехнического кодекса и Национального института стандартов.
— Майкл А. Энтони (Автор)
Релевантная информация об «Истории интегральной схемы и ее типах упаковки»
О статье «Интеграция истории схем и ее типов упаковки». Если у вас есть лучшие идеи, не стесняйтесь писать свои мысли в следующей области комментариев.Вы также можете найти больше статей об электронных полупроводниках через поисковую систему Google или обратиться к следующим связанным статьям.
Защита линий передачи по току несущей — методы и преимущества
Схема защиты по току несущей в основном используется для защиты длинных линий передачи. В схемах защиты по току несущей, фазовый угол тока в двух фазах линии сравнивается вместо фактического тока.А затем фазовый угол линии определяет, является ли повреждение внутренним или внешним. Основными элементами несущего канала являются передатчик, приемник, соединительное оборудование и линейный ловушка.
Приемник несущего тока принимает несущий ток от передатчика на дальнем конце линии. Приемник преобразует полученный несущий ток в постоянное напряжение, которое можно использовать в реле или другой схеме, выполняющей любую желаемую функцию. Напряжение равно нулю, когда несущий ток не принимается.
Линейный перехватчик вставляется между шиной и соединением конденсатора связи с линией. Это параллельная LC-сеть, настроенная на резонанс на высокой частоте. Ловушки ограничивают ток несущей до незащищенной секции, чтобы избежать помех от одного или других смежных каналов тока несущей. Это также позволяет избежать потери сигнала несущего тока в прилегающей силовой цепи.
Разделительный конденсатор соединяет высокочастотное оборудование с одним из проводов линии и одновременно отделяет силовое оборудование от линии высокого напряжения.Нормальный ток может протекать только по линейному проводнику, в то время как сильный ток несущей будет циркулировать по линейному проводнику, оборудованному высокочастотными ловушками, через конденсатор ловушки и землю.
Методы защиты от несущего тока
Различные методы защиты несущей тока и основная форма защиты несущей тока
- Защита от смещения направления
- Защита от сравнения фаз
Эти типы подробно описаны ниже
1.Направленная защита сравнения
В этих схемах защиты защита может быть выполнена путем сравнения неисправности направления потока мощности на двух концах линии. Операция выполняется только тогда, когда питание на обоих концах линии подается на шину в направлении линии. После сравнения направления реле пилот-сигнала несущей сообщает оборудованию, как направленное реле ведет себя на другом конце при коротком замыкании.
Реле на обоих концах устраняет неисправность шины.Если неисправность находится в секции защиты, мощность течет в защитном направлении, а при внешней неисправности мощность течет в противоположном направлении. Во время неисправности простой сигнал через пилот-сигнал несущей передается от одного конца к другому. Релейные схемы защиты пилот-сигнала, используемые для защиты передачи, в основном подразделяются на два типа. Их
- Схема защиты от блокировки несущей — Схема защиты от блокировки несущей ограничивает работу реле.Он блокирует неисправность до входа в защищаемый участок системы. Это одна из самых надежных схем защиты, поскольку она защищает оборудование системы от повреждений.
- Схема блокировки, разрешающая несущую — Схема защиты несущей позволяет току короткого замыкания проникать в защищаемую часть системы.
2. Защита несущей для сравнения фаз
Эта система сравнивает соотношение фаз между током, входящим в пилотную зону, и током, выходящим из защищаемой зоны.Текущие величины не сравниваются. Он обеспечивает только основную или основную защиту, также должна быть предусмотрена резервная защита. Принципиальная схема схемы защиты несущей сравнения фаз показана на рисунке ниже.
ТТ линии передачи питают сеть, которая преобразует выходной ток ТТ в однофазное синусоидальное выходное напряжение. Это напряжение подается на передатчик несущего тока и устройство сравнения. Выходной сигнал приемника несущего тока также подается на устройство сравнения.Компаратор регулирует работу вспомогательного реле для отключения автоматического выключателя линии передачи.
Преимущество защиты от тока несущей
Ниже приведены преимущества схем защиты от несущего тока. Эти преимущества
- Имеет быстрое и одновременное срабатывание автоматических выключателей на обоих концах.
- Он имеет быстрый процесс очистки и предотвращает сотрясение системы.
- Никаких отдельных проводов для сигнализации не требуется, потому что линии электропередачи сами передают питание, а также сигнализацию связи.
- Это одновременное отключение автоматических выключателей на обоих концах линии за один-три цикла.
- Эта система лучше всего подходит для быстрого включения современных автоматических выключателей.
Основная работа оператора линии электропередачи заключалась в диспетчерском управлении, телефонной связи, телеметрии и ретрансляции.
Влияние условий короткого замыкания на ток короткого замыкания IGBT в моторных приводах
Сетевые реакторы и приводы переменного тока
Сетевые реакторы и приводы переменного тока Rockwell Automation Mequon Wisconsin Довольно часто линейные и нагрузочные реакторы устанавливаются на приводы переменного тока без четкого понимания того, почему и каковы положительные и отрицательные последствия
Дополнительная информация Рекомендации по применению AN-1070
Замечания по применению AN-1070 Зависимость характеристик усилителя звука класса D от параметров полевого МОП-транзистора Хорхе Серезо, International Rectifier Содержание страницы Аннотация… 2 Введение … 2 Ключевой полевой МОП-транзистор
Дополнительная информация IRLR8729PbF IRLU8729PbF
Области применения l Высокочастотные синхронные понижающие преобразователи для питания процессоров компьютеров l Высокочастотные изолированные преобразователи постоянного тока в постоянный с синхронным выпрямлением для телекоммуникационного и промышленного использования Преимущества
Дополнительная информация IRGP4068DPbF IRGP4068D-EPbF
БИПОЛЯРНЫЙ ТРАНЗИСТОР С ИЗОЛИРОВАННЫМ ЗАДВИЖЕНИЕМ С УЛЬТРА-НИЗКИМ VF-диодом ДЛЯ ИНДУКЦИОННОГО НАГРЕВА И ПЛАВНОГО ПЕРЕКЛЮЧЕНИЯ
Дополнительная информация
Драйвер со стороны высокого и низкого давления
Характеристики драйвера на стороне высокого и низкого давления Обзор продукта Плавающий канал, предназначенный для работы в режиме начальной загрузки Полностью работоспособен до 200 В Устойчив к отрицательным переходным напряжениям, невосприимчив к du / dt Диапазон питания привода затвора
Дополнительная информация Указания по применению AN-1095
Замечания по применению AN-1095 Конструкция выходного фильтра инвертора для приводов двигателей с силовыми модулями IRAMS Cesare Bocchiola Содержание Страница Раздел 1: Введение…2 Раздел 2: Конструкция выходного фильтра
Дополнительная информация IR2110 (S) / IR2113 (S) и (PbF)
Типовой лист № PD6147 Rev.T Характеристики Плавающий канал, предназначенный для работы в режиме начальной загрузки Полностью работоспособен до + 5 В или + 6 В Устойчив к отрицательным переходным напряжениям dv / dt невосприимчив к диапазону питания привода затвора от 1
Дополнительная информация Рекомендации по применению AN-1068 reva
Замечания по применению AN-1068 reva Рекомендации по проектированию с использованием радиационно-стойких твердотельных реле Алан Таскер Содержание Введение Обзор страницы…1 Контакт … 1 Активация … 1 IR
Дополнительная информация SMPS MOSFET. V DSS Rds (вкл.) Макс. I D
Применения l Импульсный источник питания (SMPS) l Источник бесперебойного питания l Высокоскоростной импульсный МОП-транзистор PD 92004 IRF740A HEXFET Power MOSFET V DSS Rds (on) max I D 400 В 0,55 Ом A Преимущества
Дополнительная информация Рекомендации по применению AN-983
Замечания по применению AN-983 Характеристики IGBT Содержание 1.Как IGBT дополняет силовой полевой МОП-транзистор … 2 Стр. 2. Кремниевая структура и эквивалентная схема … 2 3. Характеристики проводимости … 4
Дополнительная информация IR2130 / IR2132 (J) (S) и (PbF)
Технический паспорт № PD619 Rev.P Характеристики Плавающий канал, разработанный для работы в режиме начальной загрузки Полностью работоспособен до +6 В Устойчив к отрицательным переходным напряжениям dv / dt невосприимчив к диапазону питания привода затвора от 1 до 2 В Пониженное напряжение
Дополнительная информация Что такое регенерация?
Что такое регенерация? Торможение / регенерация Обзор регенерации вручную Редакция 1.0 Когда ротор асинхронного двигателя вращается медленнее, чем скорость, установленная приложенной частотой, двигатель преобразует
Дополнительная информация ЗАЖИГАНИЕ АВТОМОБИЛЯ С IGBTS
ЗАМЕЧАНИЕ ПО ПРИМЕНЕНИЮ ЗАЖИГАНИЕ АВТОМОБИЛЯ С IGBT от M. Melito ABSTRACT IGBT используются в различных коммутационных приложениях благодаря своим привлекательным характеристикам, в частности, их пиковому току
Дополнительная информация САМОКОБИЛЯЮЩИЙСЯ ПОЛУМОСТОВОДИТЕЛЬ
Лист данных №PD60029 revj I2155 & (PbF) (ПРИМЕЧАНИЕ: для новых разработок мы рекомендуем новые продукты I2153 и I21531) САМОКОБИЛИРУЮЩИЙСЯ МАТРИЦА ПОЛОВИННОГО ДВИЖЕНИЯ Характеристики Плавающий канал, предназначенный для работы в режиме начальной загрузки
Дополнительная информация Рекомендации по применению AN-1040
Замечания по применению Моделирование системы AN-1040 с использованием квазидинамической модели силового полевого МОП-транзистора Содержание Страница Цель: изучить квазидинамическую модель силового полевого МОП-транзистора и ее влияние на тепловые характеристики устройства
Дополнительная информация HFA15TB60 HFA15TB60-1
Особенности HEXFRED TM Сверхбыстрое восстановление Ультрамягкое восстановление Очень низкий I RRM Очень низкий Q rr, указанный в рабочих условиях Преимущества Снижение RFI и EMI Снижение потерь мощности в диоде и переключающем транзисторе
Дополнительная информация IR2117 (S) / IR2118 (S) и (PbF)
Лист данных №PD14 Rev N IR2117 (S) / IR211 (S) & (PbF) Характеристики Плавающий канал, предназначенный для работы в режиме начальной загрузки Полностью работоспособен до + В Устойчив к отрицательным переходным напряжениям dv / dt невосприимчив к питанию затвора
Дополнительная информация Рекомендации по применению AN-940
Замечания по применению AN-940 Как МОП-транзисторы с P-каналом могут упростить схему Содержание Стр. 1. Основные характеристики силовых МОП-транзисторов с P-каналом HEXFET … 1 2.Заземленные нагрузки … 1 3. Переключение тотемных полюсов
Дополнительная информация Особенности. Символ JEDEC TO-220AB
Технические данные Июнь 1999 г. Номер файла 2253.2 3A, 5 В, 0,4 Ом, N-канальный силовой МОП-транзистор Это силовой полевой транзистор с кремниевым затвором с N-канальным режимом расширения, разработанный для таких приложений, как коммутация
Дополнительная информация Расширенные темы по источникам питания
Передовые темы источников питания 2006 г. Компания Microchip Technology Incorporated.Все права защищены. Расширенные темы блоков питания Слайд 1 Добро пожаловать на веб-семинар «Продвинутые темы блоков питания». Page 1 Повестка дня
Дополнительная информация Учебное пособие по Power MOSFET
Учебное пособие по силовому полевому МОП-транзистору Джонатан Додж, П.

Похожие статьи: 2011 г.
БП с плавной регулировкой напряжения
Как известно, каждому радиолюбителю приходится сталкиваться с самыми различными напряжениями питания: 1.5, 3, 6, 12В. Предлагаю вам схему БП дающего постоянное напряжение от 1 до 12 В. А величина тока, потребляемого различными устройствами от этого БП может достигать 0,2-0,3 А. Главным преимуществом этого блока является то, что он не боится КЗ (коротких замыканий), что немаловажно для радиолюбителей, начинающих свою практику.
Автор: Колесник Алексей
6
0 [0]
Похожие статьи: 2005 г.Стабилизатор напряжения с защитой от КЗ
Многим радиолюбителям знакома схема этого простого стабилизатора напряжения с защитой от перегрузок и коротких замыканий цепи выхода.
Он обладает рядом положительных качеств и поэтому получил широкую популярность у радиолюбителей.Автор:
none
1
0 [0]
Похожие статьи:Простой стабилизированный блок питания | Все своими руками
Опубликовал admin | Дата 6 июня, 2012Добрый день. В этой заметке я хочу предложить вашему вниманию блок питания дополнительного усилителя мощности для портативной радиостанции «Веда-ЧМ» . Выходное напряжение блока питания 24В, номинальный ток нагрузки – 3,5А, порог тока срабатывания защиты от короткого замыкания – 5,5А, ток короткого замыкания – 0,06А.
Общий вид комплекта показан на фото 1.
Схема блока питания представлена на рисунке 1.
Силовой трансформатор блока – перемотанный сетевой трансформатор от старого телевизора ТС-90-1, в качестве первичной обмотки — используются все витки сетевой обмотки трансформатора.
Новая вторичная обмотка содержит 2×65 витков провода ПЭТВ-2 диаметром 1,25мм. При отсутствии провода данного диаметра, можно на каждой из катушек намотать по 130 витков проводом диаметром 0,9мм. При этом катушки потом соединяют синфазно параллельно при сохранении схемы мостового выпрямителя. Если эти катушки соединить последовательно, то от двух диодов можно избавиться (Рис.2).
Схема стабилизатора собрана навесным монтажом (1 на фото 2). Конденсаторы С3 и С4 у меня находятся в корпусе усилителя мощности. Цифрой два обозначен дополнительный регулируемый стабилизатор напряжения для питания «Веда-ЧМ», собранного на микросхеме КРЕН12А. Меняя напряжение питания самой радиостанции, можно менять в некоторых пределах выходную мощность излучения усилителя. Схему этого стабилизатора можно найти в рубрике «Блоки питания» — «Стабилизатор напряжения на КР142ЕН12А». Индикатор перегрузки работает следующим образом. Напряжение на конденсаторах фильтра выпрямителя С1и С2 примерно равно 37 вольт, учитывая, что выходное напряжение – 24В, напряжение между точками 1 и 2 будет находиться в районе13 вольт, которого не хватит для пробоя стабилитронов VD5, VD6, так как их суммарное напряжение стабилизации равно 15В.
При «коротыше» напряжение между этими точками возрастет, через стабилитроны потечет ток и светодиод HL1 загорится, а светодиод HL2 – погаснет. Обратите внимание на то, что на «земле» находятся коллектора мощных транзисторов, что, ну просто очень удобно, размещая транзисторы непосредственно на корпусе изделия. Блок питания и усилитель мощности висят на стене чердака под антенной, что значительно уменьшает потери мощности в кабеле. До свидания. К.В.Ю. Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».
Просмотров:48 416
Токовая защита блока питания схема
Это интересно
Страницы
Ярлыки
понедельник, 5 января 2015 г.
Схема защиты блока питания и зарядных устройств
Представлена конструкция защиты для блока питания любого типа. Данная схема защиты может совместно работать с любыми блоками питания – сетевыми, импульсными и аккумуляторами постоянного тока.
Схематическая развязка такого блока защиты относительна проста и состоит из нескольких компонентов.
Схема защиты блока питания
Силовая часть – мощный полевой транзистор – в ходе работы не перегревается, следовательно в теплоотводе тоже не нуждается. Схема одновременно является защитой от переплюсовки питания, перегруза и КЗ на выходе, ток срабатывания защиты можно подобрать подбором сопротивления резистора шунта, в моем случае ток составляет 8 Ампер, использовано 6 резисторов 5 ватт 0,1 Ом параллельно подключенных. Шунт можно сделать также из резисторов с мощностью 1-3 ватт.
Более точно защиту можно настроить путем подбора сопротивления подстроечного резистора. Схема защиты блока питания, регулятор ограничения тока Схема защиты блока питания, регулятор ограничения тока
При КЗ и перегрузе выхода блока, защита мгновенно сработает, отключив источник питания. О срабатывании защиты осведомит светодиодный индикатор. Даже при КЗ выхода на пару десятков секунд, полевой транзистор остается холодным
Полевой транзистор не критичен, подойдут любые ключи с током 15-20 и выше Ампер и с рабочим напряжением 20-60 Вольт.
Отлично подходят ключи из линейки IRFZ24, IRFZ40, IRFZ44, IRFZ46, IRFZ48 или более мощные – IRF3205, IRL3705, IRL2505 и им подобные.
Данная схема также отлично подходит в качестве защиты зарядного устройства для автомобильных аккумуляторов, если вдруг перепутали полярность подключения, то с зарядным устройством ничего страшного не произойдет, защита спасет устройство в таких ситуациях.
Благодаря быстрой работе защиты, ее можно с успехом применить для импульсных схем, при КЗ защита сработает быстрее, чем успеют сгореть силовые ключи импульсного блока питания. Схематика подойдет также для импульсных инверторов, в качестве защиты по току. При перегрузе или кз во вторичной цепи инвертора, мигом вылетают силовые транзисторы инвертора, а такая защита не даст этому произойти.
Комментарии
Защита от короткого замыкания, переплюсовки полярноси и перегруза собрана на отдельной плате. Силовой транзистор использован серии IRFZ44, но при желании можно заменить на более мощный IRF3205 или на любой другой силовой ключ, который имеет близкие параметры.
Можно использовать ключи из линейки IRFZ24, IRFZ40, IRFZ46, IRFZ48 и другие ключи с током более 20 Ампер. В ходе работы полевой транзистор остается ледяным,. поэтому в теплоотводе не нуждается.
Схема срисована из зарядника аккумуляторной отвертки. Красный индикатор свидетельствует о том, что имеется выходное напряжение на выходе БП, зеленый индикатор показывает процесс заряда. С таким раскладом компонентов, зеленый индикатор будет постепенно потухат и окончательно потухнет, когда напряжение на аккумуляторе будет 12,2-12,4 Вольт, когда аккумулятор отключен, индикатор гореть не будет.
Комментарий
Схема своего рода “НОУ-ХАУ”, по простоте и надежности. Плюс в том, что не нужно использовать мощное реле, или тиристор, на котором падение напряжения около двух вольт. Схема как самостоятельное устройство может быть встроена в любое зарядное устройство и блок питания. Выход из режима защиты автоматический, как только устранится короткое замыкание или преполюсовка.
При срабатывании светится светодиод “ошибка подключения”. Описание работы: При нормальном режиме напряжение через светодиод и резистор R9 отпирает VT1 и все напряжение со входа поступает на выход. При коротком замыкании или переполюсовке ток импульсно резко возрастает, падение напряжения на полевике и шунте резко увеличивается, что приводит к открыванию VT2, который в свою очередь шунтирует затвор исток. Добавочное отрицательное напряжение по отношению к истоку (падение на шунте) прикрывает VT1. Далее происходит лавинный процесс закрытия VT1. Светодиод засвечивается через открытый VT2. Схема может находиться в данном состоянии сколь угодно долго, до устранения замыкания.
собирал сегодня сие) Родная защита Дашенга даже не успевает сработать)
Принцип работы прост – при резком скачке напряжения, на шунте появляется падение напряжения, которое отпирает vt2 полевик закрывается (т.к. затвор садится на землю). При этом загорается св. диод (т.к. получает минус на затворе).
В нормальном состоянии затвор открывает положительным напряжением с цепочки св.диод-R9 Тот же принцип и при переплюсовке – от скачка тока.
Работает быстро, но криво – при выключенном блоке и подключенном аккумуляторе, на блок валит напряжение, т.к. полевик открывает акк. Я думаю, нужно делать какую-нить защиту, чтоб при пропадании напряжения зарядки, акк отключался от схемы.
Вот та же схема, только перевернутая по правильному. Использовал в зарядке, результатом доволен. Единственный недостаток (а может – фича!) – защелкивается, то есть после сработки требует полного отключения нагрузки. В принципе, это схема защиты от тока перегрузки, но при переполюсовке именно это и случается. Кстати, при нагрузке не на аккумулятор, а на резистор у меня почему-то сразу защелкивалась на защиту. С акком – нормально. Расчет максимального тока – напряжение на шунте и канале исток-сток должно быть 0.6в для срабатывания биполярника.
>>Единственный недостаток (а может – фича!) – защелкивается, то есть после сработки требует полного отключения нагрузки.
достаточно кнопку сброса сделать с базы биполярника на землю
Лабораторный блок питания с защитой от КЗ
Здравствуйте, друзья! Лабораторный блок питания является прибором первой необходимости для начинающего радиолюбителя и по этому я хочу представить вашему вниманию свою новую самоделку. Очень простой и надежный лабораторный блок питания с регулятором напряжения от 1,5 до 30 вольт, максимальной силой тока 5А и защитой от короткого замыкания с звуковой сигнализацией. Источником питания для приведенной ниже схемы может служить любой трансформатор или импульсный блок питания, например от ноутбука с выходным напряжением от 16 до 40 вольт и максимальной силой тока до 5А.
Схема лабораторного блока питания 1,5-30В 5А с защитой от КЗ
Как работает блок питания?
Напряжение от источника питания проходя через диодный мост Br1 выпрямляется и поступает на регулятор напряжения состоящий из транзистора Т1, резистора R1 и переменного резистора Р1.
На выходе из регулятора получается 12 вольт. Этим напряжением постоянно питается вентилятор, реле К1 и вольт амперметр V/A1.
В режиме ожидания от диодного моста Br1 через постоянно замкнутые контакты реле К1 подается напряжение на звуковой сигнализатор короткого замыкания в результате чего в бипере SP1 раздается постоянный звуковой сигнал, что свидетельствует о исправной системе защиты от короткого замыкания.
При кратковременном нажатии кнопки START S1 подается напряжение через резистор R2 на базу транзистора Т2 в результате, чего транзистор Т2 открывается и подает питание на обмотку реле К1, контакты реле К1 переключаются и происходит самоблокировка реле К1. В момент срабатывания реле К1 отключается звуковой сигнализатор короткого замыкания, а в место него подключается регулятор напряжения на микросхеме LM338T. Далее напряжение через шунтирующий диод D2 поступает на выход блока питания. Регуляция напряжения на выходе из блока питания выполняется переменным резистором Р2. Контроль напряжения и силы тока осуществляется вольт амперметром V/A1.
В случае короткого замыкания происходит падение напряжения на базе транзистора Т2, транзистор закрывается в следствии чего, контакты реле переключаются. Нагрузка отключается, а на звуковой сигнализатор короткого замыкания подается питание и раздается звуковой сигнал. После устранения короткого замыкания следует кратковременно нажать кнопку START S1 и блок питания снова перейдет в рабочий режим. И так может продолжаться до бесконечности.
Список радиодеталей для сборки лабораторного блока питания:
- Источник питания любой подходящий трансформатор или импульсный блок питания от 16 до 40 вольт
- Транзисторы Т1, Т2 TIP41C, КТ819Г и их аналоги
- Микросхема LM338T на 5А или LM350T на 3А, LM317T на 1,5А все зависит от мощности источника питания
- Микросхема NE555
- Диодный мост Br1 любой не менее 6А можно заменить диодами.
- Диоды любые D1 0,5А, D2 от 1,5А до 10А зависит от нагрузки возможно параллельное соединение диодов
- Конденсаторы С1, С2, С4 100нф, С3 470мкф 35в, С5 1000мкф 50в
- Резисторы R1, R4 1k, R2 5,1k, R3 270, R5 10k, R6 330, R7 150, R8 200
- Переменные резисторы Р1 10К, Р2 5К
- Реле SRD12VDC-SL-C 12В 10А
- Кнопка START S1 без фиксации на замыкание
- Вентилятор М1 от компьютера
- Бипер SP1 от компьютера или маленький динамик
- Вольт амперметр китайский универсальный с Alliexpress
Внимание: При сборке лабораторного блока питания не изменяйте номиналы конденсаторов С1, С4, С5 иначе не будет срабатывать система защиты от короткого замыкания.
Цоколевка применяемых транзисторов
Возможно вам это пригодиться…
Все детали следует разместить на печатной плате изготовленной по лазерно-утюжной технологии.
Печатная плата лабораторного блока питания 1,5-30В 5А с защитой от КЗ
Как настроить блок питания?
Схема лабораторного блока очень простая, но все равно требуется небольшая настройка. Поставьте переменный резистор Р1 в среднее положение. Включите блок питания в сеть, подключите мультиметр параллельно вентилятору, резистором Р1 установите напряжение 12 вольт. Резистором R3 регулируется напряжение питания звукового сигнализатора короткого замыкания, смотрите по схеме напряжение на входе сигнализатора должно быть 12 вольт.
Тональность сигнализатора изменяется резистором R4 и конденсатором С2. Громкость регулируется подбором резистора R6. Порог срабатывания системы защиты от короткого замыкания подбирается резистором R2. Напряжение на выходе из блока питания изменяется переменным резистором Р2 его ручка выведена на лицевую панель блока питания.
В процессе работы транзистор Т1, микросхема LM338T и диодный мост будут сильно нагреваться, поэтому их следует установить на радиатор, перед установкой обязательно изолировать от радиатора. Как это сделать читайте здесь: Как изолировать транзисторы от радиатора?
Для контроля напряжения и силы тока лучше всего установить вот такой универсальный вольт амперметр.
Кстати, его надо откалибровать. С обратной стороны прибора находится два маленьких переменных резистора один отвечает за вольтаж, второй за ампераж. Делаем так, подключаем параллельно к выходу блока питания мультиметр, включаем в режим вольтметра и сравниваем показания приборов, если показания не соответствуют крутим переменный резистор в разные стороны, чтобы добиться наиболее точных показаний прибора. Чтобы откалибровать амперметр переключите мультиметр в режим амперметра. К блоку питания подключите лампочку последовательно с мультиметром и сверьте показания приборов.
Все компоненты лабораторного блока питания легко помещаются в корпусе от компьютерного блока питания.
Так выглядит готовое устройство. Для чего я установил два выключателя и кнопку на крыше блока питания? Красный выключатель сеть, он отключает трансформатор от сети 220В. Синяя кнопка START предназначена для перевода блока питания в рабочий режим.
Черный выключатель линия, чтобы отключать потребители от блока питания без откручивания проводов от разъемов. Справа два разъема типа «Banana» для подключения потребителей. На передней панели находится переменный резистор Р2 для регулировки выходного напряжения. И очень важная деталь это универсальный вольт амперметр.
В своем лабораторном блоке питания я установил трансформатор на 1,5 ампера. Его мощности вполне хватает, чтобы зарядить небольшой 12 вольтовый аккумулятор от бесперебойника емкостью 7А, его я установил на аккумуляторный шуруповерт. Если вы хотите собрать мощное зарядное устройство для автомобильного аккумулятора своими руками, тогда надо увеличить мощность лабораторного блока питания до 10 ампер.
Как увеличить мощность лабораторного блока питания до 10 ампер?
Чтобы увеличить мощность лабораторного блока питания достаточно параллельно микросхеме LM388T подключить мощный 12 амперный транзистор MJE13009.
И соответственно заменить источник питания на более мощный трансформатор или импульсный блок питания. Схема будет выглядеть так.
Схема лабораторного блока питания 1,5-30В 10А с защитой от КЗ
Печатная плата будет выглядеть так.
Печатная плата лабораторного блока питания 1,5-30В 10А с защитой от КЗ
А для любителей чего либо измерять, я решил снять пару осциллограмм в разных режимах работы блока питания.
На этой осциллограмме напряжение на выходе из блока питания снижено до 12 вольт.
Осциллограмма трансформаторного лабораторного блока питания. Напряжение на выходе 12 вольт.
А здесь максимальное напряжение на выходе из блока питания 25 вольт.
Осциллограмма трансформаторного лабораторного блока питания. Напряжение на выходе 25 вольт.
P. S. Все схемы и печатные платы в этой статье я разработал самостоятельно. И прежде чем написать я убедился в 100% работоспособности лабораторного блока питания во всех режимах.
Если у вас, что то не получилось, проверьте все ли вы сделали правильно…
Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!
Рекомендую посмотреть видеоролик о том, как работает лабораторный блок питания.
Токовая защита блока питания схема
Надёжная токовая защита для БП и ЗУ на IR2153 и электронном трансформаторе.
Автор: Blaze, cornage@bk.ru
Опубликовано 09.02.2016
Создано при помощи КотоРед.
На создание данной статьи меня спровоцировал опыт создания блоков питания и зарядных устройств на основе простых импульсных блоков питания, которыми являются как иип на IR2153, так и переделанный различными способами под блок питания электронный трансформатор. Данные источники питания являются простыми, нестабилизированными импульсными блоками питания без каких-либо защит.
Не смотря на данные недостатки, такие источники питания довольно просты в изготовлении,не требуют сложной настройки, времени на создание такого блока питания требуется меньше чем на полный ШИМ БП с узлами стабилизации и защиты.
Обьединив такой блок питания и простейший ШИМ- регулятор на NE555, получам регулируемый блок питания как для экспирементов, так и для зарядки АКБ. Радости нашей нет предела до того момента, пока данный девайс не попробовать на искру, или по ошибке, размышляя над созданием очередного аппарата перепутать полярность заряжаемого АКБ. Окрикивая громким хлопком и орошая едким дымом помещение,в котором произошол данный конфуз, изобретение сообщает нам, что простой импульсный блок питания, который собран по упрощённо-ознакомительной схеме не может быть надёжным.
Тут пришла мысль о том, чтобы найти не просто ввести тот или инной узел защиты в конкретный экземпляр блока питания, а найти или создать универсальную быстродействующую схему, которую можно внедрять в любой вторичный источник питания.
Требования к узлу защиты:
-плата защиты должна занимать мало места
-работоспособной при больших токах нагрузки
-высокая скорость срабатывания
Одним из заинтересовавших вариантов была такая схема, найденная в интерете:
При замыкании выхода данной схемы, разряжается ёмкость затвора VT1 через диод VD1, что приводит к закрытию VT1 и ток через транзистор не протекает, блок питания остаётся целым и невредимым. Но что же произойдёт если на выход данной схемы подключить нагрузку, в 300вт, когда наш иип может выдать всего 200вт? Не смотря на то что у нас присутствует схема защиты, замученный блок питания снова взрывается.
Недостатки данной схемы:
1. Необходимо точно подбирать сопротивление шунта, чтобы максимально допустимый ток блока питания создал такое падение напряжения на выбранном шунте, при котором VT2, открываясь полностью закроет VT1.
2. В данной схеме может наступить момент, когда ток проходящий через шунт, приоткроет VT2, вследствии чего VT1 начнёт закрываться и останется в таком состоянии, что будет недозакрыт, а учитывая что через VT1 протекает немалый ток, то данный линейный режим вызовет его сильный перегрев, врезультате которого VT1 будет пробит.
В блоке питания на IR2153 однажды применял триггерную защиту, остался доволен её работой. Прицепим к схеме триггерной защёлки на комплиментарной паре транзисторов шунт в качестве датчика тока и n-канальный транзистор в роли ключевого элемента получаем такую схему:
После подачи питания на схему, транзистор Q3, через светодиод и R4 открывается, стабилитрон D3 ограничивает напряжение на затворе полевого транзистора. D4 защищает Q3 от выбросов высокого напряжения, при подключении индуктивной нагрузки (электродвигатель). На паре транзисторов Q1, Q2 собран аналог тиристора. Ток, протекающий через шунт R1, вызывает падение напряжения, которое с движка переменного резистора R10, и цепочку R2, С2, поступает на базу транзистора Q2. Величину напряжения с шунта, которое пропорционально току, протекающему через этот шунт можно регулировать прерменным резистором R10. В момент, когда напряжение на базе Q2 станет больше 0.5-0.7в транзистор Q2 начнёт открываться, тем самым открывая Q1, в свою очередь транзистор Q1открываясь, будет открывать Q2.
Данный процесс происходит очень быстро, за доли секунды транзисторы откроют друг друга и останутся в таком устойчивом состоянии. Через открытый аналог тиристора затвро Q3, а также резистор R4 окажутся подключены к общему проводнику схемы, что приведёт к закрытию Q3 и свечение светодиода D1 сообщит о том что сработала защита. Снять защиту можно как отключив кратковременно питание, так и кратковременным нажатием на кнопку S1.
Универсальная схема защиты была создана и проверена в работе, шунт R1 был составлен из двух резисторов 0.22 Ом 5Вт. Остался последний шаг – вводим в нвшу схему защиту от переполюсовки клемм АКБ.
Схема с защитой от переполюсовки :
Наша схема дополнилась диодом D2, резисторами R6, R5. Кнопка S1 была убрана из схемы по причине того, что при срабатывании защиты она не выводила схему из защиты, после доработки.
Токовая защита осталась без изменений, снять защиту можно отключив питание на 2-3 секунды. При подключении к выходу схемы АКБ, перепутав полярность, напряжение с АКБ через диод D2, резистор R6 поступает на базу Q2, срабатывает защита Q3 закрывается, светодиод D1 сигнализирует о срабатывании защиты.
На этой волне я заканчиваю поиски защиты для своих простых иип. Работой своих схем доволен, надеюсь они пригодятся и вам.
Блок питания 1…20 В с защитой по току
При наладке различных электронных устройств необходим блок питания (БП), в котором имеется регулировка выходного напряжения и возможность регулирования уровня срабатывания защиты от превышения по току в широких пределах. При срабатывании защиты, нагрузка (подключенное устройство) должна автоматически отключаться.
Поиск в интернете дал несколько подходящих схем блоков питания. Остановился на одной из них. Схема проста в изготовлении и наладке, состоит из доступных деталей, выполняет заявленные требования.
Предлагаемый к изготовлению блок питания выполнен на базе операционного усилителя LM358 и имеет следующие характеристики:
Входное напряжение, В – 24. 29
Выходное стабилизированное напряжение, В – 1. 20 (27)
Ток срабатывания защиты, А – 0,03. 2,0
Фото 2. Схема БП
Описание работы БП
Регулируемый стабилизатор напряжения собран на операционном усилителе DA1.
1. На вход усилителя (вывод 3) поступает образцовое напряжение с движка переменного резистора R2, за стабильность которого отвечает стабилитрон VD1, а на инвертирующий вход (вывод 2) напряжение поступает с эмиттера транзистора VT1 через делитель напряжения R10R7. С помощью переменного резистора R2, можно изменять выходное напряжение БП.
Блок защиты от перегрузок по току выполнен на операционном усилителе DA1.2, он сравнивает напряжения на входах ОУ. На вход 5 через резистор R14 поступает напряжение с датчика тока нагрузки – резистора R13. На инвертирующий вход (вывод 6) поступает образцовое напряжение, за стабильность которого отвечает диод VD2 с напряжением стабилизации около 0,6 в.
Пока падение напряжения, создаваемое током нагрузки на резисторе R13, меньше образцового, напряжение на выходе (вывод 7) ОУ DA1.2 близко к нулю. В том случае, если ток нагрузки превысит допустимый установленный уровень, увеличится напряжение на датчике тока и напряжение на выходе ОУ DA1.2 возрастет практически до напряжения питания.
При этом включится светодиод HL1, сигнализируя о превышении, откроется транзистор VT2, шунтируя стабилитрон VD1 резистором R12. Вследствие чего, транзистор VT1 закроется, выходное напряжение БП уменьшится практически до нуля и нагрузка отключится. Для включения нагрузки нужно нажать на кнопку SА1. Регулировка уровня защиты выполняется с помощью переменного резистора R5.
1. Основу блока питания, его выходные характеристики определяет источник тока – применяемый трансформатор. В моем случае нашел применение тороидальный трансформатор от стиральной машины. Трансформатор имеет две выходные обмотки на 8в и 15в. Соединив обе обмотки последовательно и добавив выпрямительный мост на имеющихся под рукой диодах средней мощности КД202М, получил источник постоянного напряжения 23в, 2а для БП.
Фото 3. Трансформатор и выпрямительный мост.
2. Другой определяющей частью БП является корпус прибора. В данном случае нашел применение детский диапроектор мешающийся в гараже. Удалив лишнее и обработав в передней части отверстия для установки показывающего микроамперметра, получилась заготовка корпуса БП.
Фото 4. Заготовка корпуса БП
3. Монтаж электронной схемы выполнен на универсальной монтажной плате размером 45 х 65 мм. Компоновка деталей на плате зависит от размеров, найденных в хозяйстве компонентов. Вместо резисторов R6 (настройка тока срабатывания) и R10 (ограничение максимального напряжения на выходе) на плате установлены подстроечные резисторы с увеличенным в 1,5 раза номиналом. По окончании настройки БП их можно заменить на постоянные.
Фото 5. Монтажная плата
4. Сборка платы и выносных элементов электронной схемы в полном объеме для испытания, настройки и регулировки выходных параметров.
Фото 6. Узел управления БП
5. Изготовление и подгонка шунта и дополнительного сопротивления для использования микроамперметра в качестве амперметра или вольтметра БП. Дополнительное сопротивление состоит из последовательно соединенных постоянного и подстроечного резисторов (на фото сверху). Шунт (на фото ниже) включается в основную цепь тока и состоит из провода с малым сопротивлением. Сечение провода определяется максимальным выходным током. При измерении силы тока, прибор подключается параллельно шунту.
Фото 7. Микроамперметр, шунт и дополнительное сопротивление
Подгонка длины шунта и величины дополнительного сопротивления производится при соответствующем подключении к прибору с контролем на соответствие по мультиметру. Переключение прибора в режим Амперметр/Вольтметр выполняется тумблером в соответствии со схемой:
Фото 8. Схема переключения режима контроля
6. Разметка и обработка лицевой панели БП, монтаж выносных деталей. В данном варианте на лицевую панель вынесен микроамперметр (тумблер переключения режима контроля A/V справа от прибора), выходные клеммы, регуляторы напряжения и тока, индикаторы режима работы. Для уменьшения потерь и в связи с частым использованием, дополнительно выведен отдельный стабилизированный выход 5 в. Для чего напряжение, от обмотки трансформатора на 8в, подается на второй выпрямительный мост и типовую схему на 7805 имеющую встроенную защиту.
Фото 9. Лицевая панель
7. Сборка БП. Все элементы БП устанавливаются в корпус. В данном варианте, радиатором управляющего транзистора VT1 служит алюминиевая пластина толщиной 5 мм, закрепленная в верхней части крышки корпуса, служащего дополнительным радиатором. Транзистор закреплен на радиаторе через электроизолирующую прокладку.
Фото 10. Сборка БП без крышки
Фото 11. Общий вид БП.
Операционный усилитель LM358N имеет в своем составе два ОУ.
Транзистор VT1 можно заменить на любой из серий КТ827, КТ829. Транзистор VT2 любой из серии КТ315. Стабилитрон VD1 можно использовать любой, с напряжением стабилизации 6,8…8,0в и током 3…8 мА. Диоды VD2-VD4 из серии КД521 или КД522Б. Конденсаторы С3, C4 – пленочные или керамические. Оксидные конденсаторы: C1 – К50-18 или аналогичный импортный, остальные — из серии К50-35. Постоянные резисторы серии МЛТ, переменные — СП3-9а.
Налаживание блока питания – движок переменного резистора R2 перемещают в верхнее по схеме положение и измеряют максимальное выходное напряжение, устанавливают его равным 20 В, подбирая резистор R10. После этого подключают к выходу нагрузку и производят замеры тока срабатывания защиты. Для уменьшения уровня срабатывания защиты, уменьшить сопротивление резистора R6. Для увеличения максимального уровня срабатывания защиты – уменьшить сопротивление резистора R13 — датчика тока нагрузки.
Устройства защиты стабилизаторов напряжения (5 схем, 24В, 0-27В)
Схемы устройств для защиты от перегрузки стабилизированного выпрямителя при коротком замыкании или по другой причине.
Перегрузка стабилизированного выпрямителя при коротком замыкании в нагрузке или по другой причине обычно приводит к выходу из строя регулирующего транзистора. Защитить стабилизатор от перегрузки можно с помощью защитного устройства.
Простое защитное устройство
Защитное устройство, входящее в стабилизатор блока питания, схема которого показана на рис. 1, обладает высоким быстродействием и хорошей «релейностью», т. е. малым влиянием на характеристики блока врабочем режиме и надежным закрыванием регулирующего транзистора V2 в режиме перегрузки. Защитное устройство состоит из тринистора V3, диодов V6, V7 и резисторов R2 и R3.
Рис. 1. Схема простого защитного устройства по линии питания +24В.
В рабочем режиме тринистор V3 закрыт и напряжение на базе транзистора V1 равно напряжению стабилизации цепочки стабилитронов V4, V5.
При перегрузке ток через резистор R2 и падение напряжения на нем достигают значений, достаточных для открывания тринистора V3 по цепи управляющего электрода. Открывшийся тринистор замыкает цепочку стабилитронов V4, V5, что приводит к закрыванию транзисторов V1 и V2.
Для того чтобы восстановить рабочий режим после устранения причины перегрузки, нужно нажать и отпустить кнопку S1. При этом тиристор закроется» а транзисторы V1 и V2 снова откроются. Резистор R3 и диоды V6, V7 защищают управляющий переход тринистора V3 от перегрузок по току и напряжению соответственно.
Стабилизатор обеспечивает коэффициент стабилизации около 30, защита срабатывает при токе, превышающем 2 А.
Транзистор V2 можно заменить на КТ802А, КТ805Б, а V1 — П307, П309, КТ601, КТ602 с любым буквенным индексом. Тринистор V3 может быть любым из серии КУ201, кроме КУ201А и КУ201Б.
Стабилизатор с защитой для блока питания
Стабилизатор блока питания, схема которого изображена на рис. 2 может быть защищен от перегрузок и коротких замыканий нагрузки добавлением всего двух элементов — тиристора V3 и резистора R5.
Рис. 2. Принципиальная схема стабилизатора для блока питания с защитой (0-27В).
Защитное устройство срабатывает, когда ток нагрузки превысит пороговое значение, определяемое сопротивлением резистора R5. В этот момент падение напряжения на резисторе R5 достигает напряжения открывания тиристора V3 (около 1 В), он открывается, и напряжение на базе транзистора V2 уменьшается почти до нуля. Поэтому транзистор V2, а затем и V4 закрывают, отключая цепь нагрузки.
Для возвращения стабилизатора в исходный режим нужно кратковременно нажать на кнопку S1. Резистор R3 служит для ограничения тока базы транзистора V4.
Резистор R5 наматывают медным проводом. Выходное сопротивление стабилизатора можно уменьшить, если R5 включить так, как показано на схеме штриховой линией. Если при включении стабилизатора будут наблюдаться ложные срабатывания, конденсатор С2 следует исключить из устройства.
Максимальный ток нагрузки — 2 А. Вместо транзистора П701А можно использовать КТ801А, КТ801Б. Транзистор V2 можно заменить на КТ803А, КТ805А, КТ805Б, П702, П702А.
Стабилизатор с установкой порогового тока для защиты
Защитное устройство, изображенное на рис. 3, собрано на транзисторах V1 и V2 (в его состав входят также резисторы R1—R4, стабилитрон V3, переключатель S1 и лампа накаливания h2).
Требуемое значение тока срабатывания устанавливают переключателем S1. В рабочем режиме за счет базового тока, протекающего через резистор R1 (R2 или R3), транзистор V1 открыт и падение напряжения на нем невелико.
Рис. 3. Принципиальная схема стабилизатора с установкой порогового тока для защиты.
Поэтому ток в базовой цепи транзистора V2 очень мал, стабилитрон V3, включенный в прямом направлении, и транзистор V2 закрыты.
С увеличением тока нагрузки стабилизатора падение напряжения на транзисторе V1 увеличивается. В некоторый момент стабилитрон V3 открывается, вслед за ним открывается транзистор V2, что приводит к закрыванию транзистора V1. Теперь на этом транзисторе падает почти все входное напряжение, и ток через нагрузку резко уменьшается до нескольких десятков миллиампер.
Лампа Н1 загорается, указывая на срабатывание предохранителя. В исходный режим его возвращают, кратковременно отключая от сети. Коэффициент стабилизации — около 20.
Транзисторы V1 и V7 установлены на теплоотводах с эффективной площадью теплового рассеяния около 250 см2 каждый. Стабилитроны V4 и V5 укреплены на медной теплоотводящей пластине размерами 150 X 40 X 4 мм. Налаживание электронного предохранителя сводится к подбору резисторов R1—R3 по требуемому току срабатывания.
Лампа h2 типа КМ60-75.
Электронно-механическое устройство защиты от перенагрузки
Электронно-механическое устройство защиты, схема которого изображена на рис. 4, срабатывает в два этапа — сначала выключает питание электронного устройства, затем полностью блокирует нагрузку контактами К1.1 электромеханического реле К1. Оно состоит из транзистора V3, нагруженного двухобмоточным электромагнитным реле К1, стабилитрона V2, диодов V1, V4 и резисторов R1 и R2.
Рис. 4. Электронно-механическое устройство защиты, принципиальная схема.
Каскад на транзисторе V3 сравнивает напряжение на резисторе R2, пропорциональное току нагрузки стабилизатора, с напряжением на стабилитроне V2, включенном в прямом направлении.
При перегрузке стабилизатора напряжение на резисторе R2 становится больше напряжения на стабилитроне, и транзистор V3 открывается. Благодаря действию положительной обратной связи между цепями коллектора и базы этого транзистора в системе транзистор V3 — реле К1 развивается блокинг-процесс.
Длительность импульса — около 30 мс (в случае применения реле РМУ, паспорт РС4.533.360СП). Во время импульса напряжение на коллекторе транзистора V3 резко уменьшается.
Это напряжение через диод V4 передается на базу регулирующего транзистора V5 (напряжение на базе транзистора становится положительным относительно эмиттера), транзистор закрывается, и ток через цепь нагрузки резко уменьшается.
Одновременно с открыванием транзистора V3 начинает увеличиваться ток через коллекторную обмотку реле К1, и через 10 мс оно срабатывает, самоблокируется и отключает цепь нагрузки контактами К1.1. Для восстановления рабочего режима на короткое время отключают напряжение сети. Защита срабатывает при токе 0,4 А, коэффициент стабилизации равен 50.
Защита от перенагрузки по току с использованием динисторного оптрона
В защитном устройстве, схема которого изображена на рис. 5, используют динисторный оптрон V6, что повышает быстродействие защиты. При токе нагрузки, меньшем порогового, электронный ключ на транзисторах V1—V3 открыт, индикаторная лампа h2 горит, а оптрон выключен (светодиод не горит, фототиристор закрыт).
Рис. 5. Схема защиты от перенагрузки по току с использованием динисторного оптрона.
Как только ток нагрузки достигнет порогового значения, падение напряжения на резисторах R5, R6 возрастает настолько, что включится оптрон, через фототиристор которого на базу транзистора V1 поступит положительное напряжение, и электронный ключ закроется. В рабочее состояние устройство возвращают кратковременным нажатием на кнопку S1.
Напряжение на нагрузке возрастает медленно, со скоростью зарядки конденсатора C1. Это устраняет броски тока, вызывающие либо ложное срабатывание защиты» либо выход из строя деталей нагрузки при включении питания.
Порог срабатывания устанавливают резистором R5. Для транзисторов V2, V3 требуется теплоотвод площадью 100. 200 см2. Максимальный ток нагрузки 5 А, минимальный ток срабатывания 0,4 А.
Источник: Борноволоков Э. П., Фролов В. В. – Радиолюбительские схемы.
Защита в блоках питания ATX для компьютеров
Опубликовано 12.11.2018 автор Андрей Андреев — 0 комментариев
Приветствую вас, друзья! При работе любого электронного устройства могут возникнуть «завихрения», которые при отсутствии страховки, способны вывести его из строя, а в случае с БП в ПК – еще и несколько компонентов в придачу. Тема сегодняшней публикации – защита в блоках питания, с описанием всех необходимых опций. И так начнем.
Power Good
Из-за специфики конструкции устройства, при включении, напряжение на выходе достигает необходимой величины не мгновенно, а по истечении 0,02 секунд.
Для того, чтобы исключить подачу пониженного напряжения к потребителям энергии, что может негативно сказаться на их работе, и обеспечить необходимые номиналы в 3,3, 5 и 12 Вольт, в блоках ATX выделена специальная линия, которая подает сигнал о нормальной работе БП.
Маркируется такой кабель серым цветом и, как и остальные, подключается к материнской плате. При отсутствии сигнала на линии, компьютер попросту не включится.
Защита от перепадов напряжения
От перенапряжения и его недостатка, компьютер защищает одна и та же схема, отключающая девайс, если напряжение на любой из линий не соответствует номинальному. Обозначается функция английской аббревиатурой UVP / OVP.
Некоторое неудобство в том, что контрольные точки, при достижении которых срабатывает защита, могут находиться на некотором удалении от номинального напряжения, но при этом устройство будет соответствовать спецификации ATX.
Например, допускается подача напряжения до 15 Вольт, однако при длительной работе в таком режиме, комплектующие могут попросту перегореть.
Защита от перегрузки по току
Как мы помним, сила тока – еще одна, не менее важная его характеристика. Согласно международным стандартам оргтехники, один проводник не может передавать более 240 Вольт-Ампер, то есть 240 Ватт, в случае с постоянным током.
Максимально нагруженная цепь с напряжением 12 Вольт передаст не более 20 Ампер. При таком раскладе создать БП мощностью более 300 Ватт, не получится.
Для обхода этого ограничения, выводы 12 Вольт разбиваются на несколько групп с отдельной защитой по току (OCP) для каждой. При этом некоторые производители откровенно халтурят, используя только одну защитную схему, к которой подключаются все выводы, а срабатывает защита уже при 40 Амперах.
Определить «на глаз», какой именно подход использован, возможно только при разборке устройства и проверке его электрических цепей. Поэтому советую покупать комплектующие только тех брендов, в качестве продукции которых, вы уверены.
Защита от короткого замыкания
От КЗ блок питания защищает простая схема SCP, которая используется уже пару десятков лет. Для активации, достаточно пары транзисторов, при этом вовсе необязательно задействовать систему мониторинга рабочих параметров устройства.
Защита от перегрева
OTP выключает девайс, когда его температура достигает заданного значения. Схема присутствует только в качественных устройствах и базируется на паре термисторов, прикрепленных к радиатору или печатной плате.
Более сложный вариант – когда при превышении температуры, термистор заставляет быстрее вращаться кулер, регулируя рабочие параметры.
Защита по питанию
OPP или OPL – опциональный вид защиты, реализованный, с помощью специального контроллера или мониторинговой микросхемы. Схема контролирует количество тока, потребляемого из сети, и отключает БП при превышении определенного порога.
Найти любые по мощности и прочим характеристикам блоки питания для компьютера, а также все остальные комплектующие, вы можете в этом интернет-магазине.
Также советую ознакомиться с публикациями «Что значит PFC в блоке питания» и «Сертификаты БП для ПК». Рейтинг лучших устройств вы найдете здесь.
Спасибо за внимание и до следующих встреч на страницах моего блога! Подпишитесь на новостную рассылку, чтобы быть в курсе последних обновлений.
С уважением, автор блога Андрей Андреев
РЕГУЛИРУЕМЫЙ БЛОК ПИТАНИЯ С ЗАЩИТОЙ
У каждого радиолюбителя, регулярно занимающегося конструированием электронных устройств, думаю, имеется дома регулируемый блок питания. Штука действительно удобная и полезная, без которого, испробовав его в действии, обходиться становится трудно. Действительно, нужно ли нам проверить, например светодиод, то потребуется точно выставлять его рабочее напряжение, так как при значительном превышении подаваемого напряжения на светодиод, последний может просто сгореть. Также и с цифровыми схемами, выставляем выходное напряжение по мультиметру 5 вольт, или любое другое нужное нам и вперед.
Многие начинающие радиолюбители, сначала собирают простой регулируемый блок питания, без регулировки выходного тока и защиты от короткого замыкания. Так было и со мной, лет 5 назад собрал простой БП с регулировкой только выходного напряжения от 0,6 до 11 вольт. Его схема приведена на рисунке ниже:
Но несколько месяцев назад решил провести апгрейд этого блока питания и дополнить его схему небольшой схемкой защиты от короткого замыкания. Эту схему нашел в одном из номеров журнала Радио. При более детальном изучении выяснилось, что схема во многом напоминает приведенную выше принципиальную схему, собранного мной ранее блока питания. При коротком замыкании в питаемой схеме светодиод индикации КЗ гаснет, сигнализируя об этом, и выходной ток становится равен 30 миллиампер. Было решено, взяв часть этой схемы дополнить свою, что и сделал. Оригинал, схему из журнала Радио, в которую входит дополнение, привожу на рисунке ниже:
На следующем рисунке показывается часть этой схемы, которую нужно будет собрать.
Номинал некоторых деталей, в частности резисторов R1 и R2, нужно пересчитать в сторону увеличения. Если у кого-то остались вопросы, куда подсоединять выходящие провода с этой схемы, приведу следующий рисунок:
Еще дополню, что в собираемой схеме, вне зависимости, будет это первая схема, или схема из журнала Радио необходимо поставить на выходе, между плюсом и минусом резистор 1 кОм. На схеме из журнала Радио это резистор R6. Дальше осталось протравить плату и собрать все вместе в корпусе блока питания. Зеркалить платы в программе Sprint Layout не нужно. Рисунок печатной платы защиты от короткого замыкания:
Примерно месяц назад мне попалась на глаза схема приставки регулятора выходного тока, которую можно было использовать совместно с этим блоком питания. Схему взял с этого сайта. Тогда собрал эту приставку в отдельном корпусе и решил подключать её по мере необходимости для зарядки аккумуляторов и тому подобных действий, где важен контроль выходного тока. Привожу схему приставки, транзистор кт3107 в ней заменил на кт361.
Но впоследствии пришла в голову мысль соединить, для удобства, все это в одном корпусе. Открыл корпус блока питания и посмотрел, места осталось маловато, переменный резистор не поместится. В схеме регулятора тока используется мощный переменный резистор, имеющий довольно большие габариты. Вот как он выглядит:
Тогда решил просто соединить оба корпуса на винты, сделав соединение между платами проводами. Также поставил тумблер на два положения: выход с регулируемым током и нерегулируемым. В первом случае, выход с основной платы блока питания соединялся с входом регулятора тока, а выход регулятора тока шел на зажимы на корпусе блока питания, а во втором случае, зажимы соединялись напрямую с выходом с основной платы блока питания. Коммутировалось все это шести контактным тумблером на 2 положения. Привожу рисунок печатной платы регулятора тока:
На рисунке печатной платы, R3.1 и R3.3 обозначены выводы переменного резистора первый и третий, считая слева. Если кто-то захочет повторить, привожу схему подключения тумблера для коммутации:
Печатные платы блока питания, схемы защиты и схемы регулировки тока прикрепил в архиве. Материал подготовил AKV.
Originally posted 2018-11-23 07:09:50. Republished by Blog Post Promoter
УСТРОЙСТВО ЗАЩИТЫ ДЛЯ ЛЮБОГО БЛОКА ПИТАНИЯ
Это небольшой блок универсальной защиты от короткого замыкания, что предназначен для использования в сетевых источниках питания. Она специально разработана так, чтобы вписаться в большинство блоков питания без переделки их схемы. Схема, несмотря на наличие микросхемы, очень проста для понимания. Сохраните её на компьютер, чтоб увидеть в лучшем размере.
Схема блока защиты БП
Чтобы спаять схему вам понадобится:
- 1 — TL082 сдвоенный ОУ
- 2 — 1n4148 диод
- 1 — tip122 транзистор NPN
- 1 — BC558 PNP транзистор BC557, BC556
- 1 — резистор 2700 ом
- 1 — резистор 1000 ом
- 1 — резистор 10 ком
- 1 — резистор 22 ком
- 1 — потенциометр 10 ком
- 1 — конденсатор 470 мкф
- 1 — конденсатор 1 мкф
- 1 — нормально закрытый выключатель
- 1 — реле модели Т74 «G5LA-14»
Подключение схемы к БП
Здесь резистор с низким значением сопротивления соединен последовательно с выходом источника питания. Как только ток начинает течь через него, появится небольшое падение напряжения и мы будем использовать это падение напряжения, чтобы определить, является ли питание результатом перегрузки или короткого замыкания. В основе этой схемы операционный усилитель (ОУ) включенный в качестве компаратора.
- Если напряжение на неинвертирующем выходе выше, чем на инвертирующем, то на выходе устанавливается «высокий» уровень.
- Если напряжение на неинвертирующем выход ниже, чем на инвертирующем, то на выходе устанавливается «низкий» уровень.
Правда это не имеет ничего общего с логическим 5 вольтовым уровнем обычных микросхем. Когда ОУ находится в «высоком уровне», его выход будет очень близким к положительному потенциалу напряжения питания, поэтому, если питание +12 В, «высокий уровень» будет приближаться к +12 В. Когда ОУ находится в «низком уровне», его выход будет почти на минусе напряжения питания, поэтому, близко к 0 В.
При использовании ОУ в качестве компараторов, мы обычно имеем входной сигнал и опорное напряжение для сравнения этого входного сигнала. Итак, у нас есть резистор с переменным напряжением, которое определяется в соответствии с током, который течет через него и опорным напряжением. Этот резистор является наиболее важной частью схемы. Он подключен последовательно с питанием выходного. Вам необходимо выбрать резистор, падение напряжения на котором составляет примерно 0.5~0.7 вольт при перегрузке тока, проходящего через него. Ток перегрузки появляется в тот момент, когда схема защиты срабатывает и закрывает выход питания для предотвращения повреждений на нем.
Вы можете выбрать резистор, используя закон Ома. Первое, что нужно определить, является перегрузка током блока питания. Для этого надо знать максимальный допустимый ток блока питания.
Допустим, ваш блок питания может выдать 3 ампера (при этом напряжение блока питания не имеет значения). Итак, мы получили Р= 0,6 В / 3 А. Р = 0.2 Ом. Следующее, что вы должны сделать, это рассчитать рассеиваемую мощность на этом резисторе по формуле: Р=V*I. Если мы используем наш последний пример, то получим: Р=0.6 В * 3 А. Р = 1,8 Вт — 3 или 5 Вт резистора будет более чем достаточно.
Чтобы заставить работать схему, вы должны будете подать на неё напряжение, которое может быть от 9 до 15 В. Для калибровки подайте напряжение на инвертирующий вход ОУ и поверните потенциометр. Это напряжение будет увеличиваться или уменьшаться в зависимости от стороны, куда вы поворачиваете его. Значение необходимо скорректировать согласно коэффициента усиления входного каскада 0.6 Вольт (что-то около 2.2 до 3 вольт если ваш усилительного каскада похож на мой). Эта процедура занимает некоторое время, и лучший способ для калибровки это метод научного тыка. Вам может потребоваться настроить более высокое напряжение на потенциометре, так чтоб защита не срабатывала на пиках нагрузки. Скачать файл проекта.
Поделитесь полезными схемами
ЭЛЕКТРОННЫЙ ЗАМОК ДЛЯ ВХОДНОЙ ДВЕРИ Электронные дверные замки для дома. Развитие высоких технологий уже прочно и надежно вошло в нашу жизнь, и захватила все ее сферы. Разработки в этой сфере проявляются в полную силу в окружающем мире, ведь в нашем мире практически невозможно встретить человека который бы не пользовался мобильными телефонами, компьютерами и другой оргтехникой.
СХЕМА ИНВЕРТОРА По сути инвертор — это преобразователь постоянного тока в переменный ток. Причем получить на выходе можно любой ток, с практически любыми необходимыми параметрами.
ПРОСТАЯ САМОДЕЛЬНАЯ РАЦИЯ Схема простой самодельной радиостанции состоит из ВЧ генератора и ЗЧ-усилителя. Обе части работают как на прием, так и на передачу. Приемник – сверх регенеративный детектор. Сигнал снимается с коллектора транзистора VT1. Передатчик представляет собой ЗЧ-усилитель, нагруженный ВЧ-генератором, с выходом сигнала на телескопическую антенну.
УСТРОЙСТВО ТРАНСФОРМАТОРА Схема включения, устройство и принцип действия стандартного сетевого трансформатора на входное напряжение 220 В.
ПАЯЛЬНЫЕ ПРИНАДЛЕЖНОСТИ ДЛЯ ПАЙКИ
Как показывает практика, паяльные компоненты времен нерушимого союза были самыми хорошими и со мной согласятся все радиолюбители. Радиолюбительский паяльник должен иметь оптимальную мощность 20-35 ватт.
Принцип и применение схемы защиты от сверхтока
Теплые советы: Слово в этой статье составляет около 2800, а время чтения — около 15 минут.
Сводка
Многие электронные устройства имеют номинальный ток. Как только устройство превысит номинальный ток, он сожжет устройство. Таким образом, эти устройства делают модуль защиты по току, когда ток превышает установленный ток, устройство автоматически отключается, чтобы защитить устройство, которое является защитой от перегрузки по току.Такие, как интерфейс USB на материнской плате компьютера, защита от перегрузки по току USB, как правило, должна защищать материнскую плату, не сгорает. В этой статье вы узнаете, что такое максимальная токовая защита, типы защиты от сверхтока; его принцип и применение.
Каталог
I Что такое защита от перегрузки по току
Защита от перегрузки по току (Over Current Protection) — это действие устройства защиты по току, когда ток превышает заранее установленный максимум.Когда ток, протекающий через защищаемый оригинал, превышает заданное значение, срабатывает защитное устройство, и время используется для обеспечения селективности действия, отключения автоматического выключателя или подачи сигнала тревоги.
Многие электронные устройства имеют номинальный ток. Как только устройство превысит номинальный ток, он сожжет устройство. Таким образом, эти устройства делают модуль защиты по току, когда ток превышает установленный ток, устройство автоматически отключается, чтобы защитить устройство, которое является защитой от перегрузки по току.Такие, как интерфейс USB на материнской плате компьютера, защита от перегрузки по току USB, как правило, должна защищать материнскую плату, не сгорает.
Цепь питания с функцией максимальной токовой защиты
Защита от перегрузки по току включает защиту от короткого замыкания и защиту от перегрузки. Защита от короткого замыкания характеризуется большим током уставки и мгновенным действием. Расцепители электромагнитного тока (или реле), предохранители часто используются в качестве компонентов защиты от короткого замыкания.Защита от перегрузки характеризуется меньшим током уставки, обратнозависимой выдержкой времени. Тепловые реле, реле электромагнитного тока с задержкой, обычно используемые в качестве компонентов защиты от перегрузки.
Предохранители также обычно используются в качестве компонентов защиты от перегрузки без значительного ударного тока.
В системе TN, при использовании предохранителей для защиты от короткого замыкания, номинальный ток расплава должен быть менее 1/4 фазного тока короткого замыкания. с защитой автоматического выключателя ток уставки расцепителя максимального тока мгновенного срабатывания или срабатывания с короткой задержкой должен быть меньше 2/3 тока однофазного короткого замыкания
более интуитивно изучите информацию о максимальной токовой защите:
Как защитить цепи от скачков максимального тока
II Как работает защита от сверхтока?
В случае межфазного короткого замыкания, ненормального увеличения нагрузки в электросети или снижения уровня изоляции, ток внезапно возрастет, а напряжение внезапно упадет.Защита от перегрузки по току предназначена для установки рабочего тока реле тока в соответствии с требованиями селективности линии. Когда ток короткого замыкания в линии достигает значения срабатывания реле тока, реле тока действует в соответствии с избирательными требованиями устройства защиты, выборочно отключая линию короткого замыкания и запуская реле времени через свои контакты. После заданной задержки реле времени касается точки замкнутой, катушки отключения автоматического выключателя включается, автоматический выключатель срабатывает, линия неисправности отключена, и одновременно срабатывает сигнальное реле, сигнальная панель падает, и включается световой или звуковой сигнал.
При возникновении непредвиденных условий, таких как короткое замыкание нагрузки, перегрузка или отказ цепи управления, через переключающий транзистор в регуляторе протекает чрезмерный ток, что увеличивает потребляемую мощность лампы и выделяет тепло. Если нет устройства защиты от сверхтока, мощный переключающий транзистор может быть поврежден. Поэтому в импульсных регуляторах обычно используется максимальная токовая защита. Самый экономичный и удобный способ — использовать предохранитель.Из-за небольшой теплоемкости транзисторов обычные предохранители, как правило, не могут обеспечить защиту. Обычно используются быстродействующие предохранители. Преимущество этого метода заключается в простоте защиты, но необходимо выбирать характеристики предохранителя в соответствии с требованиями безопасной рабочей зоны конкретного переключающего транзистора. Недостатком этой меры защиты от сверхтоков является неудобство частой замены предохранителей.
Схема максимальной токовой защиты инвертора
Токоограничивающая защита и защита от отключения по току, обычно используемые в линейных регуляторах, могут применяться в импульсных регуляторах.Однако в соответствии с характеристиками импульсного регулятора выход этой схемы защиты не может напрямую управлять переключающим транзистором, но выход максимальной токовой защиты должен быть преобразован в импульсную команду для управления модулятором для защиты переключающего транзистора. Чтобы обеспечить защиту от перегрузки по току, обычно необходимо использовать в цепи последовательно включенный резистор выборки, что повлияет на эффективность источника питания, поэтому он в основном используется в импульсных стабилизаторах малой мощности.В импульсных регулируемых источниках питания большой мощности, учитывая потребляемую мощность, следует по возможности избегать использования резистора выборки. Поэтому защиту от сверхтока обычно преобразуют в защиту от повышенного и пониженного напряжения.
Защитное устройство предусмотрено в начале рассматриваемой цепи (см. Следующий рисунок)
Действует для отключения тока за время короче, чем указано характеристикой I2t кабельной проводки цепи
Но позволяя максимальному току нагрузки IB течь бесконечно
Характеристики изолированных проводов при токах короткого замыкания в течение периодов до 5 секунд после возникновения короткого замыкания можно приблизительно определить по формуле:
I2t = k2 S2
, который показывает, что допустимое количество выделяемого тепла пропорционально квадрату площади поперечного сечения кондуктора.
где
t = Продолжительность тока короткого замыкания (секунды)
S = Площадь поперечного сечения изолированного проводника (мм2)
I = ток короткого замыкания (среднеквадратичное значение)
k = постоянная изолированного проводника (значения k приведены на рисунке 5)
Максимально допустимый ток для данного изолированного проводника зависит от окружающей среды. Например, для высокой температуры окружающей среды (θa1> θa2) Iz1 меньше Iz2 (см. Рис. 5). θ означает «температура».
Примечание:
ISC = трехфазный ток короткого замыкания
ISCB = номинальный 3-фазн. ток отключения выключателя при коротком замыкании
Ir (или Irth) [1] = регулируемый «номинальный» уровень тока; например автоматический выключатель с номинальным током 50 А может регулироваться таким образом, чтобы он имел защитный диапазон, то есть уровень обычного отключения при перегрузке по току, аналогичный уровню автоматического выключателя на 30 А.
III Типы максимальной токовой защиты
Комплексный тип: разнообразные защиты в линейке.
Ограниченный тип мощности: ограниченный выход общей мощности
Перемотанный тип: начальный ток постоянный, напряжение падает до определенного значения, ток начал уменьшаться.
Тип игры: перегрузка по току, текущее напряжение упало до 0, а затем начало снова и снова расти.
Постоянный ток: постоянный ток, падение напряжения
Сравнение нескольких методов защиты от сверхтоков
В таблице 1 перечислены несколько методов защиты от сверхтоков.
Режим цепи
Используемые компоненты
Сложность отладки
Степень защиты
Потребляемая мощность
Влияние на эффективность
Резистор первичной цепи ограничения тока
несколько
легкий
Плохо
большой
больше
Цепь ограничения тока основного привода
меньше
проще
хуже
крупнее
большой
Нет цепи ограничения тока питания
подробнее
проще
лучше
меньше
меньше
555 таймер цепи ограничения тока
много
легкий
хорошо
малая
малая
IV Примеры применения схемы защиты от перегрузки по току
Защита от перегрузки по току — это когда ток короткого замыкания в цепи достигает значения срабатывания реле тока, ток реле тока устанавливается в соответствии с требованиями селективности линии.Термисторы PTC для максимальной токовой защиты уменьшают остаточный ток, ограничивая потребление всей линии путем внезапного изменения их сопротивления. Они могут заменить традиционный предохранитель, широко используемый в двигателях, трансформаторах, импульсных источниках питания, электронных схемах, тепловой защите от сверхтоков, традиционный предохранитель не может быть восстановлен после перегорания линии, а защита от сверхтока с помощью термистора PTC после неисправность устранена. Может быть восстановлена до состояния предварительной защиты, когда неисправность возникает снова, может быть достигнута функция защиты от перегрузки по току.
4.1 Трансформатор
Первичное напряжение трансформатора напряжения составляет 220 В, вторичное напряжение — 16 В, вторичный ток — 1,5 А, первичный ток вторичной аномалии составляет около 350 мА, состояние защиты должно быть введено через 10 минут, рабочая температура трансформатора составляет -10-40 ℃, 15 ~ 20 ℃, термистор PTC установлен рядом с трансформатором, выберите термистор PTC для первичной защиты.
При напряжении трансформатора 220 В, с учетом колебаний мощности максимальное рабочее напряжение должно достигать 220 В × (1 + 20%) = 264 В
Выбор максимального рабочего напряжения термистора PTC 265 В.
После расчета и фактического измерения первичный ток трансформатора составляет 125 мА, когда он работает нормально. Учитывая, что температура окружающей среды термистора PTC составляет до 60 ℃, можно определить, что нерабочий ток должен составлять 130 ~ 140 мА при 60 ℃.
Принимая во внимание положение установки термистора PTC, температура окружающей среды может достигать -10 ℃ или 25 ℃, рабочий ток может быть определен при -10 ℃ или 25 ℃, должно быть 340 ~ 350 мА, время работы около 5 минут.
Термистор PTC последовательно в первичной обмотке, результирующее падение напряжения должно быть как можно меньше, сам термистор PTC, мощность нагрева должна быть как можно меньшей, общее падение напряжения термистора PTC должно быть менее 1% от общей мощности , R25 Вычислено:
220 В × 1% ÷ 0,125 А = 17,6 Ом
Фактическое измерение, короткое замыкание вторичной обмотки трансформатора, первичный ток до 500 мА, с учетом короткого замыкания первичной обмотки, когда проходит большая часть тока, термистор PTC для определения максимального тока выше 1 А.
С учетом того, что температура окружающей среды термистора PTC в месте установки может достигать 60 ℃, выбранная температура Кюри должна быть на основе 100 ℃. Но, учитывая низкую стоимость и термистор PTC, который не установлен в корпусе трансформаторной линии, более высокая температура поверхности не окажет неблагоприятного воздействия на трансформатор. Таким образом, температура может быть выбрана для температуры Кюри 120 ℃, так что термистор PTC может уменьшить диаметр, и можно снизить стоимость.
В соответствии с вышеуказанными требованиями см. Лист технических данных, выбранный стандарт, как показано ниже:
А именно: максимальное рабочее напряжение 265 В, номинальное сопротивление нулевой мощности 15 Ом ± 25%, рабочий ток 140 мА, рабочий ток 350 мА, максимальный ток 1,2 А, температура Кюри 120 ℃ и максимальный размер 11,0 мм.
4.2 Двигатель
Когда двигатель запускается, нажмите кнопку блокировки SBi, запуск завершен (после стабилизации скорости двигателя), снова нажмите SBi, и схема защиты сработает.Для двигателей с коротким временем пуска (например, несколько секунд) SBi также может использовать обычные кнопки, если SBi удерживается нажатой во время процесса запуска.
Когда двигатель работает нормально, вторичный индуцированный потенциал трансформатора тока TAi ~ TA3 невелик, и его недостаточно для срабатывания тиристора V. Как показано ниже.
Схема защиты от перегрузки по току В в конструкции импульсного источника питания
Импульсный источник питания обычно используется в схеме защиты от перегрузки по току.
Через преобразователь вторичный ток, полученный преобразователем I / V, преобразуется в напряжение. После того, как напряжение принимает форму постоянного тока, оно сравнивается с установленным значением компаратором напряжения. Если напряжение постоянного тока больше установленного значения, выдается идентификационный сигнал. Однако этот датчик обнаружения обычно используется для контроля индукционного источника питания тока нагрузки. Поэтому мы должны принять следующие меры. Поскольку пусковой ток в несколько раз превышает номинальный ток при запуске индуктивного источника питания и намного больше, чем ток в конце запуска.в случае простого контроля текущей батареи, необходимый выходной сигнал должен быть получен при запуске индуктивного источника питания. Мы должны использовать таймер, чтобы установить время запрета, чтобы индукционный источник питания не получал ненужный выходной сигнал до окончания запуска. По истечении таймера блок питания перейдет в состояние запланированного мониторинга.
Импульсный источник питания генерирует высокий пусковой ток при включении питания. Следовательно, устройство плавного пуска для предотвращения броска тока должно быть установлено на входе источника питания, чтобы эффективно снизить пусковой ток до допустимого диапазона.Пусковой ток в основном вызван зарядкой конденсатора фильтра, конденсатор на обмене показал меньшее сопротивление в начале включения переключателя. При отсутствии каких-либо защитных мер пусковой ток может приближаться к сотням А.
Импульсный вход источника питания обычно использует схему фильтрации конденсаторов, показанную на рисунке 6, конденсатор фильтра C может использовать низкочастотные или высокочастотные конденсаторы, низкочастотный конденсатор должен быть параллелен емкости высокочастотных конденсаторов, чтобы нести заряд и ток разряда.На рисунке резистор ограничения тока Rsc, который вставлен между выпрямлением и фильтрацией, предназначен для предотвращения воздействия пускового тока. Замыкание Rsc ограничивает зарядный ток конденсатора C. И через некоторое время напряжение на C достигает заданного значения или напряжение на конденсаторе C1 достигает рабочего напряжения реле T, и Rsc замыкается. В то же время SCR может также использоваться для включения Rsc. При замыкании из-за отключения тринистора конденсатор C заряжается через Rsc.По прошествии некоторого времени SCR включается, замыкая токоограничивающий резистор Rsc.
Схема ограничения тока, изображенная на рисунке ниже, подходит для источников питания различных цепей. Выходная часть этой схемы делит землю с цепью управления.
Принцип работы: при нормальных рабочих условиях, Il, протекающий в Rsc, не будет производить большого падения напряжения, тогда Q1 не будет включен. Если ток нагрузки достаточно велик, на Rsc будет генерироваться напряжение, обеспечивающее проводимость Q1.Если Q1 находится в выключенном состоянии, а C1 будет полностью разряжен, когда Ic1 = 0, Q2 также будет в выключенном состоянии. Если ток Il постепенно увеличивается, то Il * Rsc = VbeQ1 + Ib1R1
В это время через коллектор будет протекать ток Ic1, и следующая постоянная времени будет заряжать C1 T = R2 * C1
Тогда напряжение на C1 равно: Vc1 = Ib2R3 + VbeQ2
Чтобы минимизировать нагрузочное влияние напряжения конденсатора, мы можем использовать табуретную трубку Дарлинга с более высоким HFE вместо Q2, так что базовый ток может быть ограничен до микроампер.Выбирая резистор R4, мы должны Намного больше, чем R3. Таким образом, при перегрузке по току конденсатор C1 быстро разрядится.
Значение R2 следующее:
IBL = (V1-VBEQ1) / R1
и Ic1 = HfeQ1IBLMAX
Итак, R2 «= (V1-VCEMAX) R1 / (V1-VBEQ1)
При правильной конструкции схемы VCE может быстро достичь своего значения напряжения и перевести транзистор Q2 во включенное состояние, так что управляющий сигнал регулятора может быть отключен.
Когда перегрузка будет устранена, цепь автоматически вернется в рабочее состояние.Если используется схема управления IC PWM с фиксированным компаратором ограничения тока (схема, показанная на рисунке 1B), мы помещаем резистор ограничения тока RSC на положительный вывод выхода, и можно получить хороший эффект ограничения тока.
Когда выходная мощность имеет перегрузку или короткое замыкание, значение IGBT Vce становится больше. По этому принципу мы можем принять меры защиты в цепи. Обычно для этого используется специальный привод EXB841, внутренняя схема которого может быть выполнена хорошо до затвора и плавного отключения, и имеет функцию внутренней задержки.Вы можете устранить помехи, вызванные неисправностью. Его принцип работы показан на рисунке 8. Информация о перегрузке по току Vce с IGBT не отправляется непосредственно на вывод 6 контроля напряжения коллектора EXB841, а быстро восстанавливается диодом VD1. Затем подключается к выводу 6 EXB841 через выход компаратора IC1. Устранение прямого падения напряжения зависит от текущей ситуации, использование порогового компаратора для повышения точности определения тока. В случае перегрузки по току драйвер: Схема низкоскоростного отключения EXB841 будет медленно отключать IGBT, чтобы не допустить повреждения устройств IGBT скачками тока коллектора.
VI Заключение
В последнее время широкое распространение получил импульсный источник питания, к надежности которого также предъявляются повышенные требования. После выхода из строя электронного продукта, если входной конец электронного продукта закорочен или выходной конец открыт, источник питания должен отключить выходное напряжение, чтобы защитить силовой MOSFET и выходное устройство от повреждения. В противном случае электронное изделие может получить дальнейшее повреждение или даже стать причиной поражения электрическим током и возгорания операторов.Следовательно, необходимо улучшить защиту импульсного источника питания от перегрузки по току.
Рекомендация книги
Руководство по внедрению защиты электроэнергии как в новых, так и в существующих системах на индивидуальных и коммерческих объектах. Сосредоточившись на системах в диапазоне низкого и среднего напряжения, книга помогает в решении проблем защиты и координации с использованием микрокомпьютеров, а также более традиционных методов. В тексте приведены пошаговые инструкции для быстрого решения проблем.В нем показано, как проектировать интеллектуальное распределительное устройство, и представлена важная информация по настройке рабочей станции защиты и координации. Текст должен соответствовать требованиям Национального электротехнического кодекса и Национального института стандартов.
— Майкл А. Энтони (Автор)
Релевантная информация об «Истории интегральной схемы и ее типах упаковки»
О статье «Интеграция истории схем и ее типов упаковки». Если у вас есть лучшие идеи, не стесняйтесь писать свои мысли в следующей области комментариев.Вы также можете найти больше статей об электронных полупроводниках через поисковую систему Google или обратиться к следующим связанным статьям.
Защита линий передачи по току несущей — методы и преимущества
Схема защиты по току несущей в основном используется для защиты длинных линий передачи. В схемах защиты по току несущей, фазовый угол тока в двух фазах линии сравнивается вместо фактического тока.А затем фазовый угол линии определяет, является ли повреждение внутренним или внешним. Основными элементами несущего канала являются передатчик, приемник, соединительное оборудование и линейный ловушка.
Приемник несущего тока принимает несущий ток от передатчика на дальнем конце линии. Приемник преобразует полученный несущий ток в постоянное напряжение, которое можно использовать в реле или другой схеме, выполняющей любую желаемую функцию. Напряжение равно нулю, когда несущий ток не принимается.
Линейный перехватчик вставляется между шиной и соединением конденсатора связи с линией. Это параллельная LC-сеть, настроенная на резонанс на высокой частоте. Ловушки ограничивают ток несущей до незащищенной секции, чтобы избежать помех от одного или других смежных каналов тока несущей. Это также позволяет избежать потери сигнала несущего тока в прилегающей силовой цепи.
Разделительный конденсатор соединяет высокочастотное оборудование с одним из проводов линии и одновременно отделяет силовое оборудование от линии высокого напряжения.Нормальный ток может протекать только по линейному проводнику, в то время как сильный ток несущей будет циркулировать по линейному проводнику, оборудованному высокочастотными ловушками, через конденсатор ловушки и землю.
Методы защиты от несущего тока
Различные методы защиты несущей тока и основная форма защиты несущей тока
- Защита от смещения направления
- Защита от сравнения фаз
Эти типы подробно описаны ниже
1.Направленная защита сравнения
В этих схемах защиты защита может быть выполнена путем сравнения неисправности направления потока мощности на двух концах линии. Операция выполняется только тогда, когда питание на обоих концах линии подается на шину в направлении линии. После сравнения направления реле пилот-сигнала несущей сообщает оборудованию, как направленное реле ведет себя на другом конце при коротком замыкании.
Реле на обоих концах устраняет неисправность шины.Если неисправность находится в секции защиты, мощность течет в защитном направлении, а при внешней неисправности мощность течет в противоположном направлении. Во время неисправности простой сигнал через пилот-сигнал несущей передается от одного конца к другому. Релейные схемы защиты пилот-сигнала, используемые для защиты передачи, в основном подразделяются на два типа. Их
- Схема защиты от блокировки несущей — Схема защиты от блокировки несущей ограничивает работу реле.Он блокирует неисправность до входа в защищаемый участок системы. Это одна из самых надежных схем защиты, поскольку она защищает оборудование системы от повреждений.
- Схема блокировки, разрешающая несущую — Схема защиты несущей позволяет току короткого замыкания проникать в защищаемую часть системы.
2. Защита несущей для сравнения фаз
Эта система сравнивает соотношение фаз между током, входящим в пилотную зону, и током, выходящим из защищаемой зоны.Текущие величины не сравниваются. Он обеспечивает только основную или основную защиту, также должна быть предусмотрена резервная защита. Принципиальная схема схемы защиты несущей сравнения фаз показана на рисунке ниже.
ТТ линии передачи питают сеть, которая преобразует выходной ток ТТ в однофазное синусоидальное выходное напряжение. Это напряжение подается на передатчик несущего тока и устройство сравнения. Выходной сигнал приемника несущего тока также подается на устройство сравнения.Компаратор регулирует работу вспомогательного реле для отключения автоматического выключателя линии передачи.
Преимущество защиты от тока несущей
Ниже приведены преимущества схем защиты от несущего тока. Эти преимущества
- Имеет быстрое и одновременное срабатывание автоматических выключателей на обоих концах.
- Он имеет быстрый процесс очистки и предотвращает сотрясение системы.
- Никаких отдельных проводов для сигнализации не требуется, потому что линии электропередачи сами передают питание, а также сигнализацию связи.
- Это одновременное отключение автоматических выключателей на обоих концах линии за один-три цикла.
- Эта система лучше всего подходит для быстрого включения современных автоматических выключателей.
Основная работа оператора линии электропередачи заключалась в диспетчерском управлении, телефонной связи, телеметрии и ретрансляции.
Влияние условий короткого замыкания на ток короткого замыкания IGBT в моторных приводах
Сетевые реакторы и приводы переменного тока
Сетевые реакторы и приводы переменного тока Rockwell Automation Mequon Wisconsin Довольно часто линейные и нагрузочные реакторы устанавливаются на приводы переменного тока без четкого понимания того, почему и каковы положительные и отрицательные последствия
Дополнительная информация Рекомендации по применению AN-1070
Замечания по применению AN-1070 Зависимость характеристик усилителя звука класса D от параметров полевого МОП-транзистора Хорхе Серезо, International Rectifier Содержание страницы Аннотация… 2 Введение … 2 Ключевой полевой МОП-транзистор
Дополнительная информация IRLR8729PbF IRLU8729PbF
Области применения l Высокочастотные синхронные понижающие преобразователи для питания процессоров компьютеров l Высокочастотные изолированные преобразователи постоянного тока в постоянный с синхронным выпрямлением для телекоммуникационного и промышленного использования Преимущества
Дополнительная информация IRGP4068DPbF IRGP4068D-EPbF
БИПОЛЯРНЫЙ ТРАНЗИСТОР С ИЗОЛИРОВАННЫМ ЗАДВИЖЕНИЕМ С УЛЬТРА-НИЗКИМ VF-диодом ДЛЯ ИНДУКЦИОННОГО НАГРЕВА И ПЛАВНОГО ПЕРЕКЛЮЧЕНИЯ
Дополнительная информация
Драйвер со стороны высокого и низкого давления
Характеристики драйвера на стороне высокого и низкого давления Обзор продукта Плавающий канал, предназначенный для работы в режиме начальной загрузки Полностью работоспособен до 200 В Устойчив к отрицательным переходным напряжениям, невосприимчив к du / dt Диапазон питания привода затвора
Дополнительная информация Указания по применению AN-1095
Замечания по применению AN-1095 Конструкция выходного фильтра инвертора для приводов двигателей с силовыми модулями IRAMS Cesare Bocchiola Содержание Страница Раздел 1: Введение…2 Раздел 2: Конструкция выходного фильтра
Дополнительная информация IR2110 (S) / IR2113 (S) и (PbF)
Типовой лист № PD6147 Rev.T Характеристики Плавающий канал, предназначенный для работы в режиме начальной загрузки Полностью работоспособен до + 5 В или + 6 В Устойчив к отрицательным переходным напряжениям dv / dt невосприимчив к диапазону питания привода затвора от 1
Дополнительная информация Рекомендации по применению AN-1068 reva
Замечания по применению AN-1068 reva Рекомендации по проектированию с использованием радиационно-стойких твердотельных реле Алан Таскер Содержание Введение Обзор страницы…1 Контакт … 1 Активация … 1 IR
Дополнительная информация SMPS MOSFET. V DSS Rds (вкл.) Макс. I D
Применения l Импульсный источник питания (SMPS) l Источник бесперебойного питания l Высокоскоростной импульсный МОП-транзистор PD 92004 IRF740A HEXFET Power MOSFET V DSS Rds (on) max I D 400 В 0,55 Ом A Преимущества
Дополнительная информация Рекомендации по применению AN-983
Замечания по применению AN-983 Характеристики IGBT Содержание 1.Как IGBT дополняет силовой полевой МОП-транзистор … 2 Стр. 2. Кремниевая структура и эквивалентная схема … 2 3. Характеристики проводимости … 4
Дополнительная информация IR2130 / IR2132 (J) (S) и (PbF)
Технический паспорт № PD619 Rev.P Характеристики Плавающий канал, разработанный для работы в режиме начальной загрузки Полностью работоспособен до +6 В Устойчив к отрицательным переходным напряжениям dv / dt невосприимчив к диапазону питания привода затвора от 1 до 2 В Пониженное напряжение
Дополнительная информация Что такое регенерация?
Что такое регенерация? Торможение / регенерация Обзор регенерации вручную Редакция 1.0 Когда ротор асинхронного двигателя вращается медленнее, чем скорость, установленная приложенной частотой, двигатель преобразует
Дополнительная информация ЗАЖИГАНИЕ АВТОМОБИЛЯ С IGBTS
ЗАМЕЧАНИЕ ПО ПРИМЕНЕНИЮ ЗАЖИГАНИЕ АВТОМОБИЛЯ С IGBT от M. Melito ABSTRACT IGBT используются в различных коммутационных приложениях благодаря своим привлекательным характеристикам, в частности, их пиковому току
Дополнительная информация САМОКОБИЛЯЮЩИЙСЯ ПОЛУМОСТОВОДИТЕЛЬ
Лист данных №PD60029 revj I2155 & (PbF) (ПРИМЕЧАНИЕ: для новых разработок мы рекомендуем новые продукты I2153 и I21531) САМОКОБИЛИРУЮЩИЙСЯ МАТРИЦА ПОЛОВИННОГО ДВИЖЕНИЯ Характеристики Плавающий канал, предназначенный для работы в режиме начальной загрузки
Дополнительная информация Рекомендации по применению AN-1040
Замечания по применению Моделирование системы AN-1040 с использованием квазидинамической модели силового полевого МОП-транзистора Содержание Страница Цель: изучить квазидинамическую модель силового полевого МОП-транзистора и ее влияние на тепловые характеристики устройства
Дополнительная информация HFA15TB60 HFA15TB60-1
Особенности HEXFRED TM Сверхбыстрое восстановление Ультрамягкое восстановление Очень низкий I RRM Очень низкий Q rr, указанный в рабочих условиях Преимущества Снижение RFI и EMI Снижение потерь мощности в диоде и переключающем транзисторе
Дополнительная информация IR2117 (S) / IR2118 (S) и (PbF)
Лист данных №PD14 Rev N IR2117 (S) / IR211 (S) & (PbF) Характеристики Плавающий канал, предназначенный для работы в режиме начальной загрузки Полностью работоспособен до + В Устойчив к отрицательным переходным напряжениям dv / dt невосприимчив к питанию затвора
Дополнительная информация Рекомендации по применению AN-940
Замечания по применению AN-940 Как МОП-транзисторы с P-каналом могут упростить схему Содержание Стр. 1. Основные характеристики силовых МОП-транзисторов с P-каналом HEXFET … 1 2.Заземленные нагрузки … 1 3. Переключение тотемных полюсов
Дополнительная информация Особенности. Символ JEDEC TO-220AB
Технические данные Июнь 1999 г. Номер файла 2253.2 3A, 5 В, 0,4 Ом, N-канальный силовой МОП-транзистор Это силовой полевой транзистор с кремниевым затвором с N-канальным режимом расширения, разработанный для таких приложений, как коммутация
Дополнительная информация Расширенные темы по источникам питания
Передовые темы источников питания 2006 г. Компания Microchip Technology Incorporated.Все права защищены. Расширенные темы блоков питания Слайд 1 Добро пожаловать на веб-семинар «Продвинутые темы блоков питания». Page 1 Повестка дня
Дополнительная информация Учебное пособие по Power MOSFET
Учебное пособие по силовому полевому МОП-транзистору Джонатан Додж, П.

Похожие статьи:
Простой стабилизированный блок питания | Все своими руками
Опубликовал admin | Дата 6 июня, 2012Добрый день. В этой заметке я хочу предложить вашему вниманию блок питания дополнительного усилителя мощности для портативной радиостанции «Веда-ЧМ» . Выходное напряжение блока питания 24В, номинальный ток нагрузки – 3,5А, порог тока срабатывания защиты от короткого замыкания – 5,5А, ток короткого замыкания – 0,06А.
Общий вид комплекта показан на фото 1.
Схема блока питания представлена на рисунке 1.
Силовой трансформатор блока – перемотанный сетевой трансформатор от старого телевизора ТС-90-1, в качестве первичной обмотки — используются все витки сетевой обмотки трансформатора.
Схема стабилизатора собрана навесным монтажом (1 на фото 2). Конденсаторы С3 и С4 у меня находятся в корпусе усилителя мощности. Цифрой два обозначен дополнительный регулируемый стабилизатор напряжения для питания «Веда-ЧМ», собранного на микросхеме КРЕН12А. Меняя напряжение питания самой радиостанции, можно менять в некоторых пределах выходную мощность излучения усилителя. Схему этого стабилизатора можно найти в рубрике «Блоки питания» — «Стабилизатор напряжения на КР142ЕН12А». Индикатор перегрузки работает следующим образом. Напряжение на конденсаторах фильтра выпрямителя С1и С2 примерно равно 37 вольт, учитывая, что выходное напряжение – 24В, напряжение между точками 1 и 2 будет находиться в районе13 вольт, которого не хватит для пробоя стабилитронов VD5, VD6, так как их суммарное напряжение стабилизации равно 15В.

Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».
Просмотров:48 416
Токовая защита блока питания схема
Это интересно
Страницы
Ярлыки
понедельник, 5 января 2015 г.
Схема защиты блока питания и зарядных устройств
Представлена конструкция защиты для блока питания любого типа. Данная схема защиты может совместно работать с любыми блоками питания – сетевыми, импульсными и аккумуляторами постоянного тока. Схематическая развязка такого блока защиты относительна проста и состоит из нескольких компонентов.
Схема защиты блока питания
Силовая часть – мощный полевой транзистор – в ходе работы не перегревается, следовательно в теплоотводе тоже не нуждается. Схема одновременно является защитой от переплюсовки питания, перегруза и КЗ на выходе, ток срабатывания защиты можно подобрать подбором сопротивления резистора шунта, в моем случае ток составляет 8 Ампер, использовано 6 резисторов 5 ватт 0,1 Ом параллельно подключенных. Шунт можно сделать также из резисторов с мощностью 1-3 ватт.
Более точно защиту можно настроить путем подбора сопротивления подстроечного резистора. Схема защиты блока питания, регулятор ограничения тока Схема защиты блока питания, регулятор ограничения тока
При КЗ и перегрузе выхода блока, защита мгновенно сработает, отключив источник питания. О срабатывании защиты осведомит светодиодный индикатор. Даже при КЗ выхода на пару десятков секунд, полевой транзистор остается холодным
Полевой транзистор не критичен, подойдут любые ключи с током 15-20 и выше Ампер и с рабочим напряжением 20-60 Вольт. Отлично подходят ключи из линейки IRFZ24, IRFZ40, IRFZ44, IRFZ46, IRFZ48 или более мощные – IRF3205, IRL3705, IRL2505 и им подобные.
Данная схема также отлично подходит в качестве защиты зарядного устройства для автомобильных аккумуляторов, если вдруг перепутали полярность подключения, то с зарядным устройством ничего страшного не произойдет, защита спасет устройство в таких ситуациях.
Благодаря быстрой работе защиты, ее можно с успехом применить для импульсных схем, при КЗ защита сработает быстрее, чем успеют сгореть силовые ключи импульсного блока питания. Схематика подойдет также для импульсных инверторов, в качестве защиты по току. При перегрузе или кз во вторичной цепи инвертора, мигом вылетают силовые транзисторы инвертора, а такая защита не даст этому произойти.
Комментарии
Защита от короткого замыкания, переплюсовки полярноси и перегруза собрана на отдельной плате. Силовой транзистор использован серии IRFZ44, но при желании можно заменить на более мощный IRF3205 или на любой другой силовой ключ, который имеет близкие параметры. Можно использовать ключи из линейки IRFZ24, IRFZ40, IRFZ46, IRFZ48 и другие ключи с током более 20 Ампер. В ходе работы полевой транзистор остается ледяным,. поэтому в теплоотводе не нуждается.
Схема срисована из зарядника аккумуляторной отвертки. Красный индикатор свидетельствует о том, что имеется выходное напряжение на выходе БП, зеленый индикатор показывает процесс заряда. С таким раскладом компонентов, зеленый индикатор будет постепенно потухат и окончательно потухнет, когда напряжение на аккумуляторе будет 12,2-12,4 Вольт, когда аккумулятор отключен, индикатор гореть не будет.
Комментарий
Схема своего рода “НОУ-ХАУ”, по простоте и надежности. Плюс в том, что не нужно использовать мощное реле, или тиристор, на котором падение напряжения около двух вольт. Схема как самостоятельное устройство может быть встроена в любое зарядное устройство и блок питания. Выход из режима защиты автоматический, как только устранится короткое замыкание или преполюсовка. При срабатывании светится светодиод “ошибка подключения”. Описание работы: При нормальном режиме напряжение через светодиод и резистор R9 отпирает VT1 и все напряжение со входа поступает на выход. При коротком замыкании или переполюсовке ток импульсно резко возрастает, падение напряжения на полевике и шунте резко увеличивается, что приводит к открыванию VT2, который в свою очередь шунтирует затвор исток. Добавочное отрицательное напряжение по отношению к истоку (падение на шунте) прикрывает VT1. Далее происходит лавинный процесс закрытия VT1. Светодиод засвечивается через открытый VT2. Схема может находиться в данном состоянии сколь угодно долго, до устранения замыкания.
собирал сегодня сие) Родная защита Дашенга даже не успевает сработать)
Принцип работы прост – при резком скачке напряжения, на шунте появляется падение напряжения, которое отпирает vt2 полевик закрывается (т.к. затвор садится на землю). При этом загорается св. диод (т.к. получает минус на затворе).
В нормальном состоянии затвор открывает положительным напряжением с цепочки св.диод-R9 Тот же принцип и при переплюсовке – от скачка тока.
Работает быстро, но криво – при выключенном блоке и подключенном аккумуляторе, на блок валит напряжение, т.к. полевик открывает акк. Я думаю, нужно делать какую-нить защиту, чтоб при пропадании напряжения зарядки, акк отключался от схемы.
Вот та же схема, только перевернутая по правильному. Использовал в зарядке, результатом доволен. Единственный недостаток (а может – фича!) – защелкивается, то есть после сработки требует полного отключения нагрузки. В принципе, это схема защиты от тока перегрузки, но при переполюсовке именно это и случается. Кстати, при нагрузке не на аккумулятор, а на резистор у меня почему-то сразу защелкивалась на защиту. С акком – нормально. Расчет максимального тока – напряжение на шунте и канале исток-сток должно быть 0.6в для срабатывания биполярника.
>>Единственный недостаток (а может – фича!) – защелкивается, то есть после сработки требует полного отключения нагрузки.
достаточно кнопку сброса сделать с базы биполярника на землю
Лабораторный блок питания с защитой от КЗ
Здравствуйте, друзья! Лабораторный блок питания является прибором первой необходимости для начинающего радиолюбителя и по этому я хочу представить вашему вниманию свою новую самоделку. Очень простой и надежный лабораторный блок питания с регулятором напряжения от 1,5 до 30 вольт, максимальной силой тока 5А и защитой от короткого замыкания с звуковой сигнализацией. Источником питания для приведенной ниже схемы может служить любой трансформатор или импульсный блок питания, например от ноутбука с выходным напряжением от 16 до 40 вольт и максимальной силой тока до 5А.
Схема лабораторного блока питания 1,5-30В 5А с защитой от КЗ
Как работает блок питания?
Напряжение от источника питания проходя через диодный мост Br1 выпрямляется и поступает на регулятор напряжения состоящий из транзистора Т1, резистора R1 и переменного резистора Р1. На выходе из регулятора получается 12 вольт. Этим напряжением постоянно питается вентилятор, реле К1 и вольт амперметр V/A1.
В режиме ожидания от диодного моста Br1 через постоянно замкнутые контакты реле К1 подается напряжение на звуковой сигнализатор короткого замыкания в результате чего в бипере SP1 раздается постоянный звуковой сигнал, что свидетельствует о исправной системе защиты от короткого замыкания.
При кратковременном нажатии кнопки START S1 подается напряжение через резистор R2 на базу транзистора Т2 в результате, чего транзистор Т2 открывается и подает питание на обмотку реле К1, контакты реле К1 переключаются и происходит самоблокировка реле К1. В момент срабатывания реле К1 отключается звуковой сигнализатор короткого замыкания, а в место него подключается регулятор напряжения на микросхеме LM338T. Далее напряжение через шунтирующий диод D2 поступает на выход блока питания. Регуляция напряжения на выходе из блока питания выполняется переменным резистором Р2. Контроль напряжения и силы тока осуществляется вольт амперметром V/A1. В случае короткого замыкания происходит падение напряжения на базе транзистора Т2, транзистор закрывается в следствии чего, контакты реле переключаются. Нагрузка отключается, а на звуковой сигнализатор короткого замыкания подается питание и раздается звуковой сигнал. После устранения короткого замыкания следует кратковременно нажать кнопку START S1 и блок питания снова перейдет в рабочий режим. И так может продолжаться до бесконечности.
Список радиодеталей для сборки лабораторного блока питания:
- Источник питания любой подходящий трансформатор или импульсный блок питания от 16 до 40 вольт
- Транзисторы Т1, Т2 TIP41C, КТ819Г и их аналоги
- Микросхема LM338T на 5А или LM350T на 3А, LM317T на 1,5А все зависит от мощности источника питания
- Микросхема NE555
- Диодный мост Br1 любой не менее 6А можно заменить диодами.
- Диоды любые D1 0,5А, D2 от 1,5А до 10А зависит от нагрузки возможно параллельное соединение диодов
- Конденсаторы С1, С2, С4 100нф, С3 470мкф 35в, С5 1000мкф 50в
- Резисторы R1, R4 1k, R2 5,1k, R3 270, R5 10k, R6 330, R7 150, R8 200
- Переменные резисторы Р1 10К, Р2 5К
- Реле SRD12VDC-SL-C 12В 10А
- Кнопка START S1 без фиксации на замыкание
- Вентилятор М1 от компьютера
- Бипер SP1 от компьютера или маленький динамик
- Вольт амперметр китайский универсальный с Alliexpress
Внимание: При сборке лабораторного блока питания не изменяйте номиналы конденсаторов С1, С4, С5 иначе не будет срабатывать система защиты от короткого замыкания.
Цоколевка применяемых транзисторов
Возможно вам это пригодиться…
Все детали следует разместить на печатной плате изготовленной по лазерно-утюжной технологии.
Печатная плата лабораторного блока питания 1,5-30В 5А с защитой от КЗ
Как настроить блок питания?
Схема лабораторного блока очень простая, но все равно требуется небольшая настройка. Поставьте переменный резистор Р1 в среднее положение. Включите блок питания в сеть, подключите мультиметр параллельно вентилятору, резистором Р1 установите напряжение 12 вольт. Резистором R3 регулируется напряжение питания звукового сигнализатора короткого замыкания, смотрите по схеме напряжение на входе сигнализатора должно быть 12 вольт.
Тональность сигнализатора изменяется резистором R4 и конденсатором С2. Громкость регулируется подбором резистора R6. Порог срабатывания системы защиты от короткого замыкания подбирается резистором R2. Напряжение на выходе из блока питания изменяется переменным резистором Р2 его ручка выведена на лицевую панель блока питания.
В процессе работы транзистор Т1, микросхема LM338T и диодный мост будут сильно нагреваться, поэтому их следует установить на радиатор, перед установкой обязательно изолировать от радиатора. Как это сделать читайте здесь: Как изолировать транзисторы от радиатора?
Для контроля напряжения и силы тока лучше всего установить вот такой универсальный вольт амперметр.
Кстати, его надо откалибровать. С обратной стороны прибора находится два маленьких переменных резистора один отвечает за вольтаж, второй за ампераж. Делаем так, подключаем параллельно к выходу блока питания мультиметр, включаем в режим вольтметра и сравниваем показания приборов, если показания не соответствуют крутим переменный резистор в разные стороны, чтобы добиться наиболее точных показаний прибора. Чтобы откалибровать амперметр переключите мультиметр в режим амперметра. К блоку питания подключите лампочку последовательно с мультиметром и сверьте показания приборов.
Все компоненты лабораторного блока питания легко помещаются в корпусе от компьютерного блока питания.
Так выглядит готовое устройство. Для чего я установил два выключателя и кнопку на крыше блока питания? Красный выключатель сеть, он отключает трансформатор от сети 220В. Синяя кнопка START предназначена для перевода блока питания в рабочий режим.
Черный выключатель линия, чтобы отключать потребители от блока питания без откручивания проводов от разъемов. Справа два разъема типа «Banana» для подключения потребителей. На передней панели находится переменный резистор Р2 для регулировки выходного напряжения. И очень важная деталь это универсальный вольт амперметр.
В своем лабораторном блоке питания я установил трансформатор на 1,5 ампера. Его мощности вполне хватает, чтобы зарядить небольшой 12 вольтовый аккумулятор от бесперебойника емкостью 7А, его я установил на аккумуляторный шуруповерт. Если вы хотите собрать мощное зарядное устройство для автомобильного аккумулятора своими руками, тогда надо увеличить мощность лабораторного блока питания до 10 ампер.
Как увеличить мощность лабораторного блока питания до 10 ампер?
Чтобы увеличить мощность лабораторного блока питания достаточно параллельно микросхеме LM388T подключить мощный 12 амперный транзистор MJE13009. И соответственно заменить источник питания на более мощный трансформатор или импульсный блок питания. Схема будет выглядеть так.
Схема лабораторного блока питания 1,5-30В 10А с защитой от КЗ
Печатная плата будет выглядеть так.
Печатная плата лабораторного блока питания 1,5-30В 10А с защитой от КЗ
А для любителей чего либо измерять, я решил снять пару осциллограмм в разных режимах работы блока питания.
На этой осциллограмме напряжение на выходе из блока питания снижено до 12 вольт.
Осциллограмма трансформаторного лабораторного блока питания. Напряжение на выходе 12 вольт.
А здесь максимальное напряжение на выходе из блока питания 25 вольт.
Осциллограмма трансформаторного лабораторного блока питания. Напряжение на выходе 25 вольт.
P. S. Все схемы и печатные платы в этой статье я разработал самостоятельно. И прежде чем написать я убедился в 100% работоспособности лабораторного блока питания во всех режимах. Если у вас, что то не получилось, проверьте все ли вы сделали правильно…
Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!
Рекомендую посмотреть видеоролик о том, как работает лабораторный блок питания.
Токовая защита блока питания схема
Надёжная токовая защита для БП и ЗУ на IR2153 и электронном трансформаторе.
Автор: Blaze, cornage@bk.ru
Опубликовано 09.02.2016
Создано при помощи КотоРед.
На создание данной статьи меня спровоцировал опыт создания блоков питания и зарядных устройств на основе простых импульсных блоков питания, которыми являются как иип на IR2153, так и переделанный различными способами под блок питания электронный трансформатор. Данные источники питания являются простыми, нестабилизированными импульсными блоками питания без каких-либо защит. Не смотря на данные недостатки, такие источники питания довольно просты в изготовлении,не требуют сложной настройки, времени на создание такого блока питания требуется меньше чем на полный ШИМ БП с узлами стабилизации и защиты.
Обьединив такой блок питания и простейший ШИМ- регулятор на NE555, получам регулируемый блок питания как для экспирементов, так и для зарядки АКБ. Радости нашей нет предела до того момента, пока данный девайс не попробовать на искру, или по ошибке, размышляя над созданием очередного аппарата перепутать полярность заряжаемого АКБ. Окрикивая громким хлопком и орошая едким дымом помещение,в котором произошол данный конфуз, изобретение сообщает нам, что простой импульсный блок питания, который собран по упрощённо-ознакомительной схеме не может быть надёжным.
Тут пришла мысль о том, чтобы найти не просто ввести тот или инной узел защиты в конкретный экземпляр блока питания, а найти или создать универсальную быстродействующую схему, которую можно внедрять в любой вторичный источник питания.
Требования к узлу защиты:
-плата защиты должна занимать мало места
-работоспособной при больших токах нагрузки
-высокая скорость срабатывания
Одним из заинтересовавших вариантов была такая схема, найденная в интерете:
При замыкании выхода данной схемы, разряжается ёмкость затвора VT1 через диод VD1, что приводит к закрытию VT1 и ток через транзистор не протекает, блок питания остаётся целым и невредимым. Но что же произойдёт если на выход данной схемы подключить нагрузку, в 300вт, когда наш иип может выдать всего 200вт? Не смотря на то что у нас присутствует схема защиты, замученный блок питания снова взрывается.
Недостатки данной схемы:
1. Необходимо точно подбирать сопротивление шунта, чтобы максимально допустимый ток блока питания создал такое падение напряжения на выбранном шунте, при котором VT2, открываясь полностью закроет VT1.
2. В данной схеме может наступить момент, когда ток проходящий через шунт, приоткроет VT2, вследствии чего VT1 начнёт закрываться и останется в таком состоянии, что будет недозакрыт, а учитывая что через VT1 протекает немалый ток, то данный линейный режим вызовет его сильный перегрев, врезультате которого VT1 будет пробит.
В блоке питания на IR2153 однажды применял триггерную защиту, остался доволен её работой. Прицепим к схеме триггерной защёлки на комплиментарной паре транзисторов шунт в качестве датчика тока и n-канальный транзистор в роли ключевого элемента получаем такую схему:
После подачи питания на схему, транзистор Q3, через светодиод и R4 открывается, стабилитрон D3 ограничивает напряжение на затворе полевого транзистора. D4 защищает Q3 от выбросов высокого напряжения, при подключении индуктивной нагрузки (электродвигатель). На паре транзисторов Q1, Q2 собран аналог тиристора. Ток, протекающий через шунт R1, вызывает падение напряжения, которое с движка переменного резистора R10, и цепочку R2, С2, поступает на базу транзистора Q2. Величину напряжения с шунта, которое пропорционально току, протекающему через этот шунт можно регулировать прерменным резистором R10. В момент, когда напряжение на базе Q2 станет больше 0.5-0.7в транзистор Q2 начнёт открываться, тем самым открывая Q1, в свою очередь транзистор Q1открываясь, будет открывать Q2. Данный процесс происходит очень быстро, за доли секунды транзисторы откроют друг друга и останутся в таком устойчивом состоянии. Через открытый аналог тиристора затвро Q3, а также резистор R4 окажутся подключены к общему проводнику схемы, что приведёт к закрытию Q3 и свечение светодиода D1 сообщит о том что сработала защита. Снять защиту можно как отключив кратковременно питание, так и кратковременным нажатием на кнопку S1.
Универсальная схема защиты была создана и проверена в работе, шунт R1 был составлен из двух резисторов 0.22 Ом 5Вт. Остался последний шаг – вводим в нвшу схему защиту от переполюсовки клемм АКБ.
Схема с защитой от переполюсовки :
Наша схема дополнилась диодом D2, резисторами R6, R5. Кнопка S1 была убрана из схемы по причине того, что при срабатывании защиты она не выводила схему из защиты, после доработки.
Токовая защита осталась без изменений, снять защиту можно отключив питание на 2-3 секунды. При подключении к выходу схемы АКБ, перепутав полярность, напряжение с АКБ через диод D2, резистор R6 поступает на базу Q2, срабатывает защита Q3 закрывается, светодиод D1 сигнализирует о срабатывании защиты.
На этой волне я заканчиваю поиски защиты для своих простых иип. Работой своих схем доволен, надеюсь они пригодятся и вам.
Блок питания 1…20 В с защитой по току
При наладке различных электронных устройств необходим блок питания (БП), в котором имеется регулировка выходного напряжения и возможность регулирования уровня срабатывания защиты от превышения по току в широких пределах. При срабатывании защиты, нагрузка (подключенное устройство) должна автоматически отключаться.
Поиск в интернете дал несколько подходящих схем блоков питания. Остановился на одной из них. Схема проста в изготовлении и наладке, состоит из доступных деталей, выполняет заявленные требования.
Предлагаемый к изготовлению блок питания выполнен на базе операционного усилителя LM358 и имеет следующие характеристики:
Входное напряжение, В – 24. 29
Выходное стабилизированное напряжение, В – 1. 20 (27)
Ток срабатывания защиты, А – 0,03. 2,0
Фото 2. Схема БП
Описание работы БП
Регулируемый стабилизатор напряжения собран на операционном усилителе DA1. 1. На вход усилителя (вывод 3) поступает образцовое напряжение с движка переменного резистора R2, за стабильность которого отвечает стабилитрон VD1, а на инвертирующий вход (вывод 2) напряжение поступает с эмиттера транзистора VT1 через делитель напряжения R10R7. С помощью переменного резистора R2, можно изменять выходное напряжение БП.
Блок защиты от перегрузок по току выполнен на операционном усилителе DA1.2, он сравнивает напряжения на входах ОУ. На вход 5 через резистор R14 поступает напряжение с датчика тока нагрузки – резистора R13. На инвертирующий вход (вывод 6) поступает образцовое напряжение, за стабильность которого отвечает диод VD2 с напряжением стабилизации около 0,6 в.
Пока падение напряжения, создаваемое током нагрузки на резисторе R13, меньше образцового, напряжение на выходе (вывод 7) ОУ DA1.2 близко к нулю. В том случае, если ток нагрузки превысит допустимый установленный уровень, увеличится напряжение на датчике тока и напряжение на выходе ОУ DA1.2 возрастет практически до напряжения питания. При этом включится светодиод HL1, сигнализируя о превышении, откроется транзистор VT2, шунтируя стабилитрон VD1 резистором R12. Вследствие чего, транзистор VT1 закроется, выходное напряжение БП уменьшится практически до нуля и нагрузка отключится. Для включения нагрузки нужно нажать на кнопку SА1. Регулировка уровня защиты выполняется с помощью переменного резистора R5.
1. Основу блока питания, его выходные характеристики определяет источник тока – применяемый трансформатор. В моем случае нашел применение тороидальный трансформатор от стиральной машины. Трансформатор имеет две выходные обмотки на 8в и 15в. Соединив обе обмотки последовательно и добавив выпрямительный мост на имеющихся под рукой диодах средней мощности КД202М, получил источник постоянного напряжения 23в, 2а для БП.
Фото 3. Трансформатор и выпрямительный мост.
2. Другой определяющей частью БП является корпус прибора. В данном случае нашел применение детский диапроектор мешающийся в гараже. Удалив лишнее и обработав в передней части отверстия для установки показывающего микроамперметра, получилась заготовка корпуса БП.
Фото 4. Заготовка корпуса БП
3. Монтаж электронной схемы выполнен на универсальной монтажной плате размером 45 х 65 мм. Компоновка деталей на плате зависит от размеров, найденных в хозяйстве компонентов. Вместо резисторов R6 (настройка тока срабатывания) и R10 (ограничение максимального напряжения на выходе) на плате установлены подстроечные резисторы с увеличенным в 1,5 раза номиналом. По окончании настройки БП их можно заменить на постоянные.
Фото 5. Монтажная плата
4. Сборка платы и выносных элементов электронной схемы в полном объеме для испытания, настройки и регулировки выходных параметров.
Фото 6. Узел управления БП
5. Изготовление и подгонка шунта и дополнительного сопротивления для использования микроамперметра в качестве амперметра или вольтметра БП. Дополнительное сопротивление состоит из последовательно соединенных постоянного и подстроечного резисторов (на фото сверху). Шунт (на фото ниже) включается в основную цепь тока и состоит из провода с малым сопротивлением. Сечение провода определяется максимальным выходным током. При измерении силы тока, прибор подключается параллельно шунту.
Фото 7. Микроамперметр, шунт и дополнительное сопротивление
Подгонка длины шунта и величины дополнительного сопротивления производится при соответствующем подключении к прибору с контролем на соответствие по мультиметру. Переключение прибора в режим Амперметр/Вольтметр выполняется тумблером в соответствии со схемой:
Фото 8. Схема переключения режима контроля
6. Разметка и обработка лицевой панели БП, монтаж выносных деталей. В данном варианте на лицевую панель вынесен микроамперметр (тумблер переключения режима контроля A/V справа от прибора), выходные клеммы, регуляторы напряжения и тока, индикаторы режима работы. Для уменьшения потерь и в связи с частым использованием, дополнительно выведен отдельный стабилизированный выход 5 в. Для чего напряжение, от обмотки трансформатора на 8в, подается на второй выпрямительный мост и типовую схему на 7805 имеющую встроенную защиту.
Фото 9. Лицевая панель
7. Сборка БП. Все элементы БП устанавливаются в корпус. В данном варианте, радиатором управляющего транзистора VT1 служит алюминиевая пластина толщиной 5 мм, закрепленная в верхней части крышки корпуса, служащего дополнительным радиатором. Транзистор закреплен на радиаторе через электроизолирующую прокладку.
Фото 10. Сборка БП без крышки
Фото 11. Общий вид БП.
Операционный усилитель LM358N имеет в своем составе два ОУ.
Транзистор VT1 можно заменить на любой из серий КТ827, КТ829. Транзистор VT2 любой из серии КТ315. Стабилитрон VD1 можно использовать любой, с напряжением стабилизации 6,8…8,0в и током 3…8 мА. Диоды VD2-VD4 из серии КД521 или КД522Б. Конденсаторы С3, C4 – пленочные или керамические. Оксидные конденсаторы: C1 – К50-18 или аналогичный импортный, остальные — из серии К50-35. Постоянные резисторы серии МЛТ, переменные — СП3-9а.
Налаживание блока питания – движок переменного резистора R2 перемещают в верхнее по схеме положение и измеряют максимальное выходное напряжение, устанавливают его равным 20 В, подбирая резистор R10. После этого подключают к выходу нагрузку и производят замеры тока срабатывания защиты. Для уменьшения уровня срабатывания защиты, уменьшить сопротивление резистора R6. Для увеличения максимального уровня срабатывания защиты – уменьшить сопротивление резистора R13 — датчика тока нагрузки.
Устройства защиты стабилизаторов напряжения (5 схем, 24В, 0-27В)
Схемы устройств для защиты от перегрузки стабилизированного выпрямителя при коротком замыкании или по другой причине.
Перегрузка стабилизированного выпрямителя при коротком замыкании в нагрузке или по другой причине обычно приводит к выходу из строя регулирующего транзистора. Защитить стабилизатор от перегрузки можно с помощью защитного устройства.
Простое защитное устройство
Защитное устройство, входящее в стабилизатор блока питания, схема которого показана на рис. 1, обладает высоким быстродействием и хорошей «релейностью», т. е. малым влиянием на характеристики блока врабочем режиме и надежным закрыванием регулирующего транзистора V2 в режиме перегрузки. Защитное устройство состоит из тринистора V3, диодов V6, V7 и резисторов R2 и R3.
Рис. 1. Схема простого защитного устройства по линии питания +24В.
В рабочем режиме тринистор V3 закрыт и напряжение на базе транзистора V1 равно напряжению стабилизации цепочки стабилитронов V4, V5.
При перегрузке ток через резистор R2 и падение напряжения на нем достигают значений, достаточных для открывания тринистора V3 по цепи управляющего электрода. Открывшийся тринистор замыкает цепочку стабилитронов V4, V5, что приводит к закрыванию транзисторов V1 и V2.
Для того чтобы восстановить рабочий режим после устранения причины перегрузки, нужно нажать и отпустить кнопку S1. При этом тиристор закроется» а транзисторы V1 и V2 снова откроются. Резистор R3 и диоды V6, V7 защищают управляющий переход тринистора V3 от перегрузок по току и напряжению соответственно.
Стабилизатор обеспечивает коэффициент стабилизации около 30, защита срабатывает при токе, превышающем 2 А.
Транзистор V2 можно заменить на КТ802А, КТ805Б, а V1 — П307, П309, КТ601, КТ602 с любым буквенным индексом. Тринистор V3 может быть любым из серии КУ201, кроме КУ201А и КУ201Б.
Стабилизатор с защитой для блока питания
Стабилизатор блока питания, схема которого изображена на рис. 2 может быть защищен от перегрузок и коротких замыканий нагрузки добавлением всего двух элементов — тиристора V3 и резистора R5.
Рис. 2. Принципиальная схема стабилизатора для блока питания с защитой (0-27В).
Защитное устройство срабатывает, когда ток нагрузки превысит пороговое значение, определяемое сопротивлением резистора R5. В этот момент падение напряжения на резисторе R5 достигает напряжения открывания тиристора V3 (около 1 В), он открывается, и напряжение на базе транзистора V2 уменьшается почти до нуля. Поэтому транзистор V2, а затем и V4 закрывают, отключая цепь нагрузки.
Для возвращения стабилизатора в исходный режим нужно кратковременно нажать на кнопку S1. Резистор R3 служит для ограничения тока базы транзистора V4.
Резистор R5 наматывают медным проводом. Выходное сопротивление стабилизатора можно уменьшить, если R5 включить так, как показано на схеме штриховой линией. Если при включении стабилизатора будут наблюдаться ложные срабатывания, конденсатор С2 следует исключить из устройства.
Максимальный ток нагрузки — 2 А. Вместо транзистора П701А можно использовать КТ801А, КТ801Б. Транзистор V2 можно заменить на КТ803А, КТ805А, КТ805Б, П702, П702А.
Стабилизатор с установкой порогового тока для защиты
Защитное устройство, изображенное на рис. 3, собрано на транзисторах V1 и V2 (в его состав входят также резисторы R1—R4, стабилитрон V3, переключатель S1 и лампа накаливания h2).
Требуемое значение тока срабатывания устанавливают переключателем S1. В рабочем режиме за счет базового тока, протекающего через резистор R1 (R2 или R3), транзистор V1 открыт и падение напряжения на нем невелико.
Рис. 3. Принципиальная схема стабилизатора с установкой порогового тока для защиты.
Поэтому ток в базовой цепи транзистора V2 очень мал, стабилитрон V3, включенный в прямом направлении, и транзистор V2 закрыты.
С увеличением тока нагрузки стабилизатора падение напряжения на транзисторе V1 увеличивается. В некоторый момент стабилитрон V3 открывается, вслед за ним открывается транзистор V2, что приводит к закрыванию транзистора V1. Теперь на этом транзисторе падает почти все входное напряжение, и ток через нагрузку резко уменьшается до нескольких десятков миллиампер.
Лампа Н1 загорается, указывая на срабатывание предохранителя. В исходный режим его возвращают, кратковременно отключая от сети. Коэффициент стабилизации — около 20.
Транзисторы V1 и V7 установлены на теплоотводах с эффективной площадью теплового рассеяния около 250 см2 каждый. Стабилитроны V4 и V5 укреплены на медной теплоотводящей пластине размерами 150 X 40 X 4 мм. Налаживание электронного предохранителя сводится к подбору резисторов R1—R3 по требуемому току срабатывания.
Лампа h2 типа КМ60-75.
Электронно-механическое устройство защиты от перенагрузки
Электронно-механическое устройство защиты, схема которого изображена на рис. 4, срабатывает в два этапа — сначала выключает питание электронного устройства, затем полностью блокирует нагрузку контактами К1.1 электромеханического реле К1. Оно состоит из транзистора V3, нагруженного двухобмоточным электромагнитным реле К1, стабилитрона V2, диодов V1, V4 и резисторов R1 и R2.
Рис. 4. Электронно-механическое устройство защиты, принципиальная схема.
Каскад на транзисторе V3 сравнивает напряжение на резисторе R2, пропорциональное току нагрузки стабилизатора, с напряжением на стабилитроне V2, включенном в прямом направлении.
При перегрузке стабилизатора напряжение на резисторе R2 становится больше напряжения на стабилитроне, и транзистор V3 открывается. Благодаря действию положительной обратной связи между цепями коллектора и базы этого транзистора в системе транзистор V3 — реле К1 развивается блокинг-процесс.
Длительность импульса — около 30 мс (в случае применения реле РМУ, паспорт РС4.533.360СП). Во время импульса напряжение на коллекторе транзистора V3 резко уменьшается.
Это напряжение через диод V4 передается на базу регулирующего транзистора V5 (напряжение на базе транзистора становится положительным относительно эмиттера), транзистор закрывается, и ток через цепь нагрузки резко уменьшается.
Одновременно с открыванием транзистора V3 начинает увеличиваться ток через коллекторную обмотку реле К1, и через 10 мс оно срабатывает, самоблокируется и отключает цепь нагрузки контактами К1.1. Для восстановления рабочего режима на короткое время отключают напряжение сети. Защита срабатывает при токе 0,4 А, коэффициент стабилизации равен 50.
Защита от перенагрузки по току с использованием динисторного оптрона
В защитном устройстве, схема которого изображена на рис. 5, используют динисторный оптрон V6, что повышает быстродействие защиты. При токе нагрузки, меньшем порогового, электронный ключ на транзисторах V1—V3 открыт, индикаторная лампа h2 горит, а оптрон выключен (светодиод не горит, фототиристор закрыт).
Рис. 5. Схема защиты от перенагрузки по току с использованием динисторного оптрона.
Как только ток нагрузки достигнет порогового значения, падение напряжения на резисторах R5, R6 возрастает настолько, что включится оптрон, через фототиристор которого на базу транзистора V1 поступит положительное напряжение, и электронный ключ закроется. В рабочее состояние устройство возвращают кратковременным нажатием на кнопку S1.
Напряжение на нагрузке возрастает медленно, со скоростью зарядки конденсатора C1. Это устраняет броски тока, вызывающие либо ложное срабатывание защиты» либо выход из строя деталей нагрузки при включении питания.
Порог срабатывания устанавливают резистором R5. Для транзисторов V2, V3 требуется теплоотвод площадью 100. 200 см2. Максимальный ток нагрузки 5 А, минимальный ток срабатывания 0,4 А.
Источник: Борноволоков Э. П., Фролов В. В. – Радиолюбительские схемы.
Защита в блоках питания ATX для компьютеров
Опубликовано 12.11.2018 автор Андрей Андреев — 0 комментариев
Приветствую вас, друзья! При работе любого электронного устройства могут возникнуть «завихрения», которые при отсутствии страховки, способны вывести его из строя, а в случае с БП в ПК – еще и несколько компонентов в придачу. Тема сегодняшней публикации – защита в блоках питания, с описанием всех необходимых опций. И так начнем.
Power Good
Из-за специфики конструкции устройства, при включении, напряжение на выходе достигает необходимой величины не мгновенно, а по истечении 0,02 секунд.
Для того, чтобы исключить подачу пониженного напряжения к потребителям энергии, что может негативно сказаться на их работе, и обеспечить необходимые номиналы в 3,3, 5 и 12 Вольт, в блоках ATX выделена специальная линия, которая подает сигнал о нормальной работе БП.
Маркируется такой кабель серым цветом и, как и остальные, подключается к материнской плате. При отсутствии сигнала на линии, компьютер попросту не включится.
Защита от перепадов напряжения
От перенапряжения и его недостатка, компьютер защищает одна и та же схема, отключающая девайс, если напряжение на любой из линий не соответствует номинальному. Обозначается функция английской аббревиатурой UVP / OVP.
Некоторое неудобство в том, что контрольные точки, при достижении которых срабатывает защита, могут находиться на некотором удалении от номинального напряжения, но при этом устройство будет соответствовать спецификации ATX.
Например, допускается подача напряжения до 15 Вольт, однако при длительной работе в таком режиме, комплектующие могут попросту перегореть.
Защита от перегрузки по току
Как мы помним, сила тока – еще одна, не менее важная его характеристика. Согласно международным стандартам оргтехники, один проводник не может передавать более 240 Вольт-Ампер, то есть 240 Ватт, в случае с постоянным током.
Максимально нагруженная цепь с напряжением 12 Вольт передаст не более 20 Ампер. При таком раскладе создать БП мощностью более 300 Ватт, не получится.
Для обхода этого ограничения, выводы 12 Вольт разбиваются на несколько групп с отдельной защитой по току (OCP) для каждой. При этом некоторые производители откровенно халтурят, используя только одну защитную схему, к которой подключаются все выводы, а срабатывает защита уже при 40 Амперах.
Определить «на глаз», какой именно подход использован, возможно только при разборке устройства и проверке его электрических цепей. Поэтому советую покупать комплектующие только тех брендов, в качестве продукции которых, вы уверены.
Защита от короткого замыкания
От КЗ блок питания защищает простая схема SCP, которая используется уже пару десятков лет. Для активации, достаточно пары транзисторов, при этом вовсе необязательно задействовать систему мониторинга рабочих параметров устройства.
Защита от перегрева
OTP выключает девайс, когда его температура достигает заданного значения. Схема присутствует только в качественных устройствах и базируется на паре термисторов, прикрепленных к радиатору или печатной плате.
Более сложный вариант – когда при превышении температуры, термистор заставляет быстрее вращаться кулер, регулируя рабочие параметры.
Защита по питанию
OPP или OPL – опциональный вид защиты, реализованный, с помощью специального контроллера или мониторинговой микросхемы. Схема контролирует количество тока, потребляемого из сети, и отключает БП при превышении определенного порога.
Найти любые по мощности и прочим характеристикам блоки питания для компьютера, а также все остальные комплектующие, вы можете в этом интернет-магазине.
Также советую ознакомиться с публикациями «Что значит PFC в блоке питания» и «Сертификаты БП для ПК». Рейтинг лучших устройств вы найдете здесь.
Спасибо за внимание и до следующих встреч на страницах моего блога! Подпишитесь на новостную рассылку, чтобы быть в курсе последних обновлений.
С уважением, автор блога Андрей Андреев
РЕГУЛИРУЕМЫЙ БЛОК ПИТАНИЯ С ЗАЩИТОЙ
У каждого радиолюбителя, регулярно занимающегося конструированием электронных устройств, думаю, имеется дома регулируемый блок питания. Штука действительно удобная и полезная, без которого, испробовав его в действии, обходиться становится трудно. Действительно, нужно ли нам проверить, например светодиод, то потребуется точно выставлять его рабочее напряжение, так как при значительном превышении подаваемого напряжения на светодиод, последний может просто сгореть. Также и с цифровыми схемами, выставляем выходное напряжение по мультиметру 5 вольт, или любое другое нужное нам и вперед.
Многие начинающие радиолюбители, сначала собирают простой регулируемый блок питания, без регулировки выходного тока и защиты от короткого замыкания. Так было и со мной, лет 5 назад собрал простой БП с регулировкой только выходного напряжения от 0,6 до 11 вольт. Его схема приведена на рисунке ниже:
Но несколько месяцев назад решил провести апгрейд этого блока питания и дополнить его схему небольшой схемкой защиты от короткого замыкания. Эту схему нашел в одном из номеров журнала Радио. При более детальном изучении выяснилось, что схема во многом напоминает приведенную выше принципиальную схему, собранного мной ранее блока питания. При коротком замыкании в питаемой схеме светодиод индикации КЗ гаснет, сигнализируя об этом, и выходной ток становится равен 30 миллиампер. Было решено, взяв часть этой схемы дополнить свою, что и сделал. Оригинал, схему из журнала Радио, в которую входит дополнение, привожу на рисунке ниже:
На следующем рисунке показывается часть этой схемы, которую нужно будет собрать.
Номинал некоторых деталей, в частности резисторов R1 и R2, нужно пересчитать в сторону увеличения. Если у кого-то остались вопросы, куда подсоединять выходящие провода с этой схемы, приведу следующий рисунок:
Еще дополню, что в собираемой схеме, вне зависимости, будет это первая схема, или схема из журнала Радио необходимо поставить на выходе, между плюсом и минусом резистор 1 кОм. На схеме из журнала Радио это резистор R6. Дальше осталось протравить плату и собрать все вместе в корпусе блока питания. Зеркалить платы в программе Sprint Layout не нужно. Рисунок печатной платы защиты от короткого замыкания:
Примерно месяц назад мне попалась на глаза схема приставки регулятора выходного тока, которую можно было использовать совместно с этим блоком питания. Схему взял с этого сайта. Тогда собрал эту приставку в отдельном корпусе и решил подключать её по мере необходимости для зарядки аккумуляторов и тому подобных действий, где важен контроль выходного тока. Привожу схему приставки, транзистор кт3107 в ней заменил на кт361.
Но впоследствии пришла в голову мысль соединить, для удобства, все это в одном корпусе. Открыл корпус блока питания и посмотрел, места осталось маловато, переменный резистор не поместится. В схеме регулятора тока используется мощный переменный резистор, имеющий довольно большие габариты. Вот как он выглядит:
Тогда решил просто соединить оба корпуса на винты, сделав соединение между платами проводами. Также поставил тумблер на два положения: выход с регулируемым током и нерегулируемым. В первом случае, выход с основной платы блока питания соединялся с входом регулятора тока, а выход регулятора тока шел на зажимы на корпусе блока питания, а во втором случае, зажимы соединялись напрямую с выходом с основной платы блока питания. Коммутировалось все это шести контактным тумблером на 2 положения. Привожу рисунок печатной платы регулятора тока:
На рисунке печатной платы, R3.1 и R3.3 обозначены выводы переменного резистора первый и третий, считая слева. Если кто-то захочет повторить, привожу схему подключения тумблера для коммутации:
Печатные платы блока питания, схемы защиты и схемы регулировки тока прикрепил в архиве. Материал подготовил AKV.
Originally posted 2018-11-23 07:09:50. Republished by Blog Post Promoter
УСТРОЙСТВО ЗАЩИТЫ ДЛЯ ЛЮБОГО БЛОКА ПИТАНИЯ
Это небольшой блок универсальной защиты от короткого замыкания, что предназначен для использования в сетевых источниках питания. Она специально разработана так, чтобы вписаться в большинство блоков питания без переделки их схемы. Схема, несмотря на наличие микросхемы, очень проста для понимания. Сохраните её на компьютер, чтоб увидеть в лучшем размере.
Схема блока защиты БП
Чтобы спаять схему вам понадобится:
- 1 — TL082 сдвоенный ОУ
- 2 — 1n4148 диод
- 1 — tip122 транзистор NPN
- 1 — BC558 PNP транзистор BC557, BC556
- 1 — резистор 2700 ом
- 1 — резистор 1000 ом
- 1 — резистор 10 ком
- 1 — резистор 22 ком
- 1 — потенциометр 10 ком
- 1 — конденсатор 470 мкф
- 1 — конденсатор 1 мкф
- 1 — нормально закрытый выключатель
- 1 — реле модели Т74 «G5LA-14»
Подключение схемы к БП
Здесь резистор с низким значением сопротивления соединен последовательно с выходом источника питания. Как только ток начинает течь через него, появится небольшое падение напряжения и мы будем использовать это падение напряжения, чтобы определить, является ли питание результатом перегрузки или короткого замыкания. В основе этой схемы операционный усилитель (ОУ) включенный в качестве компаратора.
- Если напряжение на неинвертирующем выходе выше, чем на инвертирующем, то на выходе устанавливается «высокий» уровень.
- Если напряжение на неинвертирующем выход ниже, чем на инвертирующем, то на выходе устанавливается «низкий» уровень.
Правда это не имеет ничего общего с логическим 5 вольтовым уровнем обычных микросхем. Когда ОУ находится в «высоком уровне», его выход будет очень близким к положительному потенциалу напряжения питания, поэтому, если питание +12 В, «высокий уровень» будет приближаться к +12 В. Когда ОУ находится в «низком уровне», его выход будет почти на минусе напряжения питания, поэтому, близко к 0 В.
При использовании ОУ в качестве компараторов, мы обычно имеем входной сигнал и опорное напряжение для сравнения этого входного сигнала. Итак, у нас есть резистор с переменным напряжением, которое определяется в соответствии с током, который течет через него и опорным напряжением. Этот резистор является наиболее важной частью схемы. Он подключен последовательно с питанием выходного. Вам необходимо выбрать резистор, падение напряжения на котором составляет примерно 0.5~0.7 вольт при перегрузке тока, проходящего через него. Ток перегрузки появляется в тот момент, когда схема защиты срабатывает и закрывает выход питания для предотвращения повреждений на нем.
Вы можете выбрать резистор, используя закон Ома. Первое, что нужно определить, является перегрузка током блока питания. Для этого надо знать максимальный допустимый ток блока питания.
Допустим, ваш блок питания может выдать 3 ампера (при этом напряжение блока питания не имеет значения). Итак, мы получили Р= 0,6 В / 3 А. Р = 0.2 Ом. Следующее, что вы должны сделать, это рассчитать рассеиваемую мощность на этом резисторе по формуле: Р=V*I. Если мы используем наш последний пример, то получим: Р=0.6 В * 3 А. Р = 1,8 Вт — 3 или 5 Вт резистора будет более чем достаточно.
Чтобы заставить работать схему, вы должны будете подать на неё напряжение, которое может быть от 9 до 15 В. Для калибровки подайте напряжение на инвертирующий вход ОУ и поверните потенциометр. Это напряжение будет увеличиваться или уменьшаться в зависимости от стороны, куда вы поворачиваете его. Значение необходимо скорректировать согласно коэффициента усиления входного каскада 0.6 Вольт (что-то около 2.2 до 3 вольт если ваш усилительного каскада похож на мой). Эта процедура занимает некоторое время, и лучший способ для калибровки это метод научного тыка. Вам может потребоваться настроить более высокое напряжение на потенциометре, так чтоб защита не срабатывала на пиках нагрузки. Скачать файл проекта.
Поделитесь полезными схемами
ЭЛЕКТРОННЫЙ ЗАМОК ДЛЯ ВХОДНОЙ ДВЕРИ Электронные дверные замки для дома. Развитие высоких технологий уже прочно и надежно вошло в нашу жизнь, и захватила все ее сферы. Разработки в этой сфере проявляются в полную силу в окружающем мире, ведь в нашем мире практически невозможно встретить человека который бы не пользовался мобильными телефонами, компьютерами и другой оргтехникой. |
СХЕМА ИНВЕРТОРА По сути инвертор — это преобразователь постоянного тока в переменный ток. Причем получить на выходе можно любой ток, с практически любыми необходимыми параметрами. |
ПРОСТАЯ САМОДЕЛЬНАЯ РАЦИЯ Схема простой самодельной радиостанции состоит из ВЧ генератора и ЗЧ-усилителя. Обе части работают как на прием, так и на передачу. Приемник – сверх регенеративный детектор. Сигнал снимается с коллектора транзистора VT1. Передатчик представляет собой ЗЧ-усилитель, нагруженный ВЧ-генератором, с выходом сигнала на телескопическую антенну. |
УСТРОЙСТВО ТРАНСФОРМАТОРА Схема включения, устройство и принцип действия стандартного сетевого трансформатора на входное напряжение 220 В. |
ПАЯЛЬНЫЕ ПРИНАДЛЕЖНОСТИ ДЛЯ ПАЙКИ Как показывает практика, паяльные компоненты времен нерушимого союза были самыми хорошими и со мной согласятся все радиолюбители. Радиолюбительский паяльник должен иметь оптимальную мощность 20-35 ватт. |
Принцип и применение схемы защиты от сверхтока
Теплые советы: Слово в этой статье составляет около 2800, а время чтения — около 15 минут.
Сводка
Многие электронные устройства имеют номинальный ток. Как только устройство превысит номинальный ток, он сожжет устройство. Таким образом, эти устройства делают модуль защиты по току, когда ток превышает установленный ток, устройство автоматически отключается, чтобы защитить устройство, которое является защитой от перегрузки по току.Такие, как интерфейс USB на материнской плате компьютера, защита от перегрузки по току USB, как правило, должна защищать материнскую плату, не сгорает. В этой статье вы узнаете, что такое максимальная токовая защита, типы защиты от сверхтока; его принцип и применение.
Каталог
I Что такое защита от перегрузки по току
Защита от перегрузки по току (Over Current Protection) — это действие устройства защиты по току, когда ток превышает заранее установленный максимум.Когда ток, протекающий через защищаемый оригинал, превышает заданное значение, срабатывает защитное устройство, и время используется для обеспечения селективности действия, отключения автоматического выключателя или подачи сигнала тревоги.
Многие электронные устройства имеют номинальный ток. Как только устройство превысит номинальный ток, он сожжет устройство. Таким образом, эти устройства делают модуль защиты по току, когда ток превышает установленный ток, устройство автоматически отключается, чтобы защитить устройство, которое является защитой от перегрузки по току.Такие, как интерфейс USB на материнской плате компьютера, защита от перегрузки по току USB, как правило, должна защищать материнскую плату, не сгорает.
Цепь питания с функцией максимальной токовой защиты
Защита от перегрузки по току включает защиту от короткого замыкания и защиту от перегрузки. Защита от короткого замыкания характеризуется большим током уставки и мгновенным действием. Расцепители электромагнитного тока (или реле), предохранители часто используются в качестве компонентов защиты от короткого замыкания.Защита от перегрузки характеризуется меньшим током уставки, обратнозависимой выдержкой времени. Тепловые реле, реле электромагнитного тока с задержкой, обычно используемые в качестве компонентов защиты от перегрузки.
Предохранителитакже обычно используются в качестве компонентов защиты от перегрузки без значительного ударного тока.
В системе TN, при использовании предохранителей для защиты от короткого замыкания, номинальный ток расплава должен быть менее 1/4 фазного тока короткого замыкания. с защитой автоматического выключателя ток уставки расцепителя максимального тока мгновенного срабатывания или срабатывания с короткой задержкой должен быть меньше 2/3 тока однофазного короткого замыкания
более интуитивно изучите информацию о максимальной токовой защите:
Как защитить цепи от скачков максимального тока
II Как работает защита от сверхтока?
В случае межфазного короткого замыкания, ненормального увеличения нагрузки в электросети или снижения уровня изоляции, ток внезапно возрастет, а напряжение внезапно упадет.Защита от перегрузки по току предназначена для установки рабочего тока реле тока в соответствии с требованиями селективности линии. Когда ток короткого замыкания в линии достигает значения срабатывания реле тока, реле тока действует в соответствии с избирательными требованиями устройства защиты, выборочно отключая линию короткого замыкания и запуская реле времени через свои контакты. После заданной задержки реле времени касается точки замкнутой, катушки отключения автоматического выключателя включается, автоматический выключатель срабатывает, линия неисправности отключена, и одновременно срабатывает сигнальное реле, сигнальная панель падает, и включается световой или звуковой сигнал.
При возникновении непредвиденных условий, таких как короткое замыкание нагрузки, перегрузка или отказ цепи управления, через переключающий транзистор в регуляторе протекает чрезмерный ток, что увеличивает потребляемую мощность лампы и выделяет тепло. Если нет устройства защиты от сверхтока, мощный переключающий транзистор может быть поврежден. Поэтому в импульсных регуляторах обычно используется максимальная токовая защита. Самый экономичный и удобный способ — использовать предохранитель.Из-за небольшой теплоемкости транзисторов обычные предохранители, как правило, не могут обеспечить защиту. Обычно используются быстродействующие предохранители. Преимущество этого метода заключается в простоте защиты, но необходимо выбирать характеристики предохранителя в соответствии с требованиями безопасной рабочей зоны конкретного переключающего транзистора. Недостатком этой меры защиты от сверхтоков является неудобство частой замены предохранителей.
Схема максимальной токовой защиты инвертора
Токоограничивающая защита и защита от отключения по току, обычно используемые в линейных регуляторах, могут применяться в импульсных регуляторах.Однако в соответствии с характеристиками импульсного регулятора выход этой схемы защиты не может напрямую управлять переключающим транзистором, но выход максимальной токовой защиты должен быть преобразован в импульсную команду для управления модулятором для защиты переключающего транзистора. Чтобы обеспечить защиту от перегрузки по току, обычно необходимо использовать в цепи последовательно включенный резистор выборки, что повлияет на эффективность источника питания, поэтому он в основном используется в импульсных стабилизаторах малой мощности.В импульсных регулируемых источниках питания большой мощности, учитывая потребляемую мощность, следует по возможности избегать использования резистора выборки. Поэтому защиту от сверхтока обычно преобразуют в защиту от повышенного и пониженного напряжения.
Защитное устройство предусмотрено в начале рассматриваемой цепи (см. Следующий рисунок)
Действует для отключения тока за время короче, чем указано характеристикой I2t кабельной проводки цепи
Но позволяя максимальному току нагрузки IB течь бесконечно
Характеристики изолированных проводов при токах короткого замыкания в течение периодов до 5 секунд после возникновения короткого замыкания можно приблизительно определить по формуле:
I2t = k2 S2
, который показывает, что допустимое количество выделяемого тепла пропорционально квадрату площади поперечного сечения кондуктора.
где
t = Продолжительность тока короткого замыкания (секунды)
S = Площадь поперечного сечения изолированного проводника (мм2)
I = ток короткого замыкания (среднеквадратичное значение)
k = постоянная изолированного проводника (значения k приведены на рисунке 5)
Максимально допустимый ток для данного изолированного проводника зависит от окружающей среды. Например, для высокой температуры окружающей среды (θa1> θa2) Iz1 меньше Iz2 (см. Рис. 5). θ означает «температура».
Примечание:
ISC = трехфазный ток короткого замыкания
ISCB = номинальный 3-фазн. ток отключения выключателя при коротком замыкании
Ir (или Irth) [1] = регулируемый «номинальный» уровень тока; например автоматический выключатель с номинальным током 50 А может регулироваться таким образом, чтобы он имел защитный диапазон, то есть уровень обычного отключения при перегрузке по току, аналогичный уровню автоматического выключателя на 30 А.
III Типы максимальной токовой защиты
Комплексный тип: разнообразные защиты в линейке.
Ограниченный тип мощности: ограниченный выход общей мощности
Перемотанный тип: начальный ток постоянный, напряжение падает до определенного значения, ток начал уменьшаться.
Тип игры: перегрузка по току, текущее напряжение упало до 0, а затем начало снова и снова расти.
Постоянный ток: постоянный ток, падение напряжения
Сравнение нескольких методов защиты от сверхтоков
В таблице 1 перечислены несколько методов защиты от сверхтоков.
Режим цепи | Используемые компоненты | Сложность отладки | Степень защиты | Потребляемая мощность | Влияние на эффективность |
Резистор первичной цепи ограничения тока | несколько | легкий | Плохо | большой | больше |
Цепь ограничения тока основного привода | меньше | проще | хуже | крупнее | большой |
Нет цепи ограничения тока питания | подробнее | проще | лучше | меньше | меньше |
555 таймер цепи ограничения тока | много | легкий | хорошо | малая | малая |
IV Примеры применения схемы защиты от перегрузки по току
Защита от перегрузки по току — это когда ток короткого замыкания в цепи достигает значения срабатывания реле тока, ток реле тока устанавливается в соответствии с требованиями селективности линии.Термисторы PTC для максимальной токовой защиты уменьшают остаточный ток, ограничивая потребление всей линии путем внезапного изменения их сопротивления. Они могут заменить традиционный предохранитель, широко используемый в двигателях, трансформаторах, импульсных источниках питания, электронных схемах, тепловой защите от сверхтоков, традиционный предохранитель не может быть восстановлен после перегорания линии, а защита от сверхтока с помощью термистора PTC после неисправность устранена. Может быть восстановлена до состояния предварительной защиты, когда неисправность возникает снова, может быть достигнута функция защиты от перегрузки по току.
