Терморегулятор для кулера – Простые терморегуляторы в блоках питания — Все для «кулера» (Вентилятора) — Компьютер и электроника к нему!!!

Термостат W1209. Автозапуск вентиляторов системного блока

Всем огромный привет!
Хочу поделиться своим рецептом эффективной системы охлаждения корпуса системного блока. Проект реализован на основе электронного термостата W1209.
Подробно расписывать все характеристики устройства не буду, на муське уже есть отличный обзор!
Я же хочу уделить внимание одному из возможных способов применения это платки.
Небольшая предыстория.
Собрал я для своих неприхотливых геймерских нужд бюджетный ПК. Из охлаждения, не считая вентиляторов видеокарты и кулера процессора, в корпусе были установлены дополнительно три 120-ти мм вентилятора со светодиодной подсветкой. Один на выдув теплого воздуха и два на вдув.

После сборки я проверил температуры ЦП и видеокарты под нагрузкой и в повседневных задачах.
Центральный процессор с боксовским кулером не прогревался выше 56 градусов под нагрузкой, а в обычном режиме температура колеблется в пределах 34-36 градусов.
При прохождении стресс-теста видеокарты, температура поднималась максимум до 59 градусов, в обычных задачах около 26-27 градусов.


Затем я прогнал еще один стресс-тест видеокарты, но уже с работающими дополнительными вентиляторами, которые установлены на вдув. Тест показал, что падение температуры на видеокарте оказалось незначительным, всего 5-6 градусов.

И тут я задумался, а зачем мне постоянно работающие два дополнительных вентилятора, если они недостаточно эффективно охлаждают систему. С другой стороны 5-6 градусов в экстремальных нагрузках лучше, чем ничего.
Сначала я подумал об установке реобаса, но проблема в том, что мой корпус AeroCool QS-240 не позволяет это сделать без вмешательства в геометрию
кузова
.=)

Тогда-то я и вспомнил о заказанном мною с AliExpress электронном термостате.
Размер платы всего 40х48х14мм, что позволяет практически беспрепятственно установить его в любом удобном месте системного блока. Термодатчик закреплен на проводе длиной 30см, а этого более, чем достаточно, но при необходимости его можно с легкостью удлинить. Помимо этого три кнопки управления и 3-х разрядный индикатор. И не красного цвета, а синего, за счет чего он отлично вписался в общий вид всей системы.


Для работы термостата необходимо питание 12В, которое можно взять с любого molex разъема блока питания, и эти же 12В нужны и для вентиляторов.
Кратковременное нажатие на кнопку «SET» позволяет выбрать температуру включения реле с помощью кнопок «+» и «-«. Если зажать кнопку «SET» на несколько секунд, то откроется меню дополнительных настроек.

Расшифровка пунктов меню

P0 — Режим работы С (охладитель) либо H (нагреватель), по умолчанию С
Фактически просто инвертирует логику работы термостата.
P1 — гистерезис переключения 0,1 — 15,0ºС, по умолчанию 2,0ºС
Несимметричный (в минус от уставки), позволяет снизить нагрузку на реле и исполнитель в ущерб точности поддержания температуры.
P2 — максимальная уставка температуры -45ºС 110ºС, по умолчанию 110ºС
Позволяет сузить диапазон уставки сверху
P3 — минимальная уставка температуры -50ºС 105ºС, по умолчанию -50ºС
Позволяет сузить диапазон уставки снизу
P4 — коррекция измеряемой температуры -7,0ºС 7,0ºС, по умолчанию 0,0ºС

Позволяет проводить простейшую калибровку для повышения точности измерения (только сдвиг характеристики).
P5 — задержка срабатывания в минутах 0-10мин, по умолчанию 0мин
Иногда необходима для задержки срабатывания исполнителя, критично например для компрессора холодильника.
P6 — ограничение отображаемой температуры сверху (перегрев) 0ºС-110ºС, по умолчанию OFF
Лучше без необходимости не трогать, т.к. при некорректной настройке дисплей будет постоянно отображать «—» в любом режиме и придётся скидывать настройки в состояние по умолчанию, для этого надо при очередном включении питания удерживать нажатыми кнопки + и -.
Все настройки сохраняются после отключения питания.


Принцип работы элементарно прост. Необходимо выставить температуру включения реле и значение гистерезиса, для отключения устройства.
Но перед этим нужно сделать калибровку. Для этого берем стакан холодный воды и лед.

