ПУСКО-ЗАРЯДНОЕ УСТРОЙСТВО
Представляю Вашему вниманию мощное пуско-зарядное устройство для заряда автомобильных аккумуляторных батарей напряжением 12 и 24 вольт, а так же запуска двигателей легковых и грузовых автомобилей с соответственными напряжениями.
Его электрическая принципиальная схема:
Источником питания для пуско-зарядного устройства служит 220 вольт промышленной частоты. Мощность, потребляемая от источника может составлять от десятков ватт в режиме заряда (когда аккумуляторы почти заряжены и имеют напряжение 13.8 – 14.4 вольта или 27.6 – 28.8 вольта для пары, соединённой последовательно) до нескольких киловатт в режиме запуска стартера двигателя авто.
На вводе устройства стоит двухполюсный автоматический выключатель на ток Іном=25 А. Использование именно двухполюсного обусловлено надежностью отключения как фазы так и ноля, так как при подключении через стандартную евровилку (с заземляющим контактом) нет уверенности что однополюсный автоматический выключатель выключит именно фазу и тем самым произойдет обесточивание всего прибора в целом. Данный автоматический выключатель (в моем варианте) установлен в стандартном боксе для установки в стену. Частое включение питания этим выключателем не имеет смысла, а посему и не ставил его на передней (лицевой) панели.
И в режиме «Пуск» и в режиме «Заряд» силовой трансформатор включается одним и тем же магнитным пускателем КМ1, у которого напряжение катушки составляет 220 вольт, а ток, коммутируемый контактами порядка 20-25 ампер.
Самая главная часть пуско-зарядного устройства – силовой трансформатор. Моточных данных силового трансформатора давать не буду, так как не думаю что все бросятся копировать один в один, скажу лишь на что следует, на мой взгляд, обратить внимание. Как уже заметили из схемы – трансформатор имеет вторичную обмотку с ответвлением от средины. Здесь, при расчетах, а потом и на практике необходимо установить напряжение на выходе устройства (зажимах на аккумуляторах – проще крокодилах), учитывая и падение напряжения на диодах (в моем варианте Д161-250) в рамках 13.8-14.4 вольта для режима 12 вольт и 27.6-28.8 для 24 вольтового режима, при токе нагрузки до 30 ампер. Крокодилы использовал от массы сварочного аппарата, соответсвенно плюсовую покрасил в красный цвет.
Режим 12/24 вольта устанавливается контакторами КМ2, КМ3, силовые контакты которых, рассчитанные на 80 ампер, соединены параллельно, что в сумме дает 240 ампер.
В цепи по стороне 12/24 вольта установлен шунт, а в разрыв цепи амперметра – контакты магнитного пускателя режима «Заряд». Данный амперметр должен измерять ток заряда. Граница шкалы в моем варианте составляют 0…30 А. Цепь замыкается в режиме заряда.
Отдельно хотелось бы поговорить о режиме «Заряд». Как Вы уже заметили здесь нет схемы управления тока заряда, а он, можно сказать, идет максимальный. Ошибка? Думаю нет. давайте обратимся к электрооборудованию среднестатистического автомобиля. Так вот, там реле регулятор регулирует не ток заряда, а… вгоняет генератор в параметры бортовой сети автомобили, те же 13.8-14.4 вольта, соответственно, если Вы правильно намотаете трансформатор, с учётом падения напряжения на силовых диодах, то уподобите данную схему генератору автомобиля, и, по мере заряда аккумулятора, ток будет только падать.
И, не забывайте, в диодном мосте необходимо учитывать что два диода работают последовательно, то есть падение напряжение необходимо умножить на два.
Из недостатков данной схемы могу выделить лишь зависимость напряжения сети к току заряда. Так как мой вариант будет использоваться на СТО, где мало изменяется напряжение сети и основная его задача запуск грузовых автомобилей с напряжением 24 вольта, то не вижу необходимости в усложнении конструкции. Но решением проблемы может служить установке автотрансформатора, через свободные контакты магнитного пускателя КМ4, параллельно КМ1. С уважением, AZhila.
Форум по зарядным устройствам
Схемы для автоПуско-зарядное устройство для автомобильного аккумулятора (схема мощного ПЗУ)
Это схема очень мощного самодельного пуско-зарядного устройства для авто АКБ 14,5 В на ток 500 А, представляет собой однотранзисторный прямоходовый преобразователь. Для ключа использован регенеративный снаббер с подпиткой.
Схема импульсного пуско-зарядного для авто
На схеме представлен однотактный прямоходовый преобразователь, в котором использован всего один коммутирующий элемент. В отличие от косого моста, где энергия обратного хода трансформатора возвращается в накопитель из первичной обмотки через размагничивающие диоды, в данном размагничивание происходит за счёт фиксирующей обмотки в 18 витков, а выброс напряжения первичной обмотки ограничивается током заряда фиксирующей ёмкости 150 нФ x 630В — 4 шт. На прямом ходу фиксирующая ёмкость через фиксирующую обмотку разряжается до уровня напряжения накопителя 300 В. Благодаря периодическому разряду фиксирующей ёмкости напряжение на коллекторе силового транзистора не превышает удвоенного напряжения накопителя, то есть фиксируется.
Для обеспечения таких режимов фиксирующая обмотка должна иметь очень хорошую магнитную связь с первичной обмоткой. Для этого обе обмотки мотаются вместе в 2 провода. Поскольку напряжение между первичной и фиксирующей обмоткой около 300 В, между ними должна быть хорошая изоляция.
Порядок намотки силового трансформатора следующий: сначала мотается 9 витков первички вместе с 9-ю витками фиксирующей в один ряд. Затем в один ряд вторичка. Поверх вторички мотаются 9 витков первички с 9 витками фиксирующей. Направление всех рядов должно быть одинаковым и каждый ряд должен начинаться с одного края каркаса. Затем мотаются 2 витка обмотки подпитки регенеративного снаббера.
В качестве ключа использована половинка модуля 2MBI100PC-140. Ключ управляется драйвером HCPL3120 по схеме с отрицательным смещением. Вместо модуля возможно применение сборки из 2-3-х ключей IRG4PF50U, IRG4PF50W или аналогичных с напряжением коллектора не менее 900 В. В этом случае ключи паяются на медную подложку. На подложку ключей нужно установить дополнительный термостат. Термостат показаный на схеме устанавливается на подложке выходных диодов.
Вместо R1 впаиваем резистор на 100 Ом. Не подавая питания на силу запитываем блок управления. Спустя пару секунд должно включиться реле и загореться зелёный светодиод. Осциллографом контролируем наличие двуполярных импульсов на затворе ключа частотой 40-50 кГц. Отрицательный импульс должен быть заметно длиннее. Размыкание цепи термостата должно приводить к зажиганию красного светодиода и блокировке инвертора.
Если всё так, собираем полностью схему инвертора и включаем его в сеть 220 В. Подбирая сопротивление R2 добиваемся выходного напряжения 14,2 — 14,6 В. Включаем прибор магнитоэлектрической системы параллельно шунту и нагружаем выход реостатом сопротивлением 0,1 Ом. Показания прибора должны соответствовать току не более 80 А. При этом напряжение выхода должно снизится.
Если всё так и происходит, увеличиваем сопротивление R1 до тех пор, пока не получим желаемого максимального тока короткого замыкания выхода. Всё, пуско-зарядное готово к работе. Ещё одну, более простую схему такого устройства, смотрите по ссылке.
Схема пускового устройства — КульбакиМастер.ru
Схема самодельного пускового устройства для запуска автомобиля в холодное время года. Описание сборки и использования.
Многим автолюбителям известны трудности зимнего запуска двигателя. Для облегчения этой задачи промышленность производит специальные комбинированные зарядные устройства с дополнительной пусковой функцией. Такие зарядно-пусковые приборы, как правило, при запуске двигателя подключают согласно-параллельно аккумуляторной батарее.
Автор данной статьи считает такой способ запуска холодного двигателя неоптимальным и предлагает пользоваться мощным запускающим устройством, не требующим подключения батареи.
Как показывает практика, запускать двигатель автомобиля в зимнее время с помощью зарядно-пускового устройства часто приходится в два этапа: сначала подзаряжать батарею в течение 10…20 с, а затем совместно с пусковым устройством раскручивать коленчатый вал до начала самостоятельной работы двигателя. Приемлемая частота вращения ротора стартера при этом сохранялась обычно в течение 3…5 с от момента включения, после чего уменьшалась до значений, не обещающих запуска.
Если двигатель не удалось запустить с первой попытки, весь процесс приходится повторять сначала, и, может быть, не один раз. Все это не только утомительно, но и сопряжено с перегреванием обмоток стартера и его износом, с уменьшением срока службы аккумуляторной батареи.
Избежать многих неприятностей поможет мощное пусковое устройство, способное самостоятельно — без помощи батареи — раскручивать с необходимой частотой вращения коленчатый вал двигателя. Какую же мощность нагрузки должно обеспечивать пусковое устройство?
В [1] указано, что рабочий ток Iр.б батареи в стартерном режиме равен Iр.б = 3Сб, где Сб — ее номинальная емкость в ампер-часах при нормальной температуре. Рабочее напряжение Up двенадцативольтной батареи в этом режиме равно 10,5 В (1,75 В «на банку»). Отсюда мощность Рст, подводимая к стартеру легкового автомобиля с батареей 6СТ-60 емкостью 60 Ач,
Рст = 10,5-3-60 = 1890 Вт. Исключение из сказанного — батарея 6СТ-55, у которой рабочий стартерныи ток равен 255 А и мощность достигает Рст = 2677,5 Вт.
В таблицу сведена информация о типах и мощности стартеров и батарей наиболее распространенных отечественных автомобилей [2].
Нажмите на рисунок для просмотра.
Сопоставляя расчетную мощность Рст стартера с номинальной Рст ном, легко видеть, что Рст для легковых автомобилей более Рcтном в 2…2,5 раза, а для грузовых — еще больше. Как показал опыт, габаритная мощность сетевого трансформатора пускового устройства, рассчитанного для работы с легковыми автомобилями, не должна быть менее 3,5 кВт.
В качестве магнитопровода для сетевого трансформатора такого пускового устройства я использовал набор статорных пластин от сгоревшего асинхронного электродвигателя мощностью 5 кВт. Сечение этого тороидального магнитопровода SM = 27 см2. Число витков на вольт.
Поэтому сетевая обмотка должна содержать
nI = 1,11 -220=244 витка, а вторичная на выходное напряжение 16 В
nII = 1,11-2-16=36 витков с отводом от середины. Для первичной обмотки подойдет изолированный провод сечением 3,6…6 мм2, а вторичной — 25…40 мм2.
Схема пускового устройства показана на рисунке. Выключатель SA1 должен быть рассчитан на ток не менее 15 А и иметь тепловое защитное устройство (например, АЕ-1031).
Нажмите на рисунок для просмотра.
При необходимости рассчитать сетевой понижающий трансформатор с другими параметрами можно воспользоваться методиками, изложенными в [1,3].
Несколько советов по изготовлению трансформатора. Магнитопровод электромотора освобождают от остатков обмотки и от стальной или алюминиевой обечайки (корпуса). Молотком и острозаточенным зубилом срубают зубцы магнитопровода, выступающие внутрь. Эта операция не представляет трудности, следует только соблюдать осторожность — работать в защитных очках и в рукавицах.
Покрывают магнитопровод слоем эпоксидной смолы и обматывают двумя слоями стеклоткани, пропитанной смолой. После затвердевания смолы приступают к намотке. Для первичной обмотки следует применять провод с повышенной прочностью изоляции — ПЭВ-2, ПЭТВЛ-2, ПЭЛР-2, ПЭВД и др. Если нет одиночного провода необходимого сечения, допустимо мотать в два, три и даже в четыре провода.
После того как первичная обмотка будет намотана, ее подключают к сети, измеряют ток холостого хода будущего трансформатора. Ток не должен быть более 3,5 А. Если он превышает указанную границу, необходимо домотать несколько витков, чтобы это условие было выполнено. Соединение проводов должно быть механически прочным и обязательно пропаянным, лучше тугоплавким припоем.
Покрывают первичную обмотку двумя-тремя слоями стеклоткани, пропитанной эпоксидной смолой, и после ее затвердевания приступают к намотке вторичной обмотки. При укладке витков используют деревянный молоток, которым выравнивают и уплотняют их, распределяя равномерно по длине магнитопровода.
Для вторичной обмотки подойдет любой медный провод в прочной теплостойкой изоляции, лишь бы его можно было намотать на магнитопровод. В крайнем случае допустимо использовать провод в резиновой изоляции, например, ПВКВ. Снаружи обмотку следует обмотать фиксирующей лентой из лакоткани.
Готовый трансформатор целесообразно установить на подставке, изготовленной из досок (или сваркой из стального уголкового проката). К подставке прикрепляют толстую дюралюминиевую или стальную пластину со смонтированными на ней диодами и минусовым выходным зажимом в виде резьбовой шпильки М12. Такой же конструкции плюсовой зажим монтируют на прочной изоляционной пластине. К подставке крепят и выключатель SA1.
Подставку можно оснастить ручками для переноски трансформатора вдвоем или в одиночку. Следует заранее продумать всю конструкцию и процесс изготовления устройства с тем, чтобы ни в коем случае никакие его элементы не образовывали замкнутых витков вокруг магнитопровода.
К проводам, соединяющим пусковое устройство со стартером автомобиля, следует отнестись не менее серьезно. Они должны быть возможно более короткими (во всяком случае, не длиннее 1,5 м), гибкими, иметь надежную изоляцию и сечение по меди не менее 100 мм2. Все соединения должны быть выполнены «под гайку». Любая небрежность здесь может обойтись очень дорого — от ожогов лица и рук до пожара. Разъемное соединение со стартером следует выполнять специальными мощными зажимами, исключающими самопроизвольное разделение. Провода обязательно четко размечают по полярности так, чтобы не перепутать их даже при слабом освещении.
Режим работы пускового устройства — кратковременный, пребывание его включенным под нагрузкой обычно не превышает 10 с. После этого устройство необходимо отключить от сети и убедиться, что отсутствует перегревание магнитопровода, обмоток, соединений, диодов и других элементов. Особенно важно это на первых порах эксплуатации устройства.
Если для питания пускового устройства воспользоваться трехфазной сетью, его мощность может быть существенно повышена, что даст возможность запускать двигатели мощных грузовых автомобилей, а также тракторов Т-16, Т-25, Т-30, Т-40, МТЗ-80 и др. Для изготовления такого пускового устройства следует применять готовые трансформаторы промышленного изготовления ТСПК-20А, ТМОБ-63 и др., подключаемые к сети напряжением 380/220 В и имеющие вторичное напряжение 36…50 В.
Знакомство с этой техникой необходимо начинать с изучения соответствующей литературы.
В заключение — несколько соображений общего характера.
Применение для трансформатора тороидального магнитопровода совершенно не обязательно. Оно продиктовано лишь его лучшими массо-габаритными показателями и тем, что приобрести «сгоревший» электродвигатель часто бывает совсем нетрудно. Мощность такого тороидального трансформатора можно считать равной мощности электродвигателя, указываемой обычно на его корпусе.
Следует стремиться так рассчитать сечение провода обмоток, чтобы окно магнитопровода было использовано полностью. Как показывает практика, на долю первичной обмотки приходится около 55 % заполненной площади окна, а на долю вторичной — 45 %.
При запуске двигателя аккумуляторную батарею можно и не отключать от стартера. В этом случае пусковое устройство можно подсоединять к выводам батареи. Чтобы избежать ее перезарядки, устройство надо выключать немедленно после запуска двигателя.
Самодельное пусковое устройство приведенное в этой статье потребляет от сети большую мощность, его эксплуатация сопряжена с повышенной опасностью. Поэтому при пользовании им соблюдайте правила техники безопасности, не доверяйте работу с устройством малоопытным и случайным лицам.
Читать далее — Зарядное устройство для никель-кадмиевых аккумуляторов
Популярные схемы зарядных устройств:
Схема тиристорного зарядного устройства
Десульфатирующее зарядное устройство
Простое зарядное устройство
Схема автомата включения-выключения зарядного устройства
Пуско-зарядное устройство для автомобиля – Поделки для авто
Привет всем читателям . Сегодня будет рассмотрен вариант построения мощного импульсного источника питания, который обеспечивает на выходе ток до 60 Ампер при напряжении 12 Вольт, но это далеко не предел , при желании можно выкачивать токи под 100 Ампер, этим получить отличное пуско-зарядное устройство.
Схема из себя представляет типичный двухтактный полумостовой сетевой, понижающий импульсный источник питания, это полное название нашего блока. в качестве задающего генератора наша с вами любимая микросхема IR2153 . Выход дополнен драйвером, по сути обычный повторитель на базе комплементарных пар BD139/140. Такой драйвер может управлять несколькими парами выходных ключей , что позволит снять большую мощность, но в нашем случае всего одна пара выходных транзисторов.
В моем случае применены мощны н-канальные полевые транзисторы типа 20N60 с током 20 Ампер, максимальное рабочее напряжение для указанных ключей составляет 600 вольт, можно заменить на 18N60, IRF740 или аналогичные , хотя 740 -ые я не особо люблю из за верхней границы напряжения всего в 400 вольт, но работать будут. Подойдут также более популярные IRFP460 , но плата разведена для ключей в корпусе TO-220.
В выходной части собран однополярный выпрямитель со средней точкой , вообще для экономии окна трансформатора советую обычный диодный мост поставить , но у меня мощных диодов не нашлось , в замен нашел сборки шоттки в корпусе TO-247 типа MBR 6045, с током 60 Ампер, их поставил, для увеличения тока через выпрямитель параллельно подключил три диода, таким образом наш выпрямитель спокойно может пропускать токи до 90 Ампер, возникает вполне нормальный вопрос – диодов ведь 3 , каждый по 60 Ампер, почему же 90 ? дело в том , что это сборки шоттки , в одном корпусе 2 диода по 30 ампер подключенные с общим катодом. Если кто не в курсе – эти диоды из того же семейства, что и выходные диоды в компьютерных бп, только токи у них куда выше.
Давайте Поверхностно рассмотрим принцип работы, хотя думаю для многих все итак понятно.
В момент подключения блока в сеть 220 Вольт через цепочку R1/R2/R3 и диодный мост , плавно заряжаются основные входные электролиты C4/C5, их емкость зависит от мощности бп, в идеале подбирается емкость в 1мкФ на 1 ватт мощности, но возможен некий разброс в ту или иную сторону, конденсаторы должны быть расчитаны на напряжение не меньше 400 Вольт.
Через резистор р5 поступает питание для генератора импульсов. Со временем напряжение на конденсаторах растет, растет также питающее напряжение для микросхемы ир2153 и как только оно дойдет до значения 10-15 Вольт микросхема запускается и начнет генерировать управляющие импульсы, которые усиливаются драйвером и подаются на затворы полевых транзисторов, последние будут срабатывать с заданной частотой, которая зависит от сопротивления резистора r6 и емкости конденсатора ц8.
Разумеется появляется напряжение на вторичных обмотках трансформатора , и как только оно будет достаточной величины , откроется составной транзистор KT973, по открытому переходу которого подается питание на обмотку реле, в следствии чего реле сработает и замкнет контакт S1 и сетевое напряжение уже поступит на схему не по резисторам R1,R2,R3 а по контактам реле ..
Это называется системой мягкого старта, точнее задержка при включеии, к стати время срабатывания реле можно подстроить путем подбора конденсатора C20, чем больше емкость, тем дольше задержка.
К стати в момент срабатывания первого реле срабатывает и второе , до его срабатывания один и концов сетевой обмотки трансформатора подключалась массе основного питания через резистор R13.
Теперь устройство уже работает в штатном режиме, и блок можно разгонять на полную мощность.
Слаботочный выход 12 Вольт помимо питания схемы плавного пуска может питать кулер, для охлаждения схемы.
Система снабжена функцией защиты от кз на выходе рассмотрим принцип ее работы.
R11/R12 в роли датчика тока, при кз или перегрузке на них образуется падение напряжения достаточной величины для открывания маломощного тиристора T1, открываясь, он коротит плюс питания для микросхемы генератора на массу , таким образом на микросхему не поступает питающее напряжение и она прекращает работу. Питание на тиристор поступает не напрямую, а через светодиод, последний будет гореть когда тиристор открыт свидетельствуя о наличии кз.
В архиве печатная плата чуть иная, предназначена для получения двухполярного напряжения, но я думаю переделать выходную часть под однополярку не составит труда.
Архив к статье; скачать…
На этом все, с вами как всегда был – Ака Касьян,
Похожие статьи:
Автомобильные зарядные устройства. Схемы. Принцип работы.
Обзор распространённых автомобильных зарядных устройств. Принципиальные схемы. Назначение. Устройство. Возможные неисправности.
Зима. Мороз. Двигатель запускается тяжело. Резко возрастает нагрузка на аккумулятор. А за состоянием аккумулятора нужно следить: проверять и вовремя его заряжать. Летом АКБ редко когда приходится заряжать, часто хватает зарядки от генератора автомобиля, а зима — это время частого использования автомобильных зарядных устройств.
Рассмотрим некоторые модели зарядных устройств промышленного производства, выпускаемых раньше и наиболее часто используемых автомобилистами.
УСТРОЙСТВО ЗАРЯДНО-ВЫПРЯМИТЕЛЬНОЕ БЫТОВОЕ ТИПА УЗС-П-12-6,3 УХЛ 3.1. «Электроника», «Электроника-М», «Электроника-И»
Устройство зарядно-выпрямительные с плавным регулированием стабилизированного тока зарядки предназначена для зарядки и подзарядки стартерных свинцово-кислотных аккумуляторных батарей типа 6 СТ (12В.) и 3 СТ (6 В.) ёмкостью до 60 А-ч в автоматическом и ручном режимах.
Разрешается заряжать батареи емкостью более 60 А-ч, но при этом ток зарядки не должен превышать 6,3 А!
12-вольтовая батарея может заряжаться как автоматическом, так и в ручном режимах, а 6-вольтовая батарея заряжается только в ручном режиме. Можно заряжать последовательно соединенные две 6-вольтовые батареи.
С помощью зарядного устройства можно определить полярность аккумуляторных батарей.
Устройство зарядное имеет электронную защиту от короткого замыкания при подключении его к аккумуляторной батарее, а также при ошибочной переполюсовки.
Технические характеристики зарядного устройства
ТИПА УЗС-П-12-6,3 УХЛ 3.1. «Электроника», «Электроника-М», «Электроника-И»
- Питание устройства осуществляется от сети переменного тока напряжением (220±22) В и частотой 50 и 60 Гц.
- Максимальный ток зарядки — 6,3 А.
- Диапазон регулирования стабилизированного тока зарядки от 0,2 до 6,3 А.
- Номинальное напряжение заряжаемой батареи — 12 В.
Устройство
Органы управления и индикации устройства зарядного выведены на лицевую панель:
- в устройстве зарядном «Электроника» стрелочный индикатор предназначен для индикации величины тока зарядки.
- в устройстве зарядном «Электроника–И» величина тока зарядки определяется по маркировке, нанесенной около светодиодного индикатора;
- в устройстве зарядном «Электроника-М» величина тока зарядки определяется по нанесенной на панели маркировке;
- регулятор предназначен для регулирования величины тока зарядки.
- индикаторы предназначены для определения режима работы устройства зарядного.
- кнопка КОНТРОЛЬ предназначена для контроля работоспособности и запуска устройства зарядного при подключении незаряженной емкостной нагрузки, а также слабозаряженной аккумуляторной батареи.
У зарядного устройства «Электроника–И» шаг индикации значения зарядного тока составляет :
- 0,5А – у12 разрядного индикатора тока;
- 1,0А – у 6 разрядного индикатора тока.
Порядок работы
Режим зарядки батарей согласно требованиям «Инструкции по эксплуатации» батарей аккумуляторных.
Устройство зарядное функционирует только с емкостной нагрузкой. Для запуска устройства зарядного, при подключении к устройству слабозаряженной аккумуляторной батареи или незаряженной емкостной нагрузки, необходимо нажимать кнопку КОНТРОЛЬ до включения устройства (до 1/3 секунд), что определяется включением индикатора.
В устройстве зарядном «Электроника – М» величина зарядного тока определяется по маркировке, нанесенной на панели, а также по яркости свечения индикатора. Отклонение величины тока зарядки от маркированного значения при номинальном значении напряжения питания не более ±0,5А. При зарядке аккумуляторной батареи с наличием сульфатации значение зарядного тока может отличаться от указанного.
Работа устройства зарядного при зарядке 12-вольтовой и 6-вольтовой аккумуляторных батарей в ручном режиме.
Установите ручку регулятора в левое крайнее положение, переключатель на режим работы РУЧ.
Подключите к устройству зарядному с помощью кабеля нагрузки аккумуляторную батарею. Зажим со знаком «+» подключите к клемме «+» аккумуляторной батареи, со знаком «-» к клемме «-».
Включите устройство зарядное в сеть: должен включиться (загореться) индикатор, установите регулятором тока необходимую величину тока зарядки, при этом должен включиться (загореться) индикатор, сигнализирующий о протекании зарядного тока. Признаком окончания процесса зарядки является обильное газовыделение, кипение во всех элементах батареи, а также постоянство плотности электролита и напряжения на батарее в течение 2-3 часов.
Порядок работы при зарядке 12-вольтовой аккумуляторной батареи в автоматическом режиме.
- Установите ручку регулятора в левое – крайнее положение. Подключите к устройству зарядному с помощью кабеля нагрузки аккумуляторную батарею. Зажим со знаком «+» подключите к клемме «+» аккумуляторной батареи, со знаком «-» к клемме «-».
- Включите устройство зарядное в сеть, при этом должен включиться индикатор.
- Установите ручкой регулятора необходимую величину зарядного тока, включается индикатор, переключатель на режим работы «АВТ». Стрелочный индикатор в устройстве зарядном «Электроника» показывает величину тока зарядки, далее наступает бестоковая пауза, индикатор отключается, а стрелка индикатора на нулевой отметке. После бестоковой паузы начинается процесс зарядки аккумуляторной батареи: зарядка-пауза-зарядка-пауза. Длительность бестоковой паузы зависит от степени заряженности аккумуляторной батареи.
- Признаками окончания процесса зарядки являются длительные без токовые паузы, обильное газовыделение, а также постоянство плотности электролита и напряжения на аккумуляторной батарее.
- Для окончательной зарядки аккумуляторной батареи рекомендуем в конце процесса зарядки перейти на ручной режим.
ВНИМАНИЕ!
Стабилизация тока зарядки устройства зарядного в режиме «РУЧ» и в режиме «АВТ» не осуществляется при зарядке аккумуляторных батарей с наличием сульфатации электродной массы, с прорастанием сепараторов или их разрушением, с короблением электродов, с наличием вредных примесей в электролите. В большинстве случаев при этом происходит самопроизвольное неуправляемое снижение тока зарядки.
Порядок работы при определении состояния 12-вольтовой аккумуляторной батареи.
- Подключите к устройству зарядному с помощью кабеля нагрузки аккумуляторную батарею. Зажим со знаком «+» подключите к клемме «+» аккумуляторной батареи, со знаком «-» к клемме «-».
- Подключите устройство зарядное к сети. Установите ручкой регулятора необходимую величину тока зарядки, переключатель на режим работы «АВТ».
- Включается индикатор, а стрелочный индикатор в устройстве зарядном «Электроника» показывает величину тока зарядки, далее наступает бестоковая пауза, отключается индикатор, а стрелка индикатора на нулевой отметке. Проконтролируйте по индикаторам бестоковую паузу. Если бестоковая пауза длится (0,5-1) секунд, аккумуляторную батарею необходимо зарядить. Если бестоковая пауза длится (1-2) минуты, аккумуляторная батарея не требует зарядки.
- Описанный временной режим работы устройства может не совпадать при включении аккумуляторной батареи, отработавший свой гарантийный срок, а также при следующих отклонениях в аккумуляторной батарее:
- коррозия токоотводов положительных электродов;
- оплывание активной массы положительного электрода;
- коробление электродов;
- прорастание сепараторов или их разрушение;
- короткое замыкание между электродами различной полярности;
- необратимая сульфатация электродной массы, наличие вредных примесей в электролите.
Определение полярности аккумуляторных батарей при отсутствии на них маркировки.
Подключите зажимы зарядного устройства к клеммам аккумуляторной батареи, ручку регулятора тока установите в крайнее левое положение, переключатель на режим работы «РУЧ». Подключите устройство зарядное к сети. Поверните ручку регулятора тока по часовой стрелке. Если при этом включается индикатор, полярность клемм аккумулятора соответствует маркировке на зажимах кабеля нагрузки. Если индикатор не включается, поменяйте местами зажимы и произведите проверку повторно.
Ещё одна схема зарядного устройства «ЭЛЕКТРОНИКА»
Печатная плата зарядного устройства «ЭЛЕКТРОНИКА»
Схема пуско-зарядного устройства для автомобильного АКБ «ЭЛЕКТРОНИКА ЗП-01»
Другой вариант схемы «Электроника ЗП-01»:
Этот вариант, но перерисованый:
Устройство зарядное с автоматическим отключением УЗ-ПА-6/12-6,3-УХЛЗ.1
Устройство зарядное с автоматическим отключением УЗ-ПА-6/12-6,3-УХЛЗ-1 (в дальнейшем — устройство УЗ-ПА) предназначено для заряда 6 и 12-вольтовых стартерных аккумуляторных батарей, установленных на мотоциклах и автомобилях личного пользования. Перед началом эксплуатации устройства УЗ-ПА необходимо изучить руководство по эксплуатации, а также правила по уходу и эксплуатации аккумуляторной батареи. Устройство УЗ-ПА имеет плавную установку зарядного тока, электронную схему защиты, обеспечивающую сохранность аккумуляторной батареи при перегрузках, коротких замыканиях и неправильной полярности подключения выходных зажимов. При этом защита выполнена таким образом: что на выходе зарядный ток появляется только в случае, если к выходным зажимам подключен источник напряжения (аккумуляторная батарея).
Внимание. Данное устройство производит заряд при наличии напряжения на аккумуляторной батарее не менее 4-х вольт.
В устройстве отсутствует указанный на схеме переключатель SВ1 и кнопка на лицевой панели. Обнуление счетчика таймера происходит автоматически при включении устройства в сеть.
Устройство УЗ-ПА рассчитано на эксплуатацию в условиях умеренного климата при температуре окружающего воздуха от минус 10° С до плюс 40° С и относительной влажности до 98% при 25° С.
ТЕХНИЧЕСКИЕ ДАННЫЕ
Напряжение питающей сети | (220±22) В |
Частота сети | (50 ±0,5) Гц |
Диапазон установки тока заряда | от 0,5 до 6,3 А |
Переменное напряжение для питания переносной автомобильной лампы | (36 ±3) В |
Автоматическое отключение от аккумуляторной батареи | через (10,5±1) ч |
Габаритные размеры, не более | 240x175x85 мм |
Масса, не более | 4,2 кг |
Потребляемая мощность, не более | 145 Вт |
Устройство УЗ-ПА-6/12-6,3 и принцип работы
Устройство УЗ-ПА представляет собой выпрямитель, с плавной установкой тока. С выводов 3,6 сетевого трансформатора TV1 напряжение поступает на 2-х-полупериодный управляемый выпрямитель, выполненный на тиристорах VS1 и VS2. Выпрямленное напряжение подается на аккумуляторную батарею через контакты XI («плюс») и Х2 («минус»).
Для контроля величины тока заряда служит индикатор тока РА1.
Для отключения цепи заряда от аккумулятора через (10,5 ±1) ч, управления работой тиристоров и установки необходимого тока заряда служит схема, собранная на транзисторах VT1, VT4, VТ8, VТ9, VТ10 и интегральной схеме (ДД1).
На транзисторе VТ1 выполнен формирователь импульсов с частотой 50 Гц, на интегральной схеме ДД1 — счетчик с импульсов, на транзисторах VТ8 и VТ10 — делитель частоты на 2, на транзисторе VТ6 — управляемый генератор (стабилизатор) тока.
При этом необходимый ток заряда устанавливается потенциометром RP1.
Генератор управляющих импульсов выполнен на транзисторах VТЗ, VТ7. Транзистор VТ2 является усилителем этих импульсов по мощности.
На диоде VД1 выполнена схема защиты от короткого замыкания и переполюсовки выводов.
Схема на транзисторах VТ4 и VТ5 служит для переключения устройства в режим уменьшенного тока (через 6 — 8 часов ток уменьшится в 1,3 — 2,5 раза).
На диодах VД7 и VД8 собран выпрямитель питания схемы формирователя импульсов и счетчика.
Диоды VД5 и VД6 запрещают подачу импульсов на управляющий электрод тиристора в момент, когда к тиристору приложено обратное напряжение.
Для индикации включения сети и конца заряда служат светодиоды VД2 и VД13.
С выводов 3 и 6 силового трансформатора снимается переменное напряжение 36 В.
Конструктивно устройство состоит из нижнего и верхнего корпуса, лицевой панели, радиатора, печатной платы с радиоэлементами и силового трансформатора.
ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ ИХ УСТРАНЕНИЯ
Устройство зарядное просто и надежно в эксплуатации. Однако, в практике имеются случаи, когда потребители из-за неправильного использования не могут получить необходимый зарядный ток и ошибочно считают это неисправностью зарядного устройства. Некоторые неисправности приведены в таблице ниже.
Перечень возможных неисправностей и методы их устранения | ||||||
Наименование неисправностей, внешнее проявление и дополнительные признаки | Вероятная причина | Метод устранения | Примечание | |||
1. При подключении зарядного устройства к аккумуляторной батарее отсутствует показание зарядного тока | 1. Ручка недостаточно повернута по часовой стрелке | 1. Вращением ручки установить необходимый ток | ||||
2. Плохой контакт между выходными зажимами «+» и «-» и выводами аккумуляторной батареи | 2. Проверить состояние выводов. При необходимости зачистить их | |||||
3. Перепутана полярность при подключении зарядного устройства к выводам аккумуляторной батареи | 3. Проверить полярность и подключить согласно рис. 4 | |||||
4. Выходные зажимы «+» и «-» замыкаются между собой | 4. Разомкнуть зажимы | |||||
5. Короткое замыкание в аккумуляторной батарее или она чрезмерно разряжена, напряжение на ней менее 4В) | 5. Проверить аккумуляторную батарею, если устройство исправно | Проверить устройство следующим образом: подключить к выходным зажимам соблюдая полярность («+» к «+», «-» к «-») любой источник постоянного напряжения не менее 4 В (заведомо исправную аккумуляторную батарею или батарею из сухих элементов): вращая ручку проверить по амперметру наличие тока. Если ток заряда есть, то устройство исправно, неисправность следует искать в заряжаемой аккумуляторной батарее | ||||
2. При подключении зарядного устройства к аккумуляторной батарее стрелка амперметра зашкаливает | 1. Ручка выведена вправо до конца | 1. Установить ток вращением ручки против часовой стрелки | ||||
3. При включении зарядного устройства в сеть не горит светодиод СЕТЬ | 1. Сгорел предохранитель | 1. Заменить предохранитель |
Другой похожий вариант схемы устройства зарядного автоматического «ЭЛЕКТРОНИКА»
Отличие от предыдущей схемы — добавление транзистора VT11 КТ315Г, ограничивающий максимальный ток устройства.
Устройство зарядно-разрядное УЗР-П-12/6-6,3-УХЛ3,1
На рисунке стрелками обозначены основные узлы схемы.
Назначение
Устройство зарядно-разрядное (УЗР) предназначено для заряда обычным и восстановительным режимом стартерных аккумуляторных батарей всех типов, применяемых в отечественных автомобилях, мотоциклах и мотороллерах, а также для питания низковольтной активной нагрузки.
В режиме восстановительного заряда УЗР обеспечивает восстановление структуры активных масс свинцового аккумулятора путем поляризации его электродов асимметричным током инфранизкой частоты, что позволяет снизить скорость коррозии решеток положительных пластин и увеличить срок службы аккумулятора на 20—40%.
Электронная схема зарядного устройства обеспечивает его защиту при несоответствии полярности подключаемых с аккумуляторной батарее зажимов, коротких замыканиях. А так же есть возможность плавно регулировать ток заряда от 0,1 до 6А, при входном напряжении 220 ±22 В.
Восстановительные заряды рекомендуется проводить:
- один раз в 3—4 месяца при малоинтенсивной эксплуатации аккумулятора;
- ежемесячно при длительной стоянке;
- до и после длительного бездействия;
- при введении в действие сухозаряженных аккумуляторов с просроченным сроком хранения.
Технические характеристики
- Номинальное напряжение питающей сети, В ~ 220;
- Номинальное напряжение заряжаемой аккумуляторной батареи, 6-12;
- Номинальный выпрямительный ток, А — 6,3;
- Максимальная потребляемая мощность, Вт не более — 160.
- Масса, кг, не более — 4,3 кг.
В восстановительном режиме работы:
- время протекания тока в прямом направлении, режим заряда — от 90 до 160 с.;
- время протекания тока в обратном направлении, режим разряда — от 9 до 24 с.
Устройство для автоматической зарядки и разрядки автомобильных аккумуляторов на таймере КР1006ВИ1
Принцип работы зарядно-разрядного устройства
Зарядно-разрядное устройство состоит из собственно зарядного устройства (ЗУ), обозначенного на схеме прямоугольником, и электронного узла управления. Питание узла управления осуществляется от аккумуляторной батареи. В качестве порогового элемента (компаратора), вырабатывающего сигнал при достижении напряжением на аккумуляторе значения свыше 14,2…14,5 В и при снижении до 10,5 В, используется интегральный таймер КР1006ВИ1 (микросхема DA1).
Ток зарядки устанавливают в соответствии с инструкцией по эксплуатации аккумуляторной батареи, т.е. равным 1/10 или 1/20 емкости батареи. Если зарядка идет без контроля оператора, следует обеспечить ограничение колебаний зарядного тока при возможных колебаниях сетевого напряжения.
Самый простой способ стабилизации тока — включение двух-трех параллельно соединенных автомобильных ламп мощностью 40… 50 Вт в разрыв одного из выходных проводов зарядного устройства. Такой же эффект может быть достигнут включением лампы напряжением 220 В и мощностью 200…300 Вт в разрыв одного из входных (сетевых) проводов ЗУ. Сопротивление вольфрамовой нити ламп накаливания возрастает с увеличением температуры, т.е. лампа обладает свойствами стабилизатора тока. Зарядный ток содержит дозированную разрядную составляющую, что благотворно сказывается на протекании электрохимических процессов в батарее. Разрядная составляющая тока протекает через резистор R 19 и транзистор VT3 и равна примерно 0,5 А.
В процессе зарядки напряжение на полюсных выводах аккумулятора плавно увеличивается. Известно, что напряжение полностью заряженной батареи составляет 14,2…14,5 В. Измерение этого напряжения следует производить в отсутствие зарядного тока, поскольку импульсы зарядного тока в зависимости от степени разряженности аккумуляторной батареи увеличивают мгновенное значение напряжения на ее зажимах на 1…3 В по сравнению с режимом, когда ток зарядки не протекает. Для обеспечения такого режима измерения в устройстве использованы элементы U1, R4, VT2. В режиме зарядки транзистор VT2 открыт.
Подробнее о работе этого зарядно-разрядного устройства Вы можете прочитать скоро в следующей статье.
Ещё один вариант автоматического зарядного устройства на двух счётчиках К176ИЕ12 и К176ИЕ8
На транзисторе VT6 КТ503Б собран формирователь импульсов для работы счётчиков (100 Гц).
Запускается зарядное устройство кнопкой «Пуск» после чего счётчики сбрасываются и начинается отчёт времени. По истечении заданного числа импульсов с выв 3 МС К176ИЕ8 логич. 0 сначала закрывается полевой транзистор VT5 (КП103Б), тем самым ограничивая ток зарядки. Затем после появления лог. 0 (сигнала закрытия) с выв.4 МС К176ИЕ8 закрывается VT4 (КП103Б), тем самым отключается зарядка АКБ. Через VT1, VT2, VT3 осуществляется регулировка управления тиристорами.
Зарядное устройство «КЕДР-АВТО»
Ниже приведены несколько схем зарядного устройства семейства «Кедр»
При написании статьи использовались руководства по эксплуатации вышеописанных устройств.
А. Зотов, Волгоградская обл.
ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ
П О П У Л Я Р Н О Е:
Популярность: 154 769 просм.