4.1 Трансформатор
Первичное напряжение трансформатора напряжения составляет 220 В, вторичное напряжение — 16 В, вторичный ток — 1,5 А, первичный ток вторичной аномалии составляет около 350 мА, состояние защиты должно быть введено через 10 минут, рабочая температура трансформатора составляет -10-40 ℃, 15 ~ 20 ℃, термистор PTC установлен рядом с трансформатором, выберите термистор PTC для первичной защиты.
При напряжении трансформатора 220 В, с учетом колебаний мощности максимальное рабочее напряжение должно достигать 220 В × (1 + 20%) = 264 В
Выбор максимального рабочего напряжения термистора PTC 265 В.
После расчета и фактического измерения первичный ток трансформатора составляет 125 мА, когда он работает нормально. Учитывая, что температура окружающей среды термистора PTC составляет до 60 ℃, можно определить, что нерабочий ток должен составлять 130 ~ 140 мА при 60 ℃.
Принимая во внимание положение установки термистора PTC, температура окружающей среды может достигать -10 ℃ или 25 ℃, рабочий ток может быть определен при -10 ℃ или 25 ℃, должно быть 340 ~ 350 мА, время работы около 5 минут.
Термистор PTC последовательно в первичной обмотке, результирующее падение напряжения должно быть как можно меньше, сам термистор PTC, мощность нагрева должна быть как можно меньшей, общее падение напряжения термистора PTC должно быть менее 1% от общей мощности , R25 Вычислено:
220 В × 1% ÷ 0,125 А = 17,6 Ом
Фактическое измерение, короткое замыкание вторичной обмотки трансформатора, первичный ток до 500 мА, с учетом короткого замыкания первичной обмотки, когда проходит большая часть тока, термистор PTC для определения максимального тока выше 1 А.
С учетом того, что температура окружающей среды термистора PTC в месте установки может достигать 60 ℃, выбранная температура Кюри должна быть на основе 100 ℃. Но, учитывая низкую стоимость и термистор PTC, который не установлен в корпусе трансформаторной линии, более высокая температура поверхности не окажет неблагоприятного воздействия на трансформатор. Таким образом, температура может быть выбрана для температуры Кюри 120 ℃, так что термистор PTC может уменьшить диаметр, и можно снизить стоимость.
В соответствии с вышеуказанными требованиями см. Лист технических данных, выбранный стандарт, как показано ниже:
А именно: максимальное рабочее напряжение 265 В, номинальное сопротивление нулевой мощности 15 Ом ± 25%, рабочий ток 140 мА, рабочий ток 350 мА, максимальный ток 1,2 А, температура Кюри 120 ℃ и максимальный размер 11,0 мм.
4.2 Двигатель
Когда двигатель запускается, нажмите кнопку блокировки SBi, запуск завершен (после стабилизации скорости двигателя), снова нажмите SBi, и схема защиты сработает.Для двигателей с коротким временем пуска (например, несколько секунд) SBi также может использовать обычные кнопки, если SBi удерживается нажатой во время процесса запуска.
Когда двигатель работает нормально, вторичный индуцированный потенциал трансформатора тока TAi ~ TA3 невелик, и его недостаточно для срабатывания тиристора V. Как показано ниже.
Схема защиты от перегрузки по токуВ в конструкции импульсного источника питания
Импульсный источник питания обычно используется в схеме защиты от перегрузки по току.
Через преобразователь вторичный ток, полученный преобразователем I / V, преобразуется в напряжение. После того, как напряжение принимает форму постоянного тока, оно сравнивается с установленным значением компаратором напряжения. Если напряжение постоянного тока больше установленного значения, выдается идентификационный сигнал. Однако этот датчик обнаружения обычно используется для контроля индукционного источника питания тока нагрузки. Поэтому мы должны принять следующие меры. Поскольку пусковой ток в несколько раз превышает номинальный ток при запуске индуктивного источника питания и намного больше, чем ток в конце запуска.в случае простого контроля текущей батареи, необходимый выходной сигнал должен быть получен при запуске индуктивного источника питания. Мы должны использовать таймер, чтобы установить время запрета, чтобы индукционный источник питания не получал ненужный выходной сигнал до окончания запуска. По истечении таймера блок питания перейдет в состояние запланированного мониторинга.
Импульсный источник питания генерирует высокий пусковой ток при включении питания. Следовательно, устройство плавного пуска для предотвращения броска тока должно быть установлено на входе источника питания, чтобы эффективно снизить пусковой ток до допустимого диапазона.Пусковой ток в основном вызван зарядкой конденсатора фильтра, конденсатор на обмене показал меньшее сопротивление в начале включения переключателя. При отсутствии каких-либо защитных мер пусковой ток может приближаться к сотням А.
Импульсный вход источника питания обычно использует схему фильтрации конденсаторов, показанную на рисунке 6, конденсатор фильтра C может использовать низкочастотные или высокочастотные конденсаторы, низкочастотный конденсатор должен быть параллелен емкости высокочастотных конденсаторов, чтобы нести заряд и ток разряда.На рисунке резистор ограничения тока Rsc, который вставлен между выпрямлением и фильтрацией, предназначен для предотвращения воздействия пускового тока. Замыкание Rsc ограничивает зарядный ток конденсатора C. И через некоторое время напряжение на C достигает заданного значения или напряжение на конденсаторе C1 достигает рабочего напряжения реле T, и Rsc замыкается. В то же время SCR может также использоваться для включения Rsc. При замыкании из-за отключения тринистора конденсатор C заряжается через Rsc.По прошествии некоторого времени SCR включается, замыкая токоограничивающий резистор Rsc.
Схема ограничения тока, изображенная на рисунке ниже, подходит для источников питания различных цепей. Выходная часть этой схемы делит землю с цепью управления.
Принцип работы: при нормальных рабочих условиях, Il, протекающий в Rsc, не будет производить большого падения напряжения, тогда Q1 не будет включен. Если ток нагрузки достаточно велик, на Rsc будет генерироваться напряжение, обеспечивающее проводимость Q1.Если Q1 находится в выключенном состоянии, а C1 будет полностью разряжен, когда Ic1 = 0, Q2 также будет в выключенном состоянии. Если ток Il постепенно увеличивается, то Il * Rsc = VbeQ1 + Ib1R1
В это время через коллектор будет протекать ток Ic1, и следующая постоянная времени будет заряжать C1 T = R2 * C1
Тогда напряжение на C1 равно: Vc1 = Ib2R3 + VbeQ2
Чтобы минимизировать нагрузочное влияние напряжения конденсатора, мы можем использовать табуретную трубку Дарлинга с более высоким HFE вместо Q2, так что базовый ток может быть ограничен до микроампер.Выбирая резистор R4, мы должны Намного больше, чем R3. Таким образом, при перегрузке по току конденсатор C1 быстро разрядится.
Значение R2 следующее:
IBL = (V1-VBEQ1) / R1
и Ic1 = HfeQ1IBLMAX
Итак, R2 «= (V1-VCEMAX) R1 / (V1-VBEQ1)
При правильной конструкции схемы VCE может быстро достичь своего значения напряжения и перевести транзистор Q2 во включенное состояние, так что управляющий сигнал регулятора может быть отключен.
Когда перегрузка будет устранена, цепь автоматически вернется в рабочее состояние.Если используется схема управления IC PWM с фиксированным компаратором ограничения тока (схема, показанная на рисунке 1B), мы помещаем резистор ограничения тока RSC на положительный вывод выхода, и можно получить хороший эффект ограничения тока.
Когда выходная мощность имеет перегрузку или короткое замыкание, значение IGBT Vce становится больше. По этому принципу мы можем принять меры защиты в цепи. Обычно для этого используется специальный привод EXB841, внутренняя схема которого может быть выполнена хорошо до затвора и плавного отключения, и имеет функцию внутренней задержки.Вы можете устранить помехи, вызванные неисправностью. Его принцип работы показан на рисунке 8. Информация о перегрузке по току Vce с IGBT не отправляется непосредственно на вывод 6 контроля напряжения коллектора EXB841, а быстро восстанавливается диодом VD1. Затем подключается к выводу 6 EXB841 через выход компаратора IC1. Устранение прямого падения напряжения зависит от текущей ситуации, использование порогового компаратора для повышения точности определения тока. В случае перегрузки по току драйвер: Схема низкоскоростного отключения EXB841 будет медленно отключать IGBT, чтобы не допустить повреждения устройств IGBT скачками тока коллектора.
VI Заключение
В последнее время широкое распространение получил импульсный источник питания, к надежности которого также предъявляются повышенные требования. После выхода из строя электронного продукта, если входной конец электронного продукта закорочен или выходной конец открыт, источник питания должен отключить выходное напряжение, чтобы защитить силовой MOSFET и выходное устройство от повреждения. В противном случае электронное изделие может получить дальнейшее повреждение или даже стать причиной поражения электрическим током и возгорания операторов.Следовательно, необходимо улучшить защиту импульсного источника питания от перегрузки по току.
Рекомендация книги
Руководство по внедрению защиты электроэнергии как в новых, так и в существующих системах на индивидуальных и коммерческих объектах. Сосредоточившись на системах в диапазоне низкого и среднего напряжения, книга помогает в решении проблем защиты и координации с использованием микрокомпьютеров, а также более традиционных методов. В тексте приведены пошаговые инструкции для быстрого решения проблем.В нем показано, как проектировать интеллектуальное распределительное устройство, и представлена важная информация по настройке рабочей станции защиты и координации. Текст должен соответствовать требованиям Национального электротехнического кодекса и Национального института стандартов.
— Майкл А. Энтони (Автор)
Релевантная информация об «Истории интегральной схемы и ее типах упаковки»
О статье «Интеграция истории схем и ее типов упаковки». Если у вас есть лучшие идеи, не стесняйтесь писать свои мысли в следующей области комментариев.Вы также можете найти больше статей об электронных полупроводниках через поисковую систему Google или обратиться к следующим связанным статьям.
Защита линий передачи по току несущей — методы и преимущества
Схема защиты по току несущей в основном используется для защиты длинных линий передачи. В схемах защиты по току несущей, фазовый угол тока в двух фазах линии сравнивается вместо фактического тока.А затем фазовый угол линии определяет, является ли повреждение внутренним или внешним. Основными элементами несущего канала являются передатчик, приемник, соединительное оборудование и линейный ловушка.
Приемник несущего тока принимает несущий ток от передатчика на дальнем конце линии. Приемник преобразует полученный несущий ток в постоянное напряжение, которое можно использовать в реле или другой схеме, выполняющей любую желаемую функцию. Напряжение равно нулю, когда несущий ток не принимается.
Линейный перехватчик вставляется между шиной и соединением конденсатора связи с линией. Это параллельная LC-сеть, настроенная на резонанс на высокой частоте. Ловушки ограничивают ток несущей до незащищенной секции, чтобы избежать помех от одного или других смежных каналов тока несущей. Это также позволяет избежать потери сигнала несущего тока в прилегающей силовой цепи.
Разделительный конденсатор соединяет высокочастотное оборудование с одним из проводов линии и одновременно отделяет силовое оборудование от линии высокого напряжения.Нормальный ток может протекать только по линейному проводнику, в то время как сильный ток несущей будет циркулировать по линейному проводнику, оборудованному высокочастотными ловушками, через конденсатор ловушки и землю.
Методы защиты от несущего тока
Различные методы защиты несущей тока и основная форма защиты несущей тока
- Защита от смещения направления
- Защита от сравнения фаз
Эти типы подробно описаны ниже
1.Направленная защита сравнения
В этих схемах защиты защита может быть выполнена путем сравнения неисправности направления потока мощности на двух концах линии. Операция выполняется только тогда, когда питание на обоих концах линии подается на шину в направлении линии. После сравнения направления реле пилот-сигнала несущей сообщает оборудованию, как направленное реле ведет себя на другом конце при коротком замыкании.
Реле на обоих концах устраняет неисправность шины.Если неисправность находится в секции защиты, мощность течет в защитном направлении, а при внешней неисправности мощность течет в противоположном направлении. Во время неисправности простой сигнал через пилот-сигнал несущей передается от одного конца к другому. Релейные схемы защиты пилот-сигнала, используемые для защиты передачи, в основном подразделяются на два типа. Их
- Схема защиты от блокировки несущей — Схема защиты от блокировки несущей ограничивает работу реле.Он блокирует неисправность до входа в защищаемый участок системы. Это одна из самых надежных схем защиты, поскольку она защищает оборудование системы от повреждений.
- Схема блокировки, разрешающая несущую — Схема защиты несущей позволяет току короткого замыкания проникать в защищаемую часть системы.
2. Защита несущей для сравнения фаз
Эта система сравнивает соотношение фаз между током, входящим в пилотную зону, и током, выходящим из защищаемой зоны.Текущие величины не сравниваются. Он обеспечивает только основную или основную защиту, также должна быть предусмотрена резервная защита. Принципиальная схема схемы защиты несущей сравнения фаз показана на рисунке ниже.
ТТ линии передачи питают сеть, которая преобразует выходной ток ТТ в однофазное синусоидальное выходное напряжение. Это напряжение подается на передатчик несущего тока и устройство сравнения. Выходной сигнал приемника несущего тока также подается на устройство сравнения.Компаратор регулирует работу вспомогательного реле для отключения автоматического выключателя линии передачи.
Преимущество защиты от тока несущей
Ниже приведены преимущества схем защиты от несущего тока. Эти преимущества
- Имеет быстрое и одновременное срабатывание автоматических выключателей на обоих концах.
- Он имеет быстрый процесс очистки и предотвращает сотрясение системы.
- Никаких отдельных проводов для сигнализации не требуется, потому что линии электропередачи сами передают питание, а также сигнализацию связи.
- Это одновременное отключение автоматических выключателей на обоих концах линии за один-три цикла.
- Эта система лучше всего подходит для быстрого включения современных автоматических выключателей.
Основная работа оператора линии электропередачи заключалась в диспетчерском управлении, телефонной связи, телеметрии и ретрансляции.
Влияние условий короткого замыкания на ток короткого замыкания IGBT в моторных приводах
Сетевые реакторы и приводы переменного тока
Сетевые реакторы и приводы переменного тока Rockwell Automation Mequon Wisconsin Довольно часто линейные и нагрузочные реакторы устанавливаются на приводы переменного тока без четкого понимания того, почему и каковы положительные и отрицательные последствия
Дополнительная информацияРекомендации по применению AN-1070
Замечания по применению AN-1070 Зависимость характеристик усилителя звука класса D от параметров полевого МОП-транзистора Хорхе Серезо, International Rectifier Содержание страницы Аннотация… 2 Введение … 2 Ключевой полевой МОП-транзистор
Дополнительная информацияIRLR8729PbF IRLU8729PbF
Области применения l Высокочастотные синхронные понижающие преобразователи для питания процессоров компьютеров l Высокочастотные изолированные преобразователи постоянного тока в постоянный с синхронным выпрямлением для телекоммуникационного и промышленного использования Преимущества
Дополнительная информацияIRGP4068DPbF IRGP4068D-EPbF
БИПОЛЯРНЫЙ ТРАНЗИСТОР С ИЗОЛИРОВАННЫМ ЗАДВИЖЕНИЕМ С УЛЬТРА-НИЗКИМ VF-диодом ДЛЯ ИНДУКЦИОННОГО НАГРЕВА И ПЛАВНОГО ПЕРЕКЛЮЧЕНИЯ Дополнительная информация
Драйвер со стороны высокого и низкого давления
Характеристики драйвера на стороне высокого и низкого давления Обзор продукта Плавающий канал, предназначенный для работы в режиме начальной загрузки Полностью работоспособен до 200 В Устойчив к отрицательным переходным напряжениям, невосприимчив к du / dt Диапазон питания привода затвора
Дополнительная информацияУказания по применению AN-1095
Замечания по применению AN-1095 Конструкция выходного фильтра инвертора для приводов двигателей с силовыми модулями IRAMS Cesare Bocchiola Содержание Страница Раздел 1: Введение…2 Раздел 2: Конструкция выходного фильтра
Дополнительная информацияIR2110 (S) / IR2113 (S) и (PbF)
Типовой лист № PD6147 Rev.T Характеристики Плавающий канал, предназначенный для работы в режиме начальной загрузки Полностью работоспособен до + 5 В или + 6 В Устойчив к отрицательным переходным напряжениям dv / dt невосприимчив к диапазону питания привода затвора от 1
Дополнительная информацияРекомендации по применению AN-1068 reva
Замечания по применению AN-1068 reva Рекомендации по проектированию с использованием радиационно-стойких твердотельных реле Алан Таскер Содержание Введение Обзор страницы…1 Контакт … 1 Активация … 1 IR
Дополнительная информацияSMPS MOSFET. V DSS Rds (вкл.) Макс. I D
Применения l Импульсный источник питания (SMPS) l Источник бесперебойного питания l Высокоскоростной импульсный МОП-транзистор PD 92004 IRF740A HEXFET Power MOSFET V DSS Rds (on) max I D 400 В 0,55 Ом A Преимущества
Дополнительная информацияРекомендации по применению AN-983
Замечания по применению AN-983 Характеристики IGBT Содержание 1.Как IGBT дополняет силовой полевой МОП-транзистор … 2 Стр. 2. Кремниевая структура и эквивалентная схема … 2 3. Характеристики проводимости … 4
Дополнительная информацияIR2130 / IR2132 (J) (S) и (PbF)
Технический паспорт № PD619 Rev.P Характеристики Плавающий канал, разработанный для работы в режиме начальной загрузки Полностью работоспособен до +6 В Устойчив к отрицательным переходным напряжениям dv / dt невосприимчив к диапазону питания привода затвора от 1 до 2 В Пониженное напряжение
Дополнительная информацияЧто такое регенерация?
Что такое регенерация? Торможение / регенерация Обзор регенерации вручную Редакция 1.0 Когда ротор асинхронного двигателя вращается медленнее, чем скорость, установленная приложенной частотой, двигатель преобразует
Дополнительная информацияЗАЖИГАНИЕ АВТОМОБИЛЯ С IGBTS
ЗАМЕЧАНИЕ ПО ПРИМЕНЕНИЮ ЗАЖИГАНИЕ АВТОМОБИЛЯ С IGBT от M. Melito ABSTRACT IGBT используются в различных коммутационных приложениях благодаря своим привлекательным характеристикам, в частности, их пиковому току
Дополнительная информацияСАМОКОБИЛЯЮЩИЙСЯ ПОЛУМОСТОВОДИТЕЛЬ
Лист данных №PD60029 revj I2155 & (PbF) (ПРИМЕЧАНИЕ: для новых разработок мы рекомендуем новые продукты I2153 и I21531) САМОКОБИЛИРУЮЩИЙСЯ МАТРИЦА ПОЛОВИННОГО ДВИЖЕНИЯ Характеристики Плавающий канал, предназначенный для работы в режиме начальной загрузки
Дополнительная информацияРекомендации по применению AN-1040
Замечания по применению Моделирование системы AN-1040 с использованием квазидинамической модели силового полевого МОП-транзистора Содержание Страница Цель: изучить квазидинамическую модель силового полевого МОП-транзистора и ее влияние на тепловые характеристики устройства
Дополнительная информацияHFA15TB60 HFA15TB60-1
Особенности HEXFRED TM Сверхбыстрое восстановление Ультрамягкое восстановление Очень низкий I RRM Очень низкий Q rr, указанный в рабочих условиях Преимущества Снижение RFI и EMI Снижение потерь мощности в диоде и переключающем транзисторе
Дополнительная информацияIR2117 (S) / IR2118 (S) и (PbF)
Лист данных №PD14 Rev N IR2117 (S) / IR211 (S) & (PbF) Характеристики Плавающий канал, предназначенный для работы в режиме начальной загрузки Полностью работоспособен до + В Устойчив к отрицательным переходным напряжениям dv / dt невосприимчив к питанию затвора
Дополнительная информацияРекомендации по применению AN-940
Замечания по применению AN-940 Как МОП-транзисторы с P-каналом могут упростить схему Содержание Стр. 1. Основные характеристики силовых МОП-транзисторов с P-каналом HEXFET … 1 2.Заземленные нагрузки … 1 3. Переключение тотемных полюсов
Дополнительная информацияОсобенности. Символ JEDEC TO-220AB
Технические данные Июнь 1999 г. Номер файла 2253.2 3A, 5 В, 0,4 Ом, N-канальный силовой МОП-транзистор Это силовой полевой транзистор с кремниевым затвором с N-канальным режимом расширения, разработанный для таких приложений, как коммутация
Дополнительная информацияРасширенные темы по источникам питания
Передовые темы источников питания 2006 г. Компания Microchip Technology Incorporated.Все права защищены. Расширенные темы блоков питания Слайд 1 Добро пожаловать на веб-семинар «Продвинутые темы блоков питания». Page 1 Повестка дня
Дополнительная информацияУчебное пособие по Power MOSFET
Учебное пособие по силовому полевому МОП-транзистору Джонатан Додж, П.