Унч класса а на транзисторах – Ультралинейный усилитель класса А — JLH-69г. — Усилители мощности низкой частоты (на транзисторах) — Усилители НЧ и все к ним

Простой УНЧ класса А на транзисторе

   Рассмотрим очень простой УНЧ класса «А@? собранный всего на одном транзисторе. Помню этот усилитель собрал 2 года назад. Схема попалась мне на глаза совершенно случайно, поковырялся в своих деталях и к моему удивлению нашел нужный транзистор. Усилитель без ООС, чистый А класс ! Было решено собрать стерео вариант схемы, а поскольку она одноканальная, пришлось купить второй транзистор.

   Схема — подобие той, которую создал Нельсон Пасс, тут она значительным образом упрощена, хотя в то время у меня был дефицит с деталями, особенно трудно мне достался резистор на 15 ом, ну сейчас вы подумаете, разве 15 ом дефицит? Да друзья! Если учесть, что резистор нам нужен с мощностью в 30-40 ватт! Он в схеме будет жутко греться, а по другому и быть не могло. Тут греется все — транзистор, резистор, усилитель берет от источника питания 35-40 ватт , чтобы отдать всего 10 ватт мощности в подключенную нагрузку, не нужно забывать, что это чистый А класс! а значит все сказанное это норма, так и должно быть. Взамен мы получаем достаточно качественный усилитель со сверхминимальным количеством деталей, всего один мощный полевой транзистор и все!

   Транзистор нужно установить на громадном теплоотводе, кулер ставить не нужно. Все полярные конденсаторы нужно использовать с напряжением 35 — 50 вольт. Источник питания однополярный 24 вольта (хоть это утешает). Смещение задаётся резистором 1 мОм и потенциометром на 100 кОм. Просто установите потенциометром половину напряжения питания в точке соединения транзистора и нагрузочного резистора.

   Блок питания следует использовать ватт на 80-100, поскольку в пиках усилитель <кушает> аж 60 ватт! Диодный мост можно заменить готовой диодной сборкой на 5 ампер, можно также использовать любые 4 диода на 5-10 ампер, например очень хорошо подходят диоды серии кд2010 с любой буквой.

   Рассматривать детали конструкции смысла нет, поскольку тут все и так понятно: один транзистор, пару конденсаторов и резисторов. Регулятор громкости от 10 до 100 килоом, но его можно исключить если сигнал подается от регулируемого источника звука, например от компьютера. 

   Звучание усилителя как не странно на очень высоком уровне, многие наверное не поверят,к что такая схема способна работать без искажений, но то действительно так, искажения наблюдались только тогда, когда на вход усилителя подавал сигнал от музыкального центра, этим пытался понять какую максимальную мощность способен развивать усилитель. Ну наверное все понятно со схемой, в блоке питания тоже следует использовать конденсаторы с напряжением от 50 вольт.


Понравилась схема — лайкни!

ПРИНЦИПИАЛЬНЫЕ СХЕМЫ УНЧ

Смотреть ещё схемы усилителей

       УСИЛИТЕЛИ НА ЛАМПАХ          УСИЛИТЕЛИ НА ТРАНЗИСТОРАХ  

   

УСИЛИТЕЛИ НА МИКРОСХЕМАХ          СТАТЬИ ОБ УСИЛИТЕЛЯХ   

    

Простой транзисторный класса А

   Усилитель такого класса лучший вариант для истинных ценителей музыки. Теплый звук, по параметрам близкий к ламповому звучанию может стать отличным пополнением в вашей домашней аудиосистеме. Данная схема была успешно повторена многими радиолюбителями и до сих пор не имеет аналогов по звучанию и простоте. Создавая эту схему, автор, гениальный Джон Линсли-Худ придерживался к пословице — гениально то, что просто, и создал один из самых качественных (если не самый качественный) транзисторный усилитель мощности низкой частоты. 

   Сама схема собрана всего на 4-х транзисторах, максимальная мощность схемы доходит до 15 ватт (если чуть поднять напряжение питания). Схема может работать с динамическими головками от 4-х Ом (хотя и с головками 2 Ом работает тоже неплохо. Усилитель работает отлично даже со значительным разбросом номиналов пассивных компонентов. Входной конденсатор подбирается исходя от вашего вкуса, от его емкости зависит чувствительность усилителя к низким частотам (чем больше емкость, тем ниже частота пропускания). 

