Схема бп на lm2596 с регулировкой тока и напряжения: DC–DC преобразователь LM2596 – Блок питания на LM2596 с вольтметром / Силовая электроника / Сообщество EasyElectronics.ru

Любительская приставка к блоку питания на lm2596 + DSN-VC288

У многих из нас скопились различные блоки питания от ноутбуков, принтеров или мониторов напряжением +12, +19, +22. Это отличные источники питания, имеющие защиту и от короткого замыкания и от перегрева.
Тогда как в домашней, радиолюбительской практике, постоянно требуется регулируемый, стабилизированный источник. Если не целесообразно вносить изменения в схему уже имеющихся блоков питания, то на помощь придет совсем несложная приставка к такому блоку.

Эта статья является компиляцией некоторых моих других статей соединить которые, мне то было некогда, то неохота, но на самом деле, были более интересные дела и вещи =)

Для сборки любительской приставки с плавной регулировкой выходного напряжения нам понадобятся:
— готовый модуль на микросхеме lm2596;
— монтажная коробочка;
— два гнезда внутренним диаметром 5.2мм;

— потенциометр 10 кОм;
— два постоянных резистора 22 кОм каждый;
— панельный ампервольтметр DSN-VC288.

Статья будет состоять из нескольких законченных частей, в каждой из которых будут подробно описаны шаги, особенности и подводные камни используемых компонентов.

lm2596.

Микросхема lm2596, на которой реализован модуль, хороша тем, что имеет защиту от перегрева и защиту от короткого замыкания, но имеет несколько особенностей.
Посмотрите на типовой вариант ее включения, в данном случае, микросхема редакции выходного фиксированного напряжения +5 вольт, но, для сути это не важно:

Поддержание стабильного уровня напряжения, обеспечивается подключением выхода обратной связи четвертой (Feed Back) ножки микросхемы подключенной непосредственно к выходу стабилизированного напряжения.
В рассматриваемом конкретном модуле, применена редакция микросхемы с изменяемым выходным напряжением, но принцип регулирования выходного напряжения тот же:

К выходу модуля, подключается резистивный делитель R1- R2 с верхним включенным подстроечным резистором R1, вводя сопротивление которого, выходное напряжение микросхемы можно менять. В этом модуле R1 = 10k R2 = 0.3k. Плохо то, что регулировка не плавная и осуществляется только на последних 5-6 оборотах подстроечного резистора.
Для осуществления плавной регулировки выходного напряжения, радиолюбители исключают резистор R2, а подстроечный резистор R1 меняют на переменный. Схема выходит вот такой:

А как раз вот тут, возникает серьезная проблема. Дело в том, в течении эксплуатации переменного резистора, рано или поздно, контакт (его прилегание к резистивной подковке) среднего вывода нарушается и вывод 4 (Feed Back) микросхемы оказывается (пусть и на миллисекунду) в воздухе. Это ведет к мгновенному выходу микросхемы из строя.
Ситуация так же плоха, когда для подсоединения переменного резистора используются проводники – резистор получается выносной – это, так же может способствовать потере контакта. Потому, штатный резистивный делитель R1 и R2 следует выпаять, а вместо него, впаять два постоянных прямо на плате – этим решается проблема потери контакта с переменным резистором при любых случаях. Сам переменный резистор, следует припаять уже к выводам распаянных.

На схеме, R1= 22 kOm и R2=22 kOm, а R3=10kOm.

На реальной схеме. R2 был сопротивлением соответствующим его маркировке, а вот R1 меня удивил, хотя на нем и нанесена маркировка 10k на самом деле, его номинальное сопротивление оказалось 2k. =)

Удалите R2 и поставьте на его месте каплю припоя. Удалите резистор R1 и переверните плату на обратную сторону:

Припаяйте два новых R1 и R2 резистора руководствуясь фотографией. Как видно, будущие проводники переменного резистора R3 будут подключаться к трем точкам делителя.

Что это даст:
— при обрыве только правого по рисунку вывода переменного резистора, выходное напряжение упадет до 2.4v;

— только среднего или всех — 2.4v;
— только левого — 1.3v.
Это, я считаю преимуществами над всеми другими методами борьбы с обрывом сигнала FB
Всё, отложим модуль в сторону.
На очереди панельный ампертвольметр.

DSN-VC288.

DSN-VC288 не годится для сборки лабораторного источника питания, так как минимальный ток, который с его помощью можно измерить составляет 10ma.
Но ампервольтметр отлично подходит для сборки любительской конструкции, а потому, применю я именно его.
Вид с обратной стороны такой:

Обратите внимание на расположение разъемов и доступных регулировочных элементов и особенно на высоту разъема измерения тока:

Поскольку, выбранный мной для этой самоделки корпус не имеет достаточной высоты, то металлические штырьки токового разъема DSN-VC288 мне пришлось скусить, а прилагающиеся толстые проводники — напаять на штырьки непосредственно. Перед пайкой, сделайте на концах проводков по петельке, и насадив каждую на каждый штырек паяйте – для надежности:

Визуальная схема соединения DSN-VC288 и lm2596

Левая часть DSN-VC288:
— черный тонкий провод не подключается ни к чему, заизолируете его конец;
— желтый тонкий соедините с плюсовым выходом модуля lm2596 – НАГРУЗКА «ПЛЮС»;
— красный тонкий соедините с плюсовым входом модуля lm2596.

Правая часть DSN-VC288:
— черный толстый соедините с минусовым выходом модуля lm2596;
— красный толстый будет НАГРУЗКА «МИНУС»

Окончательная сборка.

Монтажную коробочку я использовал размерами 85 x 58 x 33 mm.:

Нанеся разметку карандашом, диском дремеля, я вырезал окно для DSN-VC288 по размеру внутреннего бортика прибора. При этом, вначале я пропилил диагонали, а за тем, отпиливал отдельные сектора по периметру размеченного прямоугольника. Плоским напильником придется поработать, понемногу подгоняя окно под внутренний бортик DSN-VC288:

На этих фото, крышка не прозрачная. Прозрачную я решил использовать позднее, но это не важно, кроме прозрачности, они абсолютно одинаковые.
Так же, наметьте отверстие под нарезной воротник переменного резистора:

Обратите внимание, что монтажные ушки базовой половины коробочки обрезаны. А на саму микросхему, имеет смысл наклеить небольшой радиатор. У меня под рукой были готовые, но, нетрудно выпилить подобный из радиатора, допустим, старой видеокарты. Подобный я выпиливал для установки на PCH чип ноутбука, ничего сложного =)

Здесь необходимо заметить

что

несколько раннее, я вывел из строя модуль xl4015 и его я выбрал в качестве донора. Штатный дроссель был заменен на более габаритный (даташит на микросхему этого вовсе не запрещал), так же был заменен и диод.

и

Монтажные ушки на монтажной же коробочке, помешали бы при установке вот таких гнезд 5.2мм:

В итоге, у вас должно получиться именно вот что:
При этом, слева находится входное гнездо, справа – выход:

Проверка.

Подайте питание на приставку и посмотрите на дисплей. В зависимости от положения оси переменного резистора вольты прибор может показывать разные, а вот ток, должен быть по нулям. Если это не так, значит, прибор придется откалибровать. Хотя, я много раз читал, что заводом это уже сделано, и ничего от нас делать не придется, но все-таки.
Но вначале обратите внимание на верхний левый угол платы DSN-VC288, два металлизированных отверстия предназначены для установки прибора на ноль.

Итак, если без нагрузки прибор показывает некий ток, то:
— выключите приставку;
— надежно замкните пинцетом эти два контакта;
— включите приставку;
— удалите пинцет;
— отключите нашу приставку от блока питания, и подключите ее вновь.

Испытания на нагрузку.

Мощного резистора у меня нет, но был кусочек нихромовой спирали:

В холодном состоянии сопротивление составило около 15 ом, в горячем, около 17 ом.
На видео, вы можете посмотреть испытания получившейся приставки как раз на такую нагрузку, ток я сравнивал с образцовым прибором. Блок питания был взят на 12 вольт от давно исчезнувшего ноутбука. Так же на видео виден диапазон регулируемого напряжения на выходе приставки.

total.
— приставка не боится короткого замыкания;
— прежде всего,

предназначенная для эпизодов отладки, она не боится перегрева;
— не боится обрыва цепей регулировочного резистора, при его обрыве, напряжение автоматически падает до безопасного уровня которое я давал выше;
— приставка, так же легко выдержит, если вход и выход будут при подключении перепутаны местами – такое случалось;
— применение найдется любому внешнему блоку питания от 7 вольт и до 30 вольт максимум, а;
— показаний встроенного амперметра вполне хватит для того что бы заметить аварию если что-то пойдет не так.

Статьи, чтение которых оказалось очень полезным для меня:
первая, касается самого ампервольтметра
вторая касается стабилизаторов, вот =)
а после нажатия на эту ссылку, вы сможете скачать справочный листок к этой, всем известной микросхеме.

UPD.
В ходе дискуссии ниже в комментариях, стало ясно, что есть более экономный способ добиться того же эффекта, которого добился я:

Посмотрите, неважно, подстроечный это резистор или выносной переменный R2, при потере контакта с ним, вход FB окажется подключенным к выходу через резистор R1.

Этот способ, указал kirich вот здесь.
Кроме того, если уж я взялся дорезать последний патиссон, то калькулятор делителя, находится вот здесь =))
eoUPD

В статье про ампервольтметр, я уже размещал это видео, еще раз его смотреть необходимости

нет


Регулируемый стабилизатор напряжения на LM2576

Решил недавно отреставрировать свои колонки от ПК, которые достались мне, не помню когда и от кого. Данные колонки хрипели уже на пол громкости. Вид мне был не важен, так как они звучали в моей лаборатории, главное, чтобы был звук без треска и фона. Было принято решение собрать новый усилитель и темброблок. Но питать данные устройства я решил стабилизированным источником, поэтому стал собирать стабилизированный источник с возможностью регулировки выходного напряжения. Вообще мне было нужно однополярное напряжение +15 Вольт, но на всякий случай решил сделать регулируемое выходное напряжение.

Выбор пал на LM2576, их у меня было много, когда-то покупал для ремонта БП. LM2576 есть на фиксированное выходное напряжение 3.3В, 5В, 12В, 15, а также с регулируемым выходным напряжением. В регулируемой версии выходное напр-ие меняется от 1.23В до 37В, а у LM2576HV до 57 Вольт.

Входное же напр-ие может достигать 40В, а у LM2576HV до 60В. Максимальный выходной ток 3 А. Температура, которую может выдержать кристалл, составляет 150 градусов Цельсия.

Если у LM2576 фиксированное выходное напряжение, то в конце маркировки пишется индекс, например 3.3 или 5.0, который указывает выходное напряжение (пример маркировки стабилизатора на 5 Вольт - LM2576HV-5.0).

Схема регулируемого стабилизатора напряжения на LM2576

Ничего сложного нет. Дроссель можете выдернуть из блока питания ПК, например как этот.

Если будете покупать или мотать, то 150 мкГн и на 5 Ампер, не менее. 20-30 Витков провода диаметром 0,8 мм достаточно.

Остальные все элементы доступные.

Добавив диодный мост, получим регулируемый блок питания.

Диодный мост можете собрать из диодов, или использовать любой с током 5 Ампер и более. Я применил KBU810, на 8 Ампер, другого не было.

Забыл на схеме подписать, тот вывод моста, который соединен с выводом №1 микросхемы, это плюс (+) диодного моста, а минус (-) диодного моста соединен с минусом выхода.

Испытывая стабилизатор напряжения на LM2576, я использовал трансформатор с одной вторичной обмоткой, напряжением 20 Вольт и током 0.9 Ампер.

Выставил выходное напряжение 15 Вольт.

Нагрузил сопротивлением 7.5 Ом. Выходной ток составил почти 2 Ампера.

Напряжение при этом просело до 13.7 Вольт. Не обращайте внимания друзья, это все из-за слабого трансформатора, пока другого нет.

Вот переменное напр-ние на трансформаторе без нагрузки 23.7 Вольт.

А вот оно же под нагрузкой 15.2 Вольта.

 Видите, это не стабилизатор просаживает напругу, а трансформатор “не вывозит”. Был бы, трансформатор мощнее, напруга на выходе бы почти не проседала.

Даташит на LM2576 СКАЧАТЬ

Печатная плата СКАЧАТЬ


Похожие статьи

РАДИО для ВСЕХ - ЛБП на LM2576

Лабораторный блок питания на базе импульсного стабилизатора LM2576T-ADJ с регулировкой выходного напряжения 0-30В и тока 0-3А, с функцией ограничения выходного тока и индикацией режима ограничения при помощи светодиода.

Все мы очень давно знакомы с линейными стабилизаторами напряжения, особенно с трёхвыводными в корпусах TO-220 типа 7805, 7812, 7824 и LM317. Они недорогие и легко доступны. Их малошумящая и быстрая переходная характеристика делают их идеальными для многих применений. Но им присущ один недостаток - неэффективность (очень низкий КПД). Например, при подаче на стабилизатор 7805 напряжения 12В и при токе нагрузки 1А, на стабилизаторе будет рассеиваться мощность 7Вт при мощности нагрузки 5Вт. Поэтому требуется большой радиатор для охлаждения самого стабилизатора. Когда важна эффективность, например при работе от батареи, необходимо выбирать импульсный стабилизатор. Фактически, самое современное оборудование использует импульсные источники питания и импульсные регуляторы или стабилизаторы. Но много радиолюбители уклоняются от импульсных регуляторов, поскольку, например, использование популярной LM3524 требует большого количества внешних деталей и внешнего коммутационного транзистора. Кроме того строгие требования для катушки индуктивности. Как выбрать правильно, и где их взять? К счастью, более новый импульсный регулятор типа LM2576 от National Semiconductor's позволяет собирать импульсный стабилизатор с высоким КПД так же легко, как и с помощью 7805 и т.п. Микросхема выпускается в пятивыводном привычном корпусе типа TO-220 и корпусе ТО-263 для поверхностного монтажа. Диапазон питающих напряжений 7-40В постоянного тока. КПД - до 80%. Выходной ток - до 3А и на несколько напряжений (3.3V, 5 V, 12V, 15V), а также и в версии регулируемого выходного напряжения, что представляет для нас особенный интерес. При проектировании с использованием импульсного стабилизатора получается малый размер платы, кроме того необходим радиатор с малой площадью поверхности, обычно не более 100 см. кв. Частота преобразования стабилизатора 52 кГц. Есть серия высоковольтных стабилизаторов с  маркировкой HV с диапазоном входных напряжений 7-60В и возможностью регулировки выходного напряжения до 55В.


Приведенная на рисунка схема лабораторного блока питания на базе импульсного стабилизатора LM2576T-ADJ с регулировкой выходного напряжения в диапазоне 0-30В и возможностью ограничения тока нагрузки в диапазоне 0-3А найдена в сети Интернет и подробно рассмотрена здесь на форуме сайта http://vrtp.ru. Кстати, замечательный сайт, рекомендую к посещению 🙂 Свечение светодиода указывает на включение режима ограничения выходного тока, что очень удобно при проверке и ремонте радиоэлектроных устройств.

Чтобы облегчить режим работы стабилизатора 7805 (в корпусе ТО-92) и для повышения верхнего предела напряжения Uвх, последовательно с U2 установлен стабилитрон VD1. Схема регулирования тока  и напряжения собрана на сдвоенном компараторе LM393. На первой половинке U3.1 собран регулятор напряжения, а на второй половинке U3.2 собран регулятор тока. На транзисторном ключе Q1 собран узел индикации включения режима ограничения выходного тока. Номинальный ток дросселя необходимо выбирать не менее тока нагрузки. Возможно пиатние слаботочной части схемы от отдельного источника напряжения с подачей его непосредственно на вход U2, при этом стабилитрон VD1 не устанавливается. Хорошо работает с низкоомной нагрузкой. Без изменения схемы, в ней можно применять импульсные стабилизаторы LM2596T-ADJ с частотой преобразования 150 кГц и диапазоном питающих напряжений 4,5-40В. Выходной ток - до 3А. КПД - до 90%.

Размеры печатной платыы блока питания 72х52 мм, расстояние между осями переменных резисторов 30 мм.:

Видео работы стабилизатора (без слов) приведено ниже. Поскольку сборка и проверка устройства велась в г. Донецке в то время, когда за окном рвались снаряды, то не было никакой охоты ничего рассказывать. Да и собирать его не хотелось, но нужно было как-то отвлечься от действительности. Надеюсь Вы меня поймёте.




Стоимость печатной платы с маской и маркировкой: закончились 🙂

Стоимость набора деталей с печатной платой для сборки блока питания (без радиатора): временно нет в наличии 🙁

Стоимость собранной и проверенной платы блока питания (без радиатора): временно нет в наличии 🙁

Краткое описание, схема и перечень компонентов набора здесь >>>

Для покупки печатных плат, наборов для сборки и готовых собранных блоков обращайтесь сюда >>> или сюда >>>




Всем удачи, мирного неба, добра, 73!

 

Понижающий преобразователь с токограничением или зарядка на 5А

На этот раз полноценного тестирования не получилось ввиду выхода устройства из строя 🙁
Представляет собой понижающий преобразователь напряжения с дополнительной функцией регулируемого токоограничения и контроля. Это может быть полезно не только для зарядки аккумуляторов, но и для защиты от перегрузки и КЗ.

Заявленные технические характеристики:
Размер: 50*26*11 (l * W * h) (мм)
Рабочая температура:-40° до + 85°
Регулирование напряжения: ± 2.5% (вероятно имелась в виду точность поддержания)
Регулировка нагрузки: ± 0.5% (вероятно имелась в виду точность поддержания)
Пульсация выходного сигнала: 20мВ
Частота переключения: 300 кГц
Эффективность преобразования: до 95%
Выходной ток: регулируемый максимально 5А
Выходное напряжение: 0.8 В-30 В
Входное напряжение: 5 В-32 В
Не синхронное выпрямление





Собран на базе XL4005E1 от XLSEMI, которая по параметрам выгодно отличается от популярной LM2596S

www.xlsemi.com/datasheet/XL4005%20datasheet.pdf

На сдвоенном операционном усилителе LM358 собрана схема регулируемого токоограничения и компаратор для индикации окончания заряда.

Реальная принципиальная схема устройства

Выходное напряжение регулируется в пределах от 0,8В до почти входного.
Точность установки малых напряжений (менее 3В) невысока — слишком резко оно меняется при вращении подстроечника. Если необходима высокая точность установки малых выходных напряжений — придётся заменить подстроечник 10кОм на меньший номинал:
1,0кОм — 1,4-3,5В
1,5кОм — 1,4-5В
2,2кОм — 1,4-7В

Выходной ток регулируется в пределах от 0,03А до 5,5А
В качестве датчика тока применён шунт на базе резистора SMD 2512 0,05Ом. Очень часто производители в качестве шунта используют печатную дорожку, что является плохим тоном (ток плавает с нагревом).
Подключение входа и выхода универсальное — клеммник + контакты под пайку.
Имеются дополнительные контакты блокировки работы преобразователя.

Отдельно стоящий красный светодиод показывает работу в режиме ограничения тока. Синий светодиод показывает режим заряда аккумулятора, красный рядом с ним — режим окончания заряда (уменьшение тока до 10% от уставки).

Дроссель явно сделан не под этот преобразователь, т.к. не тянет 5А, намотан в один провод и имеет повышенную индуктивность (40мкГн). Скорее всего это дроссель для преобразователя на LM2596S (3А 150кГц).
Реальная ёмкость конденсаторов 470мкФ оказалась 360мкФ, ESR довольно плохой 0,10 Ом, однако дополнительная керамика должна помочь уменьшить выходные пульсации.
Ещё одна особенность: падение напряжения на шунте не компенсировано, т.е. выходное напряжение немного зависит от нагрузки — на максимальном токе 5А выходное напряжение снижается на 0,25В

Естественно китайцы не смогли не накосячить в схеме 🙂
1. При установленном напряжении менее 1,4В некорректно работает схема токоограничения, т.к. операционник уже не может корректировать напряжение на управляющем входе XL4005E1. Решение — добавить сопротивление 200 Ом последовательно с подстроечником. Также, при малом выходном напряжении перестаёт светиться синий светодиод.
2. Напряжение с шунта идёт на входы операционников напрямую без токоограничивающих резисторов. Это может привести к кратковременному повышению напряжения на их входах свыше 5В при замыкании выхода. Решение — добавить резистор 10кОм в разрыв между входами ОУ и шунтом.
3. Уменьшить индуктивность дросселя, просто отмотав с него 6 витков.
После всех доработок схема получается такая:

Проверку производил при входном напряжении 12,5В и выходном напряжении 5В.
На выходном токе 3A XL4005 разогрелась до 65ºС, дроссель до 91ºС, нагрев в допустимых пределах
На выходном токе 4A А XL4005 разогрелась до 82ºС, дроссель до 106ºС, нагрев слишком велик
На выходном токе 5A XL4005 разогрелась до 97ºС, дроссель до 132ºС, быстро перегреваются все силовые элементы включая даже шунт и конденсаторы.
Через 3 минуты такой работы, ток пропал и тестирование пришлось прекратить. Ну, думаю, хорошо, заявленная термозащита XL4005 сработала, но после остывания преобразователь не заработал 🙁 Остальные элементы не пострадали. Видимо, не стоило максимально нагружать преобразователь без дополнительного радиатора.
Надеюсь, это дефект конкретного экземпляра, а не всей партии.
Преобразователь в дальнейшем буду ремонтировать, как придут заказанные микросхемы.
Претензий продавцу не предъявлял.

Вывод: интересная железка, но заявленный ток 5A совершенно не держит, необходимо ограничиться током не более 2,5-3A

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *