Стабилизаторы напряжения на 12 вольт на транзисторах: Транзистор стабилизатор напряжения 12 вольт

Содержание

РадиоДом — Сайт радиолюбителей

Стабилизатор напряжения КР142ЕН12А (LM317T) имеет полную защиту от перегрузок, включающую внутрисхемное ограничение по току, защиту от перегрева и защиту выходного транзистора. Максимальное напряжение на входе не может превышать 40 вольт.

Добавлено: 01.04.2018 | Просмотров: 8118 | Стабилизатор напряжения

Не всегда в распоряжении радиолюбителя оказываются нужные микросхемы, и тогда на помощь приходит схема на отечественном составном транзисторе, проверенная многолетней практикой. Переменное напряжение с вторичной обмотки трансформатора выпрямляется диодным мостом VD1—VD4, фильтруется конденсатором С1 и поступает на компенсационный стабилизатор напряжения Rl, VD5, C1.

Добавлено: 24.03.2018 | Просмотров: 12869 | Стабилизатор напряжения

В статье описывается простая схема стабилизатора напряжения от 0 до 12 вольт и током нагрузки до 1,5 ампера. Прибор пригодится для получения точного стабилизированного напряжения для самых различных опытов, неплохо будет установить цифровым вольтметром и амперметром, которых полно в радиолюбительских магазинах.

Добавлено: 21.02.2018 | Просмотров: 7913 | Стабилизатор напряжения

Стабилизатор обеспечивает на выходе два напряжения: 5 вольт, при токе 0,75 ампер; 12 вольт при токе около 200 мА. Основное напряжение, формируемое импульсным стабилизатором, является напряжение +5 вольт. Второе напряжение получается за счёт автотрансформаторного включения обмотки II трансформатора Т1.

Добавлено: 17.02.2018 | Просмотров: 2703 | Стабилизатор напряжения

Схема мощного стабилизатора, обеспечивающих ток нагрузки до 5 Ампер. Что очень подходит для питания фабричных и самодельных бытовых конструкции. Когда нагрузка на устройстве малая, транзистор VT1 закрыт и работает только микросхема, но как нагрузочный ток будет увеличиваться, то напряжение, выделяемое на R2 и VD5, открывается транзистор VT1, и основная часть тока нагрузки начинает проходить через него. 

Добавлено: 25.12.2016 | Просмотров: 20387 | Стабилизатор напряжения

В некоторых радиолюбительских конструкциях требуются маломощные стабилизаторы, потребляющие в режиме стабилизации микроамперы. Ниже приведена принципиальная схема такого стабилизатора с внутренним током потребления всего 10 мкА и током стабилизации 100 мА.

Добавлено: 24.12.2016 | Просмотров: 4639 | Стабилизатор напряжения

LM1578A, LM2578A, LM3578A — могут работать в качестве импульсного понижающего стабилизатора, импульсного повышающего стабилизатора, инверсного стабилизатора. Ниже представлены несколько наиболее популярных схем включения импульсного стабилизатора.

Добавлено: 22.12.2016 | Просмотров: 3416 | Стабилизатор напряжения

Представлены две принципиальные схемы простых стабилизаторов на 5 вольт. Напряжение переменной сети 220 вольт пониженное трансформатором Т1 до 9…10 вольт через выпрямительный диодный мост подается на стабилизатор напряжения.

Добавлено: 11.12.2016 | Просмотров: 8918 | Стабилизатор напряжения

Регулируемый импульсный стабилизатор напряжения LM2576 имеет довольно широкий диапазон регулируемого выходного напряжения от 1,2 вольт до 50 вольт с нагрузкой на выходе до 3 ампер.

Добавлено: 29.09.2016 | Просмотров: 4901 | Стабилизатор напряжения

Энергия , запасенная в катушке, питает нагрузку. Когда напряжение на С4 падает ниже напряжения стабилизации, открывается DA1 и ключевой транзистор. Каждый цикл повторяется с частотой 20000-30000 герц.

Добавлено: 06.05.2016 | Просмотров: 3819 | Стабилизатор напряжения

Микросхемные стабилизаторы фиксированного напряжения постоянного тока КР142ЕН8А—КР142ЕН8Е, КР142ЕН5А— КР142ЕН5Г были популярны в радиолюбительских и промышленных конструкциях 10—25 лет назад. Сейчас эти стабилизаторы устарели, уступив место экономичным импульсным или линейным с малым собственным падением напряжения.

Добавлено:
23.04.2016 | Просмотров: 6058 | Стабилизатор напряжения

Понижающие напряжение с 12в на 1в схему. Схемы простых стабилизаторов напряжения. Закон Ома при понижении напряжения

Как самому собрать простой блок питания и мощный источник напряжения.
Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.


Каждый, кто захочет сможет изготовить 12 — ти вольтовый блок самостоятельно, без особых затруднений.
Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник…
Шаг 1: Какие детали необходимы для сборки блока питания…
Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок….
-Монтажная плата.

-Четыре диода 1N4001, или подобные. Мост диодный.
-Стабилизатор напряжения LM7812.
-Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В — 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
-Электролитический конденсатор емкостью 1000мкФ — 4700мкФ.
-Конденсатор емкостью 1uF.
-Два конденсатора емкостью 100nF.
-Обрезки монтажного провода.
-Радиатор, при необходимости.
Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
Шаг 2: Инструменты….
Для изготовления блока необходимы инструменты для монтажа:
-Паяльник или паяльная станция
-Кусачки
-Монтажный пинцет
-Кусачки для зачистки проводов
-Устройство для отсоса припоя.
-Отвертка.
И другие инструменты, которые могут оказаться полезными.
Шаг 3: Схема и другие…


Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.

Схема блока питания 12в 30А .
При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.
Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.

В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
Для охлаждения радиатора можно применить небольшой вентилятор.
Проверка блока питания
При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку — типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.

Блок питания 3 — 24в

Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт, при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.

Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.
Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.

Схема блока питания на 1,5 в

Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.

Схема регулируемого блока питания от 1,5 до 12,5 в

Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.

Схема блока питания с фиксированным выходным напряжением

Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.

Схема блока питания мощностью 20 Ватт с защитой

Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
По какой схеме: импульсный источник питания или линейный?
Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения…
Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.

Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.

Самодельный блок питания на 3.3v

Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.

Трансформаторный блок питания на КТ808

У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.

При условии правильного монтажа, просадка выходного напряжения не превышает 0.1 вольта

Блок питания на 1000в, 2000в, 3000в

Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы — отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.

В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А) и понижающий накальный трансформатор Т2 — ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.

Еще по теме

Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.

Ремонт и доработка китайского блока питания для питания адаптера.

Стабилизаторы напряжения являются важнейшей частью всех электронных схем, они дают непрерывное, устойчивое питание компонентам системы, обеспечивая стабильность её параметров и защиту при неисправностях в схеме или в первичном источнике напряжения. 12 вольт постоянного напряжения – наиболее востребованное, применяется для питания множества устройств, используемых отдельно или встроенных в различные конструкции.

Классический стабилизатор

Большинство систем питания построено по схеме линейного стабилизатора напряжения на 12 вольт, которая может иметь несколько вариантов исполнения:

  • Параллельный – регулировка с помощью включённого параллельно управляющего элемента;
  • Последовательный – включение элемента регулировки последовательно с нагрузкой.

Простейшим стабилизатором напряжения является стабилитрон, также называемый диодом Зенера – это диод, работающий постоянно в режиме пробоя. Напряжение, при котором наступает пробой, – это напряжение стабилизации, основной параметр стабилитрона. При параллельном включении нагрузки получается элементарный стабилизатор напряжения, примерно равного напряжению стабилизации.

Балластное сопротивление R определяет ток стабилитрона, указанный в спецификации. Такое решение отличается низким коэффициентом стабилизации, зависимостью от температуры и применяется при малых токах нагрузки для питания отдельных компонентов основной схемы. Возможно значительно увеличить выходной ток, если последовательно с нагрузкой установить мощный транзистор.

В этой схеме транзистор подключён последовательно с нагрузкой как эмиттерный повторитель, весь ток течёт через его переход. Уровнем на базе управляет стабилитрон: при возрастании тока на выходе на базу подаётся большее напряжение, проводимость транзистора увеличивается, и выходное напряжение восстанавливается. Мощность такого стабилизатора определяется типом транзистора и может достигать десятков ватт.

Важно отметить! В таком виде стабилизатор не защищён от перегрузки и короткого замыкания, при котором мгновенно выходит из строя. Для практического применения схема значительно усложняется: вводятся элементы ограничения тока и различные защитные функции.

Интегральный стабилизатор

Стабилизатор напряжения 12 вольт легко может быть реализован, если применить специализированный интегральный линейный стабилизатор из серии 78ХХ с фиксированным выходным напряжением. Для выходного напряжения 12 вольт выпускаются микросхемы 7812, у разных производителей они носят наименование LM7812, L7812, K7812 и т.д.

Отечественный аналог – КР142ЕН8Б. Производятся в корпусах TO – 220, TO – 3, D2PAK с тремя выводами. Эти микросхемы можно найти в блоках питания любой аппаратуры, они практически вытеснили стабилизаторы на дискретных элементах.

Основные характеристики стабилизатора в широко распространённом корпусе TO – 220:

  • Выходное стабилизированное напряжение – от 11,5 до 12,5 В;
  • Входное напряжение – до 30 В;
  • Выходной ток – до 1А;
  • Встроенная защита от перегрузки и короткого замыкания.

Входное напряжение должно превышать выходное (12 вольт) минимум на 3 вольта во всём диапазоне выходного тока. На выходной ток до 100 мА выпускается вариант микросхемы –78L12. Типовая схема включения позволяет своими руками собрать надёжный стабилизатор напряжения 12 вольт с характеристиками, подходящими для многих задач.

Схема имеет параметры стабилизации, аналогичные применённой микросхеме.

В некоторых случаях целесообразно использование микросхем серии 1083/84/85. Это интегральные стабилизаторы с выходным током 3, 5, и 7, 5 ампер. Устройства относятся к типу Low Dropout (с низким падением напряжения) – для них разница между входным и выходным напряжением может быть 1 вольт. Схема включения полностью соответствует микросхемам типа 7812.

Видео

Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?

Стандартное напряжение – это такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди? Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда “заточены” различные потребители этого напряжения: лампочки, проигрыватели, и тд.

Но, увы, наш мир не идеален. Иногда просто ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания . Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его. Как же решить этот вопрос? Итак, я Вам приведу три варианта:

Вариант №1

Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно ):

Вариант №2

На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!


Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ – это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:


Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 – 15 Вольт. Более подробно про стабилизаторы можно прочитать .

U стабилитрона – это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт – уже нестандартный ряд напряжения;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений;-).

Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:


Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.


Теперь берем стабилитрон на U стабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.



Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.

Вариант №3

Есть также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода – 0,3-0,4 Вольта ? Именно этим свойством диода и воспользуемся;-).

Итак, схему в студию!


Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.


Итак, что на выходе?


Почти 5.7 Вольт;-), что и требовалось доказать.

Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:


На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.

5 частых вопросов, которые задают начинающие радиомеханики; 5 лучших транзисторов для регуляторов, тест на определение состава схемы

Регулятор электрического напряжения нужен для того, чтобы величина напряжения могла стабилизироваться. Он обеспечивает надежность работы и долговечность работы прибора.

Регулятор состоит из нескольких механизмов.

ТЕСТ:

Ответы на эти вопросы позволят узнать состав схемы регулятора напряжения 12 вольт и её сборку.
  1. Какое сопротивление должно быть у переменного резистора?
  1. Как нужно подключать провода?

a) 1 и 2 клемма – питание, 3 и 4 – нагрузка

  1. Нужно ли устанавливать радиатор?
  1. Транзистор должен быть

Ответы:

Вариант 1. Сопротивление резистора 10 кОм – это стандарт для установки регулятора, провода в схеме подключаются по принципу: 1 и 2 клемма для питания, 3 и 4 для нагрузки – ток распределится правильно по нужным полюсам, радиатор устанавливать нужно – чтобы защитить от перегрева, транзистор использован КТ 815 – такой всегда подойдет. В таком варианте построенная схема сработает, регулятор станет работать.

Вариант 2. Сопротивление 500 кОм – слишком высокое, будет нарушена плавность звука в работе, а может не сработать вообще, 1 и 3 клемма это нагрузка, 2 и 4 питание, радиатор нужен, в схеме, где стоял минус будет плюс, транзистор любой – действительно можно использовать какой угодно.Регулятор не заработает из-за того, что схема собрана, будет неправильно.

Вариант 3. Сопротивление 10кОм, провода – 1 и 2 для нагрузки, 3 и 4 для питания, резистор имеет сопротивление 2кОм, транзистор КТ 815. Прибор не сможет заработать, так как он сильно перегреется без радиатора.

Как соединить 5 частей регулятора на 12 вольт.

Переменный резистор 10кОм.

Это переменный резистор 10ком. Изменяет силу тока или напряжений в электрической цепи, увеличивает сопротивление. Именно им регулируется напряжение.

Радиатор. Нужен для того, чтобы охладить приборы в случае их перегрева.

Резистор на 1 ком. Снижает нагрузку с основного резистора.


Транзистор. Прибор, увеличивает силу колебаний. В регуляторе он нужен, чтобы получить электрические колебания высокой частоты


2 проводка. Необходимы для того, чтобы по ним шел электрический ток.

Берем транзистор и резистор. У обоих есть 3 ответвления.

Проводятся две операции:

  1. Левый конец транзистора (делаем это алюминиевой частью вниз) присоединяем к концу, который находится в середине резистора.
  2. А ответвление середины транзистора соединяем с правым у резистора. Их необходимо припаять друг к другу.

Первый провод необходимо спаять с тем, что получилось во 2 операции.

Второй нужно спаять с оставшимся концом транзистора.


Прикручиваем к радиатору соединенный механизм.

Резистор на 1кОм припаиваем к крайним ножкам переменного резистора и транзистора.

Схема готова.


Регулятор скорости двигателя постоянного тока с помощью 2 конденсаторов на 14 вольт.

Практичность таких двигателей доказана, они используются в механических игрушках, вентиляторах и др. У них малый ток потребления, поэтому требуется стабилизация напряжения. Часто возникает необходимость подстройки частоты вращения или изменения скорости двигателя для корректировки выполнения цели, представленной какому – либо типу электродвигателя любой модели.

Эту задачу выполнит регулятор напряжения, который совместим с любым типом блока питания.

Чтобы это осуществить, надо изменить выходное напряжение, не требующее большого тока нагрузки.

Необходимые детали:

  1. 2 Конденсатора
  2. 2 переменных резистора

Соединяем части:

  1. Подключаем конденсаторы к самому регулятору.
  2. Первый резистор подключается с минусом регулятора, второй на массу.

Теперь менять скорость двигателя у прибора по желанию пользователя.

Регулятор напряжения на 14 вольт готов.

Простой регулятор напряжения 12 вольт

Регулятор оборотов 12 вольт для двигателя с тормозом.

  • Реле – 12 вольт
  • Теристор КУ201
  • Трансформатор для запитки двигателя и реле
  • Транзистор КТ 815
  • Вентиль от дворников 2101
  • Конденсатор

Используется для регулировки подачи проволоки, поэтому в ней присутсвует тормоз двигателя, реализованный с помощью реле.

К реле подключаем 2 провода от блока питания. На реле подается плюс.

Всё остально подключается по принципу обычного регулятора.

Схема полностью обеспечила 12 вольт для двигателя.

Регулятор мощности на симисторе BTA 12-600

Симистор – полупроводниковый аппарат, причисляется к разновидности тиристора и используется в целях коммутации тока. Он работает на переменном напряжении в отличие от динистора и обычного тиристора. От его параметра зависит вся мощность прибора.

Ответ на вопрос. Если схема собиралась бы на тиристоре, необходим был бы диод или диодный мост.

Для удобства схему можно собрать на печатной плате.

Плюс конденсатора нужно припаять к управляющему электроду симистора, он находится справа. Минус спаять с крайним третьим выводом, который находится слева.

К управляющему электроду симистора припаять резистор с номинальным сопротивлением 12 кОм. К этому резистору нужно присоединить подстрочный резистор. Оставшийся вывод нужно припаять к центральной ножке симистора.

К минусу конденсатора, который припаян к третьему выводу симистора необходимо прикрепить минус от выпрямительного моста.

Плюс выпрямительного моста к центральному выводу симистора и к той части, к которой симистор крепится на радиатор.

1 контакт от шнура с вилкой припаиваем к необходимому прибору. А 2 контакт к входу переменного напряжения на выпрямительном мосту.

Осталось припаять оставшийся контакт прибора с последним контактом выпрямительного моста.

Идет тестирование схемы.

Включаем схему в сеть. С помощью подстрочного резистора регулируется мощность прибора.

Мощность можно развить до 12 вольт для авто.

Динистор и 4 типа проводимости.

Это устройство, называется тригерным диодом. Обладает небольшой мощностью. В его внутренности нет электродов.

Динистор открывается при наборе напряжения. Скорость набора напряжения определяется конденсатором и резисторами. Вся регулировка производится через него. Работает на постоянном и переменном токе. Его можно не покупать, он находится в энергосберегающих лампах и его легко оттуда достать.

В схемах используется не часто, но чтобы не затрачивать деньги на диоды, применяют динистор.

Он содержит 4 типа: P N P N. Это сама электрическая проводимость. Между 2 прилегающими друг к другу областями образуется электронно-дырочный переход. В динистре таких переходов 3.

Схема:

Подключаем конденсатор. Он начинает заряжаться с помощью 1 резистора, напряжение почти равно тому, что в сети. Когда напряжение в конденсаторе достигнет уровня динистора, он включится. Прибор начинает работать. Не забываем про радиатор, иначе всё перегреется.

3 важных термина.

Регулятор напряжения – прибор, позволяющий на выходе подстраивать напряжение под устройство, для которого он необходим.

Схема для регулятора – рисунок, изображающий соединение частей устройства в одно целое.

Автомобильный генератор – устройство, в котором используется стабилизатор, обеспечивает превращение энергии коленчатого вала в электрическую.

7 основных схем для сборки регулятора.


СНИП

Использование 2 транзисторов. Как собрать стабилизатор тока.

Резистор 1кОм равен стабилизатору тока для нагрузки 10Ом. Главное условие – напряжение питания было стабилизированным. Ток зависит от напряжения по закону Ома. Сопротивление нагрузки намного меньше, чем сопротивление тока ограничивающего резистора.

Резистор 5 ватт, 510 Ом

Переменный резистор ППБ-3В, 47 Ом. Потребление – 53миллиампера.

Транзистор кт 815, установленный на радиаторе ток базы данного транзистора, задан резистором номиналом 4 и 7 кОм.


СНИП


СНИП

Еще важно знать

  1. На схеме стоит знак минуса, чтобы он был и в работе, то транзистор должен быть NPN структуры. Нельзя использовать PNP так как минус будет плюсом.
  2. Напряжение нужно постоянно регулировать
  3. Какая величина тока в нагрузке, это нужно знать, чтобы регулировать напряжение и прибор не переставал работать
  4. Если разность потенциалов будет больше 12 вольт на выходе, то значительно уменьшится уровень энергии.

Топ 5 транзисторов

Разные виды транзисторов применяются для разных целей, и существует необходимость его выбирать.

  • КТ 315. Поддерживает NPN структуру. Выпущен в 1967 году, но до сих пор используется. Работает в динамическом режиме, и в ключевом. Идеален для приборов малой мощности. Больше подходит для радиодеталей.
  • 2N3055. Лучше всего подходит для звуковых механизмов, усилителей. Работает в динамическом режиме. Спокойно используется для регулятора 12 вольт. Удобно крепится на радиатор. Работает на частотах до 3 МГц. Хоть транзистор и выдерживает только до 7 ампер, он вытягивает мощные нагрузки.
  • КП501. Производитель рассчитывал его на применение в телефонных аппаратах, механизмах связи и радиоэлектронике. Через него происходит управление приборами с минимальными затратами. Преобразует уровни сигнала.
  • Irf3205. Пригоден для автомобилей, повышает высокочастотные инверторы. Поддерживает значительный уровень тока.
  • KT 815. Биполярен. Имеет структуру NPN. Работает с усилителями низкой частоты. Состоит из пластмассового корпуса. Подходит для импульсных устройств. Используется часто в генераторных схемах. Транзистор сделан давно, по сей день работает. Даже есть шанс, что он находится в обычном доме, где лежат старые приборы, нужно только их разобрать и посмотреть, есть ли там.

3 ошибки и как их избежать.

  1. Ножки транзистора и резистора спаяны друг с другом полностью. Чтобы этого избежать, нужно внимательно читать инструкцию.
  2. Хоть и поставлен радиатор, перегрелся прибор.Это связано с тем, что во время того, как детали спаиваются, происходит перегрев. Для этого нужно, ножки транзистора держать пинцетом для отвода тепла.
  3. Реле не стало работать после починки. Выгоняет проволоку после того как отпустил кнопку. Проволока по инерции тянется. Значит, не работает электротормоз. Берем реле с хорошими контактами и подключаем к кнопке. Подключить провода для питания. Когда на реле не подается напряжение, контакты становятся замкнутыми, поэтому обмотка замыкается сама на себя. Когда на реле подается напряжение(плюс), меняются контакты в схеме и напряжение подается на мотор.

Ответы на 5 часто задаваемых вопросов

  • Почему входное напряжение выше, чем выходное?

По такому принципу работают все стабилизаторы, при таком типе работы напряжение приходит в норму и не скачет от условленных ей значений.

  • Может ли убить током при неполадке или ошибке?

Нет, не убьет током, напряжение в 12 вольт слишком мало, чтобы это произошло.

  • Нужен ли постоянный резистор? И если нужен, то, для каких целей?

Не обязательно, но используется. Он нужен для того, чтобы ограничить ток базы транзистора при крайнем левом положении переменного резистора. И также при его отсутствии может сгореть переменный.

  • Можно ли использовать схему КРЕН вместо резистора?

Если вместо переменного резистора включить регулируемую схему КРЕН, которую часто используют, то тоже получится регулятор напряжения. Но есть оплошность: низкий КПД. Из-за этого высокое собственное энергопотребление и тепловыделение.

  • Резистор горит, но ничего не крутится. Что делать?

Резистор обязательно 10кОм. Желательно использовать транзисторы КТ 315 (старой модели) – они желтого или оранжевого цвета с буквенным обозначением.

Чаще всего радиотехнические устройства для своего функционирования нуждаются в стабильном напряжении, не зависящем от изменений сетевого питания и от тока нагрузки. Для решения этих задач используются компенсационные и параметрические устройства стабилизации.

Параметрический стабилизатор

Его принцип работы заключается в свойствах полупроводниковых приборов. Вольтамперная характеристика полупроводника – стабилитрона показана на графике.

Во время включения стабилитрона свойства подобны характеристике простого диода на основе кремния. Если стабилитрон включить в обратном направлении, то электрический ток сначала будет расти медленно, но при достижении некоторой величины напряжения наступает пробой. Это режим, когда малый прирост напряжения создает большой ток стабилитрона. Пробойное напряжение называют напряжением стабилизации. Во избежание выхода из строя стабилитрона, течение тока ограничивают сопротивлением. При колебании тока стабилитрона от наименьшего до наибольшего значения, напряжение не изменяется.

На схеме показан делитель напряжения, который состоит из балластного сопротивления и стабилитрона. К нему параллельно подключена нагрузка. Во время изменения величины питания меняется и ток резистора. Стабилитрон берет изменения на себя: меняется ток, а напряжение остается постоянным. При изменении резистора нагрузки ток изменится, а напряжение останется постоянным.

Компенсационный стабилизатор

Прибор, рассмотренный ранее очень простой по конструкции, но дает возможность питание прибора с током, который не превышает наибольшего тока стабилитрона. Вследствие этого используют приборы, стабилизирующие напряжение, и получившие название компенсационных. Они состоят из двух видов: параллельные и последовательные.

Называется прибор по методу подключения элементу регулировки. Обычно используются компенсационные стабилизаторы, относящиеся к последовательному виду. Его схема:

Элементом регулировки выступает транзистор, соединенный последовательно с нагрузкой. Напряжение выхода равняется разности значения стабилитрона и эмиттера, которое составляет несколько долей вольта, поэтому считается, что выходное напряжение равно стабилизирующему напряжению.

Рассмотренные приборы обоих типов имеют недостатки: невозможно получить точную величину напряжения выхода и производить регулировку во время работы. Если нужно создать возможность регулирования, то стабилизатор компенсационного вида изготавливают по схеме:

В этом приборе регулировка осуществляется транзистором. Основное напряжение выдает стабилитрон. Если напряжение выхода повышается, база транзистора получается отрицательной в отличие от эмиттера, транзистор откроется на большую величину и ток возрастет. Вследствие этого, напряжение отрицательного значения на коллекторе станет ниже, так же как и на транзисторе. Второй транзистор закроется, его сопротивление повысится, напряжение выводов повысится. Это приводит к снижению напряжения выхода и возвращению к бывшему значению.

При снижении напряжения выхода проходят подобные процессы. Отрегулировать точное напряжение выхода можно резистором настройки.

Стабилизаторы на микросхемах

Такие устройства в интегральном варианте имею повышенные характеристики параметров и свойств, которые отличаются от подобных приборов на полупроводниках. Также они обладают повышенной надежностью, небольшими габаритами и весом, а также небольшой стоимостью.

Последовательный стабилизатор

  • 1 – источник напряжения;
  • 2 – Элемент регулировки;
  • 3 – усилитель;
  • 5 – определитель напряжения выхода;
  • 6 – сопротивление нагрузки.

Элемент регулировки выступает в качестве изменяемого сопротивления, подключенного по последовательной схеме с нагрузкой. При колебании напряжения меняется сопротивление элемента регулировки так, что происходит компенсация таких колебаний. Воздействие на элемент регулировки производится по обратной связи, которая содержит элемент управления, источник основного напряжения и измеритель напряжения. Этот измеритель является потенциометром, с которого приходит часть напряжения выхода.

Обратная связь регулирует напряжение выхода, использующееся для нагрузки, напряжение выхода потенциометра становится равным основному напряжению. Колебания напряжения от основного создает некоторое падение напряжения на регулировке. Вследствие этого, измеряющим элементом в определенных границах можно осуществлять регулировку напряжения выхода. Если стабилизатор планируется изготовить на определенную величину напряжения, то измеряющий элемент создается внутри микросхемы с компенсацией температуры. При наличии большого интервала напряжения выхода, измеряющий элемент выполняется за микросхемой.

Параллельный стабилизатор

  • 1 – источник напряжения;
  • 2 –элемент регулирующий;
  • 3 – усилитель;
  • 4 – источник основного напряжения;
  • 5 – измерительный элемент;
  • 6 – сопротивление нагрузки.

Если сравнить схемы стабилизаторов, то прибор последовательного вида имеет повышенный КПД при неполной загрузке. Прибор параллельного вида расходует неизменную мощность от источника и выдает ее на элемент регулировки и нагрузку. Стабилизаторы параллельные рекомендуется использовать при неизменных нагрузках при полной загруженности. Стабилизатор параллельный не создает опасности при КЗ, последовательный вид при холостом ходе. При неизменной нагрузке оба прибора создают высокий КПД.

Стабилизатор на микросхеме с 3-мя выводами

Инновационные варианты схем стабилизаторов последовательного вида выполнены на 3-выводной микросхеме. Вследствие того, что есть всего лишь три вывода, их проще использовать в практическом применении, так как они вытесняют остальные виды стабилизаторов в интервале 0,1-3 ампера.

  1. U вх – необработанное напряжение входа;
  2. U вых –напряжение выхода.

Можно не использовать емкости С1 и С2, однако они позволяют оптимизировать свойства стабилизатора. Емкость С1 применяется для создание стабильности системы, емкость С2 нужна по той причине, что внезапное повышение нагрузки нельзя отследить стабилизатором. В таком случае поддержка тока осуществляется емкостью С2. Практически часто применяются микросхемы серии 7900 от компании Моторола, которые стабилизируют положительную величину напряжения, а 7900 – величину со знаком минус.

Микросхема имеет вид:

Для увеличения надежности и создания охлаждения стабилизатор монтируют на радиатор.

Стабилизаторы на транзисторах

На 1-м рисунке схема на транзисторе 2SC1061.

На выходе прибора получают 12 вольт, на напряжение выхода зависит прямо от напряжения стабилитрона. Наибольший допустимый ток 1 ампер.

При применении транзистора 2N 3055 наибольший допускаемый ток выхода можно повысить до 2 ампер. На 2-м рисунке схема стабилизатора на транзисторе 2N 3055, напряжение выхода, как и на рисунке 1 зависит от напряжения стабилитрона.

  • 6 В — напряжение выхода, R1=330, VD=6,6 вольт
  • 7,5 В — напряжение выхода, R1=270, VD = 8,2 вольт
  • 9 В — напряжение выхода, R1=180, Vd=10

На 3-м рисунке – адаптер для автомобиля – аккумуляторное напряжение в автомобиле равно . Для создания напряжения меньшего значения применяют такую схему.

Тематические материалы:

Обновлено: 01.08.2020

103583

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter

Блок питания «Проще не бывает». Часть вторая

РадиоКот >Обучалка >Аналоговая техника >Собираем первые устройства >

Блок питания «Проще не бывает». Часть вторая

Ага, все-таки зашел? Что, любопытство замучило? Но я очень рад. Нет, правда. Располагайся поудобнее, сейчас мы вместе произведем некоторые нехитрые расчеты, которые нужны, чтобы сварганить тот блок питания, который мы уже сделали в первой части статьи. Хотя надо сказать, что эти расчеты могут пригодиться и в более сложных схемах.

Итак, наш блок питания состоит из двух основных узлов — это выпрямитель, состоящий из трансформатора, выпрямительных диодов и конденсатора и стабилизатор, состоящий из всего остального. Как настоящие индейцы, начнем, пожалуй, с конца и рассчитаем сначала стабилизатор.

Схема стабилизатора показана на рисунке.

Это, так называемый параметрический стабилизатор. Состоит он из двух частей:
1 — сам стабилизатор на стабилитроне D с балластным резистором Rб
2 — эмиттерный повторитель на транзисторе VT.

Непосредственно за тем, чтобы напряжение оставалось тем каким нам надо, следит стабилизатор, а эмиттерный повторитель позволяет подключать мощную нагрузку к стабилизатору. Он играет роль как бы усилителя или если угодно — умощителя.

Два основных параметра нашего блока питания — напряжение на выходе и максимальный ток нагрузки. Назовем их:
Uвых — это напряжение
и
Imax — это ток.

Для блока питания, который мы отгрохали в прошлой части, Uвых = 14 Вольт, а Imax = 1 Ампер.

Сначала нам необходимо определить какое напряжение Uвх мы должны подать на стабилизатор, чтобы на выходе получить необходимое Uвых.
Это напряжение определяется по формуле:

Uвх = Uвых + 3

Откуда взялась цифра 3? Это падение напряжения на переходе коллектор-эмиттер транзистора VT. Таким образом, для работы нашего стабилизатора на его вход мы должны подать не менее 17 вольт.

Едем дальше.

Определим, какой нам нужен транзистор VT. Для этого нам надо определить, какую мощность он будет рассеивать.

Считаем:

Pmax=1.3(Uвх-Uвых)Imax

Тут надо учесть один момент. Для расчета мы взяли максимальное выходное напряжение блока питания. Однако, в данном расчете, надо наоборот брать минимальное напряжение, которое выдает БП. А оно, в нашем случае, составляет 1,5 вольта. Если этого не сделать, то транзистор может накрыться медным тазом, поскольку максимальная мощность будет рассчитана неверно.
Смотри сам:

Если мы берем Uвых=14 вольтам, то получаем Pmax=1.3*(17-14)*1=3.9 Вт.
А если мы примем Uвых=1.5 вольта, то Pmax=1.3*(17-1.5)*1=20,15 Вт

То есть, если бы не учли этого, то получилось бы, что расчетная мощность в ПЯТЬ раз меньше реальной. Разумеется, транзистору это сильно не понравилось бы.

Ну вот, теперь лезем в справочник и выбираем себе транзистор.
Помимо только что полученной мощности, надо учесть, что предельное напряжение между эмиттером и коллектором должно быть больше Uвх, а максимальный ток коллектора должен быть больше Imax. Я выбрал КТ817 — вполне приличный транзистор…

Фу, ну вроде с этим справились. Пошли дальше.

Сначала определим максимальный ток базы свежевыбранного транзистора ( а ты как думал? в нашем жестоком мире потребляют все — даже базы транзисторов).

Iб max=Imax / h31Э min

h31Э min — это минимальный коэффициент передачи тока транзистора и берется он из справочника Если там указаны пределы этого параметра — что то типа 30…40, то берется самый маленький. Ну, у меня в справочнике написано только одно число — 25, с ним и будем считать, а что еще остается?

Iб max=1/25=0.04 А (или 40 мА). Не мало.

Ну давайте будем теперь искать стабилитрон.
Искать его надо по двум параметрам — напряжению стабилизации и току стабилизации.

Напряжение стабилизации должно быть равно максимальному выходному напряжению блока питания, то есть 14 вольтам, а ток — не менее 40 мА, то есть тому, что мы посчитали.
Полезли опять в справочник…

По напряжению нам страшно подходит стабилитрон Д814Д, к тому же он у меня был под рукой. Но вот ток стабилизации… 5 мА нам никак не годится. Чего делать будем? Будем уменьшать ток базы выходного транзистора. А для этого добавим в схему еще один транзистор. Смотрим на рисунок. Мы добавили в схему транзистор VT2. Сия операция позволяет нам снизить нагрузку на стабилитрон в h31Э раз. h31Э, разумеется, того транзистора, который мы только что добавили в схему. Особо не думая, я взял из кучи железок КТ315. Его минимальный h31Э равен 30, то есть мы можем уменьшить ток до 40/30=1.33 мА, что нам вполне подходит.

Теперь посчитаем сопротивление и мощность балластного резистора Rб.

Rб=(Uвх-Uст)/(Iб max+Iст min)

где Uст — напряжение стабилизации стабилитрона,
Iст min — ток стабилизации стабилитрона.

Rб = (17-14)/((1.33+5)/1000) = 470 Ом.

Теперь определим мощность этого резистора

Prб=(Uвх-Uст)2/Rб.

То есть

Prб=(17-14)2/470=0,02 Вт.

Собственно и все. Таким образом, из исходных данных — выходного напряжения и тока, мы получили все элементы схемы и входное напряжение, которое должно быть подано на стабилизатор.

Однако не расслабляемся — нас еще ждет выпрямитель. Уж считать так считать, я так считаю (каламбур однако).

Итак, смотрим на схему выпрямителя.

Ну, тут все проще и почти на пальцах. Учитывая то, что мы знаем, какое напряжение нам надо подать на стабилизатор — 17 вольт, вычислим напряжение на вторичной обмотке трансформатора. Для этого пойдем, как и в начале — с хвоста. Итак, после конденсатора фильтра мы должны иметь напряжение 17 вольт.

Учитывая то, что конденсатор фильтра увеличивает выпрямленное напряжение в 1,41 раза, получаем, что после выпрямительного моста у нас должно получиться 17/1,41=12 вольт.
Теперь учтем, что на выпрямительном мосту мы теряем порядка 1,5-2 вольт, следовательно, напряжение на вторичной обмотке должно быть 12+2=14 вольт. Вполне может случится так, что такого трансформатора не найдется, не страшно — в данном случае можно применить трансформатор с напряжением на вторичной обмотке от 13 до 16 вольт.

Едем дальше. Определим емкость конденсатора фильтра.

Cф=3200Iн/UнKн

где Iн — максимальный ток нагрузки,
Uн — напряжение на нагрузке,
Kн — коэффициент пульсаций.

В нашем случае
Iн = 1 Ампер,
Uн=17 вольтам,
Kн=0,01.

Cф=3200*1/14*0,01=18823.

Однако, поскольку за выпрямителем идет еще стабилизатор напряжения, мы можем уменьшить расчетную емкость в 5…10 раз. То есть 2000 мкФ будет вполне достаточно.

Осталось выбрать выпрямительные диоды или диодный мост.

Для этого нам надо знать два основных параметра — максимальный ток, текущий через один диод и максимальное обратное напряжение, так же через один диод.

Необходимое максимальное обратное напряжение считается так

Uобр max=2Uн, то есть Uобр max=2*17=34 Вольта.

А максимальный ток, для одного диода должен быть больше или равен току нагрузки блока питания. Ну а для диодных сборок в справочниках указывают общий максимальный ток, который может протекать через эту сборку.

Ну вот вроде бы и все про выпрямители и параметрические стабилизаторы.
Впереди у нас стабилизатор для самых ленивых — на интегральной микросхеме и стабилизатор для самых трудолюбивых — компенсационный стабилизатор.

<<—Часть 1—-Часть 3—>>


Как вам эта статья?

Заработало ли это устройство у вас?

Самодельный стабилизатор напряжения 12 вольт. Простые стабилизаторы на транзисторах

Однако, не успел поставить стабилизатор напряжения . Для чего нужен он, да все просто.
Итак, в бортовой сети автомобиля рабочее питание составляет от 12,8 до 14,7 Вольт (на разных машинах по своему), а вот светодиоды рассчитаны на 12 вольт. Поэтому приходится ставить стабилизатор, который на выходе всегда держит 12 вольт, не зависимо сколько у нас в борт сети автомобиля. Конечно можно подключить и без стабилизатора, но в этом случаи светодиоды прослужат не долго из-за перепадов напряжения автомобиля. Физику светодиодов можно почитать в интернете, информации полно!

Можно было заказать с АлиЭкспресс, но я решил делать сам. Опыт был уже.
Для изготовления стабилизатора мною были приобретены следующие компоненты:
1. Стабилизатор 2шт.
2. Конденсатор 100 мкФ 16V 2 шт.
3. Конденсатор 330 мкФ 16V 2 шт.
Итог: 70₽
Провода: взял от компьютера, так как они на концах уже изолированы и идеально подходят для купленных стабилизаторов.

Выбрал схему подключения (рисунок 1) . Однако, в выбранной схеме исключил диод, так как он нужен грубо говоря, когда на выходе стабилизатора напряжение будет больше, чем на входе! Но такое бывает очень редко, можно сказать никогда!

Рисунок 1 — схема стабилизатора

Далее пошёл процесс пайки. Оговорюсь сразу, что я не профессионал в этом деле, а любитель. Поэтому многие могут сказать, что неаккуратно сделал. Уж извиняйте))) после того, как все спаял решил засунуть в какой-нибудь корпус. И тут меня осенило, что корпус для стабилизаторов можно сделать из киндер сюрприза, благо у сына этого добра хватает))) Сделал отверстия с каждой стороны пластикового яйца и просунул провода. Выглядит все это довольно приемлемо!
Утром на стоянке проверил мультиметром входное и выходное напряжение! Все ОК.

P.S. Уважаемые читатели, не судите строго за дизайн корпуса и пайку. Главное, чтобы ВЫ поняли, для того, чтобы светодиоды на ваших машинах работали долго, надо ставить стабилизаторы. Сделать их не сложно и недолго, цена — копейки!
В будущем хочу сделать стабилизатор в виде микросхемы!

Заизолировал контакты


Сделал общий минус

Итог пайки

Простые стабилизаторы на транзисторах


На первом рисунке показана схема простого стабилизатора на транзисторе 2SC1061 (слева на рисунке показана его цоколевка). На выходе стабилизатора можно получить напряжение 12 В, но выходное напряжение напрямую зависит от напряжения стабилизации стабилитрона VD1. Предельно допустимый ток нагрузки 1А.

При использовании транзистора 2N3055 (справа показана цоколевка транзистора 2N3055) максимально допустимый выходной ток можно увеличить до 2А.

На рисунке №2 показана схема простого стабилизатора на транзисторе 2N3055, напряжение выходное так же как и в схеме №1 зависит от напряжения стабилитрона.

  • 6В — выходное напряжение, R1 = 330, VD* = 6,6 В
  • 7.5В — выходное напряжение, R1 = 270, VD* = 8.2V
  • 9В — выходное напряжение, R1 = 180, Vd* = 10

Схема №3 — Автомобильный адаптер — напряжение аккумулятора в автомобиле обычно составляет 12 вольт. Для получения другого (меньшего) напряжения можно использовать простую схему показанную на рисунке №3.

  • Похожие статьи
  • 11.04.2015

    Микросхема 1156ЕУ1 представляет из себя набор функциональных элементов предназначенный для построения импульсного стабилизатора повышающего, понижающего или инверсного типа. Прибор К1156ЕУ1Т выпускается в металлокерамическом корпусе типа 4112.16-3, а КР1156ЕУ1 – в пластмассовом корпусе типа 283.16-2. ОСОБЕННОСТИ Рассчитан для понижающих, повышающих и инвертирующих импульсных стабилизаторов Регулировка выходного напряжения 1,25…40В Выходной импульсный ток………..

  • При установке ангельских глаз


    Камера засвечивает


    С уменьшенной выдержкой

    да и вообще всех светодиодов, для их безопасной и продолжительной работы на автомобиле нужно ставить стабилизатор напряжения, можно и без него подключать, но потом не удивлятся и не «грешить» на ленту- чего так быстро «умирают» светодиоды?) Если подключено пару светодиодов или небольшой отрезок недорогой ленты, то в случае выхода из строя, выходит не дорого, а если диоды или лента премиум сегмента, недешовые, это уже становиться накладным и не хочется деньги выкидывать на ветер. Самый простой и недорогой стабилизатор можно собрать на крен 7812 и нескольких конденсаторах. Цена деталей на это время, составляет 12грв (9грв кренка и 3грв конденсаторы) так что для долговечности светодиодов лучше сделать стабилизатор. Этот вариант на кренке 7812 является не регулируемым и выдаёт только 12в, второй простой вариант это на крен 317, в этом случае это уже получается регулируемый стабилизатор и напряжение можно регулировать с помощью сопротивления. По цене деталей тоже недорогой цена крен317 — 11грв. При сборке на этих кренках необходимо учитывать их нормальную работу с максимальным током нагрузки не больше 1.5А. Если ток нагрузки больше они будут греться, нужно уже садить их на радиаторы, но работа в предельных нагрузках будет не долговечна. В моём случае лента весьма «прожорлива»: Foton Premium Smd 5050 (60Led/m) с параметрами:
    рабочий ток 1.2А/м
    потребл.мощность 14.4Вт/м
    световой поток 1260lm/м
    Пр длинне 3м выходит 42вт/3.6А. Пришлось бы делать на каждое кольцо АГ по стабилизатору и то не факт нормальной работы без перегрева. Я решил сделать один большой стабилизатор, с запасом, для АГ и возможностью подключения дополнительных изделий имеющихся в наличии (подсветку днища, подсветку салона, подсветку подкапотного, подсветку багажника, ножную подсветку) и всего того, что возможно ещё взбредёт в голову)). Для стабилизатора понадобились следующие детали:
    Крен Lm 317
    Транзистор КТ 819 гм
    Конденсатор 470мкF
    Конденсатор 47мкF
    Сопротивление 2КОм
    Сопротивление 180Ом
    Радиатор охлаждения для транзистора

    Собирал по схеме:


    Изготовленный стабилизатор расщитан на нагрузку до 15А,


    от нагрузки АГ 3.6А совсем не греется и можно подключать дополнительные потребители. При бортовом напряжении 13.5-14.5в стабильно выдаёт 12.5в. Сопротивление специально подобрал чуть больше для 12.5в, производитель ленты Foton указывает на напряжение 12в+/- 0.5%. Если транзистор КТ 819 гм заменить на транзистор КТ 827 то общую нагрузку можно увеличить до 20А. Для установки в машину необходимо сделать защитный корпус, так как радиатор охлаждения транзистора получается колектор(+) и на массу к машине нельзя допускать прикосновения. Корпус сделал из первого попавшегося под руку, подходящего по размеру, это пластиковая упаковка от ламп Н1.


    Радиатор поместился идельно, входит плотно, для его охлаждения вырезал снизу и спереди окна.



    Сверху на свободное место закрепил остальные комплектующие из схемы.


    Сзади прикрепил крепёжную планку. Так как стабилизатор в сборе получился не миниатюрным, чтобы не мешал «под руками» и для лучшего его охлаждения, место установки нашёл поближе к приводному вентилятору охлаждения — под аккумулятором.



    В этом месте очень хороший дополнительный обдув радиатора стабилизатора получается.


    Схема простого стабилизатора постоянного напряжения на опорном стабилитроне и транзисторе.

    Для некоторых электрических цепей и схем вполне хватает обычного блока питания, не имеющего стабилизации. Источники тока такого типа обычно состоят из понижающего трансформатора, выпрямительного диодного моста и фильтрующего конденсатора. Выходное напряжение блока питания зависит от количества витков вторичной обмотки на понижающем трансформаторе. Но как известно сетевое напряжение 220 вольт нестабильно. Оно может колебаться в некоторых пределах (200-235 вольт). Следовательно и выходное напряжение на трансформаторе тоже будет «плавать» (в место допустим 12 вольт будет 10-14, или около того).

    Электротехника, которая особо не капризна к небольшим изменения питающего постоянного напряжения может обойтись таким вот простым блоком питания. Но вот более чувствительная электроника уже это не терпит, она от этого даже может выйти из строя. Так что возникает необходимость в дополнительный схеме стабилизации постоянного выходного напряжения. В этой статье я привожу электрическую схему достаточно простого стабилизатора постоянного напряжения, который имеет стабилитрон и транзистор. Именно стабилитрон выступает в роли опорного элемента, который определяет и стабилизирует выходное напряжения блока питания.

    Теперь давайте перейдем к непосредственному разбору электрической схемы простого стабилизатора постоянного напряжения. Итак, к примеру у нас имеется понижающий трансформатор с выходным переменным напряжением в 12 вольт. Эти самые 12 вольт мы подаем на вход нашей схемы, а именно на диодный мост и фильтрующий конденсатор. Диодный выпрямитель VD1 из переменного тока делает постоянный (но скачкообразный). Его диоды должны быть рассчитаны на ту максимальную силу тока (с небольшим запасом где-то 25%), который может выдавать блок питания. Ну, и напряжение их (обратное) должно быть не ниже выходного.

    Фильтрующий конденсатор C1 сглаживает эти скачки напряжения, делая форму постоянного напряжения более ровной (хотя и не идеальной). Его емкость должна быть от 1000 мкф до 10 000 мкф. Напряжение, также больше выходного. Учтите, что есть такой вот эффект — переменное напряжение после диодного моста и фильтрующего конденсатора электролита увеличивается примерно на 18%. Следовательно в итоге мы уже получим на выходе не 12 вольт, а где-то 14,5.

    Теперь начинается часть стабилизатора постоянного напряжения. Основным функциональным элементом тут является сам стабилитрон. Напомню, что стабилитроны имеют способность в некоторых пределах стабильно держать на себе определенное постоянное напряжение (напряжение стабилизации) при обратном своем включении. При подачи на стабилитрон напряжения от 0 до напряжения стабилизации оно просто будет увеличиваться (на концах стабилитрона). Дойдя до уровня стабилизации напряжение будет оставаться неизменным (с незначительным ростом), а расти начнет сила тока, протекающего через него.

    В нашей схеме простого стабилизатора, который на выходе должен выдавать 12 вольт, стабилитрон VD2 рассчитан на напряжение 12,6 (поставим стабилитрон на 13 вольт, это соответствует Д814Д). Почему 12,6 вольт? Потому, что 0,6 вольт осядут на транзисторном переходе эмиттер-база. А на выходе получится ровно 12 вольт. Ну, а поскольку мы ставим стабилитрон на 13 вольт, то на выходе БП будет где-то 12,4 В.

    Стабилитрон VD2 (создающим место опорного постоянного напряжения) нуждается в ограничителе тока, который будет предохранять его от чрезмерного перегрева. На схеме эту роль выполняет резистор R1. Как видно он подключен последовательно стабилитрону VD2. Еще один фильтрующий конденсатор электролит C2 стоит параллельно стабилитрону. Его задача также сглаживать излишки пульсаций напряжения. Можно обойтись и без него, но все же лучше будет с ним!

    Далее на схеме мы видим биполярный транзистор VT1, который подключен по схеме общий коллектором. Напомню, схемы подключения биполярных транзисторов по типу общий коллектор (это еще называется эмиттерный повторитель) характеризуются тем, что они значительно усиливают силу тока, но при этом нет никакого усиления по напряжению (даже оно немного меньше входного, именно на те самые 0,6 вольт). Следовательно мы на выходе транзистора получаем то постоянное напряжение, которое имеется на его входе (а именно напряжение опорного стабилитрона, равное 13 вольтам). И поскольку эмиттерный переход на себе оставляет 0,6 вольта, то и на выходе транзистора уже будет не 13, а 12,4 вольта

    Как вы должны знать, чтобы транзистор начал открываться (пропускать через себя управляемые токи по цепи коллектор-эмиттер) ему нужен резистор для создания смещения. Эту задачу выполняет все тот же резистор R1. Изменяя его номинал (в определенных пределах) можно менять силу тока на выходе транзистора, а значит и на выходе нашего стабилизированного блока питания. Тем, кто желает с этим поэкспериментировать советую на место R1 поставить подстроечное сопротивление номиналом около 47 ком. Подстраивая его смотрите, как будет изменяться сила тока на выходе блока питания.

    Ну, и на выходе схемы простого стабилизатора постоянного напряжения стоит еще один небольшой фильтрующий конденсатор электролит C3, сглаживающий пульсации на выходе стабилизированного блока питания. Параллельно ему припаян резистор нагрузки R2. Он замыкает эмиттер транзистора VT1 на минус схемы. Как видим схема достаточно проста. Содержит минимум компонентов. Она обеспечивает вполне стабильное напряжение на своем выходе. Для питания многой электротехники данного стабилизированного блока питания будет вполне хватать. Данный транзистор рассчитан на максимальную силу тока в 8 ампер. Следовательно для такого тока нужен радиатор, который будет отводить излишек тепла от транзистора.

    P.S. Если параллельно стабилитрону поставить еще переменный резистор номиналом 10 ком (средний вывод подсоединяем к базе транзистора), то в итоге мы получим уже регулируемый блок питания. На нем можно плавно изменять выходное напряжение от 0 до максимума (напряжение стабилитрона минус те самые 0,6 вольт). Думаю такая схема уже будет более востребована.

    Стабилизаторы напряжения на транзисторах: схема на стабилитроне

    Чаще всего радиотехнические устройства для своего функционирования нуждаются в стабильном напряжении, не зависящем от изменений сетевого питания и от тока нагрузки. Для решения этих задач используются компенсационные и параметрические устройства стабилизации.

    Параметрический стабилизатор

    Его принцип работы заключается в свойствах полупроводниковых приборов. Вольтамперная характеристика полупроводника – стабилитрона показана на графике.

    Во время включения стабилитрона свойства подобны характеристике простого диода на основе кремния. Если стабилитрон включить в обратном направлении, то электрический ток сначала будет расти медленно, но при достижении некоторой величины напряжения наступает пробой.

    Это режим, когда малый прирост напряжения создает большой ток стабилитрона. Пробойное напряжение называют напряжением стабилизации. Во избежание выхода из строя стабилитрона, течение тока ограничивают сопротивлением.

    При колебании тока стабилитрона от наименьшего до наибольшего значения, напряжение не изменяется.

    На схеме показан делитель напряжения, который состоит из балластного сопротивления и стабилитрона. К нему параллельно подключена нагрузка. Во время изменения величины питания меняется и ток резистора. Стабилитрон берет изменения на себя: меняется ток, а напряжение остается постоянным. При изменении резистора нагрузки ток изменится, а напряжение останется постоянным.

    Компенсационный стабилизатор

    Прибор, рассмотренный ранее очень простой по конструкции, но дает возможность подключать питание прибора с током, который не превышает наибольшего тока стабилитрона. Вследствие этого используют приборы, стабилизирующие напряжение, и получившие название компенсационных. Они состоят из двух видов: параллельные и последовательные.

    Называется прибор по методу подключения элементу регулировки. Обычно используются компенсационные стабилизаторы, относящиеся к последовательному виду. Его схема:

    Элементом регулировки выступает транзистор, соединенный последовательно с нагрузкой. Напряжение выхода равняется разности значения стабилитрона и эмиттера, которое составляет несколько долей вольта, поэтому считается, что выходное напряжение равно стабилизирующему напряжению.

    Рассмотренные приборы обоих типов имеют недостатки: невозможно получить точную величину напряжения выхода и производить регулировку во время работы. Если нужно создать возможность регулирования, то стабилизатор компенсационного вида изготавливают по схеме:

    В этом приборе регулировка осуществляется транзистором. Основное напряжение выдает стабилитрон. Если напряжение выхода повышается, база транзистора получается отрицательной в отличие от эмиттера, транзистор откроется на большую величину и ток возрастет.

    Вследствие этого, напряжение отрицательного значения на коллекторе станет ниже, так же как и на транзисторе. Второй транзистор закроется, его сопротивление повысится, напряжение выводов повысится.

    Это приводит к снижению напряжения выхода и возвращению к бывшему значению.

    При снижении напряжения выхода проходят подобные процессы. Отрегулировать точное напряжение выхода можно резистором настройки.

    Стабилизаторы на микросхемах

    Такие устройства в интегральном варианте имею повышенные характеристики параметров и свойств, которые отличаются от подобных приборов на полупроводниках. Также они обладают повышенной надежностью, небольшими габаритами и весом, а также небольшой стоимостью.

    Последовательный стабилизатор

    • 1 – источник напряжения;
    • 2 – Элемент регулировки;
    • 3 – усилитель;
    • 4 – источник основного напряжения;
    • 5 – определитель напряжения выхода;
    • 6 – сопротивление нагрузки.

    Элемент регулировки выступает в качестве изменяемого сопротивления, подключенного по последовательной схеме с нагрузкой. При колебании напряжения меняется сопротивление элемента регулировки так, что происходит компенсация таких колебаний. Воздействие на элемент регулировки производится по обратной связи, которая содержит элемент управления, источник основного напряжения и измеритель напряжения. Этот измеритель является потенциометром, с которого приходит часть напряжения выхода.

    Обратная связь регулирует напряжение выхода, использующееся для нагрузки, напряжение выхода потенциометра становится равным основному напряжению. Колебания напряжения от основного создает некоторое падение напряжения на регулировке.

    Вследствие этого, измеряющим элементом в определенных границах можно осуществлять регулировку напряжения выхода. Если стабилизатор планируется изготовить на определенную величину напряжения, то измеряющий элемент создается внутри микросхемы с компенсацией температуры.

    При наличии большого интервала напряжения выхода, измеряющий элемент выполняется за микросхемой.

    Параллельный стабилизатор

    • 1 – источник напряжения;
    • 2 –элемент регулирующий;
    • 3 – усилитель;
    • 4 – источник основного напряжения;
    • 5 – измерительный элемент;
    • 6 – сопротивление нагрузки.

    Если сравнить схемы стабилизаторов, то прибор последовательного вида имеет повышенный КПД при неполной загрузке. Прибор параллельного вида расходует неизменную мощность от источника и выдает ее на элемент регулировки и нагрузку. Стабилизаторы параллельные рекомендуется использовать при неизменных нагрузках при полной загруженности. Стабилизатор параллельный не создает опасности при КЗ, последовательный вид при холостом ходе. При неизменной нагрузке оба прибора создают высокий КПД.

    Стабилизатор на микросхеме с 3-мя выводами

    Инновационные варианты схем стабилизаторов последовательного вида выполнены на 3-выводной микросхеме. Вследствие того, что есть всего лишь три вывода, их проще использовать в практическом применении, так как они вытесняют остальные виды стабилизаторов в интервале 0,1-3 ампера.

    1. U вх – необработанное напряжение входа;
    2. U вых –напряжение выхода.

    Можно не использовать емкости С1 и С2, однако они позволяют оптимизировать свойства стабилизатора.

    Емкость С1 применяется для создание стабильности системы, емкость С2 нужна по той причине, что внезапное повышение нагрузки нельзя отследить стабилизатором. В таком случае поддержка тока осуществляется емкостью С2.

    Практически часто применяются микросхемы серии 7900 от компании Моторола, которые стабилизируют положительную величину напряжения, а 7900 – величину со знаком минус.

    Микросхема имеет вид:

    Для увеличения надежности и создания охлаждения стабилизатор монтируют на радиатор.

    Стабилизаторы на транзисторах

    На 1-м рисунке схема на транзисторе 2SC1061.

    На выходе прибора получают 12 вольт, на напряжение выхода зависит прямо от напряжения стабилитрона. Наибольший допустимый ток 1 ампер.

    При применении транзистора 2N 3055 наибольший допускаемый ток выхода можно повысить до 2 ампер. На 2-м рисунке схема стабилизатора на транзисторе 2N 3055, напряжение выхода, как и на рисунке 1 зависит от напряжения стабилитрона.

    • 6 В — напряжение выхода, R1=330, VD=6,6 вольт
    • 7,5 В — напряжение выхода, R1=270, VD = 8,2 вольт
    • 9 В — напряжение выхода, R1=180, Vd=10

    На 3-м рисунке – адаптер для автомобиля – аккумуляторное напряжение в автомобиле равно 12 В. Для создания напряжения меньшего значения применяют такую схему.

    Схема включения стабилизаторов напряжения

    (3

    Источник: http://ostabilizatore.ru/shemy-prostyh-stabilizatorov-naprjazhenija.html

    Стабилизатор тока: схема, регулируемый, импульсный, конструкция и назначение

    Яркость светодиодных источников зависит от протекающего тока, а он в свою очередь – от напряжения питания. В условиях колебания нагрузки возникает пульсация светильников. Для ее предотвращения используется специальный драйвер – стабилизатор тока. При поломках элемент можно сделать самостоятельно.

    Конструкция и принцип работы

    Стабилизатор обеспечивает постоянство тока при его отклонении

    Стабилизатор обеспечивает постоянство показателей рабочего тока LED-диодов при его отклонении от нормы. Он предотвращает перегрев и выгорание светодиодов, поддерживает постоянство потока при перепадах напряжения или разрядке АКБ.

    Простейшее устройство состоит из трансформатора, выпрямительного моста, соединенного с резисторами и конденсаторами. Действие стабилизатора основывается на следующих принципах:

    • подача тока на трансформатор и изменение его предельной частоты до частоты электросети – 50 Гц;
    • регулировка напряжения на повышение и понижение с последующим выравниванием частоты до 30 Гц.

    В процессе преобразования также задействуются выпрямители высоковольтного типа. Они определяют полярность. Стабилизация электрического тока осуществляется при помощи конденсаторов. Для снижения помех применяются резисторы.

    Разновидности токовых стабилизаторов

    Светодиод загорается при достижении порогового значения тока. Для маломощных устройств этот показатель равняется 20 мА, для сверхъярких – от 350 мА. Разброс порогового напряжения объясняет наличие различных видов стабилизаторов.

    Резисторные стабилизаторы

    Для регулируемого стабилизатора параметров тока для маломощных светодиодов применяется схема КРЕН. Она предусматривает наличие элементов КР142ЕН12 либо LM317. Процесс выравнивания осуществляется при силе тока 1,5 А и напряжении на входе 40 В. В условиях нормального теплового режима резисторы рассеивают мощность до 10 т. Собственное энергопотребление составляет около 8 мА.

    Узел LM317 удерживает на главном резисторе постоянную величину напряжения, регулируемую подстроечным элементом. Основной, или токораздающий элемент может стабилизировать ток, пропущенный через него. По этой причине стабилизаторы на КРЕН применяются для зарядки аккумуляторов.

    Величина в 8 мА не изменяется даже при колебаниях тока и напряжения на входе.

    Транзисторные устройства

    Схема транзисторного стабилизатора напряжения

    Регулятор на транзисторах предусматривает использование одного или двух элементов. Несмотря на простоту схемы при колебаниях напряжения не всегда бывает стабильный ток нагрузки. При его увеличении на одном транзисторе повышается напряжение резистора до 0,5-0,6 В. после этого начинает работать второй транзистор. В момент его открытия первый элемент закрывается, а сила и величина тока, проходящие через него, понижается.

    Второй транзистор должен быть биполярным.

    Две схемы для транзисторов разной проводимости, в которых стабилитроны заменены двумя обычными диодами VD1, VD2

    Для реализации схемы с заменой стабилитронов на диоды применяются:

    • диоды VD1 и VD2;
    • резистор R1;
    • резистор R2.

    Подача тока через светодиодный элемент задается резистором R2. Для выхода на линейный участок ВАХ-диодов с привязкой к току базового транзистора используется резистор R1. Чтобы транзистор сохранял устойчивость, напряжение питания не должно быть меньше суммарного напряжения диодов + 2-2,5 В.

    Для получения тока 30 мА через 3 последовательно подключенных диода с напряжением 3,1 В по прямой производится запитка 12 В. Резисторное сопротивление должно равняться 20 Ом при мощности рассеивания 18 мВт.

    Схема нормализует режим работы элементов, снижает токовые пульсации.

    Схема с советскими транзисторами. Допустимое напряжение советских КТ940 или КТ969 – до 300 В, что подходит, если источник света – мощный SMD-элемент. Параметры тока задаются резистором. Напряжение стабилитрона составляет при этом 5,1 В, а мощность – 0,5 В.

    Минус схемы – падение напряжения при повышении силы тока. Его можно устранить, заменив биполярный транзистор на MOSFET с низкими параметрами сопротивления. Мощный диод заменяется элементом IRF7210 на 12 А или IRLML6402 на 3,7 А.

    Стабилизаторы тока на полевике

    Стабилизатор напряжения на полевом транзисторе

    Полевой элемент отличается закороченным истоком и затвором, а также встроенным каналом. При использовании полевика (IRLZ 24) с 3-мя выводами на вход подается напряжение 50 В, на выходе получается 15,7 В.

    Для подачи напряжения задействуется потенциал заземления. Параметры тока на выходе зависят от начального тока стока, и не привязываются к истоку.

    Линейные устройства

    Стабилизатор, или делитель постоянного показателя тока принимает нестабильное напряжение. На выходе линейный прибор его выравнивает. Он функционирует по принципу постоянного изменения параметров сопротивления для выравнивания питания на выходе.

    К преимуществам эксплуатации относятся минимальное число деталей, отсутствие помех. Недостатком является малый КПД при разнице питания на входе и выходе.

    Феррорезонансное устройство

    Стабилизатор для переменного тока устаревшей модели, схема которого представлена конденсатором и двумя катушками – с ненасыщенным и насыщенным сердечником. К насыщенному (индуктивному) сердечнику подается напряжение постоянного типа, не зависимое от параметров тока. Это облегчает подбор данных для второй катушки и емкостный диапазон стабилизации питания.

    Устройство работает по принципу качелей, которые сразу сложно остановить или раскачать сильнее. Подача напряжения происходит по инерции, поэтому возможны падения нагрузки или разрыв цепи питания.

    Особенности схемы токового зеркала

    Классическая схема токового зеркала

    Токовое зеркало, или отражатель выстраивается на паре транзисторов согласованного типа, т.е. с одинаковыми параметрами. Для их производства используется один светодиодный кристалл полупроводника.

    Схема токового зеркала по уравнению Эберса-Молла. Принцип работы заключается в том, что транзисторные базы объединяются, а эмиттеры подкидываются на одну шину питания. В итоге параметры переходного напряжения сцепки «база – транзистор-эмиттер» равны.

    Преимущества схемы заключаются в равном диапазоне устойчивости и отсутствии падения напряжение на резисторе-эмиттере. Параметры легче задаются при помощи тока. Недостаток заключается в эффекте Эрли – привязке напряжения на выходе к коллекторному и его колебания.

    Схема токового зеркала Уилсона. Токовое зеркало может стабилизировать постоянную величину выходного тока и реализуется так:

    1. Транзисторы № 1 и № 1 включены по принципу стандартного токового зеркала.
    2. Транзистор № 3 фиксирует потенциал коллектора элемента № 1 на удвоенный параметр падения диодного напряжения.
    3. Оно будет меньше, чем напряжение питания, что подавляет эффект Эрли.
    4. Коллектор транзистора № 1 задействуется для установления режима схемы.
    5. Ток на выходе зависит от транзистора № 2.
    6. Транзистор № 3 трансформирует выходной ток в нагрузку с переменным напряжением.

    Транзистор № 3 можно не согласовывать с остальными.

    Стабилизатор компенсационного напряжения

    Компенсационный стабилизатор напряжения

    Выпрямитель работает по принципу обратной связи цепи для напряжения. Полное или частичное напряжение приравнивает к опоре. В результате стабилизатор генерирует параметры напряжения ошибки, устраняя колебания яркости для светодиодов. Прибор состоит из следующих элементов:

    • Регулирующий элемент или транзистор, который совместно с сопротивлением нагрузки образует делитель напряжения. Эмиттерный показатель транзистора должен превышать ток нагрузки в 1,2 раза.
    • Усилитель – управляет РЭ, выполняется на базе транзистора №2. Маломощный элемент согласуется с мощным по составному принципу.
    • Источник напряжения опоры – в схеме задействуется стабилизатор параметрического типа. Он выравнивает напряжение стабилитрона и резистора.
    • Дополнительные источники.
    • Конденсаторы – для сглаживания пульсаций, устранения паразитного возбуждения.

    Стабилизаторы компенсационного напряжения работают по принципу увеличения входного напряжения с дальнейшим возрастанием токов. Закрытие первого транзистора увеличивает сопротивление и напряжение зоны коллектор-эмиттер. После подачи нагрузки оно выравнивается до номинала.

    Устройства на микросхемах

    Для стабилизующих приборов применяется микросхема 142ЕН5 или LМ317. Она позволяет выровнять напряжение, принимая по цепи обратной связи сигнал от датчика, подключенного к сети тока нагрузки.

    В качестве датчика задействует сопротивление, при котором регулятор может поддерживать постоянное напряжение и ток нагрузки. Сопротивление датчика будет меньше сопротивления по нагрузке. Схему задействуют для зарядных устройств, по ней же проектируется ЛЕД-лампа.

    Импульсные стабилизаторы

    Импульсный прибор отличается высоким КПД и при минимальных параметрах входного напряжения создают высокое напряжение потребителей. Для сборки используется микросхема МАХ 771.

    Регулировать силу тока будут один или два преобразователя. Делитель выпрямительного типа выравнивает магнитное поле, понижая допустимую частоту напряжения. Для подачи тока на обмотку светодиодный элемент передает сигнал транзисторам. Стабилизация на выходе осуществляется посредством вторичной обмотки.

    Как сделать стабилизатор тока для светодиодов самостоятельно

    Изготовление стабилизатора для светодиодов своими руками осуществляется несколькими способами. Новичку целесообразно работать с простыми схемами.

    На основе драйверов

    Понадобится выбрать микросхему, которую трудно выжечь – LM317. Она будет выполнять роль стабилизатора. Второй элемент – переменный резистор с сопротивлением в 0,5 кОм с тремя выводами и ручкой регулировки.

    Сборка осуществляется по следующему алгоритму:

    1. Припаять проводники к среднему и крайнему выводу резистора.
    2. Перевести мультиметр в режим сопротивления.
    3. Замерить параметры резистора – они должны равняться 500 Ом.
    4. Проверить соединения на целостность и собрать цепь.

    На выходе получится модуль с мощностью 1,5 А. Для увеличения тока до 10 А можно добавить полевик.

    Стабилизатор для автомобильной подсветки

    Для работы потребуется линейный прибор в виде микросхемы L7812, две клеммы, конденсатор 100n (1-2 шт.), текстолитовый материал и трубка с термоусадкой. Изготовление производится пошагово:

    1. Выбор схемы под L7805 из даташита.
    2. Вырезать из текстолита нужный по размеру кусок.
    3. Наметить дорожки, делая насечки отверткой.
    4. Припаять элементы так, чтобы вход был слева, а выход – справа.
    5. Сделать корпус из термотрубки.

    Стабилизирующее устройство выдерживает до 1,5 А нагрузки, монтируется на радиатор.

    В качестве радиатора задействуется кузов машины за счет соединения центрального вывода корпуса с минусом.

    Нюансы расчета стабилизатора тока

    Расчет стабилизатора производится на основании напряжения стабилизации U и тока (среднего) I. К примеру, напряжение входного делителя составляет 25 В, на выходе нужно получить 9 В. Вычисления предусматривают:

    1. Подбор по справочнику стабилитрона. Ориентируются на напряжение стабилизации: Д814В.
    2. Поиск среднего тока I по таблице. Он равен 5 мА.
    3. Вычисление подающего напряжения как разности стабильного напряжения входа и выхода: UR1 = Uвx — Uвых, или 25-9=16 В.
    4. Деление полученного значение по закону Ома на ток стабилизации по формуле R1 = UR1 / Iст, или 16/0,005=3200 Ом, или 3,2 кОм. Номинал элемента будет 3,3 кОм.
    5. Вычисление максимальной мощности по формуле РR1 = UR1 * Iст, или 16х0,005=0,08.

    Через резистор проходит ток стабилитрона и выходной, поэтому его мощность должна быть в 2 раза больше (0,16 кВт). На основании таблицы данному номиналу соответствует 0,25 кВт.

    Самостоятельная сборка стабилизатора для светодиодных устройств возможна только при знании схемы. Начинающим мастерам рекомендовано использовать простые алгоритмы. Рассчитать элемент по мощности можно на основании формул из школьного курса физики.

    Источник: https://StrojDvor.ru/elektrosnabzhenie/kak-sdelat-stabilizatory-toka-dlya-svetodiodov-svoimi-rukami/

    Стабилизатор напряжения на полевом транзисторе

    Несложная схема для регулирования, а также стабилизации напряжения представлена на картинке выше, её сможет собрать даже новичок в электронике. К примеру, на вход подано 50 вольт, а на выходе получаем 15,7 вольт или другое значение до 27V.

    Схема регулируемого стабилизатора

    Основной радиодеталью данного устройства является полевой (MOSFET) транзистор, в качестве которого можно использовать IRLZ24/32/44 и другие подобные. Наиболее часто они производятся компаниями IRF и Vishay в корпусах TO-220 и D2Pak. Стоит около 0.58$ грн в розницу, на ebay 10psc можно приобрести за 3$ (0,3 доллара за штуку). Такой мощный транзистор имеет три вывода: сток (drain), исток (source) и затвор (gate), он имеет такую структуру: металл-диэлектрик(диоксид кремния SiO2)-полупроводник. Микросхема-стабилизатор TL431 в корпусе TO-92 обеспечивает возможность настраивать значение выходного электрического напряжения. Сам транзистор я оставил на радиаторе и  припаял его к плате с помощью проводков.

    Входное напряжение для этой схемы может быть от 6 и до 50 вольт. На выходе же получаем 3-27V с возможностью регулирования подстрочным резистором 33k. Выходной ток довольно большой, до 10 Ампер, в зависимости от радиатора.

    Сглаживающие конденсаторы C1,C2 могут иметь ёмкость 10-22 мкФ, C3 4,7 мкФ. Без них схема и так будет работать, но не так хорошо, как нужно. Не забываем про вольтаж электролитических конденсаторов на входе и выходе, мною были взяты все рассчитаны на 50 Вольт.

    Мощность, которую сможет рассеять такой стабилизатор напряжения не может быть более 50 Ватт. Полевой транзистор обязательно устанавливается на радиатор, рекомендуемая площадь поверхности которого не менее 200 квадратных сантиметров (0,02 м2). Не забываем про термопасту или подложку-резинку, чтобы тепло лучше отдавалось.

    Возможно использование подстрочного резистора 33k типа WH06-1, WH06-2 они имеют достаточно точную регулировку сопротивления, вот так они выглядят, импортный и советский.

    Для удобства на плату лучше припаять две колодки, а не провода, которые легко отрываются.

    Печатная плата для дискретных элементов и переменного резистора типа СП5-2 (3296).

    Стабильность неплоха и напряжение изменяется только на доли вольта на протяжении длительного времени. Готовая платка получилась компактна и удобна. Так как я планирую длительное время использовать это устройство для защиты дорожек окрасил всё дно платы зеленым цапонлаком. Автор материала — Егор.

       Форум по БП

       Обсудить статью Стабилизатор напряжения на полевом транзисторе

    Источник: https://radioskot.ru/publ/bp/stabilizator_naprjazhenija_na_polevom_tranzistore/7-1-0-1012

    Параметрический стабилизатор напряжения на транзисторе

    Итак, справа изображена схема простейшего транзисторного стабилизатора напряжения.

    Обозначения:

    1. Iк — коллекторный ток транзистора
    2. Iн — ток нагрузки
    3. Iб — ток базы транзистора
    4. IR — ток через балластный резистор
    5. Uвх — входное напряжение
    6. Uвых — выходное напряжение (падение напряжения на нагрузке)
    7. Uст — падение напряжения на стабилитроне
    8. Uбэ — падение напряжения на p-n переходе база-эмиттер транзистора

    Как такой стабилизатор работает и чем его работа отличается от работы параметрического стабилизатора на стабилитроне? Да почти ничем их работа не отличается, — напряжение на выходе схемы остаётся стабильным в результате наличия на вольт-амперных характеристиках (стабилитрона и p-n перехода база-эмиттер транзистора) участков, на которых падение напряжения слабо зависит от тока. То есть как и у всех параметрических стабилизаторов стабильность достигается внутренними свойствами компонентов.

    Действительно, как видно из рисунка, падение напряжения на нагрузке равно разности падений напряжений на стабилитроне и на p-n переходе БЭ транзистора.

    Поскольку падение напряжения на стабилитроне слабо зависит от тока (на рабочем участке оно равно напряжению стабилизации), падение напряжения на прямосмещённом p-n переходе тоже слабо зависит от тока (для кремниевого транзистора его можно взять примерно таким же, как для обычного кремниевого диода — примерно 0,6 Вольт), то получается, что и выходное напряжение тоже постоянно.

    Теперь добавим немного математики.

    С напряжением на нагрузке (выходным напряжением) уже всё понятно: Uвых=Uст-Uбэ, давайте рассчитаем R0 и область нормальной работы стабилизатора. Но прежде нарисуем рядом два рисуночка — кусок схемы нашего стабилизатора и кусок простейшего параметрического стабилизатора на стабилитроне:

    Похоже, не правда ли? Более того, рассуждения и выводимые из них соотношения для расчёта R0 и области нормальной работы тоже очень похожи.

    • Уравнение, описывающее токи и напряжения для выдранного выше куска схемы нашего стабилизатора:
    • Uвх=Uст+IRR0, учитывая что IR=Iст+Iб, получим
    • Uвх=Uст+(Iст+Iб)R0   (1)

    Для нормальной работы стабилизатора (чтобы напряжение на стабилитроне всегда было в пределах от Uст min до Uст max) необходимо, чтобы ток через стабилитрон всегда был в пределах от Iст min до Iст max. Минимальный ток через стабилитрон будет течь при минимальном входном напряжении и максимальном токе базы транзистора. Зная это, найдём сопротивление балластного резистора:

    1. R0=(Uвх min-Uст min)/(Iб max+Iст min)   (2)
    2. Если учесть, что в нашем случае, когда транзистор включен по схеме с общим коллектором, ток базы связан с током эмиттера соотношением Iэ=Iб(h31Э+1), ток эмиттера равен току нагрузки (потому что в цепь эмиттера же у нас нагрузка включена), а напряжение на стабилитроне в рабочем режиме меняется незначительно (вместо Uст min возьмём просто Uст), то получим, что
    3. R0=(Uвх min-Uст)/(Iн max/(h31Э+1)+Iст min)   (3)
    4. h31Э+1 — это коэффициент усиления по току для схемы с общим коллектором (h31K), но поскольку h31Э обычно достаточно большой, то нередко слагаемое «+1» выкидывают и считают, что h31К=h31Э, тогда формула (3) становится чуть проще:
    5. R0=(Uвх min-Uст)/(Iн max/h31Э+Iст min)
    6. Максимальный ток через стабилитрон будет течь при минимальном токе базы транзистора и максимальном входном напряжении. Учитывая это и сказанное выше относительно минимального тока через стабилитрон, с помощью уравнения (1) можно найти область нормальной работы стабилизатора:

    Перегруппировав это выражение, получим:

    Или, по другому:

    Если считать, что минимальное и максимальное напряжение стабилизации (Uст min и Uст max) отличаются незначительно (первое слагаемое в правой части можно считать равным нулю), а также то, что Iн=Iэ=Iбh31Э («+1» — выкинем), тогда уравнение, описывающее область нормальной работы стабилизатора, примет следующий вид:

    Из этой формулы хорошо видно преимущество такого транзисторного стабилизатора над параметрическим стабилизатором на стабилитроне — при прочих равных параметрах у транзисторного стабилизатора выходной ток может меняться в более широких пределах.

    Для примера опять возьмём стабилитрон КС147А (Iст=3..53мА), и прикинем на какой максимальный ток мы сможем рассчитывать при понижении напряжения с 6..10В до 5В при условии, что выходной ток может меняться от нуля до Imax. Транзистор возьмём КТ815А (h31Э=40). Решив совместно систему уравнений (3), (4), получим R0 около 110 Ом и максимальный ток порядка 550 мА.

    Однако стоит заметить, что нестабильность выходного напряжения в данном случае будет ещё хуже, поскольку теперь к нестабильности напряжения на стабилитроне добавится ещё нестабильность падения напряжения на p-n переходе транзистора.

    Плюс мы ещё не учли, что выходное напряжение будет меньше, чем на стабилитроне на величину падения напряжения на p-n переходе, так что по хорошему нам бы надо было взять стабилитрон не на 4,7В, а на 5,1 или даже на 5,6 Вольт (я специально взял для примера такой же стабилитрон, как и в статье про параметрический стабилизатор на стабилитроне, чтобы нагляднее было видно насколько при одном и том же стабилитроне будет отличаться ток нагрузки).

    Собственно, методы борьбы с нестабильностью здесь совершенно аналогичные — нужно как-то уменьшить нестабильность напряжения на стабилитроне. Для этого можно, как и в прошлый раз, взять более узкий рабочий участок ВАХ стабилитрона.

    Это естественно, также приведёт к сужению области нормальной работы (потому что диапазон изменения рабочего тока стабилитрона уменьшится), но в данном случае, когда область нормальной работы и так шире, чем у параметрического стабилизатора на стабилитроне (примерно в h31Э раз), мы вполне можем себе позволить отказаться от части диапазона выходного тока и/или части диапазона входного напряжения ради увеличения стабильности выходного напряжения.

    Ещё больше увеличить область нормальной работы можно, если использовать два транзистора, включенные по схеме Дарлингтона или Шиклаи (рисунок слева). В этом случае h31Э будет гораздо больше.

    Ну и самый писк — сделать компенсационный стабилизатор напряжения на операционном усилителе, поскольку коэффициент усиления ОУ не просто больше, а значительно, гораздо, во много — много раз больше, чем у любого транзистора (соответственно, мы сможем в ещё более узком диапазоне менять ток через стабилитрон, получим ещё меньшее изменение напряжения на нём и, как следствие, — ещё более стабильное выходное напряжение).

    Есть другой вариант — можно вместо обычного стабилитрона взять интегральный стабилитрон, например, TL431. В этом случае, кроме значительно меньшей нестабильности, получим ещё и возможность регулирования выходного напряжения.

    На закуску скажу, что лёгким движением руки такой стабилизатор напряжения можно превратить в стабилизатор тока (нужно просто стабилизировать напряжение не на нагрузке, а на специальном токоизмерительном резисторе).

    Источник: https://radiohlam.ru/prtrstab/

    Простой мощный параллельный стабилизатор на транзисторах

    В предлагаемой статье описываются принципы работы параллельного стабилизатора, и рассматривается возможность его применения для стабилизации питания мощных высококачественных усилителей НЧ. Приведена также схема полного источника питания с параллельным стабилизатором.

    Среди радиолюбителей, а также в промышленных аудиоустройствах высокого качества широко используются параллельные стабилизаторы. В этих устройствах стабилизирующий элемент подключается параллельно нагрузке, что хорошо отражается на таком параметре стабилизатора, как его быстродействие. Фактически быстродействие стабилизатора определяется быстродействием стабилизирующего элемента.

    Также к достоинствам параллельных стабилизаторов стоит отнести тот факт, что независимо от тока, потребляемого от стабилизатора, ток, потребляемый им самим от источника питания, остается неизменным.

    Этот факт положительно отражается на уровне излучаемых БП в целом помех (за счет того, что девиации тока потребления не протекают через трансформатор и выпрямительный мост), хотя и служит причиной их низкого КПД.

    Рассмотрим вышеизложенное на примере простейшего параллельного стабилизатора – параметрическом стабилизаторе на стабилитроне (рис.1.)

    Резистор R0 задает суммарный ток, который будет течь через стабилитрон и подключенную, параллельно ему нагрузку.

    Легко видеть, что при изменении тока нагрузки, ток через резистор R0 останется постоянным, изменится лишь ток, текущий через стабилитрон D1. Так будет происходить, пока будет выполняться условие (1):IНR0-Iст.мин.

      (1)
    где IН — ток нагрузки,
    IR0 — ток через R0,
    Iст.мин. – минимальный ток стабилизации стабилитрона D1

    Быстродействие данного стабилизатора будет определяться в основном скоростью изменением величины барьерной емкости стабилитрона [1], а также временем заряда-разряда конденсатора  С1.

    Однако у подобных стабилизаторов есть и недостатки – в частности для получения более-менее приличного коэффициента стабилизации (>100), через стабилитрон должен течь ток, соизмеримый с током нагрузки.

    Это обстоятельство, с учетом того, что подавляющее количество стабилитронов рассчитано на ток до 100 мА, затрудняет использование параметрических стабилизаторов в мощных устройствах.

    Чтобы обойти это препятствие, параллельно стабилизатору ставят мощный активный элемент, например MOSFET транзистор, как показано на рисунке 2.

    В этой схеме стабилитрон лишь задает стабильное напряжение на затворе транзистора Q1, через цепь сток-исток которого и течет основной ток. Стабилитрон VD3 предохраняет Q1 от пробоя ввиду высоковольтности данной реализации. Подробнее о работе этой схемы можно прочитать в [2].

    Схема, приведенная на рисунке один способна работать с большими токами (ограничивается предельными характеристиками примененного мосфета), но выделяет большую мощность и имеет низкий КПД(менее 30% – если падение на резисторе R1 сравнительно велико, ток через мосфет сравним с током через нагрузку, величины входного и выходного напряжений не превышают 100 В), что в мощных приложениях является серьезным недостатком.

    Но ток текущий через мосфет, можно заметно снизить без ущерба для коэффициента стабилизации, если устранить источник нестабильности в данной схеме. Остановимся на нем подробнее.

    При изменении напряжения на входе стабилизатора изменяется ток, текущий через резистор R1, это изменение можно снизить увеличением номинала этого резистора, но это, в свою очередь потребует увеличение падения напряжения на этом резисторе, а следовательно снизит КПД.

    Оптимальным решением, на мой взгляд является замена этого резистора на источник тока, на котором падение напряжение можно будет установить равное сумме девиации входного напряжения+2-3 вольта для нормально работы активного элемента источника тока.

    С учетом этих дополнений была разработана схема источника питания с параллельным стабилизатором, представленная на рисунке 3.

    Функцию токозадающего резистора здесь выполняет источник тока на транзисторе Q1. Для снижения нестабильности выдаваемого им тока, он запитан от другого источника тока меньшей мощности, который в свою очередь запитан через RCR фильтр для снижения пульсаций.

    Резистором R7 можно грубо регулировать рабочий ток стабилизатора, резистором R4 плавно. Резистором R8 можно подстроить выходное напряжение стабилизатора в небольших пределах. R6 представляет собой нагрузку БП, потребляющую около 600 мА.(без нагрузки БП не подключать!).

    Транзисторы Q1 и M1 можно установить на общем радиаторе площадью не менее 500 кв.см.

    Основные технические характеристики стабилизатора (с входным и выходным RC-фильтрами):

    1. Выходное напряжение = 12В.
    2. Входное напряжение > 18В.
    3. Ток нагрузки – 600 мА
    4. Потребляемый ток – 750 мА (при номиналах, указанных на схеме, изменяется подбором резистора R2,R7,R4 – в порядке величины влияния)
    5. Уровень пульсаций на выходе — -112дБ
    6. КПД=57%

    Легко видеть, что представленная схема обладает достаточно высокими параметрами в части КПД и Кст, сравнимыми с характеристиками компенсационных последовательных стабилизаторов, при этом практически полностью сохраняя достоинства параллельных стабилизаторов.
    При этом схема достаточно проста, не требует дефицитных деталей, и может быть сконструирована даже начинающими радиолюбителями.

    При входном напряжении до 50В в схеме можно применить – Q1-BD244C, Q2-BC546А, M1-IRF630. В качестве стабилитрона D7 можно применить любой на напряжение 8,2 В, диоды D1-D4 например SF54, диоды D5,D6,D8,D9 – например 1N4148.

    Литература:

    1. Жеребцов И.П. Основы электроники, стр. 40, Л, 1989.
    2. Рыжков В.А. Простой параллельный стабилизатор на транзисторе.

    Обсуждение схемы на форуме

    Список радиоэлементов

    Скачать список элементов (PDF)

    Источник: https://cxem.net/pitanie/5-170.php

    Стабилизатор напряжения питания УМЗЧ. Доработанная схема В. Орешкина. Подписка на платы!

    Двухполярный источник питания, предложенный В. Орешкиным, во многом отвечает взаимоисключающим требованиям, предъявляемым к стабилизатору напряжения питания УМЗЧ [1, 2].В настоящей заметке описывается доработанная схема, позволяющая простыми средствами повысить коэффициент стабилизации и уменьшить выходное сопротивление при сохранении малой постоянной времени апериодического процесса.

    Доработка свелась к замене балластных резисторов в компенсационных стабилизаторах источниками тока и к учету рекомендаций фирмы Texas Instruments по построению блоков питания для УМЗЧ.

    Содержание / Contents

    Схема двухполярного источника питания приведена на рис. 1.

    Рис.1. Двухполярный источник питания УМЗЧ

    Он состоит из двух гальванически не связанных выпрямителей VD1, C1, C2, C5, C6, C9, C11, C13 и VD2, C3, C4, C7, C8, C10, C12, C14, двух параметрических стабилизаторов, выполненных на стабилитронах VD3, VD4 и источниках тока на транзисторах VT5, VT6, и эмиттерных повторителей на транзисторах VT1, VT3 и VT2, VT4.

    Коэффициент стабилизации повышен благодаря питанию источника образцового напряжения одного стабилизатора от выходного напряжения другого и использованию вместо резисторов источников тока.Выпрямители собраны на диодных мостах VD1, VD2, состоящих из двойных диодов Шотки с общим катодом 16CTQ100. Диоды включены параллельно.

    Конденсаторы С1…С8; С9, С10 и RC — цепочки R9, C23 и R10, C24 установлены в соответствии с рекомендациями фирмы Texas Instruments по построению блоков питания для УМЗЧ [3].Для уменьшения шумов каждый стабилитрон VD3, VD4 зашунтирован парой конденсаторов — оксидным и пленочным (соответственно С15, С17 и С16, С18).

    Источники тока на транзисторах VT5, VT6 содержат параметрические стабилизаторы HL1, C19, C21, R8 и HL2, C20, C22 в базах транзисторов.Ток каждого источника равен:

    IVD4=(UHL1-UбэVT5)/R4=(1,76-0,56)/0,13=9,2 мА,

    IVD3=(UHL2-UбэVT6)/R7=9,2 мА.Резисторы R5, R6 уменьшают мощность, рассеиваемую на коллекторах транзисторов источников тока.Коллекторы (корпусы) мощных транзисторов VT1, VT2 соединены с общим проводом блока питания, что позволяет обойтись без теплопроводящих прокладок, тем самым улучшить отвод тепла при больших токах нагрузки.Для снижения динамического сопротивления источника питания его выходы зашунтированы парами конденсаторов оксидный — пленочный (соответственно С25, С27 и С26, С28). Балластные резисторы со светодиодами зеленого цвета служат для индикации (HL3, R11 и HL4, R12).Резистор R2 предназначен для запуска двухполярного стабилизатора при включении питания.Стабилизатор имеет защиту от короткого замыкания в нагрузке. При замыкании в любом плече отключаются оба стабилизатора.Основные технические характеристики:Выходные напряжения стабилизатора, В …. ±15Максимальный ток нагрузки, А …. 20Коэффициент стабилизации, не менее …. 1500Выходное сопротивление, не более, Ом …. 0,01

    Напряжение на понижающих обмотках трансформатора питания, В …. 2×20

    Список деталей (BOM) приведен ниже.Детали: VD1, VD2 Диод Шоттки 16CTQ100 IR (100V, 16A) — 8 шт.,VD3, VD4 Стабилитрон BZX55C16 (16V, 0,4W), стекло — 2 шт.,HL1, HL2 Светодиод LED FYL-3014HD красный d= 3 мм — 2 шт.,HL3, HL4 Светодиод LED BL-B2141Q G зел.d=3 — 2 шт.

    ,VT1 Транзистор КТ827А (20А; 100В), корпус TO-3 — 1 шт.,VT2 Транзистор КТ825А (20А; 100В), корпус TO-3 — 1 шт.,VT3 Транзистор BD140, корпус TO-126 — 1 шт.,VT4 Транзистор BD139, корпус TO-126 — 1 шт.,VT5 Транзистор 2SA1013, корпус TO-92mod — 1 шт.,VT6 Транзистор 2SC2383, корпус TO-92mod — 1 шт.

    ,R1, R3 Резистор -0,25-3,3 кОм — 2 шт.,R2 Резистор -2-470 Ом — 1 шт.,R4, R7 Резистор -0,25-130 Ом — 2 шт.,R5, R6 Резистор -0,25-220 Ом — 2 шт.,R8 Резистор -0,25-9,1 кОм — 1 шт.,R9, R10 ЧИП резистор F2512-1 Ом, 1Вт 1% — 2 шт.,R11, R12 Резистор -0,5-2,7 кОм — 2 шт.,С1…С8 Конденсатор 0,1/250V К73-17 — 8 шт.

    ,С9, С10, С23, С24 Конденсатор ЧИП 1812 0,1µF/100V X7R 10% — 4 шт.,С11…С14 Конденсатор 10000/50V 3035+85°С — 4 шт.,С15, С16 Конденсатор 47/63V 0611+105°C — 2 шт.,С17…С20 Конденсатор 0,1/63V К73-17 — 4 шт.,С21, С22 Конденсатор 47/16V 0511+105°C — 2 шт.,С25, С26 Конденсатор 470/35V 0820+105°C — 2 шт.

    ,С27, С28 Конденсатор 1/63V К73-17 — 2 шт.,Радиатор для VT1, VT2

    Печатная плата 150×70×2 мм — 1 шт.

    В блоке питания использованы выводные резисторы МЛТ или зарубежные MF мощностью, указанной на принципиальной схеме (рис. 1).Конденсаторы С1 — С8, С17 — С20, С27, С28 типа К73-17, оксидные конденсаторы импортные. Конденсаторы С17 — С20 могут быть с лучшим результатом заменены на CBB21/MPP из металлизированного полипропилена (например, 0,15 мкФ, 100 В с датагорской ярмарки).

    В качестве С27, С28 подойдут 1 мкФ, 100 В (Suntan, полиэстер).Транзисторы КТ825А и КТ827А можно заменить составными (КТ819Г + КТ815Г и КТ818Г + КТ814Г), при этом эмиттерные переходы мощных транзисторов КТ819Г и КТ818Г необходимо зашунтировать резисторами сопротивлением 100 — 150 Ом. Возможна замена мощных составных транзисторов на MJ11032 и MJ11033.

    При максимальном токе нагрузки 5 — 7 А подойдут транзисторы TIP142 и TIP147, а также BDW42G BDW47G.Транзисторы VT1, VT2 закреплены на теплоотводе с площадью охлаждающей поверхности 900 кв. см без теплоизолирующих прокладок с применением теплопроводной пасты АЛСИЛ-3.Вместо транзисторов BD139 и BD140 подойдут 2SC3502 и 2SA1380 или BF471 и BF472.

    При замене обязательно уточняйте цоколевку транзисторов.Транзисторы VT5, VT6 типа 2SA1013, 2SC2383 могут быть заменены на отечественные КТ502Е, КТ503Е; КТ6116, КТ6117 или импортные 2N5401, 2N5551; 2SA1145, 2SC2705 и на другие.Диоды Шоттки в мостах VD1, VD2 заменимы на MBR20200CTG (200 В, 10 А) с общим катодом, либо на SR10100 (10 А, 100 В, ТО-220-2).

    В последнем случае потребуется корректировка печатной платы.При токах потребления более 2 А необходимо снабдить диоды небольшими радиаторами и (или) обеспечить их охлаждение вентилятором.

    При сравнительно небольших потребляемых токах (до 2 А) в диодных мостах можно применить высокопроизводительные диоды HER505 (5 А, 1000 В), сверхбыстрые диоды SF56 (5 А, 400 В) или ультрафасты STTH5R06FP (5 А, 600 В, ТО-220-2).Максимальный ток стабилизатора напряжения определяет трансформатор питания. Например, в приведенной на рис.

     1 схеме трансформатор Т1 типа ТПП321 обеспечивает максимальный ток не более 4 А.В таблице приведены параметры элементов стабилизатора напряжения при других выходных напряжениях.Детали устройства, кроме силового трансформатора Т1 и мощных транзисторов VT1, VT2, смонтированы на печатной плате размерами 150×70 мм (см. рис. 2), изготовленной из фольгированного стеклотекстолита.

    Рис. 2. Размещение деталей на печатной плате. Дорожки показаны «на просвет», smd элементы C9, C10, C23, C24, R9, R10 установлены со стороны печатных дорожек

    «Силовые» дорожки на печатной плате целесообразно дополнительно пропаять сверху луженым монтажным проводом диаметром 0,5 — 0,7 мм.Для равенства по модулю выходных напряжений стабилизатора необходимо перед монтажом отобрать стабилитроны VD3, VD4 по напряжению стабилизации при токе 10 мА.Налаживание устройства сводится к подбору сопротивления резистора R2, обеспечивающего надежный запуск источника питания.Применение двух отдельных выпрямительных мостов в устройстве, на мой взгляд, является недостатком, так как по сравнению с одним диодным мостом имеем в два раза выше падение напряжения на диодах выпрямителя, следовательно, меньшую максимальную мощность. Кроме того, конструкция с двумя диодными мостами имеет большие габариты.Наличие двух независимо работающих вторичных обмоток трансформатора выдвигает дополнительное требование равенства их выходных напряжений.Единственное преимущество схемы с двумя выпрямительными мостами — в два раза меньшее максимальное напряжение на диоде моста может сыграть свою положительную роль при выборе выпрямительных диодов Шоттки, имеющих невысокое обратное напряжение, не более 45 — 200 В.Описанное устройство можно использовать не только как источник питания УМЗЧ, но и как мощный источник питания устройств автоматики.

    Можно скачать схему и печатную плату ▼ modified-voltage-regulator.7z
    ???? 06/09/19 ⚖️ 36,08 Kb ⇣ 47

    1. Орешкин В. Стабилизатор питания УМЗЧ // Радио, 1987, № 8, с. 31.

    2. Доработанный вариант малошумящего двухполярного источника питания (см. комментарии 32-36 к статье.)3. Рекомендации фирмы Texas Instruments по построению блоков питания для УМЗЧ.

    Спасибо за внимание!

    Открываю подписку на платы «3118» к статье «Стабилизатор напряжения питания УМЗЧ. Доработанная схема В. Орешкина». В лоте две заводских платы 150×70 мм.Платы отличного качества, с паяльной маской, с утолщённой медью, надписями и пр. приятностями.

    Цена зависит от вашей активности. Чем больше соберём заказов, тем дешевле.

    10 лотов » 950,00 ₽ за 1 лот (2 платы)25 лотов » 660,00 ₽ за 1 лот (2 платы)50 лотов » 530,00 ₽ за 1 лот (2 платы)100 лотов » 440,00 ₽ за 1 лот (2 платы)

    Нам нужно собрать желающих на 100 лотов. Критический минимум — 25 лотов. Подтягивайте знакомых и друзей или заказывайте для них. Новички и кандидаты — участники подписок получают привилегированное членство (гражданство) на сайте.

    Для подписки вносим 660 ₽ по ссылке с любой банковской карты или из Я.Кошелька. В примечании к платежу укажите ваш логин на Датагоре и название подписки. НЕ ПИШИТЕ слов типа «взнос», «заказ», «оплата» и т.п. Обязательно залогиньтесь и отметьтесь в х.

     Варианты взносов Или пополняем мой счёт Яндекс.Денег № 41001559754671 удобным вам способом. Или пополняем мою карту СБ № 4276826012198773 из Онлайн-банка или терминала. Или отправляем почтовый экспресс-перевод «Форсаж». Доступно не во всех почтовых отделениях. Захватите паспорт.

    НЕ ПИШИТЕ слов типа «взнос», «заказ», «оплата» и т.п. Укажите ваш датагорский логин.

    Цена действительна только на время подписки. Доставка не включена.Наберём желающих, закажем платы, тогда и по комплектухе порешаем.

    Я планирую делать платы или киты для всех статей на Датагоре, так что поддержите начинание!

    Владимир Мосягин (MVV)

    Россия, Великий Новгород

    Радиолюбительством увлекся с пятого класса средней школы.Специальность по диплому — радиоинженер, к.т.н.

    Автор книг «Юному радиолюбителю для прочтения с паяльником», «Секреты радиолюбительского мастерства», соавтор серии книг «Для прочтения с паяльником» в издательстве «СОЛОН-Пресс», имею публикации в журналах «Радио», «Приборы и техника эксперимента» и др.

    Источник: https://datagor.ru/practice/power/3118-stabilizator-pitaniya-umzch-rem-voreshkin.html

    Схема стабилизатора напряжения — простой расчёт

    Чаще всего радиотехнические устройства для своего функционирования нуждаются в стабильном напряжении, не зависящем от изменений сетевого питания и от тока нагрузки. Для решения этих задач используются компенсационные и параметрические устройства стабилизации.

    Параметрический стабилизатор

    Его принцип работы заключается в свойствах полупроводниковых приборов. Вольтамперная характеристика полупроводника – стабилитрона показана на графике.

    Во время включения стабилитрона свойства подобны характеристике простого диода на основе кремния. Если стабилитрон включить в обратном направлении, то электрический ток сначала будет расти медленно, но при достижении некоторой величины напряжения наступает пробой. Это режим, когда малый прирост напряжения создает большой ток стабилитрона. Пробойное напряжение называют напряжением стабилизации. Во избежание выхода из строя стабилитрона, течение тока ограничивают сопротивлением. При колебании тока стабилитрона от наименьшего до наибольшего значения, напряжение не изменяется.

    На схеме показан делитель напряжения, который состоит из балластного сопротивления и стабилитрона. К нему параллельно подключена нагрузка. Во время изменения величины питания меняется и ток резистора. Стабилитрон берет изменения на себя: меняется ток, а напряжение остается постоянным. При изменении резистора нагрузки ток изменится, а напряжение останется постоянным.

    Компенсационный стабилизатор

    Прибор, рассмотренный ранее очень простой по конструкции, но дает возможность подключать питание прибора с током, который не превышает наибольшего тока стабилитрона. Вследствие этого используют приборы, стабилизирующие напряжение, и получившие название компенсационных. Они состоят из двух видов: параллельные и последовательные.

    Называется прибор по методу подключения элементу регулировки. Обычно используются компенсационные стабилизаторы, относящиеся к последовательному виду. Его схема:

    Элементом регулировки выступает транзистор, соединенный последовательно с нагрузкой. Напряжение выхода равняется разности значения стабилитрона и эмиттера, которое составляет несколько долей вольта, поэтому считается, что выходное напряжение равно стабилизирующему напряжению.

    Рассмотренные приборы обоих типов имеют недостатки: невозможно получить точную величину напряжения выхода и производить регулировку во время работы. Если нужно создать возможность регулирования, то стабилизатор компенсационного вида изготавливают по схеме:

    В этом приборе регулировка осуществляется транзистором. Основное напряжение выдает стабилитрон. Если напряжение выхода повышается, база транзистора получается отрицательной в отличие от эмиттера, транзистор откроется на большую величину и ток возрастет. Вследствие этого, напряжение отрицательного значения на коллекторе станет ниже, так же как и на транзисторе. Второй транзистор закроется, его сопротивление повысится, напряжение выводов повысится. Это приводит к снижению напряжения выхода и возвращению к бывшему значению.

    При снижении напряжения выхода проходят подобные процессы. Отрегулировать точное напряжение выхода можно резистором настройки.

    Стабилизаторы на микросхемах

    Такие устройства в интегральном варианте имею повышенные характеристики параметров и свойств, которые отличаются от подобных приборов на полупроводниках. Также они обладают повышенной надежностью, небольшими габаритами и весом, а также небольшой стоимостью.

    Последовательный стабилизатор

    • 1 – источник напряжения;
    • 2 – Элемент регулировки;
    • 3 – усилитель;
    • 4 – источник основного напряжения;
    • 5 – определитель напряжения выхода;
    • 6 – сопротивление нагрузки.

    Элемент регулировки выступает в качестве изменяемого сопротивления, подключенного по последовательной схеме с нагрузкой. При колебании напряжения меняется сопротивление элемента регулировки так, что происходит компенсация таких колебаний. Воздействие на элемент регулировки производится по обратной связи, которая содержит элемент управления, источник основного напряжения и измеритель напряжения. Этот измеритель является потенциометром, с которого приходит часть напряжения выхода.

    Обратная связь регулирует напряжение выхода, использующееся для нагрузки, напряжение выхода потенциометра становится равным основному напряжению. Колебания напряжения от основного создает некоторое падение напряжения на регулировке. Вследствие этого, измеряющим элементом в определенных границах можно осуществлять регулировку напряжения выхода. Если стабилизатор планируется изготовить на определенную величину напряжения, то измеряющий элемент создается внутри микросхемы с компенсацией температуры. При наличии большого интервала напряжения выхода, измеряющий элемент выполняется за микросхемой.

    Параллельный стабилизатор

    • 1 – источник напряжения;
    • 2 –элемент регулирующий;
    • 3 – усилитель;
    • 4 – источник основного напряжения;
    • 5 – измерительный элемент;
    • 6 – сопротивление нагрузки.

    Если сравнить схемы стабилизаторов, то прибор последовательного вида имеет повышенный КПД при неполной загрузке. Прибор параллельного вида расходует неизменную мощность от источника и выдает ее на элемент регулировки и нагрузку. Стабилизаторы параллельные рекомендуется использовать при неизменных нагрузках при полной загруженности. Стабилизатор параллельный не создает опасности при КЗ, последовательный вид при холостом ходе. При неизменной нагрузке оба прибора создают высокий КПД.

    Стабилизатор на микросхеме с 3-мя выводами

    Инновационные варианты схем стабилизаторов последовательного вида выполнены на 3-выводной микросхеме. Вследствие того, что есть всего лишь три вывода, их проще использовать в практическом применении, так как они вытесняют остальные виды стабилизаторов в интервале 0,1-3 ампера.

    1. U вх – необработанное напряжение входа;
    2. U вых –напряжение выхода.

    Можно не использовать емкости С1 и С2, однако они позволяют оптимизировать свойства стабилизатора. Емкость С1 применяется для создание стабильности системы, емкость С2 нужна по той причине, что внезапное повышение нагрузки нельзя отследить стабилизатором. В таком случае поддержка тока осуществляется емкостью С2. Практически часто применяются микросхемы серии 7900 от компании Моторола, которые стабилизируют положительную величину напряжения, а 7900 – величину со знаком минус.

    Микросхема имеет вид:

    Для увеличения надежности и создания охлаждения стабилизатор монтируют на радиатор.

    Стабилизаторы на транзисторах

    На 1-м рисунке схема на транзисторе 2SC1061.

    На выходе прибора получают 12 вольт, на напряжение выхода зависит прямо от напряжения стабилитрона. Наибольший допустимый ток 1 ампер.

    При применении транзистора 2N 3055 наибольший допускаемый ток выхода можно повысить до 2 ампер. На 2-м рисунке схема стабилизатора на транзисторе 2N 3055, напряжение выхода, как и на рисунке 1 зависит от напряжения стабилитрона.

    • 6 В — напряжение выхода, R1=330, VD=6,6 вольт
    • 7,5 В — напряжение выхода, R1=270, VD = 8,2 вольт
    • 9 В — напряжение выхода, R1=180, Vd=10

    На 3-м рисунке – адаптер для автомобиля – аккумуляторное напряжение в автомобиле равно 12 В. Для создания напряжения меньшего значения применяют такую схему.

    Цепи стабилизатора напряжения

    с использованием транзистора и стабилитрона

    В этой статье мы подробно обсудим, как создавать индивидуальные схемы транзисторных регуляторов напряжения в фиксированных режимах, а также в переменных режимах.

    Все цепи линейного источника питания, которые предназначены для получения стабилизированного постоянного напряжения и тока на выходе, в основном включают в себя транзисторные и стабилитронные каскады для получения требуемых регулируемых выходов.

    Эти схемы, использующие дискретные части, могут быть в форме постоянно фиксированного или постоянного напряжения или стабилизированного регулируемого выходного напряжения.

    Простейший регулятор напряжения

    Вероятно, самым простым типом стабилизатора напряжения является стабилитрон шунтирующего стабилизатора, который работает с использованием базового стабилитрона для регулирования, как показано на рисунке ниже.

    Стабилитроны имеют номинальное напряжение, эквивалентное предполагаемому выходному напряжению, которое может точно соответствовать желаемому выходному значению.

    Пока напряжение питания ниже номинального значения напряжения стабилитрона, он демонстрирует максимальное сопротивление в диапазоне многих МОм, позволяя питанию проходить без ограничений.

    Однако в момент, когда напряжение питания увеличивается сверх номинального значения «напряжения стабилитрона», происходит значительное падение его сопротивления, в результате чего перенапряжение шунтируется на землю через него, пока напряжение питания не упадет или не достигнет уровня напряжения стабилитрона. .

    Из-за этого внезапного шунтирования напряжение питания падает и достигает значения стабилитрона, что вызывает повторное увеличение сопротивления стабилитрона. Затем цикл быстро продолжается, обеспечивая стабилизацию подачи на номинальном значении стабилитрона и никогда не позволяя ему превышать это значение.

    Чтобы получить указанную выше стабилизацию, входное напряжение должно быть немного выше, чем требуемое стабилизированное выходное напряжение.

    Избыточное напряжение выше значения стабилитрона вызывает срабатывание внутренних «лавинных» характеристик стабилитрона, вызывая мгновенный эффект шунтирования и падение напряжения питания до тех пор, пока оно не достигнет номинального значения стабилитрона.

    Это действие продолжается бесконечно, обеспечивая фиксированное стабилизированное выходное напряжение, эквивалентное номинальному значению стабилитрона.

    Преимущества стабилизатора напряжения на стабилитроне

    Стабилитроны очень удобны там, где требуется стабилизация постоянного напряжения при малом токе.

    Стабилитроны просты в настройке и могут использоваться для получения достаточно точного стабилизированного выходного сигнала при любых обстоятельствах.

    Для настройки каскада стабилизатора напряжения на основе стабилитрона требуется только один резистор, и его можно быстро добавить в любую схему для достижения желаемых результатов.

    Недостатки стабилизаторов со стабилизацией сигнала

    Хотя источник питания со стабилизацией напряжения — это быстрый, простой и эффективный метод достижения стабилизированного выхода, он имеет несколько серьезных недостатков.

    • Выходной ток низкий, что может поддерживать высокие токовые нагрузки на выходе.
    • Стабилизация возможна только при малых перепадах входа / выхода. Это означает, что входное напряжение не может быть слишком высоким, чем требуемое выходное напряжение. В противном случае сопротивление нагрузки может рассеять огромное количество энергии, что сделает систему очень неэффективной.
    • Работа стабилитрона обычно связана с генерацией шума, который может критически повлиять на работу чувствительных схем, таких как конструкции усилителей Hi-Fi, и других подобных уязвимых приложений.

    Использование «усиленного стабилитрона»

    Это версия с усиленным стабилитроном, в которой используется BJT для создания переменного стабилитрона с улучшенными возможностями управления мощностью.

    Давайте представим, что R1 и R2 имеют одинаковое значение., Что создаст достаточный уровень смещения для базы BJT и позволит BJT работать оптимально. Поскольку минимальное требование к прямому напряжению базового эмиттера составляет 0,7 В, BJT будет проводить и шунтировать любое значение, превышающее 0,7 В или самое большее 1 В, в зависимости от конкретных характеристик используемого BJT.

    Таким образом, выход будет стабилизирован примерно на уровне 1 В. Выходная мощность этого «усиленного переменного стабилитрона» будет зависеть от номинальной мощности BJT и номинала нагрузочного резистора.

    Однако это значение можно легко изменить или отрегулировать до другого желаемого уровня, просто изменив значение R2. Или проще заменив R2 на горшок. Диапазон потенциалов потенциометра R1 и R2 может составлять от 1 кОм до 47 кОм, чтобы получить плавно регулируемый выходной сигнал от 1 В до уровня питания (максимум 24 В).Для большей точности вы можете применить следующую формулу делителя напряжения:

    Выходное напряжение = 0,65 (R1 + R2) / R2

    Недостаток стабилитрона

    Еще раз, недостатком этой конструкции является высокая рассеиваемая мощность, которая увеличивает пропорционально увеличивается разница между входом и выходом.

    Чтобы правильно установить значение резистора нагрузки в зависимости от выходного тока и входного питания, можно соответствующим образом применить следующие данные.

    Предположим, что требуемое выходное напряжение составляет 5 В, требуемый ток — 20 мА, а вход питания — 12 В.Тогда, используя закон Ома, мы имеем:

    Нагрузочный резистор

    = (12-5) / 0,02 = 350 Ом

    Вт мощности = (12-5) x 0,02 = 0,14 Вт или просто 1/4 Вт.

    Схема регулятора последовательного транзистора

    По сути, последовательный стабилизатор, который также называется последовательным транзистором, представляет собой переменное сопротивление, создаваемое с помощью транзистора, подключенного последовательно с одной из линий питания и нагрузкой.

    Сопротивление транзистора току автоматически регулируется в зависимости от выходной нагрузки, так что выходное напряжение остается постоянным на желаемом уровне.

    В цепи последовательного регулятора входной ток должен быть немного больше, чем выходной ток. Эта небольшая разница — единственная величина тока, которая используется схемой регулятора самостоятельно.

    Преимущества последовательного регулятора

    Основным преимуществом схемы последовательного регулятора по сравнению с регулятором шунтового типа является его лучшая эффективность.

    Это приводит к минимальному рассеянию мощности и потерям из-за тепла. Из-за этого большого преимущества последовательные транзисторные стабилизаторы очень популярны в приложениях для регуляторов напряжения большой мощности.

    Однако этого можно избежать там, где требования к мощности очень низкие или где эффективность и тепловыделение не входят в число критических проблем.

    Обычно последовательный регулятор может просто включать стабилитрон, нагружая буферную схему эмиттерного повторителя, как указано выше.

    Вы можете найти единичное усиление напряжения всякий раз, когда используется каскад эмиттерного повторителя. Это означает, что когда к его базе применяется стабилизированный вход, мы обычно также получаем стабилизированный выход и от эмиттера.

    Поскольку мы можем получить более высокий коэффициент усиления по току от эмиттерного повторителя, можно ожидать, что выходной ток будет намного выше по сравнению с применяемым базовым током.

    Следовательно, даже если базовый ток составляет около 1 или 2 мА в каскаде стабилитрона, который также становится потребляемым током покоя конструкции, выходной ток 100 мА может быть доступен на выходе.

    Входной ток складывается с выходным током вместе с 1 или 2 мА, используемыми стабилитроном, и по этой причине достигается выдающийся КПД.

    Учитывая, что входной источник питания схемы достаточно рассчитан для достижения ожидаемого выходного напряжения, выход может практически не зависеть от уровня входного питания, поскольку он напрямую регулируется базовым потенциалом Tr1.

    Стабилитрон и развязывающий конденсатор создают идеально чистое напряжение на базе транзистора, которое воспроизводится на выходе, создавая напряжение практически без шума.

    Это позволяет схемам этого типа выдавать выходные сигналы с удивительно низкой пульсацией и шумом без использования огромных сглаживающих конденсаторов, а также с диапазоном тока, который может достигать 1 А или даже больше.

    Что касается уровня выходного напряжения, то он может не точно совпадать с подключенным напряжением стабилитрона. Это связано с тем, что между выводами базы и эмиттера транзистора существует падение напряжения примерно 0,65 В.

    Это падение, следовательно, необходимо вычесть из значения напряжения стабилитрона, чтобы можно было достичь минимального выходного напряжения схемы.

    Это означает, что если значение стабилитрона составляет 12,7 В, то выход на эмиттере транзистора может быть около 12 В, или, наоборот, если желаемое выходное напряжение составляет 12 В, тогда напряжение стабилитрона должно быть выбрано равным 12.7 В.

    Регулирование этой схемы последовательного регулятора никогда не будет идентично регулированию схемы стабилитрона, потому что эмиттерный повторитель просто не может иметь нулевое выходное сопротивление.

    И падение напряжения через каскад должно незначительно увеличиваться в ответ на увеличение выходного тока.

    С другой стороны, хорошего регулирования можно ожидать, когда ток стабилитрона, умноженный на коэффициент усиления по току транзистора, достигает минимального в 100 раз превышающего ожидаемый максимальный выходной ток.

    Сильноточный стабилизатор серии с транзисторами Дарлингтона

    Для точного достижения этого часто подразумевается, что необходимо использовать несколько транзисторов, может быть 2 или 3, чтобы мы могли достичь удовлетворительного усиления на выходе.

    Принципиальная схема с двумя транзисторами, в которой используется пара Дарлингтона с эмиттерным повторителем, показана на следующих рисунках, демонстрирующих технику применения 3 BJT в конфигурации с эмиттерным повторителем Дарлингтона.

    Обратите внимание, что включение пары транзисторов приводит к более высокому падению напряжения на выходе, примерно равному 1.3 вольта, через базу 1-го транзистора на выход.

    Это связано с тем, что на каждом из транзисторов снижено примерно 0,65 Вольт. Если рассматривать схему из трех транзисторов, это может означать падение напряжения чуть ниже 2 В на базе 1-го транзистора и выходе и так далее.

    Стабилизатор напряжения с общим эмиттером и отрицательной обратной связью

    Хорошая конфигурация иногда наблюдается в конкретных конструкциях, имеющих пару усилителей с общим эмиттером, со 100-процентной чистой отрицательной обратной связью.

    Эта установка показана на следующем рисунке.

    Несмотря на то, что каскады с общим эмиттером обычно имеют значительную степень усиления по напряжению, в данном случае это может быть не так.

    Это происходит из-за 100% отрицательной обратной связи, которая возникает между коллектором выходного транзистора и эмиттером транзистора драйвера. Это позволяет усилителю достичь коэффициента усиления, равного единице.

    Преимущества регулятора с общим эмиттером и обратной связью

    Эта конфигурация работает лучше по сравнению с регуляторами на основе эмиттерного повторителя с парой Дарлингтона из-за меньшего падения напряжения на входных / выходных клеммах.

    Падение напряжения, достигнутое в этих конструкциях, составляет всего около 0,65 В, что способствует большей эффективности и позволяет схеме работать эффективно независимо от того, превышает ли нестабилизированное входное напряжение всего на несколько сотен милливольт ожидаемое выходное напряжение.

    Разрядник батарей, использующий схему последовательного регулятора

    Указанная схема разрядника батарей представляет собой функциональную иллюстрацию конструкции, построенной с использованием регулятора базовой серии.

    Модель разработана для всех приложений, работающих от 9 В постоянного тока с максимальным током не более 100 мА.Это не подходит для устройств, требующих относительно большей силы тока.

    T1 — это трансформатор 12–0–12 вольт 100 мА, который обеспечивает изолированную защитную изоляцию и понижение напряжения, в то время как его вторичная обмотка с центральным ответвлением управляет основным двухтактным выпрямителем с фильтрующим конденсатором.

    Без нагрузки на выходе будет около 18 вольт постоянного тока, которое может упасть примерно до 12 вольт при полной нагрузке.

    Схема, которая работает как стабилизатор напряжения, на самом деле представляет собой базовую конструкцию последовательного типа, включающую R1, D3 и C2 для получения регулируемого номинального выходного напряжения 10 В.Ток стабилитрона колеблется от 8 мА без нагрузки до 3 мА при полной нагрузке. Рассеивание, создаваемое в результате R1 и D3, минимально.

    Эмиттерный повторитель на паре Дарлингтона, образованный TR1 и TR2, можно увидеть сконфигурированным как выходной буферный усилитель, обеспечивающий усиление по току около 30 000 при полном выходе, в то время как минимальное усиление составляет 10 000.

    На этом уровне усиления, когда устройство работает с использованием 3 мА при токе полной нагрузки, и минимальное усиление i почти не демонстрирует отклонения в падении напряжения на усилителе даже при колебаниях тока нагрузки.

    Реальное падение напряжения на выходном усилителе составляет приблизительно 1,3 В, а при умеренном входном напряжении 10 В это дает на выходе примерно 8,7 Вольт.

    Это выглядит почти равным указанным 9 В, учитывая тот факт, что даже настоящая 9-вольтовая батарея может показывать колебания от 9,5 В до 7,5 В в течение периода эксплуатации.

    Добавление ограничения тока к последовательному регулятору

    Для регуляторов, описанных выше, обычно становится важным добавить защиту от короткого замыкания на выходе.

    Это может быть необходимо для обеспечения хорошего регулирования при низком выходном сопротивлении. Поскольку источник питания имеет очень низкий импеданс, в случае случайного короткого замыкания на выходе может пройти очень высокий выходной ток.

    Это может привести к немедленному сгоранию выходного транзистора и некоторых других деталей. Типичный предохранитель может просто не обеспечить достаточной защиты, потому что повреждение, вероятно, произойдет быстро, даже до того, как предохранитель может среагировать и сработать.

    Самый простой способ реализовать это, возможно, добавив в схему ограничитель тока. Это включает в себя дополнительные схемы без какого-либо прямого влияния на характеристики конструкции в нормальных рабочих условиях.

    Однако ограничитель тока может привести к быстрому падению выходного напряжения, если подключенная нагрузка пытается потреблять значительный ток.

    На самом деле выходное напряжение падает так быстро, что, несмотря на наличие короткого замыкания на выходе, ток, доступный из цепи, немного превышает указанный максимальный номинал.

    Результат схемы ограничения тока подтвержден приведенными ниже данными, которые отображают выходное напряжение и ток с учетом постепенно снижающегося импеданса нагрузки, полученного с помощью предлагаемого блока Battery Eliminator.

    Схема ограничения тока работает с использованием только пары элементов; R2 и Tr3. Его реакция на самом деле настолько быстрая, что она просто устраняет все возможные риски короткого замыкания на выходе, тем самым обеспечивая отказоустойчивую защиту выходных устройств.Работу ограничения тока можно понять, как описано ниже.

    R2 подключен последовательно с выходом, что приводит к тому, что напряжение, развиваемое на R2, пропорционально выходному току. При выходном потреблении, достигающем 100 мА, напряжения, создаваемого на R2, будет недостаточно для срабатывания на Tr3, поскольку это кремниевый транзистор, для включения которого требуется минимальный потенциал 0,65 В.

    Однако, когда выходная нагрузка превышает предел 100 мА, он генерирует достаточный потенциал на T2, чтобы адекватно включить Tr3 в режим проводимости.TR3, в свою очередь, вызывает протекание некоторого тока f к Trl через отрицательную шину питания через нагрузку.

    Это приводит к некоторому снижению выходного напряжения. Дальнейшее увеличение нагрузки приводит к пропорциональному увеличению потенциала на R2, заставляя Tr3 включаться еще сильнее.

    Это, следовательно, позволяет смещать больший ток в сторону Tr1 и отрицательную линию через Tr3 и нагрузку. Это действие дополнительно приводит к пропорциональному увеличению падения выходного напряжения.

    Даже в случае короткого замыкания на выходе Tr3, вероятно, будет сильно смещен в проводимость, заставляя выходное напряжение упасть до нуля, гарантируя, что выходной ток никогда не превысит отметку 100 мА.

    Настольный источник питания с регулируемым напряжением

    Источники питания с регулируемым напряжением работают по тому же принципу, что и стабилизаторы постоянного напряжения, но они оснащены потенциометром, который обеспечивает стабилизированный выходной сигнал с переменным диапазоном напряжения.

    Эти схемы лучше всего подходят в качестве настольных и мастерских источников питания, хотя их также можно использовать в приложениях, требующих различных регулируемых входов для анализа. Для таких работ потенциометр источника питания действует как предустановленный элемент управления, который можно использовать для настройки выходного напряжения источника питания в соответствии с желаемыми регулируемыми уровнями напряжения.

    На рисунке выше показан классический пример схемы регулируемого стабилизатора напряжения, которая обеспечивает плавно регулируемый стабилизированный выход от 0 до 12 В.

    Основные характеристики

    • Максимальный диапазон тока ограничен 500 мА, хотя его можно увеличить до более высоких уровней путем соответствующей модернизации транзисторов и трансформатора.
    • Конструкция обеспечивает очень хорошее регулирование шума и пульсаций, которые могут быть менее 1 мВ.
    • Максимальная разница между входным питанием и регулируемым выходом не более 0,3 В даже при полной выходной нагрузке.
    • Регулируемый источник переменного тока идеально подходит для тестирования почти всех типов электронных проектов, требующих высококачественных регулируемых источников питания.

    Как это работает

    В этой конструкции мы видим схему делителя потенциала, включенную между выходным каскадом стабилитрона и входным буферным усилителем. Этот потенциальный делитель создается VR1 и R5. Это позволяет отрегулировать рычаг ползунка VR1 от минимального 1,4 В, когда он находится рядом с основанием своей дорожки, до уровня стабилитрона 15 В, когда он находится в наивысшей точке своего диапазона регулировки.

    На каскаде выходного буфера падает примерно 2 вольта, что позволяет диапазон выходного напряжения от 0 до примерно 13 В.При этом верхний диапазон напряжения подвержен частичным допускам, таким как допуск 5% для напряжения стабилитрона. Поэтому оптимальное выходное напряжение может быть чуть выше 12 вольт.

    Несколько типов эффективных схем защиты от перегрузки могут быть очень важны для любого настольного источника питания. Это может быть важно, поскольку выход может быть уязвим для случайных перегрузок и коротких замыканий.

    В данной конструкции мы используем довольно простое ограничение тока, определяемое Trl и связанными с ним элементами.Когда устройство работает в нормальных условиях, напряжение, создаваемое на R1, который подключен последовательно с выходом питания, слишком мало для того, чтобы вызвать Tr1 проводимость.

    В этом сценарии схема работает нормально, за исключением небольшого падения напряжения, создаваемого резистором R1. Это практически не влияет на эффективность регулирования агрегата.

    Это потому, что каскад R1 предшествует схеме регулятора. В случае перегрузки потенциал, наведенный на R1, возрастает примерно до 0.65 вольт, что заставляет Tr1 включаться за счет базового тока, полученного из разности потенциалов, генерируемой на резисторе R2.

    Это приводит к тому, что R3 и Tr 1 втягивают значительное количество тока, что приводит к значительному увеличению падения напряжения на R4 и снижению выходного напряжения.

    Это действие мгновенно ограничивает выходной ток до максимального значения от 550 до 600 мА, несмотря на короткое замыкание на выходе.

    Так как функция ограничения тока ограничивает выходное напряжение практически до 0 В.

    R6 устроен как нагрузочный резистор, который в основном предотвращает слишком низкий выходной ток и невозможность нормальной работы буферного усилителя. C3 позволяет устройству достичь отличной переходной характеристики.

    Недостатки

    Как и в любом типичном линейном регуляторе, рассеиваемая мощность в Tr4 определяется выходным напряжением и током и максимальна при регулировке потенциометра для более низких выходных напряжений и более высоких выходных нагрузок.

    В наиболее тяжелых обстоятельствах на Tr4 может быть наведено 20 В, что приведет к протеканию через него тока около 600 мА.Это приводит к рассеиваемой мощности на транзисторе около 12 Вт.

    Чтобы выдерживать это длительное время, устройство должно быть установлено на довольно большом радиаторе. VR1 может быть установлен с большой ручкой управления с калиброванной шкалой, отображающей маркировку выходного напряжения.

    Список деталей

    • Резисторы. (Все 1/3 ватта 5%).
    • R1 1,2 Ом
    • R2 100 Ом
    • R3 15 Ом
    • R4 1k
    • R5 470 Ом
    • R6 10k
    • VR1 4.7k линейный углерод
    • Конденсаторы
    • C1 2200 мкФ 40V
    • C2 100 мкФ 25V
    • C3 330 нФ
    • Полупроводники
    • Tr1 BC108
    • Tr2 BC107
    • Tr3 BFY51
    • Tr40 T40 D4 1N4002 (4 шт.)
    • D5 BZY88C15V (15 В, стабилитрон 400 мВт)
    • Трансформатор
    • T1 Стандартная первичная сеть, 17 или 18 В, 1 А
    • вторичная
    • Переключатель
    • S1 D.ТИХООКЕАНСКОЕ СТАНДАРТНОЕ ВРЕМЯ. ротационная сеть или тумблер
    • Разное
    • Корпус, выходные разъемы, печатная плата, сетевой шнур, провод, припой
    • и т. д.

    Как остановить перегрев транзистора при более высоких дифференциалах входа / выхода

    Тип проходного транзистора Регуляторы, как описано выше, обычно сталкиваются с ситуацией чрезвычайно высокого рассеяния, возникающего из последовательного транзистора стабилизатора, когда выходное напряжение намного ниже, чем входное напряжение..

    Каждый раз, когда высокий выходной ток создается при низком напряжении (TTL), возможно, критически важно использовать охлаждающий вентилятор на радиаторе. Возможно, серьезной иллюстрацией может быть сценарий блока источника, рассчитанного на обеспечение 5 ампер через 5 и 50 вольт.

    Блоки этого типа обычно имеют нерегулируемое питание 60 вольт. Представьте, что это конкретное устройство должно обеспечивать питание цепей TTL во всем номинальном токе. Последовательный элемент в схеме должен в этой ситуации рассеивать 275 Вт!

    Затраты на обеспечение достаточного охлаждения, по-видимому, объясняются только ценой последовательного транзистора.В случае, если падение напряжения на транзисторе регулятора может быть ограничено до 5,5 В, независимо от предпочтительного выходного напряжения, рассеивание может быть существенно уменьшено на приведенной выше иллюстрации, это может быть 10% от его начального значения.

    Этого можно добиться, применив три полупроводниковые детали и пару резисторов (рис. 1). Вот как это работает: тиристор Thy может нормально проводить через R1.

    Тем не менее, как только падение напряжения на T2 — серийный регулятор выходит за пределы 5.5 вольт, T1 начинает проводить, в результате чего тиристор «открывается» при последующем переходе через ноль на выходе мостового выпрямителя.

    Эта конкретная рабочая последовательность постоянно контролирует заряд, подаваемый через конденсатор фильтра C1, чтобы нерегулируемое питание было зафиксировано на 5,5 В выше регулируемого выходного напряжения. Значение сопротивления, необходимое для R1, определяется следующим образом:

    R1 = 1,4 x V сек — (V min + 5) / 50 (результат будет в кОм)

    , где Vsec указывает вторичное среднеквадратичное значение. напряжение трансформатора, а Vmin означает минимальное значение регулируемого выхода.

    Тиристор должен выдерживать пиковые пульсации тока, а его рабочее напряжение должно составлять минимум 1,5 В сек . Транзистор последовательного регулятора должен быть рассчитан на поддержку максимального выходного тока, I max , и должен быть установлен на радиаторе, где он может рассеивать 5,5 x I сек Вт.

    Получение фиксированного напряжения от транзисторного регулятора

    Используя всего один транзистор и несколько стабилитронов, вы можете получить различные напряжения в диапазоне от 5 В до 10 В от источника питания 12 В.На приведенной ниже схеме и диаграмме показано, как можно настроить транзистор, стабилитрон и резистор смещения для реализации простой схемы транзисторного стабилизатора.

    Заключение

    В этом посте мы узнали, как построить простые схемы линейного стабилизатора напряжения, используя последовательно проходной транзистор и стабилитрон. Источники питания с линейной стабилизацией предоставляют нам довольно простые варианты создания фиксированных стабилизированных выходов с использованием минимального количества компонентов.

    В таких конструкциях в основном транзистор NPN конфигурируется последовательно с положительной входной линией питания в режиме общего эмиттера.Стабилизированный выход получается через эмиттер транзистора и отрицательную линию питания.

    База транзистора сконфигурирована со схемой стабилитронного зажима или регулируемым делителем напряжения, который гарантирует, что напряжение на стороне эмиттера транзистора точно повторяет потенциал базы на выходе эмиттера транзистора.

    Если нагрузка представляет собой сильноточную нагрузку, транзистор регулирует напряжение нагрузки, вызывая увеличение ее сопротивления, и, таким образом, гарантирует, что напряжение на нагрузке не превышает заданное фиксированное значение, установленное его базовой конфигурацией.

    Схема транзисторного регулятора 5 В

    Простой импульсный транзисторный источник питания 12 В

    Это простая схема импульсного транзисторного источника питания 12 В. — спросил один из моих друзей. Можно ли построить импульсный источник питания постоянного тока с двумя транзисторами? Приложения IC, что иногда сложно. A Some number IC сложно найти и очень дорого. При рассмотрении Заявлений какое-то время.

    Нам не нужно использовать сильноточный .и иметь достаточно места для установки схем. В подборке используются транзисторы. Таким образом, как альтернатива экономии и исключительно хорошее соотношение цены и качества.

    Малая схема импульсного источника питания 12 В

    Как это работает
    На рисунке 1 показана конструкция импульсного регулятора, который представляет собой понижающий преобразователь постоянного тока , преобразующий напряжение с 15-20 вольт в напряжение 12 вольт .


    Рисунок 1 Импульсный регулятор постоянного тока из схемы понижающего преобразователя

    Важными компонентами являются T1, которые действуют как переключатели и имеют общие компоненты.Основными являются транзисторы L1, D1, NPN + PNP, действующие с обратной связью друг с другом. Увеличенная частота генераторов или до Делает переключатель работать непрерывно. Только в этой цепи катушки нет вверх, потому что есть детектор напряжения с C2, R4 и стабилитрон D2 (C12) для контроля напряжения
    постоянным.

    Когда мы подаем на эту схему постоянный ток , транзистор T2 вызывает смещение. Поскольку ток, протекающий через R5 для смещения, превращает T2 (BC550) в ударную проводимость по току на T1.(2N2905). Это заставляет T1 протекать ток через вывод эмиттера к выводу базы.

    Затем ток проходит через базу Q2 (BC550). Таким образом, этот случай эквивалентен блоку Q2 (BC550) для управления смещением T1. Это заставляет Q1 (2N2905) подавать ток на коллектор катушки L1.

    В то время как база Q2 имеет фиксированный опорный стабилитрон для поддержания постоянного напряжения
    между эмиттером и землей или выходом. Нам нужен фиксированный стабилизатор 12 В, поэтому мы используем стабилитрон на 12 В.

    При повышении выходного напряжения до 12 вольт . В результате получается напряжение эмиттера Т2. Это то же самое. В результате Т2 отключается. Прекратите проводить. И при условии, что T1 остановит ток.

    Теперь катушка начнет обеспечивать ток., Накапливаться в C1 с выпрямителем D1 (BTA43). И если сравнить электрический потенциал с землей. Слева от L1 отрицательное напряжение и ушел ток L1. Произойдет рабочий новый раунд.

    Если рассматривать эту систему.Установлено, что производительность этой схемы более чем на 90% вполне удовлетворительна.

    Что еще?

    См. Схему импульсного источника питания на более высокомощных транзисторах.

    Схема импульсного стабилизатора 5 В с использованием транзистора BC337

    Это схема импульсного стабилизатора 5 В с использованием транзистора, уменьшающая размер напряжения или схема понижающего преобразователя напряжения. Сделайте выходное напряжение таким, чтобы напряжение на входе было немного больше, как показано на рисунке схемы, оно уменьшит напряжение на 6-18 В с оставленного 5 В.Это дает ток 100 мА. При работе в сменных формах Стратегия работает следующим образом.


    Старая схема


    Новая принципиальная схема

    Как только мы вводим напряжение в схему транзистора, Q1 и Q2 подключаются как нестабильный мультивибратор, схема будет генерировать частотный выход на коллекторе Q2 перед отправкой на базовый вывод Q3. Q3, который будет действовать как двухпозиционный переключатель, Q4 работает, подавая напряжение для определения контакта коллектора, но должен пройти до базы R6 Q4.

    Когда базовый вывод Q4 имеет низкое напряжение, Q4 начинает работать, C3 будет заряжаться через катушку L1. Выходное напряжение будет постоянно увеличиваться, но при напряжении более 5 вольт Q5 будет работать, так как напряжение смещения на базе вывода будет таким, как у ZD1. Транзистор Q1 остановлен, база вывода эквивалентна земле. Частота отключения цепи выходит, Q4 перестанет работать.

    Потому что напряжение на базовом выводе Q4 через выход R5 не имеет напряжения., Q5 так что перестань работать. Тогда Q1 снова работает. И поведение, оно будет похоже на первое. Заставить цикл сделать это. Тем не менее, они очень высокие, поэтому на нем должно появиться выходное напряжение 5 вольт.


    Расположение компонентов (без печатной платы)

    Список компонентов
    Размер резисторов ¼W + 5%
    R1, R4, R7: 4,7 кОм
    R2, R3: 47 кОм
    R5: 1 кОм
    R6: 100 Ом
    Конденсаторы
    C1: 0,0015 мкФ 50 В Полиэстер
    C2: 0,01 мкФ 50 В, Полиэстер
    C3: 470 мкФ 16 В, электролитические
    Полупроводниковые
    Q1, Q2, Q3, Q5: BC548, 45 В 100 мА Транзистор NPN
    Q4: BC337 PN, 45 В, 800 мА D1: 1N4001, 1A 50V Диод
    ZD1: 5.1В 500мВт, стабилитрон
    Прочие компоненты
    Тороидальный сердечник трансформатора L1 диаметром 2,5-3,0 см.
    Сечение медной проволоки 0,4 мм.

    Примечание:

    Нам не нужно разрабатывать печатную плату для этой схемы. Если вы не хотите разрабатывать собственную печатную плату. Или использовать универсальную печатную плату, что сложно.

    Я бы порекомендовал понижающий понижающий регулятор источника питания постоянного тока. Вход: 4-40 В, выход: 1,5-35 В. Это наборы DIY, доступные для использования. Надеюсь, это руководство будет вам полезно.

    Хотя схемы не те.Это также может быть импульсный регулятор постоянного тока.

    ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

    Я всегда стараюсь сделать Electronics Learning Easy .

    Простой регулятор напряжения с использованием 2N3055

    Вы хотите использовать регулятор постоянного тока или узнать о регуляторах напряжения с использованием 2N3055. Зачем нужен этот транзистор? Обычно его можно использовать с нагрузками, которым требуется ток не более 2 А и напряжение не более 30 В.

    Этого достаточно для обычных работ.Это транзистор, которым люди пользуются долгое время. Поэтому найти легко и очень дешево. Схем, использующих 2N3055, очень много.

    Теперь мы рекомендуем вам 2 принципиальные схемы. Обе схемы используют стабилитрон и транзистор.

    Схема регулятора постоянного тока 12 В с использованием 2N3055

    Вот линейный стабилизатор 12 В 1 А с транзистором и стабилитроном. Это последовательный стабилизатор напряжения, поскольку ток нагрузки проходит через транзистор серии .

    Как показано на принципиальной схеме ниже, входной клемме требуется нерегулируемый источник постоянного тока, от 15 В до 20 В .Затем на нагрузку выйдет регулируемое напряжение.


    Линейный стабилизатор напряжения 12 В, 1 А, использующий транзистор 2n3055 и стабилитрон

    Для начала, электрический ток, протекающий через резистор-R1 до , ограничивает ток на стабилитроне. Таким образом, он обеспечивает опорное напряжение.
    При этом напряжение базы транзистора-Q1 также является постоянным.

    Когда ZD1 составляет 12 В, базовое напряжение также равно 12 В.

    Рекомендовано: Что такое стабилитрон и принцип работы

    Если поставить транзистор в таком виде.Выходное напряжение такое же, как напряжение на стабилитроне . И мы всегда называем это эмиттер-повторителем. На практике выходное напряжение ниже ZD1. Потому что при транзистор работает. Он должен иметь напряжение база-эмиттер.

    • VBE = напряжение база-эмиттер
    • VZD = напряжение стабилитрона
    • Vout = выходное напряжение

    Vout = VZD — VBE
    VBe = 0,6 В
    Vout = 12 В — 0,6 В = 11,4 В

    Посмотрите на рисунок вы поймете больше.

    Это напряжение по-прежнему подходит для многих нагрузок, использующих источник питания 12 В , таких как радиоприемники.

    Так как это источник питания , регулирует определенную выходную мощность.

    В схеме транзистор имеет правильное усиление, этому помогает изменение VBE.

    • Когда нагрузка потребляет больше тока. Обычно выходное напряжение низкое. Но напряжение база-эмиттер повышается, транзистор Q1 работает больше. Таким образом, он поддерживает постоянное выходное напряжение.
    • Затем при нагрузке используйте меньший ток. Выходное напряжение увеличивается. Но на выходе по-прежнему фиксированное напряжение. Поскольку напряжение База-эмиттер меньше, транзистор Q1 тоже работает меньше.

    Преимущество этой схемы, мы можем использовать крошечный ток на стабилитрон и базу транзистора. Таким образом, он имеет гораздо более стабильный выход.

    Функции других компонентов

    • C1 — сглаживающий конденсатор на входе.
    • C2 поддерживает более стабильное опорное напряжение.
    • C3 — это развязывающий конденсатор емкостью 0,047 мкФ для фильтрации переходных шумов.
    • R1 увеличивает стабильность цепи нагрузки
    • Вы знаете, что такое переходные шумы?
      Блок питания имеет паразитное магнитное поле. Схема будет вводить их в переходной шум. Транзистор 2N3055 может питать ток нагрузки до . Но так жарко. Так что нужен правильный радиатор.

    Потери мощности в цепи последовательного регулятора

    Хорошая конструкция цепи питания.Это должно свести к минимуму потери энергии в цепи. Конечно, энергия будет выражаться теплом.

    В эту серию проходят транзисторные стабилизаторы. Транзистор-Q1 работает как резистор. Когда мы учитываем потерю мощности. Он должен рассеять или уменьшить его.

    Вы видите изображение? Это просто. Позвольте мне вам объяснить.

    Рассмотрим три случая ниже:

    В этих трех примерах A, B и C. Выходы — 15 В, 12 В и 5 В. На 1А ток.

    Знаете ли вы, какой транзистор имеет наибольшие тепловые потери? Или…
    Какой транзистор нагревается больше всего?
    Да, пример C.Почему?
    Потому что причина проста.

    На транзисторе C падает максимальное напряжение. Это фактически капельный резистор, который должен рассеивать тепло в соответствии с законом Ома.

    Вот пример каждого случая:

    • В случае A:
      Напряжение на транзисторе (VCE) составляет 20 В -15 В = 5 В.
      Требуется рассеиваемая мощность 5 В x 1 А = 5 Вт.
    • В случае B:
      напряжение на транзисторе (VCE) составляет 20 В -12 В = 7 В.
      Требуется рассеиваемая мощность 7 В x 1 А = 7 Вт.

    Но…

    • В случае C :
      VEC составляет 20 В-5 В = 15 В; Итак, мощность 15 Вт.

    Короткозамкнутый корпус

    При коротком замыкании источника питания. Все входное напряжение будет падать на силовой транзистор. И это приведет к огромным проблемам с отоплением.

    Итак, по этой причине мы должны держать его холодным с помощью эффективного радиатора.

    Источник питания 38 В с использованием 2N3055

    Мой друг изучает ЧПУ, ему нужен регулируемый источник питания 38 В для серводвигателя.У нас есть много способов использовать это, но то, что лучше для него. Эта схема — один из правильных вариантов. Потому что у него есть все оборудование. Не нужно покупать новый.

    Как работает эта схема

    В качестве основной идеи мы используем простой стабилизатор напряжения на стабилитроне и два транзистора для увеличения тока нагрузки до 1A-2A.

    Этот регулируемый источник питания включает в себя трансформатор-T1, мост-D1… D4 и цепи стабилизатора напряжения с фильтрацией постоянного тока 38 В, которые состоят из C1, C2, R1, R2, R3, Q1 и Q2.

    При наличии 230 ВА или 120 В переменного тока (США) понижающий трансформатор T1 изменяет напряжение переменного тока в линии питания примерно на 30 В переменного тока. Двухполупериодный выпрямительный мост с D1 по D4 для преобразования переменного тока в пульсирующий постоянный ток, который затем фильтруется C1.

    Конденсатор C1, C3 действует как накопительный конденсатор или фильтрует шум и выбросы переменного тока. Стабилитрон 40 В ZD1 поддерживает постоянное напряжение на базе транзистора Q1 NPN BD139 и транзистора Q2-2N3055 в форме Дарлингтона.

    Электролитический конденсатор C2 используется для сглаживания напряжения стабилитрона.Это обеспечивает постоянное напряжение 38 В и высокую мощность на резисторе R3 и на выходных клеммах (+) и (-).

    Когда выход подключен к нагрузке с низким сопротивлением, силовой транзистор Q2 сильно нагревается, поэтому мы всегда используем на нем радиатор.

    CR: 2N3055, фото STS

    Детали, которые вам понадобятся

    Полупроводники:

    • D1-D1: 1N4002, 100V 1A Диоды
    • ZD1: 40V 1w стабилитрон
    • D
    • 9 80 В 1.5A NPN транзистор
    • Q2: 2N3055 или TIP3055 100V, 15A, NPN транзистор

    Резисторы (все 0,25 Вт, 5% металл / углеродная пленка, если не указано иное)

    Электролитические конденсаторы

    • C1 : 470 мкФ 50 В
    • C2: 47 мкФ 50 В
    • C3: 100 мкФ 50 В

    T1: 230 В или 120 В переменного тока первичная обмотка на 30 В, вторичный трансформатор 1A-2A

    SW1: Переключатель питания
    F1: предохранитель 0,5 A

    Примечание:
    Вы можете использовать мостиковый диод 2A-4A 200 В для замены D1-D4.Трансформатор используется минимум 2А для нагрузки 1-2А. Эта схема имеет

    Вернуться к просмотру:

    Транзисторный регулятор напряжения

    ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

    Я всегда стараюсь сделать Electronics Learning Easy .

    7812 Регулятор напряжения 12В / 1А

    Описание

    7812 — это линейный стабилизатор с фиксированным напряжением, который может выдавать 12 В при токе до 1 А с диапазоном входного напряжения от 14 до 35 В.

    В ПАКЕТ:

    ОСНОВНЫЕ ХАРАКТЕРИСТИКИ РЕГУЛЯТОРА НАПРЯЖЕНИЯ 7812:
    • Линейный стабилизатор постоянного напряжения
    • Диапазон входного напряжения 14-35 В
    • Фиксированное выходное напряжение 12 В
    • 1A постоянный ток с 2.Возможность перенапряжения 2А
    • ТО-220 упаковка

    Линейные регуляторы постоянного напряжения серии 78xx являются одними из самых популярных линейных регуляторов на рынке, которые существуют уже очень давно. Они имеют встроенное ограничение тока и защиту от перегрева и, как правило, являются довольно надежными устройствами. Префикс может различаться в зависимости от производителя, поэтому вы можете увидеть их в списке как LM78xx, MC78xx, L78xx или просто 78xx.

    Основные операции

    7812 — широко используемый линейный регулятор.Входное напряжение может находиться в диапазоне от 14 до 35 В постоянного тока, а на выходе — фиксированное 12 В при токе более 1 А и до 2,2 А при импульсном токе.

    Для основной работы внешние компоненты не требуются. Просто подключите входное напряжение и землю, и на выходе будет 5 В.

    Если вы используете его на достаточном расстоянии (> 10 дюймов) от источника питания, обеспечивающего входное напряжение, то рекомендуется конденсатор входного фильтра 0,33 мкФ или больше. Деталь в идеале должна быть деталью с низким ESR, такой как танталовый или майларовый конденсатор, но небольшие электролитические конденсаторы обычно работают нормально.Выходной конденсатор 0,1 мкФ или больше также может быть добавлен для улучшения выходной переходной характеристики, как показано ниже

    .

    Рассеиваемая мощность

    Линейные регуляторы

    имеют меньшую пульсацию на своих выходах по сравнению с преобразователями постоянного тока в постоянный, которые можно использовать для тех же основных целей, но компромисс заключается в том, что линейные регуляторы также имеют тенденцию рассеивать больше тепла в процессе. Причина в том, что линейный регулятор использует на выходе последовательно проходной транзистор для снижения избыточного напряжения.

    Рассеиваемая мощность линейного регулятора зависит от разницы между входным напряжением (Vin) и выходным напряжением (Vout), а также от величины тока, потребляемого регулятором. Чем больше разница в напряжении между Vin и Vout, тем выше будет рассеиваемая мощность, что ограничивает ток, который может потребляться от устройства.

    Рассеиваемая мощность устройства 7812 легко вычисляется как Рассеиваемая мощность = (Vin — Vout) * Iout .

    Если на входе 7812 напряжение 15 В и ток составляет 1 А, тогда рассеиваемая мощность = (15 В — 12 В) * 1 А = 3 Вт. Корпус 7812 TO-220 должен рассеивать 3 Вт мощности. В типичных условиях устройство может рассеивать около 1–1,25 Вт до того, как потребуется радиатор, поэтому в нашем примере здесь устройству потребуется радиатор. Максимальный выходной ток без радиатора в этом случае будет ограничен примерно 300 — 350 мА, и устройство будет работать в диапазоне 85-95 ° C.

    Как правило, вы всегда хотите использовать как можно более низкое входное напряжение, чтобы минимизировать потери мощности через устройство и максимально увеличить доступный выходной ток.

    Примечания:

    1. Язычок 7812 совпадает с контактом заземления.
    2. При сильноточных нагрузках или при больших перепадах входного и выходного напряжения устройство может сильно нагреваться, поэтому будьте осторожны при обращении.

    Технические характеристики

    Максимальные характеристики
    V IN Максимальное входное напряжение 35V
    I O Максимальный выходной ток 1A (типовой)
    I МАКС Пиковый импульсный ток (тип.) 2.2А
    Эксплуатационные рейтинги
    В О Выходное напряжение 12,0 В +/- 2%
    V I — V O Отключение напряжения 2,0 В
    Упаковка К-220
    Тип корпуса Пластиковый язычок, 3 вывода, сквозное отверстие
    Производитель ON Semiconductor
    Лист данных 7812

    50 шт. 78L12 WS78L12 12 В 100 мА 0.Стабилизатор напряжения 1А ТО-92: Автомобильный


    В настоящее время недоступен.
    Мы не знаем, когда и появится ли этот товар в наличии.
    • Убедитесь, что это подходит введя номер вашей модели.
    • Качество продукции хорошее.
    • Мы являемся профессиональным производителем электронных компонентов и модулей. Вы можете искать ключевые слова в нашем магазине. Я считаю, что вы сможете найти нужные вам модули.
    • Расчетное время доставки в США и Канаде: 6-24 дня (отслеживается), —— Мы обеспечиваем ускоренную доставку: 3-8 дней (без учета времени обработки) .Если сумма заказа превышает 150 долларов США, мы будем использовать ускоренную доставку сервис бесплатно.
    • любой вопрос, пожалуйста, не стесняйтесь обращаться ко мне.
    • Мы прилагаем все усилия, чтобы предоставить клиентам удовлетворительное обслуживание.
    ]]>
    Характеристики данного продукта
    Фирменное наименование FlyNoval
    Ean 4541002317865
    Номер детали aFnmoduleZ3_11572
    Код UNSPSC 32000000

    Как сделать блок питания 12В 1А?

    Этот источник питания 12 В 1 А, использующий стабилитрон и транзисторы , позволяет получить на выходе примерно 11.4 В с очень небольшим процентным отклонением для самых разных нагрузок. Выходное напряжение может составлять 12,4 В при использовании другого стабилитрона.

    Транзистор (Q1) используется для увеличения пропускной способности по току, которую может обеспечить этот источник напряжения. Если использовать только стабилитрон, величина тока, подаваемого этим источником, будет ограничена несколькими десятками миллиампер.

    В этом источнике напряжения используется транзистор Q2 для защиты от чрезмерного потребления тока или короткого замыкания.Преимущество этого источника 12 В постоянного тока по сравнению с источником напряжения, который использует встроенный стабилизатор напряжения, такой как LM7812, состоит в том, что он имеет меньшее процентное изменение выходного напряжения.

    В некоторых случаях эта функция очень желательна. В типичном стабилизаторе напряжения 7812 это отклонение может составлять около 5% в сторону увеличения или уменьшения от ожидаемых 12 В на выходе (от 11,5 до 12,5 В).

    Как работает блок питания 12В 1А?

    Этот источник напряжения состоит из понижающего трансформатора, двух выпрямительных диодов и электролитического конденсатора, что позволяет получить нерегулируемую часть блока питания.Для стабилизации напряжения мы используем стабилитрон 12 В в качестве основного компонента.

    Стабилитрон имеет базу NPN-транзистора (Q1), подключенную к его катоду. Таким образом достигается, что в эмиттере транзистора имеется напряжение стабилитрона минус 0,6 вольт (падение напряжения база-эмиттер).

    Напряжение на эмиттере Q1 за вычетом падения напряжения на резисторе R2 — это напряжение, которое получается на выходе. Из-за небольшого номинала резистора R2 (он предназначен для этой цели) падением напряжения на этом элементе можно пренебречь.

    Функция транзистора Q2 (защита от перегрузки по току) тесно связана с резистором R2. Когда ток увеличивается слишком сильно или происходит короткое замыкание, падение напряжения на резисторе увеличивается до тех пор, пока между его выводами не будет 0,6 вольт. Это происходит примерно при токе в нагрузке 1,2 ампера. Если мы хотим, чтобы источник был защищен при меньшем потреблении тока, мы должны увеличить значение R2 до другого.

    Эти 0,6 В напрямую подаются на эмиттерный переход базы транзистора Q2, который начинает проводить и удаляет ток, поступающий на базу транзистора Q1.

    Как следствие, эмиттерный ток транзистора Q1 уменьшается, что эквивалентно уменьшению тока нагрузки, тем самым защищая источник напряжения.

    Если вы предпочитаете использовать операционный усилитель вместо транзисторов, вас может заинтересовать источник питания 12 В, который использует стабилитрон и 741 op. усилитель

    Перечень компонентов цепи питания 12 В, 1 А

    • 1 Биполярный транзистор NPN TIP41C или TIP41A (Q1)
    • 1 Биполярный транзистор NPN 2N3904 (Q2)
    • 2 Выпрямительные диоды 1N5400 (D1, D2)
    • 1 1N4742 стабилитрон (12В) (D3)
    • 1 10К, резистор 1/4 Вт (R1)
    • 1 0.5 Ом, резистор 2 Вт (R2)
    • 1 Электролитический конденсатор 2200 мкФ / 35 В (C1)
    • 1 Электролитический конденсатор 10 мкФ / 35 В (C2)
    • 1 Конденсатор 0,01 мкФ (C3)
    • 1 Трансформатор от 240/120 до 24 В переменного тока , 1,5 A (T)
    • 1 Радиатор (для транзистора Q1)

    Примечание. Если используется стабилитрон 13 В (1N4743), выходное напряжение будет 12,4 В.

    AN-140: Основные понятия линейного регулятора и импульсных источников питания

    Аннотация

    В этой статье объясняются основные концепции линейных регуляторов и импульсных источников питания (ИИП).Он предназначен для системных инженеров, которые могут не очень хорошо разбираться в конструкции и выборе источников питания. Объясняются основные принципы работы линейных регуляторов и SMPS, а также обсуждаются преимущества и недостатки каждого решения. Понижающий понижающий преобразователь используется в качестве примера для дальнейшего объяснения конструктивных особенностей импульсного регулятора.

    Введение

    Современные конструкции требуют все большего количества шин питания и решений для электропитания в электронных системах с нагрузками от нескольких мА для резервных источников питания до более 100 А для стабилизаторов напряжения ASIC.Важно выбрать подходящее решение для целевого приложения и удовлетворить заданные требования к производительности, такие как высокая эффективность, ограниченное пространство на печатной плате, точное регулирование выходной мощности, быстрая переходная характеристика, низкая стоимость решения и т. Д. Конструкция управления питанием становится все более частой и сложной задачей для системных проектировщиков, многие из которых могут не иметь сильного энергетического опыта.

    Преобразователь мощности генерирует выходное напряжение и ток для нагрузки от заданного источника входного питания.Он должен соответствовать требованиям регулирования напряжения или тока нагрузки в установившихся и переходных режимах. Он также должен защищать нагрузку и систему в случае отказа какого-либо компонента. В зависимости от конкретного применения разработчик может выбрать либо линейный стабилизатор (LR), либо импульсный источник питания (SMPS). Чтобы сделать лучший выбор решения, дизайнерам важно знать достоинства, недостатки и конструктивные особенности каждого подхода.

    Эта статья посвящена приложениям с неизолированными источниками питания и дает представление об их работе и основах проектирования.

    Линейные регуляторы

    Как работает линейный регулятор

    Начнем с простого примера. Во встроенной системе от внешнего источника питания доступна шина 12 В. На системной плате необходимо напряжение 3,3 В для питания операционного усилителя (операционного усилителя). Самый простой способ генерировать 3,3 В — использовать резисторный делитель от шины 12 В, как показано на рисунке 1. Хорошо ли он работает? Обычно ответ отрицательный. Ток на выводах V CC операционного усилителя может изменяться в зависимости от условий эксплуатации.Если используется делитель с постоянным резистором, напряжение IC V CC зависит от нагрузки. Кроме того, вход шины 12 В может плохо регулироваться. В той же системе может быть много других нагрузок, использующих шину 12 В. Из-за импеданса шины напряжение на шине 12 В меняется в зависимости от условий нагрузки на шину. В результате резисторный делитель не может подавать стабилизированное напряжение 3,3 В на операционный усилитель, чтобы гарантировать его правильную работу. Следовательно, необходим специальный контур регулирования напряжения. Как показано на рисунке 2, контур обратной связи должен регулировать значение верхнего резистора R1 для динамического регулирования 3.3 В на V CC .

    Рисунок 1. Резисторный делитель вырабатывает 3,3 В постоянного тока от входа шины 12 В

    Рисунок 2. Контур обратной связи регулирует значение последовательного резистора R1 для регулирования 3,3 В

    Этот вид переменного резистора может быть реализован с помощью линейного регулятора, как показано на рисунке 3. Линейный регулятор работает с биполярным или полевым силовым транзистором (FET) в его линейном режиме. Таким образом, транзистор работает как переменный резистор последовательно с выходной нагрузкой.Концептуально для создания цепи обратной связи усилитель ошибки определяет выходное напряжение постоянного тока через цепь резисторов выборки R A и R B , а затем сравнивает напряжение обратной связи V FB с опорным напряжением V REF . Выходное напряжение усилителя ошибки управляет базой последовательного силового транзистора через усилитель тока. Когда либо входное напряжение V BUS уменьшается, либо увеличивается ток нагрузки, выходное напряжение V CC падает.Напряжение обратной связи V FB также уменьшается. В результате усилитель ошибки обратной связи и усилитель тока генерируют больший ток в базе транзистора Q1. Это уменьшает падение напряжения V CE и, следовательно, возвращает выходное напряжение V CC , так что V FB равно V REF . С другой стороны, если выходное напряжение V CC повышается, аналогичным образом цепь отрицательной обратной связи увеличивает V CE , чтобы обеспечить точное регулирование 3.Выход 3 В. Таким образом, любое изменение V O поглощается напряжением V CE транзистора линейного стабилизатора. Таким образом, выходное напряжение V CC всегда постоянно и хорошо регулируется.

    Рис. 3. В линейном регуляторе реализован переменный резистор для регулирования выходного напряжения

    Зачем нужны линейные регуляторы?

    Линейный регулятор уже очень давно широко используется в промышленности. Он был основой для отрасли электроснабжения до тех пор, пока импульсные источники питания не стали преобладать после 1960-х годов.Даже сегодня линейные регуляторы по-прежнему широко используются в широком спектре приложений.

    Помимо простоты использования, линейные регуляторы имеют и другие преимущества в производительности. Поставщики систем управления питанием разработали множество интегрированных линейных регуляторов. Типичный интегрированный линейный регулятор требует только V IN , V OUT , FB и дополнительные контакты GND. На рисунке 4 показан типичный трехконтактный линейный стабилизатор LT1083, разработанный более 20 лет назад. Для установки выходного напряжения требуется только входной конденсатор, выходной конденсатор и два резистора обратной связи.Практически любой инженер-электрик может спроектировать источник питания с этими простыми линейными регуляторами.

    Рис. 4. Пример встроенного линейного регулятора: линейный регулятор 7,5 А только с тремя контактами

    Один недостаток — линейный регулятор может сжечь много энергии

    Основным недостатком использования линейных регуляторов может быть чрезмерное рассеивание мощности последовательного транзистора Q1, работающего в линейном режиме. Как объяснялось ранее, транзистор линейного регулятора концептуально представляет собой переменный резистор.Поскольку весь ток нагрузки должен проходить через последовательный транзистор, его рассеиваемая мощность составляет P Потери = (V IN — V O ) • I O . В этом случае эффективность линейного регулятора можно быстро оценить по:

    Итак, в примере на Рисунке 1, когда на входе 12 В и на выходе 3,3 В, эффективность линейного регулятора составляет всего 27,5%. В этом случае 72,5% входной мощности просто теряется и выделяет тепло в регуляторе. Это означает, что транзистор должен иметь тепловую способность, чтобы справиться с рассеянием мощности / тепла в худшем случае при максимальном напряжении V IN и полной нагрузке.Таким образом, размер линейного регулятора и его радиатора могут быть большими, особенно когда V O намного меньше, чем V IN . На рисунке 5 показано, что максимальная эффективность линейного регулятора пропорциональна соотношению V O / V IN .

    Рисунок 5. Максимальный КПД линейного регулятора в зависимости от соотношения V O / V IN

    С другой стороны, линейный регулятор может быть очень эффективным, если V O близко к V IN .Однако линейный регулятор (LR) имеет другое ограничение, а именно минимальную разницу напряжений между V IN и V O . Транзистор в LR должен работать в линейном режиме. Таким образом, требуется определенное минимальное падение напряжения на коллекторе на эмиттере биполярного транзистора или сток на истоке полевого транзистора. Когда V O слишком близко к V IN , LR больше не может регулировать выходное напряжение. Линейные регуляторы, которые могут работать с малым запасом мощности (V IN — V O ), называются регуляторами с малым падением напряжения (LDO).

    Также ясно, что линейный стабилизатор или LDO может обеспечить только понижающее преобразование DC / DC. В приложениях, которые требуют, чтобы напряжение V O было выше, чем напряжение V IN , или требуется отрицательное напряжение V O от положительного напряжения V IN , линейные регуляторы, очевидно, не работают.

    Линейный регулятор с разделением тока для высокой мощности [8]

    Для приложений, требующих большей мощности, регулятор должен быть установлен отдельно на радиаторе для отвода тепла.В системах для поверхностного монтажа это не вариант, поэтому ограничение рассеиваемой мощности (например, 1 Вт) ограничивает выходной ток. К сожалению, непросто установить прямое параллельное соединение линейных регуляторов для распределения выделяемого тепла.

    Замена источника опорного напряжения, показанного на рис. 3, на прецизионный источник тока, позволяет подключать линейный регулятор напрямую параллельно для распределения токовой нагрузки и, таким образом, распределения рассеиваемого тепла между ИС. Это делает возможным использование линейных регуляторов при высоком выходном токе, в приложениях для поверхностного монтажа, где только ограниченное количество тепла может рассеиваться в любом месте на плате.LT3080 — первый регулируемый линейный стабилизатор, который можно использовать параллельно для увеличения тока. Как показано на рисунке 6, он имеет внутренний источник тока с прецизионным нулевым TC 10 мкА, подключенный к неинвертирующему входу операционного усилителя. С помощью внешнего резистора для задания напряжения R SET выходное напряжение линейного регулятора можно регулировать от 0 В до (V IN — V DROPOUT ).

    Рис. 6. Настройка одиночного резистора LDO LT3080 с прецизионным источником тока Ссылка

    На рис. 7 показано, как легко подключить LT3080 к параллельному распределению тока.Просто свяжите контакты SET LT3080 вместе, два регулятора имеют одинаковое опорное напряжение. Поскольку операционные усилители точно настроены, напряжение смещения между регулировочным штифтом и выходом составляет менее 2 мВ. В этом случае требуется только балластное сопротивление 10 мОм, которое может быть суммой небольшого внешнего резистора и сопротивления проводов печатной платы, чтобы сбалансировать ток нагрузки с более чем 80% выравниваемым распределением. Нужна еще больше мощности? Разумно даже параллельное подключение 5-10 устройств.

    Рис. 7. Параллельное подключение двух линейных регуляторов LT3080 для более высокого выходного тока

    Области применения, где предпочтительны линейные регуляторы

    Существует множество приложений, в которых линейные регуляторы или LDO обеспечивают превосходные решения для переключения источников питания, в том числе:

    1. Простые / недорогие решения. Решения с линейным стабилизатором или LDO просты и удобны в использовании, особенно для приложений с низким энергопотреблением и низким выходным током, где тепловая нагрузка не критична.Внешний силовой индуктор не требуется.
    2. Применения с низким уровнем шума / малой пульсации. Для чувствительных к шуму приложений, таких как устройства связи и радио, минимизация шума источника питания очень важна. Линейные регуляторы имеют очень низкую пульсацию выходного напряжения, потому что нет элементов, которые часто включаются и выключаются, а линейные регуляторы могут иметь очень широкую полосу пропускания. Так что есть небольшая проблема с EMI. Некоторые специальные LDO-стабилизаторы, такие как семейство LDO Analog Devices LT1761, имеют на выходе шумовое напряжение всего 20 мкВ RMS .Для SMPS практически невозможно достичь такого низкого уровня шума. SMPS обычно имеет пульсации в мВ даже с конденсаторами с очень низким ESR.
    3. Быстрые переходные приложения. Контур обратной связи линейного регулятора обычно является внутренним, поэтому никакой внешней компенсации не требуется. Как правило, линейные регуляторы имеют более широкую полосу пропускания контура управления и более быстрый переходный отклик, чем у SMPS.
    4. Приложения с низким отсевом. Для приложений, где выходное напряжение близко к входному, LDO могут быть более эффективными, чем SMPS.Существуют LDO с очень низким падением напряжения (VLDO), такие как Analog Devices LTC1844, LT3020 и LTC3025, с выпадающим напряжением от 20 до 90 мВ и током до 150 мА. Минимальное входное напряжение может составлять 0,9 В. Поскольку в LR отсутствуют коммутационные потери переменного тока, эффективность при малой нагрузке LR или LDO аналогична его эффективности при полной нагрузке. SMPS обычно имеет более низкую эффективность при малой нагрузке из-за потерь на переключение переменного тока. В приложениях с батарейным питанием, в которых эффективность малой нагрузки также критична, LDO может обеспечить лучшее решение, чем SMPS.

    Таким образом, разработчики используют линейные регуляторы или LDO, потому что они просты, имеют низкий уровень шума, низкую стоимость, просты в использовании и обеспечивают быстрый переходный отклик. Если V O близок к V IN , LDO может быть более эффективным, чем SMPS.

    Основы импульсного источника питания

    Зачем использовать импульсный источник питания?

    Быстрый ответ — высокая эффективность. В ИИП транзисторы работают в режиме переключения, а не в линейном режиме. Это означает, что когда транзистор включен и проводит ток, падение напряжения на его пути питания минимально.Когда транзистор выключен и блокирует высокое напряжение, ток через его путь питания почти отсутствует. Так что полупроводниковый транзистор похож на идеальный переключатель. Таким образом, потери мощности в транзисторе сводятся к минимуму. Высокая эффективность, низкое рассеивание мощности и высокая плотность мощности (небольшой размер) являются основными причинами, по которым разработчики используют SMPS вместо линейных регуляторов или LDO, особенно в сильноточных приложениях. Например, в настоящее время синхронный понижающий понижающий источник питания 12 В IN , 3,3 В OUT в режиме переключения обычно может достигать КПД> 90% по сравнению с менее чем 27.5% от линейного регулятора. Это означает потерю мощности или уменьшение размеров как минимум в восемь раз.

    Самый популярный импульсный блок питания — понижающий преобразователь

    На рисунке 8 показан простейший и наиболее популярный импульсный стабилизатор — понижающий преобразователь постоянного тока в постоянный. Он имеет два режима работы, в зависимости от того, включен или выключен транзистор Q1. Чтобы упростить обсуждение, все силовые устройства считаются идеальными. Когда переключатель (транзистор) Q1 включен, напряжение коммутационного узла V SW = V IN и ток L индуктора заряжается на (V IN — V O ).На рисунке 8 (а) показана эквивалентная схема в этом режиме зарядки индуктора. Когда переключатель Q1 выключен, ток катушки индуктивности проходит через диод свободного хода D1, как показано на рисунке 8 (b). Напряжение коммутационного узла V SW = 0 В и ток L индуктивности разряжается нагрузкой V O . Поскольку идеальная катушка индуктивности не может иметь постоянное напряжение в установившемся состоянии, среднее выходное напряжение V O может быть задано как:

    , где T ON — временной интервал включения в пределах периода TS переключения.Если отношение T ON / T S определяется как рабочий цикл D, выходное напряжение V O составляет:

    Когда значения катушки индуктивности L фильтра и выходного конденсатора C O достаточно высоки, выходное напряжение V O является постоянным напряжением с пульсацией всего в мВ. В этом случае для входного понижающего источника 12 В концептуально рабочий цикл 27,5% обеспечивает выходное напряжение 3,3 В.

    Рис. 8. Режимы работы понижающего преобразователя и типичные формы сигналов

    Помимо описанного выше подхода к усреднению, существует другой способ вывести уравнение рабочего цикла.Идеальный индуктор не может иметь постоянное напряжение в устойчивом состоянии. Таким образом, он должен поддерживать вольт-секундный баланс катушки индуктивности в течение периода переключения. Согласно форме кривой напряжения индуктора на рисунке 8 для баланса вольт-секунд требуется:

    Уравнение (5) совпадает с уравнением (3). Такой же подход балансировки вольт-секунд может использоваться для других топологий постоянного / постоянного тока для получения рабочего цикла по уравнениям V IN и V O .

    Потери мощности в понижающем преобразователе

    Потери проводимости постоянного тока

    С идеальными компонентами (нулевое падение напряжения во включенном состоянии и нулевые потери переключения) идеальный понижающий преобразователь имеет 100% КПД.На самом деле рассеивание мощности всегда связано с каждым силовым компонентом. В ИИП есть два типа потерь: потери проводимости постоянного тока и потери переключения переменного тока.

    Потери проводимости понижающего преобразователя в основном возникают из-за падений напряжения на транзисторе Q1, диоде D1 и катушке индуктивности L, когда они проводят ток. Чтобы упростить обсуждение, пульсации переменного тока тока индуктора не учитываются в следующем расчете потерь проводимости. Если MOSFET используется в качестве силового транзистора, потери проводимости MOSFET равны I O 2 • R DS (ON) • D, где R DS (ON) — сопротивление MOSFET в открытом состоянии. Q1.Потери мощности проводимости диода равны I O • V D • (1 — D), где V D — прямое падение напряжения на диоде D1. Потери проводимости индуктора равны I O 2 • R DCR , где R DCR — сопротивление меди обмотки индуктора. Следовательно, потери проводимости понижающего преобразователя примерно равны:

    Например, вход 12 В, 3,3 В / 10 А, выходной понижающий источник питания MAX может использовать следующие компоненты: полевой МОП-транзистор R DS (ON) = 10 мОм, индуктор R DCR = 2 мОм, прямое напряжение на диоде В D = 0.5В. Следовательно, потеря проводимости при полной нагрузке составляет:

    Учитывая только потери проводимости, КПД преобразователя составляет:

    Приведенный выше анализ показывает, что диод свободного хода потребляет 3,62 Вт потерь мощности, что намного выше, чем потери проводимости полевого МОП-транзистора Q1 и катушки индуктивности L. Для дальнейшего повышения эффективности диод D1 можно заменить на полевой МОП-транзистор Q2, как показано на Рисунок 9. Этот преобразователь называется синхронным понижающим преобразователем. Строб Q2 требует сигналов, дополнительных к затвору Q1, т.е.е., Q2 горит только тогда, когда Q1 выключен. Потери проводимости синхронного понижающего преобразователя:

    Если полевой МОП-транзистор R DS (ON) 10 мОм также используется для Q2, потери проводимости и эффективность синхронного понижающего преобразователя будут:

    Приведенный выше пример показывает, что синхронный понижающий преобразователь более эффективен, чем традиционный понижающий преобразователь, особенно для приложений с низким выходным напряжением, где рабочий цикл мал, а время проводимости диода D1 велико.

    Рисунок 9.Синхронный понижающий преобразователь и его транзисторные сигналы затвора

    Потери при переключении переменного тока

    В дополнение к потерям проводимости постоянного тока, существуют другие потери мощности, связанные с переменным током / переключением, из-за неидеальных силовых компонентов:

    1. Коммутационные потери MOSFET. Настоящему транзистору требуется время для включения или выключения. Таким образом, во время переходных процессов при включении и выключении возникают перекрытия по напряжению и току, что приводит к коммутационным потерям переменного тока. На рисунке 10 показаны типичные формы сигналов переключения полевого МОП-транзистора Q1 в синхронном понижающем преобразователе.Зарядка и разрядка паразитного конденсатора C GD верхнего полевого транзистора Q1 с зарядом Q GD определяют большую часть времени переключения Q1 и связанных потерь. В синхронном понижающем преобразователе потери переключения нижнего полевого транзистора Q2 малы, потому что Q2 всегда включается после того, как его основной диод становится проводящим, и выключается до того, как его основной диод становится проводящим, в то время как падение напряжения на основном диоде невелико. Однако заряд обратного восстановления основного диода Q2 может также увеличить коммутационные потери верхнего полевого транзистора Q1 и может вызвать звон напряжения переключения и шум электромагнитных помех.Уравнение (12) показывает, что потери переключения управляющего полевого транзистора Q1 пропорциональны частоте переключения преобразователя f S . Точный расчет потерь энергии E ON и E OFF для Q1 непрост, но его можно найти в примечаниях к применению поставщиков MOSFET.
    2. Потери в сердечнике индуктора P SW_CORE . Настоящая катушка индуктивности также имеет потери переменного тока, которые зависят от частоты коммутации. Потери переменного тока в индукторе в основном связаны с потерями в магнитном сердечнике. В высокочастотном ИИП материалом сердечника может быть железный порошок или феррит.Обычно сердечники из порошкового железа насыщаются мягко, но имеют высокие потери в сердечнике, тогда как ферритовый материал насыщается более резко, но имеет меньшие потери в сердечнике. Ферриты — это керамические ферромагнитные материалы, которые имеют кристаллическую структуру, состоящую из смесей оксида железа с оксидом марганца или цинка. Потери в сердечнике в основном связаны с потерями на магнитный гистерезис. Производитель сердечника или катушки индуктивности обычно предоставляет данные о потерях в сердечнике разработчикам источников питания для оценки потерь в катушке индуктивности переменного тока.
    3. Прочие потери, связанные с кондиционированием воздуха.Другие потери, связанные с переменным током, включают потерю драйвера затвора P SW_GATE , что равно V DRV • Q G • f S , и мертвое время (когда оба верхнего полевого транзистора Q1 и нижний полевой транзистор Q2 выключены) основной диод потери проводимости, равные (ΔT ON + ΔT OFF ) • V D (Q2) • f S . Таким образом, потери, связанные с переключением, включают: Расчет потерь, связанных с переключением, обычно непросто. Потери, связанные с переключением, пропорциональны частоте переключения f S .В синхронном понижающем преобразователе 12 В IN , 3,3 В O / 10A MAX потери переменного тока вызывают потерю эффективности от 2% до 5% при частоте переключения 200–500 кГц. Таким образом, общий КПД составляет около 93% при полной нагрузке, что намного лучше, чем у источников LR или LDO. Нагревание или уменьшение размера могут быть близки к 10x.

    Рис. 10. Типичная форма сигнала переключения и потери в верхнем полевом транзисторе Q1 понижающего преобразователя

    Конструктивные особенности компонентов коммутируемой мощности

    Оптимизация частоты коммутации

    Как правило, более высокая частота переключения означает меньшие размеры компонентов L и C выходного фильтра O .В результате размер и стоимость блока питания могут быть уменьшены. Более широкая полоса пропускания также может улучшить переходные характеристики нагрузки. Однако более высокая частота переключения также означает более высокие потери мощности, связанные с переменным током, что требует большего пространства на плате или радиатора для ограничения теплового напряжения. В настоящее время для приложений с выходным током ≥10A большинство понижающих источников работают в диапазоне от 100 кГц до 1 МГц ~ 2 МГц. При токе нагрузки <10 А частота переключения может достигать нескольких МГц. Оптимальная частота для каждой конструкции является результатом тщательного компромисса по размеру, стоимости, эффективности и другим параметрам производительности.

    Выбор выходного индуктора

    В синхронном понижающем преобразователе пиковый ток пульсации катушки индуктивности можно рассчитать как:

    При заданной частоте переключения низкая индуктивность дает большие пульсации тока и приводит к большим выходным пульсациям напряжения. Большой ток пульсации также увеличивает среднеквадратичный ток полевого МОП-транзистора и потери проводимости. С другой стороны, высокая индуктивность означает большой размер индуктора и возможные высокие DCR индуктивности и потери проводимости. Как правило, при выборе катушки индуктивности выбирается 10% ~ 60% пульсаций размаха пульсаций по отношению к максимальному коэффициенту постоянного тока.Поставщики индукторов обычно указывают номинальные значения DCR, RMS (нагрева) и тока насыщения. Важно рассчитать максимальный постоянный ток и пиковый ток катушки индуктивности в пределах максимальных характеристик производителя.

    Выбор силового полевого МОП-транзистора

    При выборе полевого МОП-транзистора для понижающего преобразователя сначала убедитесь, что его максимальное значение V DS выше, чем напряжение питания V IN (MAX) с достаточным запасом. Однако не выбирайте полевой транзистор с чрезмерно высоким номинальным напряжением.Например, для источника питания 16V IN (MAX) хорошо подойдет полевой транзистор с номинальным напряжением 25 или 30 В. Номинальное напряжение полевого транзистора 60 В может быть чрезмерным, поскольку сопротивление полевого транзистора в открытом состоянии обычно увеличивается с увеличением номинального напряжения. Далее, двумя наиболее важными параметрами являются сопротивление в открытом состоянии полевого транзистора R DS (ON) и заряд затвора Q G (или Q GD ). Обычно существует компромисс между зарядом затвора Q G и сопротивлением в открытом состоянии R DS (ON) . Как правило, полевой транзистор с небольшим кремниевым кристаллом имеет низкий Q G , но высокое сопротивление в открытом состоянии R DS (ON) , в то время как полевой транзистор с большим кремниевым кристаллом имеет низкий R DS (ON) , но большой Q . G .В понижающем преобразователе верхний полевой МОП-транзистор Q1 принимает как потери проводимости, так и потери переключения переменного тока. Полевой транзистор Q G обычно необходим для Q1, особенно в приложениях с низким выходным напряжением и малым рабочим циклом. Синхронный полевой транзистор Q2 на нижней стороне имеет небольшие потери переменного тока, потому что он обычно включается или выключается, когда его напряжение V DS близко к нулю. В этом случае низкий уровень R DS (ON) более важен, чем Q G для синхронного полевого транзистора Q2. Когда один полевой транзистор не может справиться с полной мощностью, несколько полевых МОП-транзисторов могут использоваться параллельно.

    Выбор входного и выходного конденсатора

    Во-первых, следует выбирать конденсаторы с достаточным снижением номинального напряжения.

    Входной конденсатор понижающего преобразователя имеет пульсирующий ток переключения с большой пульсацией. Следовательно, входной конденсатор следует выбирать с достаточным среднеквадратичным значением пульсационного тока, чтобы обеспечить его срок службы. Обычно на входе параллельно используются алюминиевые электролитические конденсаторы и керамические конденсаторы с низким ESR.

    Выходной конденсатор определяет не только пульсации выходного напряжения, но и переходные характеристики нагрузки.Пульсации выходного напряжения можно рассчитать по уравнению (15). Для высокопроизводительных приложений важны как ESR, так и общая емкость, чтобы минимизировать пульсации выходного напряжения и оптимизировать переходные характеристики нагрузки. Обычно хорошим выбором являются танталовые конденсаторы с низким ESR, полимерные конденсаторы с низким ESR и многослойные керамические конденсаторы (MLCC).

    Замкнуть контур регулирования обратной связи

    Есть еще один важный этап проектирования импульсного источника питания — замыкание контура регулирования с помощью схемы управления с отрицательной обратной связью.Обычно это гораздо более сложная задача, чем использование LR или LDO. Это требует хорошего понимания поведения контура и конструкции компенсации, чтобы оптимизировать динамические характеристики с помощью стабильного контура.

    Малосигнальная модель понижающего преобразователя

    Как объяснено выше, переключающий преобразователь меняет свой рабочий режим в зависимости от состояния переключателя ON или OFF. Это дискретная и нелинейная система. Для анализа контура обратной связи с помощью метода линейного управления необходимо линейное моделирование малых сигналов [1] [3].Из-за выходного фильтра L-C линейная передаточная функция малого сигнала от рабочего цикла D до выхода V O фактически является системой второго порядка с двумя полюсами и одним нулем, как показано в уравнении (16). На резонансной частоте выходной катушки индуктивности и конденсатора расположены двойные полюса. Есть ноль, определяемый выходной емкостью и ESR конденсатора.

    Управление в режиме напряжения и управление в режиме тока

    Выходное напряжение может регулироваться замкнутой системой, показанной на рисунке 11.Например, когда выходное напряжение увеличивается, напряжение обратной связи V FB увеличивается, а выходной сигнал усилителя ошибки отрицательной обратной связи уменьшается. Так рабочий цикл уменьшается. В результате выходное напряжение снижается до V FB = V REF . Компенсационная схема операционного усилителя ошибок может быть схемой усилителя с обратной связью типа I, типа II или типа III [3] [4]. Есть только один контур управления для регулирования выхода. Эта схема называется контролем режима напряжения.Analog Devices LTC3775 и LTC3861 — типичные понижающие контроллеры в режиме напряжения.

    Рис. 11. Блок-схема понижающего преобразователя с управлением по напряжению

    На рисунке 12 показан синхронный понижающий источник питания от 5 до 26 В на входе и на выходе 1,2 В / 15 А с использованием понижающего контроллера режима напряжения LTC3775. Благодаря передовой архитектуре ШИМ-модуляции LTC3775 и очень низкому (30 нс) минимальному времени включения, источник питания хорошо работает для приложений, которые преобразуют высоковольтный автомобильный или промышленный источник питания до уровня 1.Низкое напряжение 2 В, необходимое для современных микропроцессоров и программируемых логических микросхем. Для приложений высокой мощности требуются многофазные понижающие преобразователи с разделением тока. При управлении в режиме напряжения требуется дополнительная петля распределения тока для балансировки тока между параллельными понижающими каналами. Типичным методом разделения тока для управления режимом напряжения является метод ведущего ведомого устройства. LTC3861 является таким контроллером режима напряжения PolyPhase ® . Его очень низкое (± 1,25 мВ) смещение считывания тока делает распределение тока между параллельно включенными фазами очень точным, чтобы сбалансировать тепловую нагрузку.[10]

    Рис. 12. Синхронный понижающий источник питания LTC3775 в режиме напряжения обеспечивает высокий коэффициент понижения

    Управление в режиме тока использует два контура обратной связи: внешний контур напряжения, аналогичный контуру управления преобразователей, управляемых в режиме напряжения, и внутренний контур тока, который возвращает сигнал тока в контур управления. На рисунке 13 показана концептуальная блок-схема понижающего преобразователя с управлением в режиме пикового тока, который непосредственно измеряет выходной ток катушки индуктивности. В режиме управления по току ток катушки индуктивности определяется ошибочным выходным напряжением операционного усилителя.Катушка индуктивности становится источником тока. Следовательно, передаточная функция от выхода операционного усилителя, V C , до подачи выходного напряжения V O становится однополюсной системой. Это значительно упрощает компенсацию петли. Компенсация контура управления меньше зависит от нулевого ESR выходного конденсатора, поэтому можно использовать все керамические выходные конденсаторы.

    Рис. 13. Блок-схема понижающего преобразователя с управлением по току

    Есть много других преимуществ от текущего управления режимом.Как показано на рисунке 13, поскольку пиковый ток катушки индуктивности ограничивается операционным усилителем V C по циклу, система с регулируемым режимом тока обеспечивает более точное и быстрое ограничение тока в условиях перегрузки. Пусковой ток индуктора также хорошо контролируется во время запуска. Кроме того, ток катушки индуктивности не изменяется быстро при изменении входного напряжения, поэтому источник питания имеет хорошие характеристики переходных процессов в линии. Когда несколько преобразователей подключены параллельно, с управлением режимом тока, также очень легко распределять ток между источниками, что важно для надежных приложений с высоким током, использующих понижающие преобразователи PolyPhase.В общем, преобразователь, управляемый режимом тока, более надежен, чем преобразователь, управляемый режимом напряжения.

    Решение схемы управления текущим режимом должно точно определять ток. Сигнал измерения тока обычно представляет собой слабый сигнал с уровнем в несколько десятков милливольт, чувствительный к шуму переключения. Следовательно, необходима правильная и тщательная разводка печатной платы. Токовая петля может быть замкнута путем измерения тока катушки индуктивности через чувствительный резистор, падения напряжения DCR на катушке индуктивности или падения напряжения проводимости полевого МОП-транзистора.Типичные контроллеры текущего режима включают в себя Analog Devices LTC3851A, LTC3855, LTC3774 и LTC3875.

    Постоянная частота в сравнении с постоянным контролем времени

    Типовые схемы режима напряжения и режима тока в разделе «Управление в режиме напряжения по сравнению с управлением в режиме тока» имеют постоянную частоту переключения, генерируемую внутренними тактовыми генераторами контроллера. Эти контроллеры с постоянной частотой коммутации можно легко синхронизировать, что является важной особенностью понижающих контроллеров PolyPhase с высоким током. Однако, если переходный процесс повышения нагрузки происходит сразу после выключения затвора Q1 управляющего полевого транзистора, преобразователь должен ждать все время выключения Q1 до следующего цикла, чтобы отреагировать на переходный процесс.В приложениях с небольшими рабочими циклами задержка в наихудшем случае близка к одному циклу переключения.

    В таких приложениях с малым рабочим циклом управление режимом постоянного тока впадины с постоянным включением имеет меньшую задержку, чтобы реагировать на переходные процессы повышения нагрузки. В установившемся режиме частота переключения понижающих преобразователей с постоянным временем включения практически постоянна. В случае переходного процесса частота переключения может быстро измениться, чтобы ускорить переходный процесс. В результате источник питания имеет улучшенные переходные характеристики и выходную емкость, а связанные с этим затраты могут быть снижены.

    Однако при постоянном контроле по времени частота коммутации может изменяться в зависимости от линии или нагрузки. LTC3833 — это понижающий контроллер в режиме минимального тока с более сложной архитектурой с контролируемым включением по времени — вариант архитектуры управления с постоянным включением с той разницей, что время включения регулируется таким образом, что частота переключения остается постоянной в течение стабильного этапа. условия в линии и под нагрузкой. С этой архитектурой контроллер LTC3833 имеет минимальное время включения 20 нс и позволяет понижать приложения с 38V IN до 0.6В О . Контроллер можно синхронизировать с внешними часами в диапазоне частот от 200 кГц до 2 МГц. На рисунке 14 показан типичный блок питания LTC3833 с входным напряжением от 4,5 В до 14 В и выходом 1,5 В / 20 А. [11] На рисунке 15 показано, что источник питания может быстро реагировать на внезапные переходные процессы нагрузки с высокой скоростью нарастания напряжения. Во время переходного процесса при повышении нагрузки частота переключения увеличивается, чтобы обеспечить более быструю переходную характеристику. Во время переходного процесса понижения нагрузки рабочий цикл падает до нуля. Поэтому только выходная катушка индуктивности ограничивает скорость нарастания тока.В дополнение к LTC3833, для нескольких выходов или приложений PolyPhase, контроллеры LTC3838 и LTC3839 обеспечивают быстрые переходные многофазные решения.

    Рис. 14. Быстродействующий источник питания с контролируемым постоянным током с использованием LTC3833

    Рис. 15. Блок питания LTC3833 обеспечивает быстрое реагирование во время переходных процессов с быстрым скачком нагрузки

    Ширина полосы пропускания и стабильность

    Хорошо спроектированный SMPS работает бесшумно как в электрическом, так и в акустическом отношении. Это не относится к недокомпенсированной системе, которая обычно нестабильна.Типичные симптомы недокомпенсированного источника питания включают: слышимый шум от магнитных компонентов или керамических конденсаторов, дрожание формы волны переключения, колебания выходного напряжения и т. Д. Сверхкомпенсированная система может быть очень стабильной и тихой, но за счет медленной переходной реакции. Такая система имеет частоту кроссовера контура на очень низких частотах, обычно ниже 10 кГц. Конструкции с медленными переходными процессами требуют чрезмерной выходной емкости для соответствия требованиям регулирования переходных процессов, что увеличивает общую стоимость и размер источника питания.Оптимальная конструкция компенсации контура является стабильной и бесшумной, но не требует чрезмерной компенсации, поэтому она также имеет быструю реакцию для минимизации выходной емкости. В статье Analog Devices AN149 подробно объясняются концепции и методы моделирования силовых цепей и контуров контуров [3]. Моделирование слабых сигналов и проектирование компенсации контура могут быть трудными для неопытных разработчиков источников питания. Инструмент проектирования LTpowerCAD компании Analog Devices обрабатывает сложные уравнения и делает проектирование источника питания, особенно компенсации контура, гораздо более простой задачей [5] [6].Инструмент моделирования LTspice ® объединяет все модели деталей Analog Devices и обеспечивает дополнительное моделирование во временной области для оптимизации конструкции. Однако стендовые испытания / проверка стабильности контура и переходных характеристик обычно необходимы на стадии прототипа.

    В общем, производительность замкнутого контура регулирования напряжения оценивается двумя важными значениями: шириной полосы контура и запасом устойчивости контура. Полоса пропускания контура количественно определяется частотой кроссовера f C , при которой коэффициент усиления контура T (s) равен единице (0 дБ).Запас устойчивости контура обычно количественно определяется запасом по фазе или запасом по усилению. Запас по фазе контура Φ м определяется как разница между общей фазовой задержкой T (s) и –180 ° на частоте кроссовера. Запас усиления определяется разницей между усилением T (s) и 0 дБ на частоте, где общая фаза T (s) равна –180 °. Для понижающего преобразователя обычно считается достаточным запас по фазе 45 градусов и запас усиления 10 дБ. На рисунке 16 показан типичный график Боде коэффициента усиления контура для трехфазного понижающего преобразователя LTC3829 12V IN в 1V O / 60A.В этом примере частота кроссовера составляет 45 кГц, а запас по фазе — 64 градуса. Запас усиления близок к 20 дБ.

    Рис. 16. Средство проектирования LTpowerCAD обеспечивает простой способ оптимизации компенсации контура и переходной характеристики нагрузки (трехфазный понижающий преобразователь LTC3829 с одним выходом).

    Понижающий преобразователь PolyPhase для сильноточных приложений

    По мере того, как системы обработки данных становятся быстрее и крупнее, их процессорам и модулям памяти требуется больше тока при постоянно уменьшающемся напряжении.При таких высоких токах требования к источникам питания увеличиваются. В последние годы синхронные понижающие преобразователи PolyPhase (многофазные) широко используются для источников питания высокого тока и низкого напряжения благодаря их высокой эффективности и равномерному распределению тепла. Кроме того, с чередованием нескольких фаз понижающего преобразователя можно значительно снизить ток пульсаций как на входе, так и на выходе, что приведет к сокращению входных и выходных конденсаторов, а также к уменьшению пространства на плате и стоимости.

    В понижающих преобразователях PolyPhase точное определение и разделение тока становятся чрезвычайно важными.Хорошее распределение тока обеспечивает равномерное распределение тепла и высокую надежность системы. Из-за присущей им способности распределения тока в установившемся состоянии и во время переходных процессов обычно предпочтительны баксы с регулируемым режимом тока. Analog Devices LTC3856 и LTC3829 — типичные понижающие контроллеры PolyPhase с точным измерением и распределением тока. Несколько контроллеров могут быть подключены последовательно для 2-, 3-, 4-, 6- и 12-фазных систем с выходным током от 20A до более 200A.

    Рисунок 17.Трехфазный, одиночный V O Сильноточный понижающий преобразователь с использованием LTC3829

    Другие требования к высокопроизводительному контроллеру

    От высокопроизводительного понижающего контроллера требуется множество других важных функций. Плавный пуск обычно необходим для управления пусковым током во время пуска. Ограничение перегрузки по току и фиксация короткого замыкания могут защитить источник питания, когда выход перегружен или закорочен. Защита от перенапряжения защищает дорогостоящие нагрузочные устройства в системе.Чтобы минимизировать системные электромагнитные помехи, иногда контроллер необходимо синхронизировать с внешним тактовым сигналом. В приложениях с низким и высоким током дистанционное измерение дифференциального напряжения компенсирует падение напряжения на сопротивлении печатной платы и точно регулирует выходное напряжение на удаленной нагрузке. В сложной системе с множеством шин выходного напряжения также необходимы последовательность и отслеживание различных шин напряжения.

    Схема расположения печатной платы

    Выбор компонентов и схематическое проектирование — это только половина процесса проектирования поставки.Правильная разводка печатной платы импульсного источника питания всегда имеет решающее значение. На самом деле его важность невозможно переоценить. Хорошая компоновка оптимизирует эффективность питания, снижает тепловую нагрузку и, что наиболее важно, сводит к минимуму шум и взаимодействие между дорожками и компонентами. Для этого разработчику важно понимать пути прохождения тока и потоки сигналов в импульсном источнике питания. Обычно для получения необходимого опыта требуются значительные усилия. См. Примечания по применению 136 и 139 Analog Devices для подробного обсуждения.[7] [9]

    Выбор различных решений — дискретные, монолитные и интегрированные расходные материалы

    На уровне интеграции системные инженеры могут решить, какое решение выбрать: дискретный, монолитный или полностью интегрированный силовой модуль. На рис. 18 показаны примеры дискретных и силовых модулей для типичных приложений с питанием от точки нагрузки. Дискретное решение использует микросхему контроллера, внешние полевые МОП-транзисторы и пассивные компоненты для создания источника питания на системной плате. Основной причиной выбора дискретного решения является низкая стоимость спецификации компонентов.Однако это требует хороших навыков проектирования источников питания и относительно длительного времени разработки. В монолитном решении используется ИС со встроенными силовыми полевыми МОП-транзисторами, чтобы еще больше уменьшить размер решения и количество компонентов. Это требует аналогичных дизайнерских навыков и времени. Полностью интегрированное решение с силовым модулем может значительно сократить усилия по проектированию, время разработки, размер решения и риски, связанные с проектированием, но обычно с более высокой стоимостью компонентов спецификации.

    Рисунок 18. Примеры (а) дискретного входа 12 В IN — 3.Питание 3V / 10A LTC3778; (b) Полностью интегрированный 16V IN , Dual 13A или Single 26A LTM4620 µModule ® понижающий регулятор

    Другие основные неизолированные топологии ИИП постоянного / постоянного тока

    В этом документе используются понижающие преобразователи в качестве простого примера, демонстрирующего особенности проектирования SMPS. Однако существует как минимум пять других базовых топологий неизолированных преобразователей (повышающие, понижающие / повышающие, преобразователи Cuk, SEPIC и Zeta) и как минимум пять основных топологий изолированных преобразователей (обратноходовой, прямой, двухтактный, полумостовой и полный мост. ), которые не рассматриваются в этом примечании к применению.Каждая топология имеет уникальные свойства, которые делают ее пригодной для конкретных приложений. На рисунке 19 показаны упрощенные схемы для других неизолированных топологий SMPS.

    Рисунок 19. Другие основные топологии неизолированных преобразователей постоянного тока в постоянный

    Существуют и другие неизолированные топологии SMPS, которые представляют собой комбинации базовых топологий. Например, на рисунке 20 показан высокоэффективный синхронный повышающий / понижающий преобразователь с 4 переключателями на основе контроллера режима тока LTC3789. Он может работать с входными напряжениями ниже, равными или выше выходного напряжения.Например, вход может быть в диапазоне от 5 В до 36 В, а выход может быть регулируемым 12 В. Эта топология представляет собой комбинацию синхронного понижающего преобразователя и синхронного повышающего преобразователя с общей катушкой индуктивности. Когда V IN > V OUT , переключатели A и B работают как активный синхронный понижающий преобразователь, в то время как переключатель C всегда выключен, а переключатель D всегда включен. Когда V IN OUT , переключатели C и D работают как активный синхронный повышающий преобразователь, в то время как переключатель A всегда включен, а переключатель B всегда выключен.Когда V IN близок к V OUT , все четыре переключателя работают активно. В результате этот преобразователь может быть очень эффективным, с КПД до 98% для типичного приложения с выходом 12 В. [12] Контроллер LT8705 расширяет диапазон входного напряжения до 80 В. Чтобы упростить конструкцию и увеличить удельную мощность, LTM4605 / 4607/4609 дополнительно интегрирует сложный понижающий / повышающий преобразователь в простой в использовании силовой модуль высокой плотности. [13] Их можно легко использовать параллельно с распределением нагрузки для приложений большой мощности.

    Рис. 20. Высокоэффективный понижающий-повышающий преобразователь с 4 переключателями работает при входном напряжении ниже, равном или выше выходного напряжения

    Сводка

    Таким образом, линейные регуляторы просты и удобны в использовании. Поскольку их транзисторы последовательного регулирования работают в линейном режиме, эффективность питания обычно низкая, когда выходное напряжение намного ниже входного. Как правило, линейные регуляторы (или LDO) имеют низкие пульсации напряжения и быструю переходную характеристику. С другой стороны, SMPS работают с транзистором как с переключателем и поэтому обычно намного эффективнее линейных регуляторов.Однако проектирование и оптимизация SMPS более сложны и требуют больше знаний и опыта. Каждое решение имеет свои преимущества и недостатки для конкретных приложений.

    использованная литература

    [1] В. Ворпериан, «Упрощенный анализ преобразователей ШИМ с использованием модели переключателя ШИМ: части I и II», IEEE Transactions on Aerospace and Electronic Systems, март 1990 г., Vol. 26, №2.

    [2] Р.Б. Ридли, Б. Х. Чо, Ф. К. Ли, «Анализ и интерпретация коэффициентов усиления контуров коммутационных регуляторов с многоконтурным управлением», IEEE Transactions on Power Electronics, стр. 489-498, октябрь 1988 г.

    [3] Х. Чжан, «Моделирование и конструкция с компенсацией контура импульсных источников питания», Примечания по применению линейной технологии AN149, 2015.

    [4] Х. Дин Венейбл, «Оптимальная конструкция усилителя обратной связи для систем управления», Технический документ Венейбл.

    [5] Х. Чжан, «Проектирование источников питания за пять простых шагов с помощью LTpowerCAD Design Tool», Примечания по применению линейных технологий AN158, 2015.

    [6] Инструмент проектирования LTpowerCAD на сайте www.linear.com/LTpowerCAD.

    [7] Х. Чжан, «Рекомендации по компоновке печатной платы для неизолированных импульсных источников питания», Примечание по применению 136, Linear Technology Corp., 2012.

    [8] Р. Доббкин, «Регулятор с малым падением напряжения может быть напрямую подключен к источнику тепла», LT Journal of Analog Innovation, октябрь 2007 г.

    [9] К. Куек, «Схема источника питания и электромагнитные помехи», Примечания по применению линейной технологии AN139, 2013.

    [10] М.Субраманиан, Т. Нгуен и Т. Филлипс, «Измерение тока DCR субмиллиомом с точным распределением многофазного тока для сильноточных источников питания», LT Journal, январь 2013 г.

    Author:

    Добавить комментарий

    Ваш адрес email не будет опубликован.