   Выходной конденсатор желательно подобрать с напряжением 25 Вольт и более, емкость 2200-4700 мкФ. Не критичны и сами транзисторы, но для наилучшего звучания следует использовать германиевые транзисторы. Для раскачки выходного каскада можно использовать отечественный КТ803 (самый оптимальный вариант), хотя можно и другие — КТ817/815 или аналогичные. В выходном каскаде можно использовать биполярные транзисторы серии 2SC5200 от производителя TOSHIBA, можно также ставить отечественные КТ803 или 805 в металлическом корпусе.

   Мощность усилителя будет зависеть от входного напряжения. На схеме приведена также небольшая табличка, в которой указаны номиналы некоторых компонентов. Эти компоненты подбираются исходя от сопротивления динамической головки и напряжения питания. Усилитель относится к категории ультралинейных усилителей класса А, КПД не более 25%. Для получении 10 ватт, вам нужен блок питания с мощностью 50-70 ватт.


Понравилась схема — лайкни!

ПРИНЦИПИАЛЬНЫЕ СХЕМЫ УНЧ

Смотреть ещё схемы усилителей

       УСИЛИТЕЛИ НА ЛАМПАХ          УСИЛИТЕЛИ НА ТРАНЗИСТОРАХ  

   

УСИЛИТЕЛИ НА МИКРОСХЕМАХ          СТАТЬИ ОБ УСИЛИТЕЛЯХ   

    

Как работает усилитель класса D, или Не такой как все / Stereo.ru

История

В мире Hi-Fi класс D имеет самую тяжелую судьбу, и его развитие происходило не благодаря объективным преимуществам, а скорее вопреки сложившемуся мнению. Началось все с того, что классу D буквально сразу повесили обидный, по мнению некоторых аудиофилов, ярлык «цифровой усилитель». И хотя некоторые принципы его работы действительно напоминают работу цифровых схем, по своей сути это абсолютно аналоговое устройство.

Еще одно заблуждение сопровождающее класс D — возраст. Есть мнение, что класс D был разработан совсем недавно и является побочным продуктом современных цифровых технологий. На самом деле, класс D имеет богатую историю, и его первые реализации проектировались еще в эпоху радиоламп. Использовать схемотехнику такого типа для усиления звука (класс D в ламповом исполнении) предложил наш соотечественник Дмитрий Агеев, и произошло это в 1951 году. Примерно в это же время над практической реализацией подобного устройства работал английский ученый Алекс Ривз, а в 1955 году их коллега Роже Шарбонье из Франции, создавая аналогичную схему, впервые применил термин «класс D».

В самом начале, когда велись главным образом теоретические изыскания, судьба класса D казалась безоблачной. Его расчетные характеристики в буквальном смысле достигали предела совершенства. Однако, первая коммерческая реализация 1964 года выявила массу слабых мест, главное из которых — невозможность добиться по-настоящему достойного качества звучания на элементной базе того времени.

Производители не оставляли надежд, и в семидесятых годах попытки вывести усилители класса D на рынок предпринимали такие гиганты Hi-Fi-индустрии, как Infinity и Sony. Обе затеи провалились по той же самой причине, что и в первый раз. Подходящие по быстродействию и классу точности транзисторы стали производиться серийно лишь в восьмидесятых годах, после чего качественная реализация усилителей класса D и стала реальностью. В наше время усилители класса D можно встретить в совершенно различных устройствах: от смартфонов и бытовой аппаратуры до студийного оборудования и High End-систем.

Принцип работы

В основе принципа работы усилителей класса D и любых его модификаций, в том числе имеющих самостоятельные буквенные обозначения (классы T, J, Z, TD и другие), лежит принцип Широтно-Импульсной Модуляции или, сокращенно, ШИМ. Модуляция сигнала как метод существует довольно давно и используется как способ хранения и передачи информации. Суть ее заключается в том, чтобы модулировать полезным сигналом некую несущую частоту. Частота выбирается таким образом, чтобы ее было удобно передавать или записывать на носитель. Процесс воспроизведения подразумевает обратную последовательность: выделение полезного сигнала из модулированной несущей частоты. По такому принципу работает и цифровая техника, и радиосвязь, и теле-радиовещание. Тонкость состоит в том, что в случае с ШИМ преследуется совершенно иная цель. Модуляция позволяет привести сигнал в такой вид, чтобы его усиление было максимально простым и эффективным процессом.

В основе схемотехники класса D лежит генератор СВЧ-импульсов (исчисляемых сотнями МГц) несущей частоты и компаратор — устройство, модулирующие эти импульсы, соответственно форме входящего аналогового сигнала. Далее все просто. Модулированный сигнал имеет форму импульсов равной амплитуды, но разной продолжительности, которые усиливаются с помощью пары симметрично включенных быстродействующих транзисторов типа MOSFET. Далее в схеме используется простейший LC-фильтр, демодулирующий усиленный сигнал, а также отсекающий несущую частоту и сопутствующий высокочастотный шум.

Упоминание транзисторов, используемых для усиления порождает резонный вопрос: «а не проще было бы сразу усилить аналоговый сигнал без всяких модуляций?». И именно этот вопрос раскрывает суть усилителей класса D. В обычных усилителях классов A, B, G и прочих их производных транзистор работает с широкополосным сигналом, постоянно меняющимся и по амплитуде, и по частоте. Поведение даже самого лучшего транзистора на разных амплитудах и частотах не 100% одинаково, что неизбежно приводит к искажениям, которые мы знаем как окрашенность или «характер» усилителя. Модулированный сигнал в усилителях класса D меняется дискретно и на полную амплитуду. Таким образом, режим работы транзисторов существенно упрощается и становится куда более прогнозируемым. По сути, они выступают в роли ключа, находясь либо в закрытом, либо в открытом состоянии без промежуточных значений.

Все, что требуется в таком режиме от транзистора — максимально быстро реагировать на изменение уровня сигнала, а поведение его на промежуточных значениях амплитуды не имеет значения. Кроме того, данный режим работы транзистора крайне положительно сказывается на энергоэффективности усилителя, доводя его теоретический КПД до 100%.

Второй наиболее очевидный вопрос касается сходства модулированного аналогового и цифрового сигналов. Обычно это даже не вопрос, а утверждение: «Усилитель класса D — цифровой, а значит правильно подавать на его вход цифровой сигнал, а не аналоговый». Процесс модуляции аналогового сигнала на входе усилителя класса D, действительно, очень напоминает то, что происходит в АЦП при оцифровке звука, однако принцип модуляции принципиально отличается от того, что используется в формате PCM.

Именно по этой причине цифровые входы интегрированных усилителей, работающих в классе D, используют вполне традиционную схему ЦАПа, с аналогового выхода которой сигнал и поступает на вход платы усилителя мощности. Таким образом, аналоговый сигнал является основным и естественным входящим сигналом для усилителей класса D.

Впрочем, существуют и исключения, которые, если разобраться более детально, ничего не меняют в общей картине, а лишь дополняют типовую схемотехнику класса D. Небезызвестный Питер Лингдорф, еще будучи разработчиком в компании NAD, успешно реализовал схему прямого преобразования PCM-потока напрямую в формат ШИМ без традиционной процедуры цифроаналогового преобразования. Эта технология получила название Direct Digital, или говоря по-русски: прямое усиление цифрового сигнала.

Таким образом удалось сократить протяженность и понизить сложность звукового тракта, а единственное цифроаналоговое преобразование в подобной схеме производится непосредственно перед акустическими клеммами. Однако стоит заметить, что для работы такого усилителя с аналоговым сигналом он должен также иметь и классический входной каскад, использующийся в традиционных усилителях класса D.

На текущий момент технология прямого усиления «цифры» еще не стала массовым явлением, вероятно, потому что г-н Лингдорф грамотно оформил патентные права на технологию или просто предпочитает не раскрывать коллегам всех секретов. Но не так давно подобная схема была успешно реализована в портативной технике, что позволяет надеяться на более широкое распространение технологии в будущем. Не исключено, что спустя некоторое время класс D действительно станет цифровым усилителем.

Плюсы

Главный плюс усилителей класса D, ради которого и затевалась история с модуляцией сигнала — энергоэффективность. Причем и в теоретических выкладках, и в реальных цифрах это дает такой прирост КПД, с которым хоть как-то может сравниться разве что переход от класса А к классам В и АВ, а все достижения класса G и прочих на его фоне кажутся довольно слабой попыткой.

Работая в импульсном режиме, половину времени транзистор проводит в полностью закрытом состоянии, а значит имеет нулевой ток покоя и не потребляет энергии. При этом в момент включения транзистор работает на полную мощность, перенаправляя всю энергию, поступающую от блока питания, на выход усилителя.

В итоге, эти самые теоретические 100% КПД при практической реализации дают действительно превосходные значения порядка 90–95%. А поскольку лишь единицы процента энергии расходуются на нагрев транзисторов, радиаторы можно использовать исчезающе малого размера. Для получения на выходе 100–200 Вт на канал усилитель класса АВ должен иметь радиаторы, занимающие одну или обе боковых стенки корпуса, а усилитель класса D обойдется кусочком алюминия размером в один-два спичечных коробка.

Кстати, то же самое можно сказать о размере платы усилителя мощности: в классе D она получается в разы компактнее, даже если собирается не на микросхемах, а на дискретных элементах. Ну и в завершение всего, усилители класса D имеют меньшую себестоимость, нежели сопоставимые по мощности модели других классов. Впрочем, последнее касается скорее DIY-проектов — производители же предпочитают вкладывать сэкономленные деньги в повышение качества звучания и прочие усовершенствования, тем более что в классе D и вправду есть что улучшать.

Минусы

Обладая совершенно убийственными преимуществами, класс D не завоевал рынок Hi-Fi целиком и полностью лишь потому, что имеет свои слабые места, которые для многих ценителей качественного звука выглядят куда более значительными, нежели энергоэффективность. Наличие в схеме высокочастотного генератора само по себе является потенциальным источником электромагнитных помех, негативно влияющих на звучание самого усилителя и на работу соседствующих с ним компонентов звукового тракта.

Неподготовленный слушатель, возможно, не заметит данного эффекта или не придаст ему значения, но в индустрии Hi-Fi и High End, когда всякая мелочь имеет значение, такое соседство не приветствуется и вынуждает инженеров совершенствовать фильтрующие схемы и идти на прочие ухищрения, чтобы исключить влияние вредоносного СВЧ-генератора несущей частоты на воспроизводимый аудиосигнал.

Высокий КПД усилителей класса D стал причиной одной специфической особенности: высокой зависимости качества и характера звучания от блока питания. Если производитель решит использовать импульсный источник питания и не озаботится достаточным количеством фильтрующих схем, часть шумов обязательно проникнет в колонки и подпортит впечатление от звучания. Плохой блок питания, конечно, и классу АВ на пользу не пойдет, но именно в классе D эта проблема проявляется наиболее остро.

Особенности

Описание плюсов и минусов схемотехники класса D дают совершенно недвусмысленные намеки на то, чем в первую очередь должны заниматься разработчики, которые стремятся добиться от усилителей максимального качественного звука.

Проблему питания усилителей класса D разработчики решают двумя способами. Одни идут проверенным путем, используя классические линейные блоки питания с огромными тороидальными трансформаторами и прочими классическими решениями. Но есть и другой путь, которым идет меньшая часть разработчиков. При должном умении вполне можно создать малошумящий импульсный блок питания, пригодный для установки в усилителях высшего класса качества. И именно они способны дать фору самым мощным и солидным линейным блокам питания за счет лучшего КПД и быстродействия, а как следствие — лучшей динамики звучания и мгновенной реакции усилителя на большие перепады уровней сигнала.

Что же касается специфики работы самого усилителя класса D, его схемотехника обеспечивает существенно более высокий коэффициент демпфирования в сравнении с классом АВ и другими схемотехническими решениями. Это гарантирует не только стабильную работу со сложной нагрузкой, быстрый, четкий бас и большой динамический диапазон, но также обеспечивает меньший уровень искажений, отсутствие каши, вялой атаки или смазывания фронтов и самое главное — способность усилителя одинаково справляться с совершенно разноплановой музыкой.

Практика

Почетная обязанность отстаивать честь усилителей класса D в нашем исследовании выпала усилителю Marantz PM-KI RUBY. Этот аппарат имеет образцово-показательную компоновку, демонстрирующую, как нужно создавать современные усилители. Два модуля Hypex NCore 500, работающие в классе D, питаются от специального малошумящего импульсного блока питания. При этом в конструкции усилителя присутствует классический предварительный каскад, выстроенный на дискретных элементах, согласно фирменной технологии HDAM от Marantz, которая использовалась и в традиционных усилителях класса АВ.