Перемешиваем и опускаем туда термодатчик. В идеале на дисплее должна отобразится цифра равная нулю, если так, то дальнейшая калибровка не нужна, если же на дисплее число отличное от нуля, то записываем его и с помощью кнопок управления переходим в пункт меню P4, где необходимо установить значение полученной погрешности. В моем случае термодатчик выдал температуру в +1.2 градуса, значит выставляем погрешность -1.2 градуса.

Для проверки калибровки проделываем еще один перетест.
Теперь можно приступить к замерам температуры в корпусе.
Для этого, с помощью двухстороннего скотча, я приклеил термодатчик на радиатор видеокарты, именно от ее температуры и будет зависеть работа вентиляторов.

При желании можно закрепить на радиаторе процессора, или просто удобно разместить в корпусе системного блока, все зависит от конкретно ваших потребностей. Я же хотел автоматический запуск вентиляторов только тогда, когда нагружена видеокарта.
После установки датчика запускаем стресс-тест видеокарты, и смотрим за показаниями температуры ядра видеочипа и показаниями температуры термостата на поверхности радиатора.
Проделываем еще один тест, но уже без нагрузки на видеокарту, то есть обычные повседневные задачи.
Сверяем полученные значения и делаем выводы.
В моем случае, максимальная температура видеоядра составляла 60 градусов (+ -), при этом температура на термостате была в пределах 46-47 градусов.

В обычном рабочем режиме температура на поверхности радиатора около 27 градусов.

В итоге я решил, для запуска термостата выставить температуру в 31 градус.

А в пункте P1 оставил значение гистерезиса по умолчание, то есть равное 2-ум градусам. Это означает, что как только температура на поверхности радиатора видеокарты поднимется до значения 31 градус — реле сработает и запустит вентиляторы охлаждения. После того, как температура упадет на 2 градуса ниже заданного значения, то есть до 29 градусов, реле разомкнется и отключит дополнительные вентиляторы.
Всё просто.

После всех замеров и настроек, монтируем термостат в удобное место, подключаем питание и вентиляторы. Для этого я заранее подготовил два молекс разъема (папа и мама) и небольшую перемычку. У каждого разъема только два контакта +12В и земля.



Соединить все это необходимо следующим образом.
Разъем папа:
+12В в колодку +12В;
Земля в колодку GND;
Разъем мама:
+12В в колодку K0;
Земля в колодку GND;
Перемычка ставится между +12В и K1.
Папу подключаем к блоку питания, а маму к вентиляторам.

Спасибо всем, кто дочитал мой обзор до конца. Если остались вопросы, то пишите их в комментариях, обязательно постараюсь всем ответить.

Ну и посмотрите видео, тут наглядно показан весь процесс.

Всем удачи и всем пока.

Делаем «умную» систему активного охлаждения для мини-компьютера или медиа-приставки / DIY

Многие мини-компьютеры или медиа-приставки используют пассивную систему охлаждения. Это могут быть устройства с процессорами Intel Atom и ОС Windows или множество моделей с Android. У части этих устройств есть одна общая проблема — неэффективная система охлаждения. При продолжительной нагрузке и превышении определённого порога температуры начинается троттлинг — процессор начинает снижать частоту, отключать ядра и пр. Производительность падает. Иногда это не сильно заметно, а иногда мешает комфортной работе с устройством. Производители просто не уделяют системе охлаждения достаточно внимания, считая троттлинг нормальным поведением стационарных систем.

Посмотрите, например, тематические форумы, там чуть ли не в каждой второй теме мини-компьютеров или медиа-приставок обсуждаются вопросы модификации системы охлаждения. Изначально пытаются решить проблему доработкой пассивного охлаждения. Если это не удаётся, переходят к активному охлаждению с помощью вентилятора. Я расскажу, как сделать простое «умное» активное охлаждение с минимальными затратами.


Единицы мини-компьютеров и медиаплееров с пассивным охлаждением имеют на плате выводы питания для вентилятора с возможностью настройки режима работы. Обычно берут вентилятор на 5 В и подключают (подпаивают) его к внутренним контактам питания USB разъёма или разъёму питания самой медиа-приставки. Просто и эффективно. В этом случае вентилятор работает постоянно во время работы медиа-приставки, что не всегда приемлемо или комфортно из-за шума.

Нам понадобятся:

  • Программируемый терморегулятор W1209 (цена от 1,7$)
  • Повышающий преобразователь 5 В > 12 В (цена от 0,8$)
  • вентилятор на 5 В или 12 В
  • паяльник (пайки минимум, она простая)

Программируемый терморегулятор W1209

Это компактное устройство, которое предназначено для поддержания определённой температуры. Сфера его применения очень широкая. Его можно использовать для автоматизации нагрева (например, промерзающих труб или бойлера, обогрев растений, инкубатора), вентиляции (например, теплиц), охлаждения и пр., вариантов множество.


Характеристики W1209:

  • Управляющее напряжение 12 В.
  • Коммутируемый ток до 14 В (постоянное) / 20 А  или до 250 В (переменное) / 5 А.
  • Диапазон установки температур  от -50 ºС до 110 ºС.
  • Диапазон гистерезиса от 0,1 ºС до 15 ºС.
  • Регулировка задержки срабатывания до 10 минут.
  • Два режима режима работы: C — охлаждение, H — нагрев.
  • Размер: 48x40x14,5 мм

Комплект поставки: терморегулятор и датчик температуры.


Принцип работы простой. В режиме C, охлаждение, контакты реле разомкнуты, пока температура ниже установленной. Как только температура превышает установленную, контакты реле замыкаются и остаются в таком положении, пока температура не снизится на величину гистерезиса. Например, к коммутирующим контактам подключен вентилятор, терморегулятор установлен на температуру 70 ºС, гистерезис 15 ºС. Как только терморегулятор фиксируют температуру 70 ºС на датчике, контакты реле замыкаются, и вентилятор начинает работать. Выключится он, когда температура опустится до 55 ºС.

В режиме H, нагрев, принцип работы обратный. Контакты реле замкнуты, пока температура ниже установленной плюс величина гистерезиса. Как только температура превышает установленную плюс величину гистерезиса, контакты реле размыкаются и остаются в таком положении, пока температура не снизится до установленной.

Программировать терморегулятор просто, настройки сохраняются. Нажимаете кнопку SET и с с помощью кнопок + и — выставляете температуру срабатывания. Если держать кнопку SET 5 секунд, то попадёте в меню настроек:

  • P0. Режим работы: C или H.
  • P1. Гистерезис от 0,1 ºС до 15 ºС.
  • P2. Установка максимальной температуры от -45 ºС до 110 ºС (по умолчанию 110 ºС).
  • P3. Установка минимальной температуры от -50 ºС до 105 ºС (по умолчанию -50 ºС).
  • P4. Коррекция температуры от -7 ºС до 7 ºС.
  • P5. Задержка срабатывания от 0 до 10 минут (по умолчанию 0).
  • P6. Защита от перегрева. Если включить, то при 110 ºС терморегулятор отключится.

Повышающий преобразователь


Это простой преобразователь 5 В > 12 В. Он нам нужен для того, чтобы обеспечить управляющее напряжение для терморегулятора. Ещё он понадобится, если вы решите использовать вентилятор на 12 В, вместо 5 В.

Все эти устройство нужно будет установить внутри мини-компьютера или медиа-приставки. Вот фотография для оценки размеров:


Я буду рассматривать вариант, когда вся конструкция подключается к внутренним контактам питания одного из USB разъёмов. Конечно, можно подключить и к разъёму питания самой медиа-приставки. Более того, если на входе 12 В, то и преобразователь не понадобится. Схема подключения будет немного иной. Но я буду рассматривать конкретный универсальный вариант.

Для демонстрации я буду использовать вентилятор на 12 В, но подавать на него буду напряжение 5 В. В реальной ситуации так делать не нужно, т.к. эффективность слабая. Вентилятор должен быть рассчитан на напряжение 5 В. Для питания я буду использовать обычный кабель USB, но в реальной ситуации нужно подключить (припаять) провода к внутренним контактам USB на плате медиа-приставки.



Схема подключения очень простая:

Если вы будете использовать вентилятор на 12 В, то его нужно коммутировать к выходам на преобразователе.

Т.к. ток слабый во всей схеме, используйте тонкие гибкие провода для соединения. Для демонстрации я использовал толстые. Дополнительно можете залить термоклеем места пайки для надёжности, нагрева со слабой нагрузкой там нет. Пайку проводов нужно изолировать с помощью термоусадки или изоленты. При необходимости укоротите провод датчика температуры до нужной длины.

Готовая демонстрационная система:


А вот, как система работает:

Размещаете конструкцию внутри корпуса мини-компьютера или медиа-приставки. Датчик температуры крепите к радиатору SoC.

Например, вы можете установить температуру включения вентилятора 70 ºС, а гистерезис 15 ºС. В обычном режиме, при просмотре видео, просмотре веб-страниц и пр., будет использоваться пассивное охлаждение. Но при нагрузке, например, играми, как только радиатор нагреется до 70 ºС, вентилятор включится и будет работать до тех пор, пока температура не опустится ниже 55 ºС.

В итоге за 2,5$ и 30 минут работы мы добавили немного «мозгов» активной системе охлаждения. Минус у этой системы только один — электромеханическое реле, которое издаёт щелчок при замыкании контактов (включение вентилятора). Идеально было бы его заменить на твердотельное реле или транзистор, чтобы работало бесшумно, но это уже другая история…

Простые терморегуляторы в блоках питания — Все для «кулера» (Вентилятора) — Компьютер и электроника к нему!!!

Сначала — терморегулятор. При выборе схемы учитывались такие факторы, как ее простота, доступность необходимых для сборки элементов (радиодеталей), особенно применяемых в качестве термодатчиков, технологичность сборки и установки в корпус БП.

По этим критериям наиболее удачной, на наш взгляд, оказалась схема В.Портунова [1]. Она позволяет уменьшить износ вентилятора и снизить уровень шума, создаваемого им. Схема этого автоматического регулятора частоты вращения вентилятора показана на рис.1. Датчиком температуры служат диоды VD1— VD4, включенные в обратном направлении в цепь базы составного транзистора VT1, VT2. Выбор в качестве датчика диодов обусловила зависимость их обратного тока от температуры, которая имеет более выраженный характер, чем аналогичная зависимость сопротивления терморезисторов. Кроме того, стеклянный корпус указанных диодов позволяет обойтись без каких-либо диэлектрических прокладок при установке на теплоотводе транзисторов блока питания. Немаловажную роль сыграла распространенность диодов и их доступность для радиолюбителей.


Резистор R1 исключает возможность выхода из строя транзисторов VTI, VT2 в случае теплового пробоя диодов (например, при заклинивании электродвигателя вентилятора). Его сопротивление выбирают, исходя из предельно допустимого значения тока базы VT1. Резистор R2 определяет порог срабатывания регулятора.
Рис.1


Следует отметить, что число диодов датчика температуры зависит от статического коэффициента передачи тока составного транзистора VT1,VT2. Если при указанном нa схеме сопротивлении резистора R2, комнатной температуре и включенном питании крыльчатка вентилятора неподвижна, число диодов следует увеличить. Необходимо добиться того, чтобы после подачи напряжения питания она уверенно начинала вращаться с небольшой частотой . Естественно, если при четырех диодах датчика частота вращения слишком высокая, число диодов следует уменьшить.

Рис.2


Устройство монтируют в корпусе блока питания. Одноименные выводы диодов VD1-VD4 спаивают вместе, расположив их корпусы в одной плоскости вплотную друг к другу Полученный блок приклеивают клеем БФ-2 (или любым другим термостойким, например, эпоксидным) к теплоотводу высоковольтных транзисторов с обратной стороны. Транзистор VT2 c припаянными к его выводам резисторами R1, R2 и транзистором VT1 (рис.2) устанавливают выводом эмиттера в отверстие «+12 В вентилятора» платы БП (раньше туда подключался красный провод от вентилятора). Налаживание устройства сводится к подбору резистора R2 спустя 2.. 3 мин после включения ПК и прогрева транзисторов БП. Временно заменив R2 переменным (100-150 кОм) подбирают такое сопротивление, чтобы при номинальной нагрузке теплоотводы транзисторов блока питания нагревались не более 40 ºС.
Во избежание поражения электрическим током (теплоотводы находятся под высоким напряжением!) «измерять» температуру на ощупь можно, только выключив компьютер.

Простую и надежную схему предложил И. Лаврушов (UA6HJQ). Принцип ее работы тот же, что и в предыдущей схеме, однако в качестве датчика температуры применен терморезистор NTC (номинал 10 кОм некритичен). Транзистор в схеме выбран типа КТ503. Как определено опытным путем его работа является более устойчивой, чем других типов транзисторов. Подстроечный резистор желательно применить многооборотный, что позволит точнее настроить температурный порог срабатывания транзистора и, соответственно, частоту вращения вентилятора. Терморезистор приклеивается к диодной сборке 12 В. При отсутствии его можно заменить двумя диодами. Более мощные вентиляторы с током потребления больше 100 мА следует подключать через схему составного транзистора (второй транзистор КТ815).


Рис.3

Схемы двух других, относительно простых и недорогих регуляторов частоты вращения вентиляторов охлаждения БП, часто приводятся в интернете (CQHAM.ru). Их особенность в том, что в качестве порогового элемента применяется интегральный стабилизатор TL431. Довольно просто «добыть» эту микросхему можно при разборке старых БП ПК АТХ.

Автор первой схемы (рис.4) Иван Шор (RA3WDK). При повторении выявилась целесообразность в качестве подстроечного резистора R1 применять многооборотный того же номинала. Терморезистор крепится на радиатор охлаждаемой диодной сборки (или на ее корпус) через термопасту КПТ-80.



Рис.4

Подобную схему, но на двух включенных параллельно КТ503 (вместо одного КТ815) применил Александр (RX3DUR). При указанных на схеме (рис.5) номиналах деталей на вентилятор поступает 7В, повышаясь при нагреве терморезистора. Транзисторы КТ503 можно заменить на импортные 2SC945, все резисторы мощностью 0,25Вт.

Рис.5

Более сложная схема регулятора частоты вращения вентилятора охлаждения описана в [2]. Длительное время она с успехом применяется в другом БП. В отличие от прототипа в ней применены «телевизионные» транзисторы. Отошлю читателей к статье на нашем сайте «Еще один универсальный БП» и архиву, в котором представлен вариант печатной платы (рис.5 в архиве) и журнальный источник [2]. Роль радиатора регулируемого транзистора Т2 на ней выполняет свободный участок фольги, оставленный на лицевой стороне платы. Эта схема позволяет, кроме автоматического увеличения частоты вращения вентилятора при нагреве радиатора охлаждаемых транзисторов БП или диодной сборки, устанавливать минимальную пороговую частоту вращения вручную, вплоть до максимума.
Рис.6

Терморегулятор для вентилятора своими руками – Поделки для авто

Сегодня рассмотрим принцип действия системы охлаждения радиатора, а точнее систему управления вентилятором. Вентилятор в автомобиле служит для охлаждения двигателя при его нагреве, однако постоянная работа вентилятора совсем не требуется, во-первых, она бессмысленна, когда радиатор не требует дополнительного охлаждения, во-вторых постоянная работа вентилятора сильно нагружает бортовую сеть, что также ни есть хорошо.

Поэтому нам необходимо обеспечить включение вентилятора при определенном нагреве радиатора (или жидкости в нем). Сама схема представлена на чертеже ниже, помимо включения при определенном нагреве схема обеспечивает плавное включение вентилятора и уменьшает звуковые шумы, что хорошо скажется на сроке службы вентилятора.

Терморегулятор для вентилятора схема

Основным элементом в схеме является терморезистор с отрицательным коэффициентом температурной зависимости. Рабочее сопротивление 5-50 кОм все зависит от марки терморезистора. Терморезистор приваривается непосредственно к радиатору. Операция очень ответственная, терморезистор обязательно должен касаться радиатора, при плохой сварке потом придется все переделывать, поэтому этому моменту уделяем особое внимание.

Терморегулятор для вентилятора своими руками

Все номиналы или их определение расписано в схеме, для подбора R1 замеряем мультиметром значение сопротивления терморезистора делим на 5. Полученный результат даст вам понять примерный диапазон значения переменного резистора. Устанавливаем необходимые значения резистора, распаиваем схему и начинаем отладку работы прибора.

Терморегулятор для вентилятора своими руками

Показанная на схеме RC цепочка указана штрихпунктирной линией, потому что не всегда требуется. В случае если при отладке схема будет «хондрить» ее надо будет довесить. Вращая переменный резистор и измеряя сторонним прибором температуру радиатора выставляем необходимую нам температуру включения вентилятора.

Терморегулятор для вентилятора своими руками

Вентилятор достаточно мощный прибор поэтому транзистор, коммутирующий ток через него, обязательно устанавливаем на теплоотвод или на корпус автомобиля, однако в этом случае необходимо обеспечить изоляцию корпуса транзистора от кузова, это обычно делается с помощью слюдяной прокладки. В качестве замены КТ815, можно взять КТ819 или иностранный аналог.

Автор; Ака Касьян

Похожие статьи:

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *