Схема ир2153 – Блок питания 1000 Ватт на IR2153. Часть 2. – Схема-авто – поделки для авто своими руками

Импульсный источник питания для TDA7294 на IR2153

Приспичило как-то мне собрать усилитель на TDA7294. Причем собрать нужно было как можно скорее. День рождения был на носу, и планировалось отметить его на открытом воздухе, под звуки, испускаемые моими раритетными колонками Радиотехника S30.

Усилитель собран был незамедлительно. Кому интересно, читайте статью "Усилитель НЧ на TDA7294". Пришло время сборки импульсного источника питания. Крайне важны были маленькие габариты источника.

DSC_0217DSC_0217

DSwwwC_0265DSwwwC_0265

Была выбрана наипростейшая схема импульсного источника питания на ir2153.

ir2153 схемаir2153 схема

В интернете полно аналогичных схем чуть-чуть отличающихся друг от друга. Схемы не все рабочие, что в сети. Это я тоже не сразу понял, поэтому, немного намучился. Приведенная мною схема полностью рабочая. Соблюдая все номиналы данной схемы, и используя мою печатную плату, сэкономите время на исправлении своих и чужих ошибок.

Более сложный аналог данной схемы описан в статье "Импульсный блок питания для усилителя НЧ на ir2153 мощностью 300Вт". Эту схему отличает наличие блока защиты от перегрузок и плавный запуск.

DSC06646DSC06646

Простота схемы ИИП для TDA7294 на ir2153 позволяет новичкам с легкостью повторить её. Еще один плюс, это габариты. Плата импульсного источника питания имеет размеры 80мм в ширину и 80мм в высоту.

Печатная плата ir2153Печатная плата ir2153

Принцип работы схемы.
Как работает блок питания на ir2153 описано в статье “Импульсный блок питания для усилителя НЧ на ir2153 мощностью 300Вт”.

На принципиальной схеме не нарисован варистор, но в печатной плате он есть. В принципе его можно не ставить, так как роли почти не играет (никаких перемычек не нужно впаивать, просто не ставим варистор и все).

DSC_0281111DSC_0281111

Термистор NTC при первом включении ограничивает скачок тока, при зарядке сетевых и выходных электролитов, через некоторое время он нагревается и его сопротивление уменьшается. Простая, но не совсем надежная защита. При повторном включении, когда термистор нагретый, защита уже не эффективна. Но как показала практика, блок питания надежен и не горит, как пишут некоторые люди в комментариях.

Времязадающие элементы R2 и C3 выбраны таким образом, чтобы драйвер обеспечивал генерацию импульсов с частотой около 70 кГц. Программа для расчета R2 и C3 находится под статьей, можете рассчитать под нужную вам частоту.

ИИП на IR2153ИИП на IR2153

Элементы.

ОБОЗНАЧЕНИЕТИПНОМИНАЛКОЛИЧЕСТВОКОММЕНТАРИЙ
Драйвер питанияIR21531
VT1,VT2MOSFET - транзисторIRF7402
VDS2Диодный мостRS60716А 1000В
VDR1ВаристорMYG14-4311Можно не ставить
NTCТермистор5D-11Или другой
R1Резистор 2Вт18кОм1
R2Резистор 0,25ВтHER10810кОм
R3,R4Резистор 0,25Вт33 Ом2
C1,C2Электролит220мкФ 220В2
C3Конденсатор неполярный1нФ1Керамика любое напряж.
C4Конденсатор неполярный0,1 мкФ1Керамика любое напряж.
C5Электролит220мкФ 16В1
C6Конденсатор неполярный0,33 мкФ1Керамика любое напряж.
C7Конденсатор неполярный1мкФ 400В1Пленка
C8-C9Электролит470 мкФ 50В2
C10-C11Конденсатор неполярный0,1 мкФ2Пленка
VD1ДиодHER1081
VD2Импульсный диодFR107,FR1571Любой другой импульсный
VD3-VD6Диод ШотткиКД213А4

Список компонентов в PDF формате СКАЧАТЬ

Питание ТДА7294Питание ТДА7294

Сборка импульсного источникаСборка импульсного источника

Трансформатор.
Самым трудным этапом сборки является расчёт и напитка импульсного трансформатора. Подробно рассказывать про технологию расчёта и намотки транса я не буду, так как уже рассказывал ранее, читайте статью ”Расчет и намотка импульсного трансформатора”. Также рекомендую прочесть статью "Как перемотать трансформатор из блока питания ПК"

На этом этапе поделюсь немного опытом. В статье, ссылка на которую расположена чуть выше, описан метод намотки вторички с отводом от середины, сдвоенным проводом (если по расчетам вторичка имеет одну жилу) а потом соединении их в среднюю точку. Это дает синхронность, то есть, в обоих плечах будет одинаковое напряжение. Вторичная обмотка трансформатора для этого устройства должна иметь две жилы диаметром 0,85 мм, чтобы обеспечить нужную нам мощность (по моим расчетам, у вас может иметь и одну жилу).

Поэтому, если мотать методом из статьи выше, то пришлось бы мотать сразу 4-мя проводами, это крайне неудобно.

Я решил мотать двумя проводами, то есть, сначала мотал одно плечо двумя проводами, потом изоляция и далее второе плечо двумя проводами.

Таким способом советуют не мотать, из-за не синхронной намотки будет разное напряжение. У меня же получилось совсем одинаковое напряжение, и мотать мне было легче, бублик маленький.

Ниже я приведу некоторые намоточные данные.

Диаметр провода и первичной и вторичной обмотки 0,85 мм. Магнитопровод склеен из двух колец размером 28мм*16мм*9мм и магнитной проницаемостью 2000НМ.

Импульсный трансформатор

Импульсный трансформатор

Ферритовые кольцаФерритовые кольца

DSC_0032DSC_0032

DSC_0043DSC_0043

Первичная обмотка содержит 39 витков, хотя по расчетам было сорок с копейками, ноне влезли они. Вследствие чего, пришлось уменьшить количество витков вторичной обмотки, относительно расчетов.

DSC_0049DSC_0049

Намотка импульсного трансформатораНамотка импульсного трансформатора

Итак, вторичная обмотка содержит 8 + 8 витков. Это значит 8 витков, далее отвод (это будет средняя точка), изоляция, потом еще 8 витков.

Вторичная обмотка мотается двумя жилами диаметром 0,85 мм.

(мотаем 8 витков вторички)

Как намотать трансформаторКак намотать трансформатор

(кладем изоляцию)

Мотаем импульсникМотаем импульсник

(скручиваем концы)

DSC_0103DSC_0103

(соединяем конец 8-го витка с проводом, чтобы сделать отвод, и мотаем еще 8 витков в ту же сторону)

Намотка импульсного трансформатораНамотка импульсного трансформатора

Изоляцию берем по вкусу (тряпочную изоленту, киперную или ФУМ ленту, лавсановую пленку или скотч). Я использую лавсановую пленку из обрезков витой пары.

Пленка лавсановая для трансформатораПленка лавсановая для трансформатора

Все обмотки должны мотаться в одном выбранном вами направлении.

Охлаждение.

Радиатором для ключей у меня является передняя панелька усилителя. Исполнена она из дюрали, высота 47мм, ширина 92мм, толщина 7мм. При испытаниях и дальнейшей эксплуатации одного канала TDA7294, ключи теплые, не горячие.

корпус усилителякорпус усилителя Корпус усилителяКорпус усилителя

Ключи установлены на радиатор через силиконовые прокладки и диэлектрические втулки.

Шоттки без радиаторов. Греются не сильно, опять же при эксплуатации одного канала, трансформатор не горячий.

Питание TDA7294Питание TDA7294 Питание TDA7294Питание TDA7294

КД213А

КД213А IR2153IR2153

IRF740IRF740 КД213АКД213А

Диодный мостДиодный мост СокетаСокета

Список компонентов для ИИП на IR2153 СКАЧАТЬ

Печатная плата ИИП на IR2153 СКАЧАТЬ

Даташит на IR2153 СКАЧАТЬ

Калькулятор расчета времязадающих элементов IR2153 СКАЧАТЬ


Похожие статьи

cxema.org - Импульсный блок питания на IR2153

Блок питания построен по полу мостовой схеме на основе микросхемы IR2153. На выходе этого блока можно получить любое нужное вам напряжение, все зависит от параметров вторичной обмотки трансформатора.

Подробно рассмотрим схему импульсного блока питания.

Импульсный блок питания на IR2153, принципиальная схема

Мощность источника питания именно с такими компонентами около 150 ватт.

Сетевое переменное напряжение через предохранитель и термистор поступает на диодный выпрямитель.

Импульсный блок питания на IR2153, предохранитель Импульсный блок питания на IR2153, конденсаторы

После выпрямителя стоит электролитический конденсатор, который в момент включения блока в сеть будет заряжаться большим током, термистор как раз ограничивает этот ток. Конденсатор нужен с напряжением 400-450 Вольт. Далее  постоянное напряжение поступает на силовые ключи. Одновременно через ограничительный резистор и выпрямительный диод поступает питание на микросхему IR2153.

Импульсный блок питания на IR2153 Импульсный блок питания на IR2153, 6N60

Резистор нужен мощный, не менее 2-х ватт, лучше взять 5-и ваттный. Напряжение питания для микросхемы дополнительно сглаживается небольшим электролитическим конденсатором, емкостью от 100 до 470мкФ, желательно на 35 Вольт.  Микросхема начинает вырабатывать последовательность прямоугольных импульсов, частота которых зависят от номинала компонентов времязадающей цепи, в моем случае частота находиться в районе 45кГц.

На выходе установлен выпрямитель со средней точкой. Выпрямитель в виде диодной сборки в корпусе то-220. Если выходное напряжение планируется в пределах 40 вольт, то можно использовать диодные сборки  выпаянные из компьютерных блоков питания.

Импульсный блок питания на IR2153, детали Импульсный блок питания на IR2153, печатная плата

Конденсатор вольтодобавки, предназначен для корректного срабатывания верхнего полевого ключа, емкость зависит от того, какой транзистор использован, но в среднем 1мкФ хватит для большинства случаев.

Перед запуском нужно проверить работу генератора. Для этих целей от внешнего источника питания на указанные выводы микросхемы подается около 15-и вольт постоянного напряжения.
Далее проверяется наличие прямоугольных импульсов на затворе полевых ключей, импульсы должны быть полностью идентичными, одинаковой частоты и заполнения.
Первый запуск источника питания обязательно делается через страховочную лампу накаливания на 220 Вольт с мощностью около 40 ватт, будьте предельно осторожны, не дотрагивайтесь платы во время работы, после отключения блока от сети дождитесь несколько минут пока высоковольтный конденсатор не разрядится через соответствующий резистор.
Очень важно указать то, что эта схема не имеет защиты от коротких замыканий, поэтому любые короткие замыкания, даже кратковременные приведут к выходу из строя силовых ключей и микросхемы IR2153, так, что будьте аккуратны.

Импульсный блок питания на IR2153, резистор Импульсный блок питания на IR2153, собранная плата

Схема также лишена обратной связи по напряжению, так что выходное напряжение будет плавать в зависимости от перепадов сетевого напряжения. Многие скажут, кому нужен этот блок питания, если он такой нехороший. На самом деле блоки питания на IR2153 очень популярны, они просты, практически не требуют наладки, себестоимость маленькая и к тому если использовать соответствующий трансформатор, выпрямитель, транзисторы и входной электролит, с блока питания можно выкачивать до пол киловатта мощности, но и это не все, я делал вплоть до 1 киловатта, правда с дополнительным эмиттерным повторителем и прочими плюшками, включая защиту от коротких замыканий, перенапряжения и релейным  плавным пуском,  схема такого блока питания сейчас перед вами.

Печатная плата тут 

Импульсный блок питания на IR2153

Импульсный блок питания на IR2153

В данной статье опубликована схема блока питания на IR2153, который можно использовать в качестве блока питания для УНЧ. Также эту схему можно использовать в качестве источника питания для шуруповерта изменив выходной каскад и пересчитав силовой трансформатор на нужно напряжение.

Схема импульсного блока питания на IR2153

Собственно схема блока питания на IR2153 с защитой от кз, приведена на следующем скрине.

Разъем XT1 на схеме - это подключение обмотки самопитания микросхемы, которая намотана на силовой трансформатор и рассчитана на 15 вольт. Запуск схемы производится через резистор R44 и диод VD17. После запуска схемы, микросхема начинает записываться от этой обмотки через диоды VD2 и VD4.

Сопротивление резистора R44 выбрано таким образом, чтобы схема надежно запускалась и в процессе работы сам резистор не сильно грелся.

Разъем XT2 на схеме - подключение вторичных обмоток трансформатора тока.

Пару слов о защите от кз. В схему введен трансформатор тока, первичная обмотка которого состоит из одного витка проводом диаметр 1 мм. На плату ставится трансформатор (кольцо) и через окно припаивается к плате перемычкой, эта перемычка и является витком первичной обметки.

Ниже, на фото печатной платы, стрелкой указано, как припаивается перемычка.

Вторичная обмотка токового трансформатора содержит две обмотки по 50 витков проводом 0,2 мм.

Резистором R50 подбираем нужный порог срабатывания защиты по току. Светодиод D2 сигнализирует нам, что схема находится в режиме защиты.

Также хотел отметить, схема защиты работает по "икающему" типу, то есть если выход закорочен, то защита отключает микросхему и на выходе блока питания нет напряжения, если выход не закорочен, то схема блока питания с защитой на ir2153 работает в штатном режиме.

Печатная плата блока питания на IR2153

На скрине представлен внешний вид печатной платы с обоих сторон. Также там указано место впайки перемычки (белая полоса), которая используется как первичная обмотка трансформатора тока (писал об этом выше).

Фото готовых печатных плат блока питания с защитой на IR2153 сделанных своими руками.

Данная статья опубликована на сайте whoby.ru. Постоянная ссылка на эту статью находится по этому адресу http://whoby.ru/page/blok-pitanija-na-ir2153

Читайте статьи на сайте первоисточнике, не поддерживайте воров.

Внешний вид импульсного блока питания на IR2153

После изготовления печатных плат, пора приступить к сборке этого мощного блока питания. Результат этой работы работы вы ведите на следующих фото.

Файлы для изготовления

Чтобы собрать данную схему источника питания на ir2153 с защитой, скачайте файл печатной платы по этой ссылке.

Если возникнут трудности с намоткой силового трансформатора, то как его правильно намотать, можно посмотреть в этой статье.

Заключение

Расчет силового трансформатора здесь не рассматривается, предполагается, что радиолюбитель рассчитает его сам, на нужные ему напряжения.

Собранная без ошибок и исправных элементов, плата источника питания запускается сразу. Остается только отрегулировать нужный ток срабатывания защиты и пользоваться устройством.

На этом я заканчиваю, всем стабильного напряжения.

Статью написал: Admin Whoby.Ru

Еще записи по теме



Простой импульсный блок питания на IR2153

Рабочая проверенная схема блока питания на IR2153

Скажу сразу — схема получилась совершенно рабочая, по принципу «ничего лишнего». 2х25Вх4А (200Вт) держит спокойно при минимальных радиаторах и легком обдуве, пульсации пара десятков милливольт. Стабилизации и защит НЕТ. Лучшая защита — аккуратность и внимательность.. На макетной печатке (силовая импульсная электроника не терпит «соплей» в любом виде!) испытал все найденные в коробке подходящие MOSFETы, несколько типов диодов в выпрямителе, разные ускорящие коммутацию ключей цепочки, работу со снабберами и без, разные варианты снабберов (только по первичке, по вторичке снабберные цепочки оказались не нужны), пару разных по размеру трансформаторов на частотах от 30 до 80кГц, базовые схемы выпрямителей.. работает все.

Различия только в КПД и в картине распределения рассеиваемого тепла по компонентам, причем различия явно несущественные для небольших мощностей, хоть я и не делал специальных замеров, а оценивал нагрев с помощью слюнявого пальца и пролетарского чутья (очень развитое чутье не позволяло что-либо трогать на плате без полного отключения оной от сети, чего и всем категорически рекомендую). Вырисовывать в общем-то совершенно типовую схему в редакторе мне было крайне лень, поэтому нарисовал от руки. Рисую я на минус два по пятибалльной шкале, поэтому прошу строго не судить. Главное — схема рабочая и проверенная, можно повторять один-в-один (да-да, предварительно все проверив).

Простой блок питания на ir2153

Правильная схема сетевого блока питания на IR2153. Бумажка. Ручка. Кривые руки. 2017 год.

Дополнение

Схему все-таки перерисовал в редакторе, там небольшие изменения (внимание! не отраженные на печатной плате), а именно — добавился снаббер на вторичную обмотку трансформатора, без которого выбросы были великоваты. Теперь все чистенько, выбросы минимальны. Снабберы считаются исходя, из индуктивности рассеяния соответствующей обмотки, для частоты 35кГц:
Сснаб (мкФ) = 1/(436 * Ls), где Ls — индуктивность рассеяния соответствующей обмотки, мкГн.
Rснаб (Ом) = SQRT (Ls/Cнаб), где Ls — та же индуктивность в мкГн, Cснаб — расчитанная выше емкость в мкФ. 

Варианты трансформаторов (все проверено лично) описаны на нижеприведенной картинке (она кликабельна).

блок питания на ir2153d

ОБНОВЛЕННАЯ СХЕМА БЛОКА ПИТАНИЯ НА IR2153D

Описание элементов схемы БП

Как я уже сказал, ничего необычного в схеме нет. Частота (определяется номиналами R9 и С8) оптимальна 40..60кГц, с ростом частоты несколько растет выходное напряжение и снижается КПД, более 80кГц использовать в этой схеме нецелесообразно. С номиналами на схеме будет около 50кГц. Номиналы всех компонентов в известной мере можно варьировать (при понимании работы схемы), критично максимальное напряжение всех конденсаторов. С3, С4 — пленочные типа Х2, С13, С15 — пленочные (С13 чуть лучше полипропилен). С1,С2, С5,С6 — керамические высоковольтные типа Х1,Y2 (обычно ярко-синего цвета). С19, установленный между первичной и вторичной «землями» — обязательно типа Y2, керамический высоковольтный.

Корпус устройства (если металлический) подключается к вторичной земле и выводу «РЕ» (защитная заземление) сети. Это не только обеспечивает безопасность, но и значительно снизит генерируемые источником питания помехи. Все элементы входного фильтра, включая дроссель — сняты с компьютерного ИБП. Диодный мост VD1-VD4 оттуда же, если мощность вашего БП планируется более 200Вт — стоит проверить по даташиту максимальный ток сетевого диодного мостика.

Сетевой выпрямитель можно набрать из дискретных диодов, отлично подойдут 1N5408 и подобные (600…1000В, 3-5А). Плавкий предохранитель — на 2-3А, термистор (зеленая такая круглая плюха) — также из донора, любой на 5..10 Ом. Помните, что отключенный от сети блок нельзя сразу же включать снова, термистор не успеет остынуть и возможен пробой диодного моста из-за большого импульсного тока первичного заряда С7 и С8. R1 служит для разряда емкостей сетевого фильтра (без него может «дернуть» от сетевой вилки отключенного БП). Делитель из резисторов R2, R3 выполняет ту же функцию, однако основное его назначение — выравнивание напряжения на емкостном делителе, образованном С7 и С8. Эти конденсаторы желательно проверить на идентичность, большой (десятки процентов) «перекос» чреват бабахом. Питание микросхемы осуществляется от выпрямленного сетевого напряжения (+310В) через гасящий резистор R4. Мощность на нем рассеивается до 5Вт, это надо учитывать при монтаже.

У меня этот резистор составлен из двух трехваттных, горячий, но не плавится и не воняет — это норма. В сети встречается много вариантов запитки этой микросхемы, вплоть до отдельного маленького трансформатора.. все они имеют право на жизнь, однако не рекомендую питать м/с от «переменки» через диод, пусть даже это позволит снизить нагрев гасящего резистора. Причина в потенциальной нестабильности генератора (проследите цепь по переменному току), опять же производитель рекомендует запитку именно от «плюса» после входного моста. Прочие варианты, на мой взгляд, избыточны для простого БП.

Если С9 поставить типа LowESR, то С10 (керамика) можно не устанавливать. ВАЖНО: для микросхем без индекса «D» необходим быстрый маломощный диод (вроде uf4007) с вывода 1 на вывод 8, на печатной плате разведен. Номинал С12 (керамика) ставить более 1мкФ в лучшем случае бессмысленно, нормально 0,33..0,68мкФ. Резисторы в затворах ключей не менее 10 Ом, больше — хуже (затягиваются фроты, особенно отключения), однако слишком малые значения потенциально опасны ВЧ-«звоном» и «защелкиванием» выходной структуры микросхемы (с моментальным выгоранием всего и вся). Оптимально 15.22 Ом, это хороший компромисс между КПД и быстродействием.

Страницы 1 2 3 4 5 6 7

ИИП для новичков на IR2153 - Блоки питания (импульсные) - Источники питания

Многие начинающие знакомство с импульсниками, начинают собирать то, что по проще. 
В том числе и с этой схемы:


Я также начинал с нее.

Вполне рабочая схема, но если ее немного доукомплектовать, то получится достойный импульсный БП для начинающих и не только.
Вот как то так:

Большинство деталей выпаивал из старых компьютерных БП и старых мониторов. В общем собирал из того что нормальные люди выбрасывают на свалку.
Вот так выглядит ИИП в сборе:

А вот уже БП с нагрузкой. 4 лампы по 24 вольта. По две штуки в каждое плечо.

Замерял общее напряжение и ток в одном плече. За пол часа работы с нагрузкой, радиатор нагрелся около 50*.
В общем получился блок потания на 400Ватт. Вполне можно запитать 2 канала усилителя по 200Ватт.

Основную проблему для начинающих создает намотка трансформатора.
Трансформатор можно намотать на кольцах, или выдернуть транс из компового БП.
Я взял транс из старого монитора, а так как в мониторах транс с зазором, я взял сразу два.

Эти трансы кидаю в банку, заливаю ацетоном, закрываю крышкой и курю.

На следующий день открыл банку, один транс сам развалился, второй немного пришлось расшевелить руками.

Так как с двух трансов получится один, я размотал одну катушку. Ничего не выбрасываю, все пригодится для намотки нового транса.
Можно конечно спилить феррит, чтобы убрать зазор. Но у меня старых мониторов как грязи и с стачиванием зазора не заморачиваюсь.
Сразу же переставил ноги, распиновка как и в комповом трансе, а лишние выбросил.

Потом в программе Старичка рассчитываю под нужное мне напряжение и ток.
Подгоняю расчеты под провод который есть в наличии. 
Длинна катушки 26,5мм. У меня есть провод 0,69. Считаю 0,69х2(двойным проводом)х38 витков / делю на 2 (слоя) =26,22мм.
Получается 2 провода 0,69 лягут ровно в два слоя.

Теперь готовлю медную ленту для намотки вторички. Лентой легко мотать, провода не путаются, не распадаются и ложатся виток к витку.
Мотаю сразу четырьмя проводами 0,8мм, 4 полу обмотки.
В рейку забил 2 гвоздя, натянул 4 провода, промазал клеем.

В итоге:

Пока лента сохнет мотаю первичку. Пробовал мотать два одинаковых транса, в одном первичку мотал целиком, в другом мотал половину первочки, потом вторичку и в конце вторую половину первички(так как намотаны комповские трансы). Так вот разницы в работе обеих трансов не заметил никакой. Больше не заморачиваюсь и мотаю первичку целой.
В общем мотаю: намотал один слой первички, так как нету третьей руки чтобы поддерживать, обматываю узким скотчем в один слой. При нагреве транса скотч расплавится, и если где-то был послаблен виток, скотч склеит как клеем. Теперь наматываю пленочную ленту, ту что с разобранного транса. и доматываю первичку.

За изолировал первичку, положил экран(медная фольга) только чтобы небыло полного витка, не должна сходится на 3-5мм.
Экран забыл сфоткать.
Лента высохла, и таким макаром мотаю вторичку.

Намотал слой вторички, выровнял ряд узкими полосками с разобранного транса, за изолировал, домотал вторичку, за изолировал

Воткнул ферриты, стянул их узким скотчем(около 10 слоев), с баллончика залил лаком сверху и снизу, чтобы транс не цикал и под тепло вентилятор. Пусть сохнет. 
В итоге готовый трансформатор:

На намотку транса потратил минут 30. И около часа на подготовку и зачистку с залуживанием проводов.

АРХИВ:Скачать

 

 

Импульсный блок питания 1000 Ватт на IR2153 | Микросхема

Всем здравствуйте!

Здесь представлена схема ИБП 1000 Ватт. Хотя эта схема уже повторялась радиолюбителями не однократно, в интернете много видео и форумов по этой схеме. Но мне захотелось с вами поделиться как я сделал этот ИБП. Кстати скачивал эту схему и печатную плату с других ресурсов, в них были ошибки, на печатке перепутаны полярность некоторых электролитов , а на схема была не правильно указана проводимость одного транзистора. Может мне такие ресурсы попались, но тем не менее это был факт. Здесь выкладываю схему и печатку без ошибок. В конце статьи ссылка на источник автора схемы.

Предыстория:

На сайте есть схема усилителей мощности звуковой частоты (УНЧ) 125, 250, 500, 1000 Ватт, я выбрал 500 Ватт вариант, так как кроме радиоэлектроники, немного увлекаюсь еще музыкой и поэтому хотелось что то по качественнее из УНЧ. Схема на TDA 7293 меня не как не устраивала, поэтому решил вариант на полевых транзисторах 500 ватт. С начала почти собрал один канал УНЧ, но работа остановилась по разным причинам (время, деньги и недоступность некоторых компонентов). В итоге докупил не достающие компоненты и закончил один канал. Также через определенное время и второй канал собрал, все это настроил и протестировал на блоке питания от другого усилителя, все работало на высшем уровне и качество очень понравилось, даже не ожидал что так будет. Отдельное, огромное спасибо радиолюбителям Boris, AndReas, nissan которые на протяжении всего времени пока собрал, помогли в его настройке и в других нюансах. Далее дело стало за блоком питания. Конечно хотелось бы сделать на обычном трансформаторе блок питания, но опять же все останавливается на доступности материалов для трансформатора и их стоимости. Поэтому решил все-таки остановиться на ИБП.

Ну а теперь о самом ИБП:

Схема построена на микросхеме IR2153/

Микросхема IR2153 является драйвером управления полевыми и IGBT транзисторами полумоста. Разрабатывалась она для применения в схемах электронного балласта газоразрядных ламп, поэтому её функциональные возможности довольно ограничены. Об этих ограниченных возможностях следует помнить при создании на её основе ИИП. Микросхема позволяет создать простой блок питания, по своей сути это электронный трансформатор с выпрямителем. Если хотите построить более высшего класса ИБП, то смотрите в сторону ШИМ TL494, на этой микросхеме будет поинтереснее, так как можно сделать стабилизированный ИБП.

В этой схеме предусмотрен плавный пуск как по входу, так и по выходу при зарядке емкостей, а также защита от короткого замыкания и перенапряжения. По входу стоит варистор на 275 Вольт, при превышении питающего напряжении по входу, варистор закоротит вход и сгорит предохранитель.

Защита от КЗ, принцип работы: резисторы R11 и R12 служат в качестве датчика тока, при коротком замыкании или перегрузке на резисторах R11 и R12 образуется падение напряжения достаточной величины для открывания маломощного тиристора Т1, открываясь тиристор коротит плюс питания для микросхемы генератора на основную массу, таким образом на микросхему не поступает питающее напряжение и она прекращает работу. Питание поступает на теристор не напрямую а через светодиод HL1, светодиод будет гореть и свидетельствовать о наличии перегрузки или короткого замыкания (КЗ). Что бы вывести ИБП из защиты, нужно выключить его, устранить причину КЗ, дождаться пока погаснет светодиод HL1, только после включить блок питания. Есть схемы ИБП на IR2153 где реализована защита немного по другому, там можно не отключать блок питания для вывода из защиты, как только будет устранен перегруз или КЗ, ИБП выходит из защиты автоматически не отключая его. В этих моментах есть как свои плюсы, так и минусы.

В этой разводке печатной платы предусмотрены еще выходы кроме основного двуполярного силового, маломощные двуполярное питание -+12 Вольт и 12 Вольт. Эти дополнительные выходы питание могут пригодится для питание предварительных схем, а также запитки вентиляторов охлаждения. Схема очень проста в повторении и если правильно сделана печатная плата (по схеме), правильно подобраны детали, а так же правильно намотан и рассчитан трансформатор, тогда все работает сразу. Только нужно настроить защиту регулируя переменный многооборотный резистор R9. Как по входу, так и по выходу в схеме предусмотрена фильтрация, стоят дросселя. Электролиты С4, С5 которые стоят по сетевому выпрямленному напряжению рассчитываются грубо говоря 1 ватт на 1 Мкф. Я поставил в параллель 2*470 Мкф, что примерно выходит 960 Ватт. Для надежности получается можно снять 850-900 Ватт, что при использовании УНЧ 2*500 Ватт вполне достаточно, так как УНЧ (нагрузка) имеет импульсный характер, а не активный типо утюга.

Печатная платы в LAY

Транзисторы я использовал IRFP 460, так как не нашел указанных на схеме. Пришлось транзисторы ставить наоборот развернув на 180 градусов, просверлить дырки под ножки больше и проводками спаять (на фото видно). Когда сделал печатную плату, то позже только понял что нужных как на схеме транзисторов мне не найти, поставил те что были (IRFP 460). Транзисторы и выходные выпрямительные диоды обязательно установить на теплоотвод через изолирующие тепло проводящие прокладки, а так же нужно охлаждать кулером радиаторы, иначе могут перегреться транзисторы и выпрямительные диоды, но нагрев транзисторов конечно зависит и от типа примененных транзисторов. Чем ниже внутреннее сопротивление полевика, тем меньше будут греться.

Также пока не установил Варистор 275 Вольт по входу, так как нет не в городе и у меня тоже, а через интернет дорого заказывать одну деталь. У меня будут стоять отдельно вынесенные электролиты по выходу, потому что нет в наличии на нужное напряжение и типоразмер не подходит. Решил поставить 4 электролита по 10000 Мкф * 50 Вольт по 2 последовательно в плечо, в сумме в каждом плече получится по 5000 Мкф *100 вольт, что будет в полне достаточно для блока питания, но лучше поставить по 10000 мкф * 100 вольт в плечо.

На схеме указан резистор R5 47 кОм 2 W по питанию микросхемы, его следует заменить  на 30 кОм 5 W  ( лучше 10 W ) для того что бы при большой нагрузке, хватило тока  микросхеме IR2153, иначе может уйти в защиту от недостатка тока или будет пульсировать напряжение что отразится на качестве. В схеме автора стоит 47 кОм, это много для такой мощности блока питания. Кстати, резистор R5 будет греться очень сильно, не переживайте, тип этих схем на IR2151, IR2153, IR2155 по питанию сопровождается сильным нагревом R5.

В моем случае я использовал ферритовый сердечник ETD 49 и он у меня очень тяжело влез на плату. При частоте 56 КГц, он по расчетам может отдать на этой частоте до 1400 ватт, что в моем случае имеет запас. Можно использовать и тороидальный или другой формы сердечник, главное что бы подходил по габаритной мощности, проницаемости и естественно что бы хватило место его расположить на плате.

Намоточные данные для ETD 49: 1-ка=20 витков проводом 0.63 в 5 проводов (обмотка 220 вольт). 2-ка= основная силовая двуполярная 2*11 витков проводом 0.63 в 4 провода (обмотка 2*75-80) вольт. 3-ка= 2.5 витка проводом 0.63 в 1 провод (обмотка 12 вольт, для софт старт). 4-ка= 2 витка проводом 0.63 в 1 провод (обмотка дополнительная для питания предварительных схем (темброблок и т.п.). Каркас трансформатора нужно вертикального исполнения, у меня горизонтального, поэтому пришлось городить. Можно намотать в бескаркасном исполнении. На остальных типах сердечником вам придется рассчитывать самому, можно с помощью программы которую я оставлю в конце статьи. В моем случае я использовал двуполярное напряжение 2*75-80 вольт для усилителя 500 ватт, почему меньше, потому что нагрузка усилителя будет не 8 Ом а 4 Ом.

Настройка и первый запуск:

При первом запуске ИБП обязательно установите в разрыв сетевого кабеля и ИБП лампочку 60-100 ватт. При включении если лампочка не горит, значит уже хорошо. При первом пуске может включиться защита от КЗ и загорится светодиод HL1, так как электролиты большой емкости и в момент включения берут огромный ток, в случае если это произошло, то надо многооборотный резистор перекрутить по часовой стрелке до упора, а потом ждать пока погаснет светодиод  в выключенном состоянии и пробовать включать заново что бы удостовериться в работоспособности ИБП, а потом регулировать защиту. Если все правильно спаяли и использовали правильные номиналы деталей, ИБП запустится. Далее когда удостоверились что ИБП включается и есть все напряжения на выходе, нужно установить порог срабатывания защиты. При настройке защиты обязательно нагрузите ИБП между двумя плечами основной выходной обмотки (которая для питания УНЧ) лампочкой 100 ватт. Когда при включении ИБП под нагрузкой (лампочка 100 ватт) загорается светодиод HL1, нужно по не многу крутить переменный многооборотный резистор R9 2.2 кОм против часовой стрелки пока не будет срабатывать защита при включении. Когда при включении будет загораться светодиод, нужно выключить и дождаться пока он погаснет и по понемногу подкручивая по часовой стрелке в выключенном состоянии и включая опять его пока не перестанет срабатывать защита,
только нужно крутить понемногу например 1 оборот и не сразу на 5-10 оборотов, т.е. выключил подкрутил и включил, сработала защита - опять такая же процедура в несколько раз пока не достигнете нужного результата. Когда вы установите нужный порог, то в принципе блок питания готов к использованию и можно убрать лампочку по сетевому напряжению и пробовать нагрузить блок питания активной нагрузкой ну например ватт 500. Там конечно можно поиграться с защитой уже кому как нравится, но не рекомендую устраивать тесты с КЗ, так как это может привести к неисправности хоть есть и защита, емкость некая не успеет разрядится, реле не отреагирует мгновенно или залипнет и может быть неприятность. Хотя я делал случайно и не случайно некоторое количество замыканий, защита работает. Но ничего вечного нет.

Измерения после сборки ИБП:

Измерения между плечами:
U вх - 225 вольт, нагрузка - 100 ватт, U вых +- = 164 вольта
U вх - 225 вольт, нагрузка - 500 ватт, U вых +- = 149 вольта
U вх - 225 вольт, нагрузка - 834 ватт, U вых +- = 146 вольта

Проседание есть конечно. При нагрузке 834 ватт перед входным выпрямителем напряжение проседает с 225 вольт до 220 вольт, после выпрямителя проседает аж на 20 вольт с 304 вольт на 284 вольт при нагрузке 834 ватт. Но в принципе проседание на выходе на каждое плечо получается 9 вольт, что в принципе допустимо, так как ИБП не стабилизированный.

Ниже по ссылке будет видео об этом ИБП, там может что то дополнится что здесь не сказал.

Спасибо всем за внимание.

Ссылка на видео в Youtube:  ИБП_1000_Ватт_ч1, ИБП_1000_Ватт_ч2, Усилитель 500 ватт

Ссылка на архив: Схема и печатная плата

Ссылка на программу: Lite-CalcIT 4.1

Схема взята с сайта: Питание усилителя D класса на IR2153

Автор Igor.

Обсуждайте в социальных сетях и микроблогах

Метки: 1000 Ватт, ИБП, Импульсный блок питания 1000 Ватт

Радиолюбителей интересуют электрические схемы:

Data-кабель для Samsung X120
Охранное устройство для мотоцикла

Импульсный блок питания усилителя на IR2151, IR2153

Электропитание

Главная  Радиолюбителю  Электропитание



Импульсные блоки питания – наиболее эффективный класс вторичных источников питания. Они характеризуются компактными размерами, высокой надежностью и КПД. К недостаткам можно отнести лишь создание высокочастотных помех и сложность проектирования /реализации.

Все импульсные ПБ – это своего рода инверторы (системы, генерирующие переменное напряжение на выходе высокой частоты из выпрямленного напряжения на входе).
Сложность таких систем даже не в том, чтобы сначала выпрямить входное сетевое напряжение, или в последующем преобразовать выходной высокочастотный сигнал в постоянный, а в обратной связи, которая позволяет эффективно стабилизировать выходное напряжение.

Особо сложным здесь можно назвать процесс управления выходными напряжениями высокого уровня. Очень часто блок управления питается от низковольтного напряжения, что порождает необходимость согласования уровней.

Драйверы IR2151, IR2153

Для того, чтобы управлять независимо (или зависимо, но со специальной паузой, исключающей одновременное открытие ключей) каналами верхнего и нижнего ключа, применяются самотактируемые полумостовые драйвера, такие как IR2151 или IR2153 (последняя микросхема является улучшенной версией исходной IR2151, обе взаимозаменяемы).

Существуют многочисленные модификации данных схем и аналоги от других производителей.

Типовая схема включения драйвера с транзисторами выглядит следующим образом.

Рис. 1. Схема включения драйвера с транзисторами

Тип корпуса может быть PDIP или SOIC (разница на картинке ниже).

Рис. 2. Тип корпуса PDIP и SOIC

Модификация с буквой D в конце предполагает наличие дополнительного диода вольтодобавки.

Различия микросхем IR2151 / 2153 / 2155 по параметрам можно увидеть в таблице ниже.

Таблица

ИБП на IR2153 – простейший вариант

Сама принципиальная схема выглядит следующим образом.

Рис. 3. Принципиальная схема ИБП

На выходе можно получить двухполярное питание (реализуется выпрямителями со средней точкой).

Мощность БП можно увеличить за счет изменения параметров емкости конденсатора C3 (считается как 1:1 – на 1 Вт нагрузки требуется 1 мкф).

В теории выходную мощность можно нарастить до 1.5 кВт (правда для конденсаторов такой ёмкости потребуется система soft-старта).

При конфигурации, обозначенной на принципиальной схеме, достигается выходная сила тока 3,3А (до 511 В) при использовании в усилителях мощности, или 2,5А (387 В) – при подключении постоянной нагрузки.

ИБП с защитой от перегрузок

Сама схема.

Рис. 4. Схема ИБП с защитой от перегрузок

В данном БП предусмотрена система перехода на рабочую частоту, исключающая броски пускового тока (софт-старт), а также простейшая защита от ВЧ помех (на входе и выходе катушки индуктивности).

ИБП мощностью до 1,5 кВт

Схема ниже может обеспечивать работу с мощными силовыми транзисторами, такими как SPW35N60C3, IRFP460 и т.п.

Рис. 5. Схема ИБП мощностью до 1,5 кВт

Управление мощными VT4 и VT5 реализовано через эмиттерные повторители на VT2 и VT1.

БП усилителя на трансформаторе из БП компьютера

Часто случается так, что комплектующие покупать практически и не нужно, они могут стоять и пылиться в составе давно неиспользуемой техники, например, в системном блоке ПК где-то в подвале или на балконе.

Ниже приведена одна из достаточно простых, но не менее работоспособных схем ИБП для усилителя.

Рис. 6. Схема ИБП для усилителя

Пример готовой печатной платы может выглядеть следующим образом.

Рис. 7. Печатная плата устройства

А полностью реализованный узел так.

Рис. 8. Внешний вид устройства

Автор: RadioRadar

Дата публикации: 09.04.2018

Мнения читателей
  • Алексей / 07.10.2019 - 16:35
    По даташиту нужен кондер в цепи запитки трансформатора, на рис. 6 его нет. Транс уйдёт в перенасыщение.
  • Андрей / 20.07.2019 - 18:26
    Есть ли в схеме на рисунке 4 стабилизация напряжения через обратную связь?
  • александр / 24.04.2019 - 08:24
    на рис 6 ошибка нет конденсатора в цепи трансформатора выхода

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:


Author:

Отправить ответ

avatar
  Подписаться  
Уведомление о