Предварительный каскад питается от линейного блока питания, тороидальный трансформатор которого, судя по размерам, имеет многократный запас мощности, чтобы никоим образом не повлиять на динамику и чистоту звучания. Другими словами, в одном корпусе сочетаются два подхода: классический для предварительного усилителя и современный для усилителя мощности.

Все это обильно приправлено типичным для High End-моделей вниманием к мелочам вроде омедненного шасси, улучшенной виброразвязки, сокращения путей сигнала, симметричной топологии плат, строгого отбора деталей по параметрам и т.п.

В результате, мы имеем едва ли не самый совершенный с технической точки зрения аппарат с коэффициентом демпфирования 500, искажениями менее 0,005% и энергопотреблением 130 Вт при выходной мощности до 200 Вт на канал при 4 Ом нагрузки. Впрочем, всякую претензию на совершенство в мире звука надлежит проверить практикой.

Звук

Усилитель выдает очень свободное красивое звучание с превосходной детализацией, богатыми тембрами и длинными естественными послезвучиями живых инструментов. Сцена выстраивается максимально точно и масштабно, с достоверной передачей пропорций и местоположения виртуальных источников звука в пространстве. Все вполне соответствует представлениям о том, как должен играть хороший усилитель категории High End. Никакой синтетики, жесткости или «дискретности», которую в звучании класса D обнаруживают некоторые адепты старой школы, не наблюдается. Напротив, Marantz PM-KI RUBY успешно сочетает лучшие объективные характеристики с фирменной утонченной и легкой подачей музыкального материала.

Это типично «марантцовское» звучание проявляется, в первую очередь, в излишней интеллигентности при воспроизведении металла и тяжелого рока. В то же время классика любых составов, джаз и вокал звучат очень живо и натурально. Весьма похожий, возможно, даже чуть более красивый и приторный характер звучания проявляли усилители Marantz прошлых лет, работающие в классе АВ, что позволяет сделать вывод о нейтральном характере звучания усилителей мощности класса D.

Подключение к усилителю Marantz PM-KI RUBY акустики разной мощности, с разной чувствительностью и разным импедансом дало вполне ожидаемый результат: отсутствие какой либо выраженной реакции на изменение этих параметров. С любой стереопарой усилитель справлялся одинаково уверенно.

Даже на самой сложной нагрузке и на высокой громкости на удивление стабильно воспроизводились нижние ноты контрабаса — они звучали абсолютно четко, без гула, с натуральной передачей ощущения вибрирующей струны и откликающейся на эту вибрацию деки инструмента. Одним словом, все происходило ровно так, как и должно происходить с усилителем, имеющим заявленное сочетание мощности и коэффициента демпфирования.

Выводы

Все основные преимущества класса D вполне подтверждаются практикой. Но если с точки зрения энергопотребления и других измеряемых характеристик ситуация абсолютно очевидная и бесспорная, звучание по-прежнему остается вопросом дискуссионным. Класс D в чистом виде дает максимально качественный и, как следствие, — нейтральный, не окрашенный звук. Такое придется по вкусу далеко не всем и с наименьшей степенью вероятности порадует тех, чьи предпочтения формировались через прослушивание ламповой и прочей ретро-техники. С этой точки зрения разработчики Marantz продемонстрировали житейскую мудрость, придав своему усилителю фирменный характер звучания путем установки оригинальных модулей предварительного усиления. Одновременно с этим существуют другие производители, в том числе адепты максимально точного и нейтрального звучания, которые используют потенциал класса D, согласно своим представлениям о прекрасном.

В целом же, вывод такой: если производитель не экономил на ключевых элементах схемы, в результате мы получаем усилитель максимально близкий к совершенству. Остальное — дело вкуса.

Продолжение следует…

Другие материалы цикла:

Как работает усилитель класса «А», или Истинный High End и много тепла

Как работает усилитель класса «АВ», или Практичность правит миром

Как работает усилитель класса «G» и «H», или На ступень выше

Как работает усилитель класса XD и XA, или Немного экзотики

Статья подготовлена при поддержке компании «Аудиомания», тестирование усилителей проходило в залах прослушивания салона.

Полезные материалы в разделе «Мир Hi-Fi» на сайте «Аудиомании» и Youtube-канале компании:

• Слушаем музыку с компьютера правильно. Три основных способа

• Что за музыка была «зашита» в популярных ОС

• Что такое Roon? [видео]

Простой усилитель в классе А

   Все началось с того, что буквально недавно был приобретен нерабочий компьютер, точнее только системный блок. Блок был очень старым, ничего толкового в нем не нашел и решил разломать все и достать позолоченные выводы и компоненты. Уже ненужную материнскую плату решил выбросить, но тут на глаза попали два транзистора, на которые раньше не обратил внимания. Оказалось , что стояли там два довольно редких транзистора серии

TIP168. Это транзистор по схеме Дарлингтона.

   Транзистор такой редкий, что кроме даташита никакой информации не оказалось, но и этого оказалось вполне достаточно. Это 100 ваттный составной транзистор прямой проводимости, который может обеспечивать очень большой коэффициент усиления входного сигнала. А где использовать такой транзистор, если не в звуковом усилителе! 

   Я даже представить не мог, что может в итоге получиться усилитель, который сможет сравниться с любой схематикой из линейки высококачественных УНЧ. Сама схема состоит из 4-х компонентов — два резистора, входной конденсатор и сам транзистор, пятый компонент (резистор на входе питания) использован только для ограничения входного напряжения.

Схема усилителя на одном транзисторе

   В итоге получился однотактный усилитель БЕЗ ДЕТАЛЕЙ, работает в чистом классе А, а КНИ тут меньше, чем в любом усилителе. Благодаря минимальному количеству используемых компонентов выходной сигнал почти не искажается даже при максимальной выходной мощности. К стати — такой малыш отдает полноценный 1 Ватт на головку 8 Ом. В качестве головки желательно использовать динамики от старых отечественных колонок, сопротивление которых 8-32 Ом , в моем случае головка 1ГДШ на 16 Ом. 

   Входной конденсатор напрямую связан и с качеством звука и с выходной мощностью, при использовании электролитов 1-4.7 мкФ у меня резко повысились искажения, поэтому остановился на пленке. При емкости 0,1 мкФ на выходе только СЧ и ВЧ, при этом выходная мощность в районе 0,3 ватт (сигнал подавал с планшетного ПК). 

   Чувствительность тоже на высоком уровне, никакой предварительный усилитель не нужен и может работать от сигнала звуковой карты ПК. Номинал входных напряжений 3-24 Вольт, оптимальное питание 9-12 Вольт. Ток покоя 150 мА, максимальный ток потребления 570 мА при напряжении 16 Вольт и величине входного сигнала 1.7 Вольт, получается, чтобы отдавать 1 ватт выходной мощности, усилитель потребляет целых 9 ватт! КПД примерно составляет 9-10%, мда…


   Это один из немногих усилителей, который не искажая может на максимуме громкости передавать любую мелодию (классика) — Бах, Моцарт, Бетховен, Чайковский, Хачатурян. 

   Усилители с такой выходной мощностью обычно работают совместно с наушниками, но этот усилитель отлично может работать и в качестве полноценного домашнего усилителя — скажем для ПК, мощность самое оно! 

   К большому сожалению, нет аппаратуры для расценки реального качества схемы, все, что имеется — осциллограф, который показывает полную схожесть входного и выходного сигналах сигнала на частотах 1-20 кГц, ниже 1 кГц не проверял. В дальнейшем схематика будет доработана, поскольку для такого мощного ключа, 1 ватт выходной мощности явно не предел. Если вы новичок и хотите собрать усилитель, который был бы одновременно и простым и качественным, то вы читаете правильный материал, проще не бывает, а качество на самом высоком уровне!

   Можно использовать и составные ключи обратной проводимости, но не забываем сменить полярность питания. Схему нужно питать от стабилизированного блока питания или аккумулятора. 

   Совсем недавно мною был собран усилитель Марка Хьюстона, хочу заметить, что выходная мощность в случае усилителя Хьюстона составляет 5 ватт, но если сравнить качество, то данная схематика на порядок качественней. С уважением — АКА КАСЬЯН.

ВИДЕО РАБОТЫ УНЧ


Понравилась схема — лайкни!

ПРИНЦИПИАЛЬНЫЕ СХЕМЫ УНЧ

Смотреть ещё схемы усилителей

       УСИЛИТЕЛИ НА ЛАМПАХ          УСИЛИТЕЛИ НА ТРАНЗИСТОРАХ  

   

УСИЛИТЕЛИ НА МИКРОСХЕМАХ          СТАТЬИ ОБ УСИЛИТЕЛЯХ   

    

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *