Схема импульсного зарядного устройства: Мощное импульсное зарядное устройство для автомобильного аккумулятора

Содержание

Схема импульсного зарядного устройства — RadioRadar

Импульсную зарядку сделать самому

ИБП должен обладать такими качествами, как выдача тока до 10А, при стабильном заданном напряжении. При этом желательно, чтобы никакие компоненты не грелись сильно, а использование зарядного устройства было безопасно. Они, как правило, используются для зарядки автомобильных аккумуляторов. Правильная зарядка таких аккумуляторов увеличивает срок их эксплуатации на 25%.

Импульсное зарядное устройство возможно приобрести или сделать самостоятельно, купив указанные радио-компоненты. Также можно обратиться за помощью к специалистам, которые паяют платы на заказ. В любом случае, варианты решения есть.

Детали можно взять уже бывшие в употреблении, лишь бы были рабочие. Значительная их часть находится в компьютерных блоках питания. Трансформатор был взят из блока питания ПК и рассчитан на 24В выходного напряжения. Без изменения его обмоток, повышения выходного напряжения можно добиться, меняя частоту генератора.

На входе питания дроссель, состоящий из двух непересекающихся обмоток, на кольце от БП. Обе обмотки одинаковые, намотанные проводом диаметром 1мм, по 9 витков каждая.

 

Схема импульсного зарядного устройства, которая полностью удовлетворяет все требования по заряду автомобильного АКБ, представлена ниже.

Стоит отметить, что можно достигнуть мощности 400Вт увеличив емкость электролитических конденсаторов. 

 

Дополняют её такие составляющие, как: ШИМ регулятор и защита от короткого замыкания.

 

 

Защита от короткого замыкания регулируется переменным резистором, тем самым выставляется необходимый ток КЗ. 

Все точки подключения указаны. Номиналы элементов указаны на схеме.

Отлично подойдет не только для зарядки АКБ, но и для прочих нужд, ввиду того, что имеется регулировка выходного напряжения. Корпус можно взять от чего угодно, либо сделать самостоятельно. 

Минус этого устройства – его габариты. Покупное зарядное устройство будет несколько меньше в объеме.

Автор: RadioRadar

Зарядное устройство на импульсном блоке питания — Зарядные устройства (для авто) — Источники питания

В статье рассматриваются принципы построения обратно- ходового импульсного источника питания для зарядки автомо­бильных аккумуляторов с использованием инвертора, состоя­щего из генератора на однопереходном транзисторе и мощно­го транзисторного ключа. Схема разрабатывалась как малобюджетная с минималь­ным количеством радиодеталей.

                                     Зарядное устройство на импульсном блоке питания

Введение

Конструирование источников питания на силовых трансформа­торах прекратилась еще в про­шлом веке, ввиду больших габари­тов и массы и потерями электро­энергии на нагрев стабилизирую­щих элементов. Разработка мощ­ных высокочастотных транзисто­ров привела к использованию их в легких малогабаритных источни­ках тока с применением ферритовых высокочастотных трансформа­торов, которые позволяют выпол­нить инвертирование энергии в на­грузку на частотах, соизмеримых с длиной радиоволн.

Малогабарит­ное исполнение трансформатора инвертора позволило выполнить источники тока карманного габари­та. Как и всем инновациям, импуль­сным источникам тока присущи не­которые недостатки, устранимые схемными решениями. Дальнейшее продвижение новых технологий привело к выполнению инвертора на одном кристалле, с повышени­ем частоты преобразования и уменьшением габаритов до разме­ров спичечного коробка.

Новые технологии зарядки и восстановления аккумуляторов по­зволяют снизить мощность на ре­генерацию пластин, хотя зарядка аккумуляторов в современных ав­томобилях не претерпела суще­ственных изменений, что, как и раньше, приводит аккумуляторы к преждевременной кристаллиза­ции, повышению внутреннего со­противления и ухудшению пуско­вых характеристик.

Трехфазный генератор перемен­ного тока автомобиля при выпрям­лении и стабилизации выходного напряжения не имеет циклической составляющей с определенной скважностью для импульсного ре­жима восстановления аккумулято­ра, возможно, это боязнь повредить электронную начинку автомобиля, аккумулятор в автомобилях заря­жается без снятия крупнокристал­лической сульфатации.

Помехи импульсного источника питания компьютера или иного ус­тройства легко устраняются введе­нием фильтров в блоках питания и подачей энергии в нагрузку при от­ключенном инверторе, то есть при отсутствии преобразования — сни­жении тока преобразования почти до нуля, и устранением паразитных колебаний, вызванных резонансом контура обмоток высокочастотно­го трансформатора.

Для борьбы с этим отрицатель­ным эффектом используется спе­циальный порядок намотки обмо­ток трансформатора с применени­ем внутренних межобмоточных эк­ранов, снижением поверхностного эффекта тока простым расщепле­нием проводников на большее ко­личество с меньшим сечением.

Принцип работы

В однотактный преобразова­тель входит два основных элемен­та — тактовый генератор на однопереходном транзисторе и блокинг-генератор на мощном транзи­сторе. Инвертирование энергии происходит многократно: энергия электросети выпрямляется диод­ным мостом и подается на ключе­вой преобразователь в виде посто­янного напряжения.

Схемы зарядных устройств для автомобильных АКБ: как сделать своими руками

Бывают случаи, особенно зимой, когда владельцы автомобилей нуждаются в подзарядке автомобильного аккумулятора от внешнего источника питания. Безусловно, людям, не имеющим хороших навыков работы с электротехникой, желательно купить заводское устройство зарядки аккумуляторной батареи, ещё лучше приобрести пуско-зарядное устройство для запуска двигателя с разряженным аккумулятором без потерь времени на внешнюю подзарядку.

Но если есть небольшие знания в области электроники, можно собрать простое зарядное устройство своими руками.

Общая характеристика

Для правильного обслуживания аккумулятора и продления срока его службы подзарядка требуется при падении напряжения на клеммах ниже 11,2 В. При таком напряжении двигатель, скорее всего, запустится, но при долгой стоянке зимой это приведёт к сульфатации пластин и, как следствие, к снижению ёмкости батареи. При длительной стоянке зимой необходимо регулярно следить за вольтажом на клеммах АКБ. Оно должно составлять 12 В. Лучше всего снять батарею и занести её в тёплое место, не забывая при этом следить за уровнем заряда.

Зарядка АКБ производится постоянным или импульсным током. При использовании блока питания постоянного напряжения ток для правильной зарядки должен составлять одну десятую часть от ёмкости батареи

. Если ёмкость АКБ составляет 50 А-ч, то для зарядки необходим ток 5 ампер.

Для продления срока службы АКБ применяют методики десульфатации аккумуляторных пластин. Батарею разряжают до напряжения менее пяти вольт многократным потреблением большого тока краткой длительности. Пример такого потребления — запуск стартера. После этого производят медленную полную зарядку маленьким током в пределах одного ампера. Повторяют процесс 8—9 раз. Метод десульфатации является долгим по времени, но согласно всем исследованиям даёт хороший результат.

Нужно помнить, что при зарядке важно не допускать перезаряда АКБ. Заряд производится до напряжения 12,7—13,3 вольт и зависит от модели батареи. Максимальный заряд указывается в документации к аккумулятору, которую всегда можно найти в интернете.

Перезаряд вызывает закипание, увеличивает плотность электролита и, как следствие, разрушение пластин. Заводские устройства зарядки имеют системы контроля заряда и последующего отключения.

Собрать самостоятельно такие системы, не обладая достаточными знаниями в электронике, достаточно сложно.

Схемы для сборки своими руками

Стоит рассказать о простых устройствах зарядки, которые можно собрать, обладая минимальными знаниями в электронике, а ёмкость заряда отследить путём подключения вольтметра или обыкновенного тестера.

Схема зарядки для экстренных случаев

Бывают случаи, когда автомобиль, простоявший ночь возле дома, утром невозможно завести из-за разряженного аккумулятора. Причин возникновения этого неприятного обстоятельства может быть много.

Если аккумулятор был в хорошем состоянии и немного разрядился, решить проблему помогут:

  1. Источник постоянного напряжения 12—25 вольт.
  2. Сопротивление ограничения тока.

В качестве источника питания отлично подойдёт зарядное устройство от ноутбука. Оно обладает выходным напряжением в 19 вольт и током в пределах двух ампер, чего вполне достаточно для выполнения поставленной задачи. На выходном разъёме, как правило, внутренний вход — плюс, внешний контур штекера — минус.

В качестве ограничительного сопротивления, которое является обязательным, можно применить салонную лампочку. Можно использовать и более мощные лампы, например, от габаритов, но это создаст лишнюю нагрузку на блок питания, что очень нежелательно.

Собирается элементарная схема: минус блока питания подключается к лампочке, лампочка к минусу АКБ. Плюс идёт напрямую от батареи к блоку питания. В течение двух часов аккумулятор получит заряд для запуска двигателя.

Из блока питания от стационарного компьютера

Такое устройство более сложно в изготовлении, но его можно собрать с минимальными познаниями в электронике. Основой послужит ненужный блок от системного блока компьютера. Выходные напряжения таких блоков +5 и +12 вольт с выходным током около двух ампер. Эти параметры позволяют собрать немощное зарядное устройство, которое при правильной сборке

долго и надёжно послужит хозяину. Полная зарядка аккумулятора займёт длительное время и будет зависеть от ёмкости батареи, но не будет создаваться эффекта десульфатации пластин. Итак, пошаговая сборка прибора:

  1. Разобрать блок питания и выпаять все провода кроме зелёного. Запомнить или отметить места входа чёрного (GND) и жёлтого +12 В.
  2. Зелёный провод припаять к месту, где находился чёрный (это необходимо для старта блока без системной платы ПК). На место чёрного провода припаять отвод, который будет минусовым для зарядки АКБ. На место жёлтого провода припаять плюсовой отвод зарядки аккумулятора.
  3. Необходимо найти микросхему TL 494 или её аналог. Список аналогов легко найти в интернете, один из них обязательно будет найден в схеме. При всём многообразии блоков без этих микросхем их не производят.
  4. От первой ноги этой микросхемы — она левая нижняя, найти резистор, который идёт на выход +12 вольт (жёлтый провод). Это можно сделать визуально по дорожкам на схеме, можно при помощи тестера, подключив питание и замерив напряжение на входе резисторов, идущих к первой ноге. Не стоит забывать, что на первичную обмотку трансформатора идёт напряжение 220 вольт, поэтому нужно соблюдать меры безопасности при запуске блока без корпуса.
  5. Выпаять найденный резистор, з

Зарядное устройство для аккумуляторов своими руками: схемы, типы, порядок работ

11 примеров: схемы на самодельное зарядное устройство для автомобильного аккумулятора

Чтобы понять, обладаете ли вы необходимой информацией об аккумуляторах и зарядных устройствах для них, следует пройти небольшой тест:

  1. По каким основным причинам происходит разрядка автомобильного аккумулятора на дороге?

А) Автомобилист вышел из транспорта и забыл выключить фары.

Б) Аккумуляторная батарея слишком нагрелась под воздействием солнечных лучей.

  1. Может ли аккумулятор выйти из строя, если автомобилем не пользуются долгое время (стоит в гараже без запуска)?

А) При долгом простое аккумуляторная батарея выйдет из строя.

Б) Нет, батарея не испортится, ее потребуется только зарядить и она снова будет функционировать.

  1. Какой источник тока используется для подзарядки АКБ?

А) Есть только один вариант — сеть с напряжением в 220 вольт.

Б) Сеть на 180 Вольт.

  1. Обязательно снимать аккумуляторную батарею при подключении самодельного устройства?

А) Желательно производить демонтаж батареи с установленного места, иначе возникнет риск повредить электронику поступлением большого напряжения.

Б) Необязательно снимать АКБ с установленного места.

  1. Если перепутать «минус» и «плюс» при подключении ЗУ, то аккумуляторная батарея выйдет из строя?

А) Да, при неправильном подключении, аппаратура сгорит.

Б) Зарядное устройство просто не включится, потребуется переместить на положенные места необходимые контакты.

Ответы:

  1. А) Не выключенные фары при остановке и минусовая температура – наиболее распространенные причины разряда АКБ на дороге.
  2. А) АКБ выходит из строя, если долго не подзаряжать ее при простое автомобиля.
  3. А) Для подзарядки применяется напряжение сети в 220 В.
  4. А) Не желательно производить зарядку батареи самодельным устройством, если она не снята с автомобиля.
  5. А) Не следует путать клеммы, иначе самодельный аппарат перегорит.
  1. Потребуется ли производить какие-то дополнительные меры, перед тем как приступать к зарядке аккумуляторной батареи на своём автомобиле? – Да, потребуется почистить клеммы, поскольку во время работы на них появляются кислотные отложения. Контакты очень хорошо нужно почистить, чтобы ток без трудностей поступал к батарее.

    Иногда автомобилисты используют смазку для обработки клемм, ее тоже следует убрать.

  2. Чем протереть клеммы зарядных устройств? — Специализированное средство можно купить в магазине или приготовить самостоятельно. В качестве самостоятельно изготовленного раствора используют воду и соду. Компоненты смешиваются и перемешиваются.

    Это отличный вариант для обработки всех поверхностей. Когда кислота соприкоснется с содой, то произойдет реакция и автомобилист обязательно ее заметит. Это место и потребуется тщательно протереть, чтобы избавиться от всей кислоты. Если клеммы ранее обрабатывались смазкой, то она убирается любой чистой тряпкой.

  3. Если на аккумуляторе стоят крышки, то их нужно вскрывать перед началом зарядки? — Если крышки имеются на корпусе, то их обязательно снимают.
  4. По какой причине необходимо откручивать крышечки с аккумуляторной батареи? — Это нужно, чтобы газы, образующиеся в процессе зарядки, беспрепятственно выходили из корпуса.
  5. Есть необходимость обращать внимание на уровень электролита в аккумуляторной батарее? – Это делается в обязательном порядке. Если уровень ниже требуемого, то необходимо добавить дистиллированную воду внутрь аккумулятора. Уровень определить не составит труда – пластины должны быть полностью покрыты жидкостью.

Самоделка по способу эксплуатации несколько отличается от заводского варианта. Это объясняется тем, что у покупного агрегата имеются встроенные функции, помогающие в работе. Их сложно установить на аппарате, собранном дома, а потому придется придерживаться нескольких правил при эксплуатации.

  1. Зарядное устройство, собранное своими руками не будет отключаться при полной зарядке аккумулятора. Именно поэтому необходимо периодически следить за оборудованием и подключать к нему мультиметр – для контроля заряда.
  2. Нужно быть очень аккуратным, не путать «плюс» и «минус», иначе зарядное устройство сгорит.
  3. Оборудование должна быть выключено, когда происходит соединение с зарядным устройством.

Выполняя эти простые правила, получится правильно произвести подпитку АКБ и не допустить неприятных последствий.

Топ-3 производителей зарядных устройств

Если нет желания или возможности своими руками собрать ЗУ, то обратите внимание на следующих производителей:

Фирмы хорошо зарекомендовали себя на рынке, а потому о надежности и функциональности переживать при покупке не следует.

Как избежать 2-х ошибок при зарядке аккумуляторной батареи

Необходимо соблюдать основные правила, чтобы правильно подпитать батарею на автомобиле.

  1. Напрямую к электросети аккумуляторную батарею запрещено подключать. Для этой цели и предназначается зарядные устройства.
  2. Даже если устройство изготавливается качественно и из хороших материалов, всё равно потребуется периодически наблюдать за процессом зарядки, чтобы не произошли неприятности.

Выполнение простых правил обеспечит надежную работу самостоятельно сделанного оборудования. Гораздо проще следить за агрегатом, чем после тратиться на составляющие для ремонта.

Самое простое зарядное устройство для АКБ

Схема 100% рабочего ЗУ на 12 вольт

ЗУ на 12 вольт

Посмотрите на картинке на схему ЗУ на 12 В.  Оборудование предназначается для зарядки автомобильных аккумуляторов с напряжением 14,5 Вольт.

Максимальный ток, получаемый при заряде составляет 6 А. Но аппарат также подходит и для других аккумуляторов – литий-ионных, поскольку напряжение и выходной ток можно отрегулировать.

Все основные компоненты для сборки устройства можно найти на сайте Aliexpress.

Необходимые компоненты:

  1. dc-dc понижающий преобразователь.
  2. Амперметр.
  3. Диодный мост КВРС 5010.
  4. Концентраторы 2200 мкФ на 50 вольт.
  5. трансформатор ТС 180-2.
  6. Предохранители.
  7. Вилка для подключения к сети.
  8. «Крокодилы» для подключения клемм.
  9. Радиатор для диодного моста.

Трансформатор используется любой, по собственному усмотрению Главное, чтобы его мощность была не ниже 150 Вт (при зарядном токе в 6 А). Необходимо установить на оборудование толстые и короткие провода. Диодный мост фиксируется на большом радиаторе.

Схема ЗУ Рассвет 2

Схема ЗУ Рассвет 2

Посмотрите на картинке на схему зарядного устройства Рассвет 2. Она составлена по оригинальному ЗУ. Если освоить эту схему, то самостоятельно получится создать качественную копию, ничем не отличающуюся от оригинального образца.

Конструктивно устройство представляет собой отдельный блок, закрывающийся корпусом, чтобы защитить электронику от влаги и воздействия плохих погодных условий. На основание корпуса необходимо подсоединить трансформатор и тиристоры на радиаторах.

Потребуется плата, что будет стабилизировать заряд тока и управлять тиристорами и клеммы.

1 схема умного ЗУ

Умное ЗУ

Посмотрите на картинке принципиальную схему умного зарядного устройства. Приспособ

Схема зарядного устройства для автомобильного аккумулятора своими руками

При нормальных условиях эксплуатации, электрическая система автомобиля самодостаточна. Речь идет об энергоснабжении – связка из генератора, регулятора напряжения, и аккумуляторной батареи, работает синхронно и обеспечивает бесперебойное питание всех систем.

Это в теории. На практике, владельцы автомобилей вносят поправки в эту стройную систему. Или же оборудование отказывается работать в соответствии с установленными параметрами.

Например:

  1. Эксплуатация аккумуляторной батареи, которая исчерпала свой ресурс. Элемент питания «не держит» заряд
  2. Нерегулярные поездки. Длительный простой автомобиля (особенно в период «зимней спячки») приводит к саморазряду АКБ
  3. Автомобиль используется в режиме коротких поездок, с частым глушением и запуском мотора. АКБ просто не успевает подзарядиться
  4. Подключение дополнительного оборудования увеличивает нагрузку на АКБ. Зачастую приводит к повышенному току саморазряда при выключенном двигателе
  5. Экстремально низкая температура ускоряет саморазряд
  6. Неисправная топливная система приводит к повышенной нагрузке: автомобиль заводится не сразу, приходится долго крутить стартер
  7. Неисправный генератор или регулятор напряжения не позволяет нормально заряжать аккумулятор. К этой проблеме относятся изношенные силовые провода и плохой контакт в цепи заряда
  8. И наконец, вы забыли выключить головной свет, габариты или музыку в автомобиле. Для полного разряда аккумулятора за одну ночь в гараже, иногда достаточно неплотно закрыть дверь. Освещение салона потребляет достаточно много энергии.

Любая из перечисленных причин приводит к неприятной ситуации: вам надо ехать, а батарея не в силах провернуть стартер. Проблема решается внешней подпиткой аккумулятора: то есть, зарядным устройством.

Во вкладке четыре проверенных и надежных схем зарядных устройств для автомобиля от простой до самой сложной. Выбирай любую и она будет работать.

Простая схема зарядного устройства на 12В.

Зарядное устройство с регулировкой тока зарядки.

Регулировка от 0 до 10А осуществляется изменением задержки открывания тринистора.

Схема зарядного устройства для аккумулятора с самоотключением после зарядки.

Для заряда аккумуляторов емкостью 45 ампер.

Схема умного зарядного устройства, которое предупредит о не правильном подключении.

Зарядное устройство для автомобильных аккумуляторов своими руками: схемы изготовления разных устройств

Наверное, каждый автолюбитель сталкивался с проблемой разряженного аккумулятора. Иногда аккумулятор разряжается в самых неожиданных ситуациях, например, когда водитель собирается на работу и торопится, чтобы не опоздать. В такие моменты разряженный аккумулятор может привести к не самым приятным последствиям.

Для того чтобы можно было избегать подобных ситуаций, многие автолюбители прибегают к помощи специальных устройств, которые позволяются зарядить автомобильный аккумулятор. Такие зарядные устройства можно с лёгкостью приобрести в специальных магазинах или на рынках. Ассортимент широкий, цены разные.

Но многие автолюбители хоть раз задумывались об изготовлении зарядного устройства для своих аккумуляторов своими руками. А такая возможность действительно есть. По сути, каждый пользователь может собрать такое устройство своими собственными силами, потратившись разве что на компоненты всего прибора. К тому же, используя все нужные для этого схемы и инструкции, любой автолюбитель может изготовить зарядное устройство для аккумулятора своего автомобиля своими руками, особенно если у него уже есть определённый опыт работы с электротехникой.

Простое зарядное устройство на микросхеме LM317

Для начала можно представить вариант создания зарядного устройства на микросхеме LM137, представляющей из себя линейный стабилизатор напряжениям, способный регулировать выходное напряжения. Этот вариант может называться одним из самых простых, так как само устройство такой самодельной зарядки не является сложным, что позволяет пользователю изготовить его без особых проблем.

В этом варианте устройства будут задействованы целых два стабилизатора. Делается это для того, чтобы один из этих двух стабилизаторов был подключён по схеме стабилизатора тока, в то время как на втором должен быть собран пороговый узел.

Схема

Выше представлена схема такого зарядного устройства. На ней можно заметить, что резисторы R2 и R3, с помощью которых можно выставить необходимое пользователю напряжение на выходе, заменены тут на переменный резистор. Это делается для более удобной подстройки. Заряд аккумулятора будет завершён именно в тот момент, когда напряжение на самом аккумуляторе будет равно напряжения заряда устройства.

Максимально допустимое значение заряда тока равняется 1,5 Ампер. Несмотря на кажущуюся слабость, этого значения зарядного устройства хватит для зарядки аккумуляторов. Получившимся устройством можно будет заряжать бесперебойники, аккумуляторы для мотоциклов и автомобилей. В случае последних, процесс зарядки будет весьма продолжительным, но нужно признать, что вариант такого самодельного зарядного устройства — очень даже рабочий и может, несомненно, пригодиться.

В том случае, если ток с зарядного устройства будет более 500 мА, то микросхему рекомендуется устанавливать на теплоотвод.

Мощное зарядное устройство для аккумуляторов

Выше был указан очень простой вариант самодельного зарядного устройства для автомобильного аккумулятора, слабого, но допустимого. Сейчас будет представлен вариант одного из самых мощных устройств, которое можно сделать своими руками. Ток такого устройства будет равен до 50 Ампер, а выходная мощность — 350-600 ватт в среднем.

Схема

Схема такого устройства весьма проста. За основу берётся всем известная IR253, которая будет выполнять функции задающего генератора. Она будет управлять двумя силовыми ключами. Рекомендуется задействовать мощные N-канальные полевые высоковольтные транзисторы.

Как можно заметить, схема блока являет собой полумост. Сетевое напряжение поступает на выпрямитель через сетевой фильтр. Для ограничения пускового тока используется термистор, имеющий расчётный ток 5 Ампер и сопротивление 5 Ом. Плёночные конденсаторы и дроссель выполняют роль сетевого фильтра для сглаживания помех и сетевых пульсаций.

В качестве мостового выпрямителя можно взять уже готовый мост, но в то же время можно собрать его из четырёх отдельных диодов. В обоих указанных случаях мост должен быть рассчитан на ток 6-10 и напряжение 600-1000 Вольт (рекомендуемые значения). Для этого очень удобно будет использовать готовые сборки диодов, которые уже имеются в блоках питания компьютеров.

Электролиты полумоста имеют эффективную ёмкость 330-470 мкФ и рабочее напряжение, составляющее 200-250 Вольт. В случае если мощность блока будет выше, чем допустимые значения, то следует увеличить ёмкость вышеуказанных конденсаторов, которые, кстати, также можно обнаружить в блоках питания персональных компьютеров. Там же можно найти и готовый трансформатор, который не будет нуждаться в перемотке.

Силовые транзисторы могут быть установлены либо на общий теплоотвод, либо на отдельные. Кстати, в том случае, если пользователь решит подключить силовые транзисторы на теплоотвод общий, то придётся предварительно изолировать его ключи, для того чтобы избежать вероятность возникновения короткого замыкания.

Во время сборки микросхему рекомендуется устанавливать на специальную платформу. Это делается для лёгкой замены микросхем в том случае, если она неожиданно выйдет из строя. На устройство не будут оказывать влияние перепады напряжения в сети, что гарантирует его стабильную работу без каких-либо сбоев и шумов.

Следует запомнить тот момент, что в холостом режиме транзисторы должны быть холодными, даже ледяными. В противном случае это может означать ошибку в монтаже или какой-то компонент сборки не работает.

В качестве диодного выпрямителя на выходе прибора рекомендуется задействовать быстрые, импульсные или ультрабыстрые диоды с большим током (это 30 Ампер), также можно использовать диодные сборки шоттки, работающие на большой мощности. В случае этого устройства лучше не применять обычные выпрямители на 50 Гц, так как на выходе схемы имеется напряжение высокой частоты.

  • Внимание нужно заострить на том, что данный блок не оснащён защитой от возможных коротких замыканий, поэтому не следует замыкать провода на выходе, так как в противном случае схема может дать сбой и выйти из строя.

Вся схема довольно компактна и легка, что может обрадовать не самых опытных пользователей, не имеющих определённых навыков и большого опыта в этом деле. Имеющая схема сможет помочь в этом деле.

Импульсное зарядное устройство для аккумуляторов

Можно рассмотреть вариант с изготовлением импульсного зарядного устройства. Принцип создания такого устройства заключается в том, что следует просто заменить трансформаторный блок питания на импульсный. Это довольно компактное и лёгкое зарядное устройство, которое будет подробно рассмотрено ниже. Импульсный источник питания изготавливается посредством применения микросхемы IR2153.

Эта схема отличается от других своих аналогов тем, что в данном случае вместо двух конденсаторов, которые подключены со средней точкой, после диодного моста применяется всего один электролит.

Схема

Этот вариант зарядного устройства рассчитан на сравнительно небольшую мощность, что в принципе можно исправить, если заменить некоторые компоненты на более мощные. В результате можно создать более мощное устройство.

В данной схеме могут быть использованы ключи серии 8N50. Эти ключи оснащены изолированным корпусом, так что в случае применения общего теплоотвода, можно не беспокоиться о слюдяных прокладках, так как их можно вообще не использовать.

Диодные мосты, опять же, можно взять от блоков питания от обычных персональных компьютеров, а можно собрать его их четверых выпрямительных диодов.

После можно упомянуть цепочку питания микросхемы. Питание можно взять с переменки, резистор для гашения тока на 18 кОм. После резистора находится простой выпрямитель на одном-единственном диоде и питание поступает сразу на микросхему.На питании также стоит электролит с параллельно подключённым керамическим или плёночным конденсатором, что делается для наилучшего сглаживания помех и пульсаций.

  • Кстати, и силовой трансформатор можно взять также из компьютерного блока питания. Он как раз превосходно подходит для таких целей, так как обеспечивает приличный ток на выходе и обеспечивает сразу несколько выходных напряжений.

Выходные выпрямительные диоды обязательно должны быть импульсными, так как обычные не смогут работать из-за повышенной частоты. Сетевой фильтр можно и не ставить, хотя пару ёмкостей и дроссель, представляющих собой фильтр, желательны к установке. Для снижения бросков на входе до фильтра можно использовать термистор Ом на 5, легко вытащить из компьютерного блока питания.

Электролитический конденсатор подбирается с учётом специального отношения 1 Ватт — 1 мкФ. Напряжение такого конденсатора должно быть равно 400 вольт.

Это довольно несложная схема, которая может быть выполнена даже пользователем, не обладающим опытом. К тому же при наличии необходимых схем и советов к созданию такого устройства, можно справиться без особых проблем.

Цепи зарядного устройства свинцово-кислотных аккумуляторов

Цепи зарядного устройства свинцово-кислотных аккумуляторов, описанные в этой статье, можно использовать для зарядки всех типов свинцово-кислотных аккумуляторов с заданной скоростью.

В этой статье рассказывается о нескольких схемах зарядного устройства свинцово-кислотных аккумуляторов с автоматической перезарядкой и отключением при малой разрядке. Все эти конструкции проходят тщательные испытания и могут использоваться для зарядки всех автомобильных аккумуляторов и аккумуляторов SMF емкостью до 100 Ач и даже 500 Ач.

Введение

Свинцово-кислотные батареи обычно используются в тяжелых условиях, требующих много сотен ампер.Для зарядки этих аккумуляторов нам особенно нужны зарядные устройства, рассчитанные на длительную зарядку при высоком токе. Зарядное устройство для свинцово-кислотных аккумуляторов специально разработано для зарядки аккумуляторов большой мощности с помощью специализированных схем управления.

5 полезных и высокомощных схем зарядного устройства для свинцово-кислотных аккумуляторов, представленных ниже, могут использоваться для зарядки больших сильноточных свинцово-кислотных аккумуляторов емкостью от 100 до 500 Ач, конструкция полностью автоматическая и переключает питание на аккумулятор, а также после полной зарядки аккумулятора.


ОБНОВЛЕНИЕ: Вы также можете создать эти простые схемы зарядного устройства для 12 В 7 Ач аккумуляторной батареи s , проверьте их.


Что означает Ah Signify

Единица измерения Ah или ампер-час в любой батарее означает идеальную скорость , при которой батарея будет полностью разряжена или полностью заряжена в течение 1 часа. Например, если аккумулятор на 100 Ач заряжался при токе 100 ампер, для полной зарядки аккумулятора потребуется 1 час.Точно так же, если аккумулятор был разряжен при токе 100 ампер, время резервного питания продлилось бы не более часа.

Но подождите, никогда не пробуйте этот , так как зарядка / разрядка на полной мощности может иметь катастрофические последствия для вашей свинцово-кислотной батареи.

Единица измерения Ач используется только для того, чтобы предоставить нам контрольное значение, которое можно использовать для определения приблизительного времени заряда / разряда батареи при установленной скорости тока.

Например, когда вышеупомянутый аккумулятор заряжается на 10 ампер, используя значение Ач, мы можем найти время полной зарядки по следующей формуле:

Поскольку скорость зарядки обратно пропорциональна времени, мы имеем:

Время = Значение Ач / Скорость зарядки

T = 100/10

где 100 — уровень заряда аккумулятора в Ач, 10 — ток заряда, T — время при скорости 10 А

T = 10 часов.

Формула предполагает, что в идеале для оптимальной зарядки аккумулятора при токе 10 ампер потребуется около 10 часов, но для реальной батареи это может быть около 14 часов на зарядку и 7 часов на разряд. Потому что в реальном мире даже новый аккумулятор не будет работать в идеальных условиях, и с возрастом ситуация может ухудшиться.

Важные параметры, которые необходимо учитывать

Свинцово-кислотные батареи дороги, и вам нужно убедиться, что они прослужат как можно дольше.Поэтому, пожалуйста, не используйте дешевые и непроверенные зарядные устройства, которые могут показаться простыми, но могут медленно повредить вашу батарею.

Большой вопрос в том, необходим ли идеальный способ зарядки аккумулятора? Простой ответ — НЕТ. Потому что, когда мы применяем идеальный метод зарядки, описанный на веб-сайтах «Википедии» или «Университета батарей», мы стараемся заряжать аккумулятор до максимально возможной емкости. Например, при идеальном уровне 14,4 В ваша батарея может быть полностью заряжена, но делать это обычными методами может быть рискованно.

Чтобы достичь этого без риска, вам, возможно, придется использовать усовершенствованную схему ступенчатого зарядного устройства, которую может быть сложно построить и может потребоваться слишком много вычислений.

Если вы хотите избежать этого, вы все равно можете зарядить аккумулятор оптимальным образом (@ около 65%), убедившись, что аккумулятор отключен на немного более низком уровне. Это позволит батарее всегда находиться в менее напряженном состоянии. То же самое касается уровня и скорости разряда.

Как правило, он должен иметь следующие параметры для безопасной зарядки, не требующей специальных ступенчатых зарядных устройств:

  • Фиксированный ток или постоянный ток (1/10 номинала батареи в Ач)
  • Фиксированное напряжение или постоянное напряжение (на 17% выше, чем Напряжение, указанное на батарее)
  • Защита от перезарядки (отключение, когда батарея заряжается до указанного выше уровня)
  • Плавающая зарядка (необязательно, не обязательно)

Если в вашей системе нет этих минимальных параметров, тогда это может постепенно ухудшить производительность и повредить аккумулятор, резко сократив время автономной работы.

  1. Например, если ваша батарея рассчитана на 12 В, 100 Ач, то фиксированное входное напряжение должно быть на 17% выше, чем напечатанное значение, что равно примерно 14,1 В (не 14,40 В, если вы не используете ступенчатое зарядное устройство) .
  2. Ток (в амперах) в идеале должен составлять 1/10 от уровня в ампер-часах, указанного на батарее, поэтому в нашем случае это может быть 10 ампер. Чуть более высокий вход усилителя может быть нормальным, поскольку наш полный уровень заряда уже ниже.
  3. Автоматическое отключение зарядки рекомендуется на вышеуказанном 14.1 В, но это не обязательно, так как уровень полного заряда у нас уже немного ниже.
  4. Плавающий заряд — это процесс снижения тока до незначительных пределов после того, как аккумулятор полностью зарядился. Это предотвращает саморазряд батареи и постоянно поддерживает ее на полном уровне до тех пор, пока пользователь не извлечет ее для использования. Совершенно необязательно . Это может быть необходимо только в том случае, если вы не используете аккумулятор в течение длительного времени. В таких случаях также лучше вынимать аккумулятор из зарядного устройства и периодически подзаряжать его каждые 7 дней.

Самый простой способ получить фиксированное напряжение и ток — использовать микросхемы стабилизаторов напряжения, как мы узнаем ниже.

Еще один простой способ — использовать в качестве источника входного сигнала готовый блок питания 12 В SMPS 10 А с регулируемой предустановкой. SMPS будет иметь небольшую предустановку в углу, которую можно настроить на 14,0 В.

Помните, что вам нужно будет держать аккумулятор подключенным не менее 10–14 часов или пока напряжение на клеммах аккумулятора не достигнет 14,2 В. Хотя это уровень может выглядеть немного заниженным, чем стандартный 14.Полный уровень 4 В гарантирует, что ваша батарея никогда не перезарядится и гарантирует длительный срок службы батареи.

Все подробности представлены в этой инфографике ниже:

Однако, если вы любитель электроники и заинтересованы в создании полноценной схемы со всеми идеальными опциями, в этом случае вы можете выбрать следующие комплексные схемы.

[Новое обновление] Автоматическое отключение батареи, зависящее от тока

Обычно во всех обычных схемах зарядного устройства используется автоматическое отключение при обнаружении напряжения или зависимое от напряжения.

Тем не менее, функция определения тока может также использоваться для инициирования автоматического отключения, когда батарея достигает оптимального уровня полной зарядки. Полная принципиальная схема для автоматического отключения по току показана ниже:

ПОЖАЛУЙСТА, ПОДКЛЮЧИТЕ РЕЗИСТОР 1K ПОСЛЕ ПРАВОЙ СТОРОНЫ 1N4148 ДИОД

Как это работает

Резистор 0,1 Ом действует как датчик тока, создавая эквивалентную разность потенциалов через себя. Сопротивление резистора должно быть таким, чтобы минимальное отклонение потенциала на нем было не менее 0.На 3 В выше, чем падение диода на выводе 3 ИС, пока аккумулятор не достигнет желаемого уровня полного заряда. По достижении полного заряда этот потенциал должен упасть ниже уровня падения диода.

Первоначально, когда батарея заряжается, потребляемый ток развивает отрицательную разность потенциалов, скажем, -1 В на входных выводах ИС. Это означает, что напряжение на контакте 2 теперь становится ниже напряжения на контакте 3 как минимум на 0,3 В. Из-за этого на выводе 6 микросхемы появляется высокий уровень, позволяющий полевому МОП-транзистору проводить и подключать батарею к источнику питания.

Когда батарея заряжается до оптимального уровня, напряжение на резисторе измерения тока падает до достаточно низкого уровня, в результате чего разность потенциалов на резисторе становится почти нулевой.

Когда это происходит, потенциал контакта 2 поднимается выше, чем потенциал контакта 3, вызывая низкий уровень на контакте 6 ИС и отключая полевой МОП-транзистор. Таким образом, аккумулятор отключается от источника питания, что приводит к прекращению процесса зарядки. Диод, подключенный к контакту 3 и контакту 6, блокирует или фиксирует цепь в этом положении до тех пор, пока питание не будет отключено и снова включено для нового цикла.

Вышеупомянутая схема зарядки, зависящая от тока, также может быть выражена следующим образом:

При включении питания конденсатор емкостью 1 мкФ заземляет инвертирующий вывод операционного усилителя, вызывая кратковременный высокий уровень на выходе операционного усилителя, который включает МОП-транзистор. Это начальное действие подключает батарею к источнику питания через полевой МОП-транзистор и измерительный резистор RS. Ток от батареи вызывает соответствующий потенциал для развития через RS, который поднимает нон-invering вход ОУ над входом опорного инвертирующий (3V).

Теперь выход операционного усилителя фиксируется и заряжает батарею, пока она не будет почти полностью заряжена. Такое положение уменьшает ток через RS таким образом, что потенциал на него падает ниже 3 ссылки V и ОУ выход включается низким уровень, выключая MOSFET и процесс зарядки для аккумулятора.

1) Использование одиночного операционного усилителя

Глядя на первую сильноточную схему для зарядки больших батарей, мы можем понять идею схемы с помощью следующих простых моментов:

В показанной конфигурации есть три основных этапа, а именно: питание питающая ступень, состоящая из трансформатора и мостовой выпрямительной сети.

Конденсатор фильтра после мостовой схемы был проигнорирован для простоты, однако для лучшего вывода постоянного тока на батарею можно добавить конденсатор 1000 мкФ / 25 В между положительным и отрицательным полюсом моста.

Выходной сигнал источника питания подается непосредственно на аккумулятор, который необходимо зарядить.

Следующий каскад состоит из компаратора напряжения IC на операционном усилителе 741, который сконфигурирован так, чтобы измерять напряжение батареи во время ее зарядки и переключать свой выход на вывод № 6 с соответствующим ответом.

Контакт № 3 ИС подключен к батарее или положительному полюсу питания схемы через предустановку 10K.

Предварительная установка настроена таким образом, что ИС меняет свой выходной сигнал на выводе №6, когда батарея полностью заряжается, и достигает примерно 14 вольт, что является напряжением трансформатора при нормальных условиях.

Контакт № 2 ИС фиксируется с фиксированным опорным сигналом через сеть делителя напряжения, состоящую из резистора 10 кОм и стабилитрона на 6 В.

Выходной сигнал ИС подается на каскад драйвера реле, где транзистор BC557 образует основной управляющий компонент.

Первоначально питание схемы инициируется нажатием переключателя «пуск». При этом переключатель обходит контакты реле и мгновенно запитывает цепь.

Микросхема определяет напряжение батареи, и, поскольку на этом этапе оно будет низким, на выходе микросхемы появится низкий логический уровень.

Включает транзистор и реле, реле мгновенно блокирует питание через соответствующие контакты, так что теперь, даже если переключатель «пуск» отпущен, схема остается включенной и начинает заряжать подключенную батарею.

Теперь, когда заряд батареи достигает примерно 14 вольт, микросхема определяет это и мгновенно переводит свой выходной сигнал на высокий логический уровень.

Транзистор BC557 реагирует на этот высокий импульс и выключает реле, которое, в свою очередь, переключает питание на схему, размыкая защелку.

Цепь полностью отключается до тех пор, пока кнопка пуска не будет нажата еще раз, и подключенный аккумулятор не будет иметь заряд ниже установленной отметки 14 вольт.

Как настроить.

Это очень просто.

Не подключайте аккумулятор к цепи.

Включите питание, нажав кнопку пуска и удерживая ее нажатой вручную, одновременно отрегулируйте предустановку так, чтобы реле просто срабатывало или выключалось при заданном номинальном напряжении трансформатора, которое должно составлять около 14 вольт.

Настройка завершена, теперь подключите полуразряженную батарею к указанным точкам в цепи и нажмите кнопку «пуск».

Из-за разряда батареи теперь напряжение в цепи упадет ниже 14 вольт, и цепь мгновенно защелкнется, инициируя процедуру, как описано в предыдущем разделе.

Принципиальная схема предлагаемого зарядного устройства с высокой емкостью тока приведена ниже.

ПРИМЕЧАНИЕ. Не используйте фильтрующий конденсатор поперек моста. Вместо этого оставьте конденсатор 1000 мкФ / 25 В подключенным прямо к катушке реле. Если не снять конденсатор фильтра, реле может перейти в колебательный режим при отсутствии батареи.

2) Зарядное устройство 12 В, 24 В / 20 А с использованием двух операционных усилителей:

Второй альтернативный способ зарядки свинцово-кислотных аккумуляторов с высоким током можно увидеть на следующей диаграмме с использованием пары операционных усилителей:

Работу схемы можно понять по следующим пунктам:

Когда схема запитана без подключенной батареи, схема не реагирует на ситуацию, так как начальное положение реле замыкает цепь, отключая цепь от зарядки. поставка.

Теперь предположим, что разряженная батарея подключена к точкам батареи. Предположим, что напряжение батареи находится на некотором промежуточном уровне, который может находиться между полным и низким уровнем заряда.

Схема получает питание от этого промежуточного напряжения батареи. Согласно настройке предустановки вывода 6, этот вывод обнаруживает низкий потенциал, чем опорный уровень вывода 5. что заставляет его выходной контакт 7 перейти в высокий уровень. Это, в свою очередь, вызывает активацию реле и подключение источника заряда к цепи и батарее через замыкающие контакты.

Как только это произойдет, уровень заряда также упадет до уровня заряда батареи, и два напряжения сойдутся на уровне напряжения батареи. Теперь аккумулятор начинает заряжаться, и напряжение на его клеммах начинает медленно увеличиваться.

Когда аккумулятор достигает полного уровня заряда, контакт 6 верхнего операционного усилителя становится высоким, чем его контакт 5, в результате чего его выходной контакт 7 становится низким, и это выключает реле, и зарядка прекращается.

Тут происходит еще кое-что. Вывод 5 подключен к отрицательному потенциалу на выводе 7 через диод 10k / 1N4148, что еще больше снижает потенциал вывода 5 по сравнению с выводом 6.Это называется гистерезисом, который гарантирует, что даже если батарея сейчас опустится до некоторого более низкого уровня, который не приведет к возврату операционного усилителя в режим зарядки, вместо этого уровень заряда батареи теперь должен значительно снизиться, пока не будет активирован нижний операционный усилитель.

Теперь предположим, что уровень заряда батареи продолжает падать из-за подключенной нагрузки, и ее потенциальный уровень достигает минимального уровня разряда. Это обнаруживается контактом 2 нижнего операционного усилителя, потенциал которого теперь ниже его контакта 3, что побуждает его выходной контакт 1 становиться высоким и активировать транзистор BC547.

BC547 полностью заземляет контакт 6 верхнего операционного усилителя. Это приводит к срабатыванию защелки гистерезиса из-за падения потенциала контакта 6 ниже контакта 5.

Это мгновенно приводит к тому, что выходной контакт 7 становится высоким и активирует реле, которое снова инициирует зарядку аккумулятора, и цикл повторяет процедуру. пока аккумулятор остается подключенным к зарядному устройству.

LM358 Распиновка


Чтобы узнать больше об автоматических зарядных устройствах, вы можете прочитать эту статью о схемах автоматического зарядного устройства операционных усилителей .


Видеоклип:

Установку вышеуказанной схемы можно визуализировать в следующем видео, которое показывает отключающие характеристики схемы на верхний и нижний пороги напряжения, как зафиксировано соответствующими предустановками операционные усилители

3) Использование IC 7815

В третьем пояснении схемы ниже подробно описывается, как аккумулятор может эффективно заряжаться без использования каких-либо микросхем или реле, а просто с помощью BJT, давайте изучим процедуры:

Идея была предложена автор: Mr.Раджа Гилсе.

Зарядка аккумулятора с помощью регулятора напряжения IC

У меня 2N6292. Мой друг посоветовал мне сделать простой сильноточный источник постоянного тока с фиксированным напряжением для зарядки аккумулятора SMF. Он привел прилагаемую приблизительную схему. Я ничего не знаю об этом транзисторе. Это так ? Мой вход — трансформатор 18 вольт 5 ампер. Он сказал мне добавить конденсатор 2200 мкФ 50 В после выпрямления. Это работает? Если да, нужен ли радиатор для транзистора и / или IC 7815? Он останавливается автоматически, когда батарея достигает 14.5 вольт?
Или требуются другие изменения? Пожалуйста, посоветуйте мне, сэр

Зарядка с конфигурацией эмиттерного повторителя

Да, он будет работать и перестанет заряжать аккумулятор, когда на клеммах аккумулятора будет достигнуто около 14 В.

Однако я не уверен насчет номинала базового резистора 1 Ом … его нужно правильно рассчитать.

И транзистор, и ИС могут быть установлены на общем радиаторе с использованием набора слюдяных сепараторов. Это позволит использовать функцию тепловой защиты ИС и защитить оба устройства от перегрева.

Принципиальная схема

Описание схемы

Показанная схема зарядного устройства сильноточной батареи представляет собой интеллектуальный способ зарядки батареи, а также обеспечивает автоматическое отключение, когда батарея достигает полного уровня заряда.

Схема представляет собой простой каскад на транзисторах с общим коллектором, использующий показанное силовое устройство 2N6292.

Конфигурация также называется эмиттерным повторителем, и, как следует из названия, эмиттер следует за базовым напряжением и позволяет транзистору проводить только до тех пор, пока потенциал эмиттера равен 0.На 7 В ниже приложенного базового потенциала.

В показанной схеме зарядного устройства сильноточной батареи с использованием регулятора напряжения на базу транзистора подается стабилизированное напряжение 15 В от IC 7815, что обеспечивает разность потенциалов около 15 — 0,7 = 14,3 В на эмиттере / земле. транзистора.

Диод не требуется и должен быть удален из базы транзистора, чтобы предотвратить ненужное падение дополнительных 0,7 В.

Указанное выше напряжение также становится зарядным напряжением для подключенной батареи на этих клеммах.

Пока батарея заряжается и напряжение на ее клеммах остается ниже отметки 14,3 В, базовое напряжение транзистора продолжает проводить и подавать на батарею необходимое зарядное напряжение.

Однако, как только батарея начинает достигать полного заряда выше 14,3 В, база блокируется из-за падения 0,7 В на эмиттере, которое заставляет транзистор перестать проводить, и напряжение зарядки отключается от батареи на время. как только уровень заряда батареи начинает опускаться ниже 14.Отметка 3 В, транзистор снова включается … цикл повторяется, обеспечивая безопасную зарядку подключенного аккумулятора.

Базовый резистор = Hfe x внутреннее сопротивление батареи

Вот более подходящая конструкция, которая поможет достичь оптимальной зарядки с использованием IC 7815 IC

Как вы можете видеть, здесь в режиме эмиттерного повторителя используется 2N6284. Это связано с тем, что 2N6284 — это транзистор Дарлингтона с высоким коэффициентом усиления, который обеспечивает оптимальную зарядку батареи при предполагаемой скорости 10 А.

Это можно еще больше упростить, используя один 2N6284 и потенциометр, как показано ниже:

Убедитесь, что вы отрегулировали потенциометр, чтобы получить точное значение 14,2 В на эмиттере батареи.

Все устройства должны устанавливаться на больших радиаторах.

4) Схема зарядного устройства для свинцово-кислотных аккумуляторов 12 В 100 Ач

Предлагаемая схема зарядного устройства для аккумуляторов 12 В 100 Ач была разработана одним из преданных членов этого блога г-ном Ранджаном, давайте узнаем больше о схеме работы зарядного устройства и о том, как его также можно использовать в качестве схемы постоянного зарядного устройства.

Схема схемы

Я, Ранджан, из Джамшедпура, Джаркханд. Недавно во время поиска в Google я узнал о вашем блоге и стал постоянным читателем вашего блога. Я многому научился из твоего блога. Для личного пользования хочу сделать зарядное устройство.

У меня трубчатый аккумулятор на 80 Ач и трансформатор на 10 ампер, 9–0–9 вольт. Таким образом, я могу получить 10 ампер 18-0 вольт, если я использую два вывода трансформатора на 9 вольт (трансформатор на самом деле получается из старого ИБП на 800 ВА).

Я построил принципиальную схему на основе вашего блога. Пожалуйста, взгляните на это и предложите мне. Обратите внимание, что ,.

1) Я живу в очень сельской местности, поэтому есть огромные колебания мощности, они варьируются от 50 В до 250 В. Также обратите внимание, что я буду потреблять очень меньшее количество тока от батареи (обычно использую светодиодные фонари при отключении электроэнергии), примерно 15-20 Вт.

2) Трансформатор на 10 ампер, я думаю, безопасно заряжает трубчатую батарею 80 Ач

3) Все диоды, используемые для схемы, представляют собой диоды 6A4.

4) Два 78h22a используются как параллельные для получения 5 + 5 = 10 ампер на выходе. Хотя я думаю, что Батарея не должна разряжать полные 10 ампер. поскольку он будет находиться в заряженном состоянии при повседневном использовании, внутреннее сопротивление аккумулятора будет высоким и потреблять меньший ток.

5) Переключатель S1 используется с расчетом на то, что при нормальной зарядке он будет оставаться в выключенном состоянии. и после полной зарядки аккумулятора он переключился во включенное состояние, чтобы поддерживать непрерывный заряд с более низким напряжением.СЕЙЧАС вопрос в том, безопасно ли держать аккумулятор под напряжением долгое время без присмотра.

Пожалуйста, ответьте мне своими ценными предложениями.

Принципиальная схема зарядного устройства 100 Ач, разработанная г-ном Ранджаном

Решение запроса цепи

Уважаемый Ранджан,

Для меня ваша силовая схема зарядного устройства VRLA с использованием IC 78h22A выглядит идеально и должна работать, как ожидалось . Тем не менее, для гарантированного подтверждения рекомендуется проверить напряжение и ток практически перед подключением к батарее.

Да, показанный переключатель можно использовать в режиме непрерывной зарядки, и в этом режиме аккумулятор может оставаться постоянно подключенным без присмотра, однако это следует делать только после того, как аккумулятор будет полностью заряжен примерно до 14,3 В.

Обратите внимание, что четыре последовательных диода, подключенные к клеммам GND микросхем, могут быть диодами 1N4007, в то время как остальные диоды должны быть рассчитаны на более 10 ампер, это можно реализовать, подключив два диода 6A4 параллельно в каждом из показанных положений. .

Кроме того, настоятельно рекомендуется размещать обе ИС над одним большим общим радиатором для лучшего и равномерного распределения и рассеивания тепла.

Осторожно : Показанная схема не включает цепь отключения полного заряда, поэтому максимальное напряжение зарядки предпочтительно должно быть ограничено в пределах от 13,8 до 14 В. Это гарантирует, что батарея никогда не сможет достичь предельного порога полной зарядки, и, таким образом, останется в безопасности от условий перезарядки.

Однако это также будет означать, что свинцово-кислотная батарея сможет достичь уровня заряда только около 75%, тем не менее, поддержание недостаточно заряженной батареи обеспечит более длительный срок службы батареи и позволит больше циклов зарядки / разрядки.

Использование 2N3055 для зарядки аккумулятора 100 Ач

Следующая схема представляет простой и безопасный альтернативный способ зарядки аккумулятора 100 Ач с использованием транзистора 2N3055. Он также имеет устройство постоянного тока, поэтому батарею можно заряжать правильным количеством тока.

Будучи эмиттерным повторителем, при полном уровне заряда 2N3055 будет почти выключен, чтобы аккумулятор никогда не перезарядился.

Предел тока можно рассчитать по следующей формуле:

R (x) = 0.7/10 = 0,07 Ом

Мощность будет = 10 Вт

Как просто добавить плавающий заряд

Помните, что на других сайтах могут быть представлены излишне сложные объяснения относительно плавающего заряда, что усложняет понимание концепции.

Плавающий заряд — это просто небольшой регулируемый уровень тока, который предотвращает саморазряд аккумулятора.

Теперь вы можете спросить, что такое саморазряд аккумулятора.

Это снижение уровня заряда аккумулятора, как только исчезает зарядный ток.Вы можете предотвратить это, добавив резистор высокого номинала, такой как 1 кОм 1 ватт, на вход ИСТОЧНИК 15 В и положительный полюс батареи. Это не позволит батарее саморазрядиться и будет поддерживать уровень 14 В, пока батарея подключена к источнику питания.

5) Схема зарядного устройства свинцово-кислотных аккумуляторов IC 555

Пятая концепция ниже объясняет простую и универсальную схему автоматического зарядного устройства. Схема позволит вам заряжать все типы свинцово-кислотных аккумуляторов от 1 Ач до 1000 Ач.

Использование IC 555 в качестве контроллера IC

IC 555 настолько универсален, что может считаться однокристальным решением для любых схемных приложений. Несомненно, он также использовался здесь для еще одного полезного приложения.

Одна микросхема IC 555, несколько пассивных компонентов — это все, что нужно для создания этой выдающейся полностью автоматической схемы зарядного устройства.

Предлагаемая конструкция автоматически распознает подключенную батарею и поддерживает ее в актуальном состоянии.

Аккумулятор, который требуется заряжать, может оставаться подключенным к цепи постоянно, схема будет постоянно контролировать уровень заряда, если уровень заряда превышает верхний порог, схема отключит напряжение зарядки к нему, и если заряд упадет ниже установленного нижнего порога, схема подключится и начнет процесс зарядки.

Как это работает

Схему можно понять по следующим пунктам:

Здесь IC 555 настроен как компаратор для сравнения условий низкого и высокого напряжения батареи на контакте №2 и контакте №6 соответственно.

Согласно устройству внутренней схемы, микросхема 555 установит высокий уровень на своем выходном контакте №3, когда потенциал на контакте №2 станет ниже 1/3 напряжения питания.

Вышеупомянутое положение сохраняется, даже если напряжение на выводе №2 имеет тенденцию немного повышаться.Это происходит из-за внутреннего установленного уровня гистерезиса ИС.

Однако, если напряжение продолжает повышаться, контакт № 6 получает контроль над ситуацией и в тот момент, когда он обнаруживает разность потенциалов выше 2/3 напряжения питания, он мгновенно меняет выходной сигнал с высокого на низкий на контакте № 3.

В предлагаемой схеме это просто означает, что предустановки R2 и R5 должны быть настроены таким образом, чтобы реле просто отключалось, когда напряжение батареи опускается на 20% ниже указанного значения, и активируется, когда напряжение аккумулятора достигает 20% выше указанного значения .

Нет ничего проще этого.

Блок питания представляет собой обычный мост / конденсаторную сеть.

Номинал диода будет зависеть от величины зарядного тока аккумулятора. Как показывает практика, номинальный ток диода должен быть в два раза больше, чем скорость зарядки аккумулятора, в то время как скорость зарядки аккумулятора должна составлять 1/10 от номинала аккумулятора в Ач.

Это означает, что TR1 должен составлять примерно 1/10 от номинала подключенной батареи Ач.

Номинал контактов реле следует также выбирать в соответствии с номинальным током TR1.

Как установить порог отключения батареи

Сначала держите питание цепи выключенным.

Подключите регулируемый источник питания к точкам батареи в цепи.

Подайте напряжение, которое может быть точно равным желаемому пороговому уровню низкого напряжения батареи, затем отрегулируйте R2, чтобы реле просто отключилось.

Затем медленно увеличивайте напряжение до желаемого более высокого порогового значения напряжения батареи, отрегулируйте R5 так, чтобы реле просто снова включилось.

На этом настройка схемы завершена.

Удалите внешний регулируемый источник, замените его аккумулятором, который необходимо зарядить, подключите вход TR1 к сети и включите.

Остальное будет автоматически обработано, то есть теперь аккумулятор начнет заряжаться и отключится, когда он полностью заряжен, а также автоматически подключится к источнику питания, если его напряжение упадет ниже установленного нижнего порога напряжения.

Распиновка IC 555

Распиновка IC 7805

Как настроить схему.

Установка пороговых значений напряжения для вышеуказанной схемы может быть выполнена, как описано ниже:

Первоначально оставьте секцию источника питания трансформатора на правой стороне схемы полностью отключенной от схемы.

Подключите внешний источник переменного напряжения к клеммам (+) / (-) батареи.

Отрегулируйте напряжение до 11,4 В и отрегулируйте предустановку на контакте № 2 так, чтобы реле просто сработало.

Вышеописанная процедура устанавливает нижний порог срабатывания батареи.Заклейте заготовку небольшим количеством клея.

Теперь увеличьте напряжение примерно до 14,4 В и отрегулируйте предустановку на контакте № 6, чтобы просто отключить реле от его предыдущего состояния.

Устанавливает верхний порог отключения цепи.

Зарядное устройство готово.

Теперь вы можете снять регулируемый блок питания с аккумуляторных батарей и использовать зарядное устройство, как описано в статье выше.

Выполняйте описанные выше процедуры с большим терпением и обдумыванием

Отзыв одного из преданных читателей этого блога:

untung suharto 1 января 2017 г., 7:46 утра

Привет, вы ошиблись предустановки R2 и R5, они должны быть не 10k, а 100k, я только что сделал один, и он был успешным, спасибо.

Согласно приведенному выше предложению, предыдущая диаграмма может быть изменена, как показано ниже:

Завершение

В приведенной выше статье мы узнали 5 отличных методов, которые можно применить для изготовления зарядных устройств свинцово-кислотных аккумуляторов , прямо с 7 Ач до 100 Ач или даже с 200 Ач до 500 Ач, просто обновив соответствующие устройства или реле.

Если у вас есть конкретные вопросы относительно этой концепции, не стесняйтесь задавать их через поле для комментариев ниже.

Ссылки:

Зарядка свинцово-кислотных аккумуляторов

Принципы работы свинцово-кислотных аккумуляторов

О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

Импульсное зарядное устройство для восстановления усталых свинцово-кислотных аккумуляторов

Импульсное зарядное устройство для восстановления усталых свинцово-кислотных аккумуляторов

Принципиальная схема

Если у вас есть мотоцикл, дом на колесах, караван, газонокосилка, круиз на день или, может быть, старинный автомобиль, вам в какой-то момент придется списать свинцово-кислотный аккумулятор.Когда аккумулятор неправильно заряжен или саморазрядился, как это происходит во время простоя, кристаллы сульфата накапливаются на пластинах аккумулятора. Сульфат препятствует полной зарядке аккумулятора, и поэтому он не может обеспечить полную емкость. При попытке зарядить аккумулятор в этом состоянии он только нагревается и теряет воду, сила тяжести электролита не увеличивается до его нормального состояния полного заряда. Единственное, что вы делаете — полностью убиваете батарею. Если аккумулятор имеет напряжение покоя не менее 1.8 В / элемент и никакие элементы не закорочены, можно выполнить десульфатацию пластин. Эта схема является дополнением и частью модификации обычного зарядного устройства и решает проблему сульфата.

Проект: возьмите старое зарядное устройство, большое или маленькое, на ваш выбор, в зависимости от размера батарей, с которыми вы обычно работаете (чем больше, тем лучше). Есть несколько уловок для увеличения производительности, если вам это нужно. Начните с того, что вырвите все, кроме трансформатора и выпрямителя. Некоторые старые зарядные устройства оснащены ребристыми выпрямителями, которые имеют высокое падение напряжения и требуют замены.Замените его на прочный мостовой выпрямитель, способный выдерживать большие токи. Вся проводка на вторичной обмотке должна быть короткой и толстой. Выпрямитель должен быть прикручен к шасси болтами, чтобы он не охлаждался. Если у зарядного устройства есть переключатель высокого / низкого уровня, это бонус, в противном случае вы можете в некоторых случаях добавить несколько витков провода на вторичную обмотку. Схема; 14-ступенчатый счетчик пульсаций и генератор IC 4060 вырабатывают импульс, который является тактовым импульсом схемы. Импульс подается на таймер 555, который определяет длину активного выхода.С помощью переключателя вы можете выбрать длинный или короткий импульсный выход. Выход таймера 555 запускает через транзистор драйвер симистора оптоизолятора с переходом через нуль MOC 3041. Это обеспечивает плавный пуск трансформатора зарядного устройства через симистор и демпферную цепь. Для схемы необходим небольшой блок питания, который состоит из Т1 трансформатора 15В 0,1А вторичной обмотки, мостового выпрямителя, регулятора и двух крышек. Поскольку в этот проект входит зарядное устройство (X), результат может отличаться по производительности от одного случая к другому.Однако это не означает, что ваш проект не работает, но эффективность может варьироваться. Некоторые отмечают, что демпфирующий колпачок относится к высоковольтному типу переменного тока (X), а резисторы на стороне сети имеют тип не менее 0,5 Вт. Используйте симистор, который может принимать 400 В + и 10 А +, я использую BTA 25.600, но в большинстве случаев это перебор. Нет печатной платы, извините!

Как это работает:
Ну короткая версия. Цель состоит в том, чтобы получить достаточно высокое напряжение ячейки, чтобы сульфат растворился без кипячения или плавления батареи. Это достигается за счет подачи более высокого напряжения на более короткие периоды времени и за счет того, что батарея некоторое время отдыхает.Импульсы в коротком диапазоне составляют примерно 0,5 с вкл. / 3 с выкл., А длинные импульсы — 1,4 с вкл. / 2 с выкл. Это время может варьироваться в зависимости от допусков компонентов. Начните с длинного импульса, и если вы обнаружите кипение (больше, чем при нормальной зарядке) в электролите, переключитесь на короткие импульсы. Не оставляйте процесс без присмотра, по крайней мере, до тех пор, пока вы не узнаете, как выглядит ваша конкретная версия этого проекта. Я построил первую версию этой схемы около 10 лет назад и экспериментировал с ней, но я уверен, что кто-то может улучшить ее дальше.

автор: Ante
электронная почта: [email protected]
сайт: http://www.electronics-lab.com

Солнечное зарядное устройство, свинцово-кислотный контроллер заряда 12 В с высокой эффективностью с ЖК-дисплеем и без него, солнечный контроллер заряда

Одна из проблем с солнечная энергия заключается в том, что мощность солнечной панели является переменной. Эти солнечные Контроллеры заряда предназначены для извлечения максимального количества энергии доступны от солнечных батарей и поместите его в батарею.Солнечные фотоэлектрические заряды Контроллеры принимают неопределенное напряжение от солнечной панели и приводят его в безопасно заряжать свинцово-кислотные аккумуляторы. Эти солнечные фотоэлектрические контроллеры заряда энергии сбор урожая и трехступенчатый метод загрузки, насыпной, абсорбционный и поплавковый (обслуживание) плата, но из-за природы солнечных панелей они разные по своей природе, чем типичное зарядное устройство с приводом от переменного тока. Они заряжают батарею импульсами. Во время импульса солнечная панель фактически закорачивается, чтобы извлечь максимальная мощность от панели, а также позволить панели работать больше эффективно.Эти контроллеры заряда солнечных батарей также защищают ваши панели от разряжается через батареи после захода солнца. Солнечный заряд контроллеры необходимы для защиты ваших инвестиций в фотоэлектрические батареи.

SBC-6112 — это менее дорогая версия контроллеров заряда солнечных фотоэлектрических систем. Это регулирует мощность солнечных панелей и контролирует заряд батареи. Он также отключает батареи от нагрузки, когда свинцово-кислотный батареи разряжены, чтобы предотвратить повреждение батареи.Имеет светодиодную панель индикация состояния солнечной системы зарядки и аккумуляторов. В руководство по контроллеру заряда солнечной фотоэлектрической батареи SBC-6112 можно прочитать, нажав на ссылка ниже.

Контроллер заряда солнечных панелей SBC-7112 имеет то же функциональность как у SBC6112, а также имеет несколько новых функций. Оно имеет жидкокристаллический (LCD) дисплей, который позволяет пользователю отображать систему информация, такая как напряжение батареи, напряжение фотоэлектрической панели, входной ток, общее количество ампер-часов в течение дня и общее количество ампер-часов за один или два дня предыдущий.Он также позволяет заряжать аккумулятор и заряжать его под напряжением. зарядное устройство должно быть изменено серией настроек переключателя. Руководство для Регулятор заряда солнечных батарей SBC-7112 также можно прочитать, перейдя по ссылке ниже.

Оба контроллера заряда солнечных фотоэлектрических систем имеют возможность температурная компенсация алгоритма зарядки АКБ термистором что можно поставить на аккумулятор.

Эти контроллеры заряда солнечных батарей также имеют системные функции, например обнаружение сумерек, которые можно использовать для включения нагрузка, подключенная к выходу постоянного тока в сумерках, и выключите нагрузку, чтобы предотвратить батареи от чрезмерного разряда.У них очень низкий ток покоя Draw, что означает, что когда солнечные панели не производят достаточно энергии для зарядить, и когда ток батареи не требуется, система может спать без разряда батарей.

  • Система импульсной зарядки на базе микроконтроллера и трехступенчатый алгоритм солнечной зарядки.
  • Светодиод накопления, поглощения и плавающего заряда показания.
  • 5 Светодиод состояния Индикация уровня заряда батареи.
  • Электронная защита от перезарядки и обратно текущая блокировка фотоэлектрической панели.
  • Защита от перегрева фотоэлектрических контроллеров заряда Электронная схема.
  • Автоматическое определение сумерек и включение-выключение при выходе постоянного тока.
  • 25% 5-минутная перегрузка на заряде
  • 60% 5-минутная перегрузка при разряде
  • Отключение аккумулятора низкого напряжения и повторное подключение на постоянном токе вывод.
  • Встроенная опция температурной компенсации.
  • Защита от перегрузки на выходе постоянного тока.

Прочитать Полное руководство по солнечному фотоэлектрическому зарядному устройству SBC-6112, нажмите здесь
Прочитать Полное руководство по солнечному фотоэлектрическому зарядному устройству SBC-7112, нажмите здесь
Напряжение свинцово-кислотной батареи

12 В постоянного тока

Максимальный разрыв цепи солнечной фотоэлектрической панели напряжение

26 В постоянного тока

Постоянный ток заряда / нагрузки

12 А

Максимальный ток заряда солнечной батареи (5 мин.)

15 А

Максимальный ток нагрузки (5 минут)

20 А

Ток покоя в режиме ожидания (без нагрузки или PV)

30 мА

Напряжение на клеммах (от PV до Аккумулятор)

0,6 В

Напряжение на клеммах (от аккумулятора до Нагрузка)

0.3 В

Электронная блокировка солнечная панель от аккумулятора

Есть

Защита от обратной полярности аккумулятора

Есть

Перегрузка и Защита от перегрузки

Есть

Светодиодная индикация состояния батареи

5 — Светодиодные индикаторы состояния

PV Светодиодный индикатор состояния зарядки индикация

Жидкокристаллический буквенно-цифровой дисплей

Рекомендуемый провод Размер
# 12AWG в # 10AWG в зависимости от расстояния от солнечной панели и аккумуляторов для зарядки контроллер.Щелкните ссылку для калькулятора размеров провода
Регулятор / контроллер Вес
0,47 кг
Размер

150 (Ш) x 85 (Г) x 45 (В) мм
6 (Ш) x 3 3/8 (Д) x 1 3/4 (В) дюймов

Предохранитель

20 А

Рабочая среда Температура контроллера заряда

от -10 до 50 ° C


от -14 до 122 ° F
Защита от перегрева

Есть

Подзарядка аккумулятора установка напряжения

Регулируется от 12.0 — 15,0 В

Настройка общего напряжения зарядки аккумулятора

Регулируется от 12,0 до 16,0 В

Зарядка аккумуляторов с источником питания — Battery University

Узнайте, как заряжать аккумулятор без специального зарядного устройства.

Аккумуляторы можно заряжать вручную с помощью источника питания с настраиваемым пользователем напряжением и ограничением тока.Я подчеркиваю manual , потому что для зарядки нужны ноу-хау и ее нельзя оставлять без присмотра; прекращение начисления не автоматизировано. Из-за трудностей определения полного заряда никелевых батарей я рекомендую заряжать только свинцовые и литиевые батареи вручную.

Свинцово-кислотный

Перед подключением аккумулятора рассчитайте напряжение заряда в соответствии с количеством последовательно соединенных ячеек, а затем установите желаемое напряжение и ограничение тока. Для зарядки 12-вольтовой свинцово-кислотной батареи (шесть ячеек) до предельного напряжения 2.40 В, установите напряжение 14,40 В (6 x 2,40). Выберите ток заряда в соответствии с размером батареи. Для свинцово-кислотной кислоты это от 10 до 30 процентов номинальной емкости. Аккумулятор на 10 Ач при 30 процентах заряда примерно 3 А; процент может быть меньше. Стартерная батарея на 80 Ач может заряжаться до 8 А. (Уровень заряда 10 процентов равен 0,1C.)

Наблюдайте за температурой, напряжением и током батареи во время зарядки. Заряжайте только при температуре окружающей среды в хорошо вентилируемом помещении. Когда аккумулятор полностью заряжен и ток упал до 3 процентов от номинального Ач, заряд завершается.Отключите зарядку. Также отключите заряд через 16–24 часа, если ток упал до минимума и не может упасть; высокий саморазряд (мягкое короткое замыкание) может помешать аккумулятору достичь низкого уровня насыщения. Если вам нужен плавающий заряд для готовности к работе, уменьшите напряжение заряда примерно до 2,25 В / элемент.

Вы также можете использовать источник питания для выравнивания напряжения свинцово-кислотного аккумулятора, установив напряжение заряда на 10 процентов выше рекомендуемого. Время перезарядки критично, и его необходимо тщательно соблюдать.(См. BU-404: Что такое уравнительный заряд.)

Источник питания также может обращать сульфатацию. Установите напряжение заряда выше рекомендуемого уровня, отрегулируйте ограничение тока до минимального практического значения и наблюдайте за напряжением аккумулятора. Полностью сульфатированная свинцовая кислота может сначала потреблять очень небольшой ток, и по мере растворения сульфатного слоя ток будет постепенно увеличиваться. Повышение температуры и установка батареи на ультразвуковой вибратор также могут помочь в этом процессе. Если аккумулятор не принимает заряд через 24 часа, восстановление маловероятно.(См. BU-804b: Сульфатирование и способы его предотвращения.)

Литий-ионный

Литий-ионный заряжается так же, как свинцово-кислотный, и вы также можете использовать источник питания, но будьте осторожны. Проверьте напряжение полной зарядки, которое обычно составляет 4,20 В на элемент, и установите соответствующий порог. Убедитесь, что ни одна из последовательно соединенных ячеек не превышает это напряжение. (Это делает схема защиты в коммерческом комплекте.)

Зарядное устройство 6 В / 9 В / 12 В с зарядкой постоянным током

Это принципиальная схема зарядного устройства, которое имеет множество важных функций, таких как зарядка с постоянным током, защита от перезарядки, защита от короткого замыкания, защита от глубокого разряда и многое другое.Зарядка постоянным током — популярный метод для свинцово-кислотных и никель-кадмиевых аккумуляторов. В этой схеме аккумулятор заряжается постоянным током, который обычно составляет одну десятую (1/10) емкости аккумулятора в ампер-часах. Таким образом, для аккумулятора на 4,5 Ач постоянный зарядный ток составит 450 мА.

D1 — это диод Шоттки SB560 с малым прямым падением, имеющий пиковое обратное напряжение (PRV) 60 В при 5 А, или диод 1N5822, имеющий 40 В PRV при 3 А. Обычно минимальное напряжение источника постоянного тока должно быть «падение D1 + напряжение полностью заряженной батареи + падение VDSS + R2», что приблизительно равно «полностью заряженному напряжению батареи + 5В.Например, если мы возьмем напряжение полной зарядки как 14 В для батареи 12 В, напряжение источника должно быть 14 + 5 = 19 В.

Как работает эта схема зарядного устройства:

Чтобы сделать простое объяснение, давайте разделим эту схему зарядного устройства на три части: источник постоянного тока, защита от перезарядки и защита от глубокой разрядки.

Источник постоянного тока

Источник постоянного тока состоит из полевого МОП-транзистора T5, транзистора T1, диодов D1 и D2, резисторов R1, R2, R10 и R11 и потенциометра VR1.Диод D2 — это высокостабильный эталонный диод LM236-5 с низким температурным коэффициентом. LM336-5 также может использоваться в пониженном диапазоне рабочих температур от 0 до + 70 ° C. Напряжение затвор-исток (VGS) T5 устанавливается путем регулировки VR1 немного выше 4 В. Установив VGS, ток зарядки можно зафиксировать в зависимости от емкости аккумулятора. Сначала определите зарядный ток (одна десятая емкости аккумулятора в Ач), а затем вычислите ближайшее стандартное значение R2 следующим образом:
R2 = 0,7 / Безопасный ток повреждения.

R2 и T1 ограничивают ток зарядки, если что-то выходит из строя или клеммы аккумулятора случайно замыкаются накоротко. Чтобы установить зарядный ток, при последовательном подключении мультиметра к батарее и наличии источника питания медленно регулируйте потенциометр VR1, пока зарядный ток не достигнет необходимого значения.

Защита от перезарядки

Защита от перезаряда и глубокой разрядки показана на схеме пунктиром. Все части в этих областях подвержены максимальному напряжению аккумуляторной батареи, а не источнику постоянного тока.Это позволяет схеме работать в широком диапазоне напряжений источника без какого-либо влияния значения зарядного тока. Перед зарядкой аккумулятора установите напряжение перезарядки и глубокой разрядки аккумулятора с помощью потенциометров VR1 и VR2.

Защита от глубокого разряда

Импульсное зарядное устройство

для восстановления усталых свинцово-кислотных аккумуляторов

Если у вас есть мотоцикл, дом на колесах, караван, газонокосилка, круиз на день или старинная машина Вы должны в какой-то момент списать свинцово-кислотный аккумулятор.Когда аккумулятор неправильно заряжен или может саморазряд, который происходит во время простоя, кристаллы сульфата накапливаются на пластинах аккумулятора. Сульфат, предотвращающий аккумулятор не полностью заряжен, и поэтому он не может доставить на полную мощность. При попытке зарядить аккумулятор в в этом состоянии он только нагревается и теряет воду, сила тяжести электролит не достигает своего нормального «полного заряда».Единственное, что вы делаете, это убивает батарею полностью. Если батарея имеет напряжение покоя не менее 1,8 Вольт / ячейка и ни одна ячейка не замкнута, десульфатация ее тарелки можно сделать. Эта схема является дополнением и частью модификация обычного зарядного устройства и заботится о сульфатная проблема.

ВНИМАНИЕ: Перед тем, как начать Помните: напряжение в сети опасно, поэтому, если вы не на 100% уверены, что делаете, посоветуйтесь с другом у кого есть навыки или вообще не делай этого!

Проект: раздобыть старое зарядное устройство, большое или маленькое. ваш выбор в зависимости от размера батарей, которые вы обычно ручка (чем больше, тем лучше).Есть несколько уловок для увеличения производительность, если вам это нужно. Начни с вырывания всего кроме трансформатора и выпрямителя. Некоторые старые зарядные устройства оснащены ребристыми выпрямителями с высоким падением напряжения и подлежит замене. Замените прочным мостовым выпрямителем. что может справиться с амперами. Вся проводка на вторичной обмотке должна быть короткой и толстой проволокой.Выпрямитель должен быть прикручен к шасси нужно сохранять в прохладе. Если на зарядном устройстве есть переключатель высокого / низкого уровня это бонус, если нет, в некоторых случаях можно добавить несколько ходов провод на вторичной обмотке. Схема; 14-ступенчатая пульсация счетчик и генератор IC 4060 генерируют импульс, который является сердцебиение цепи. Импульс подается на таймер 555 которые определяют длину активного выхода.С переключателем вы можете выбрать длинный или короткий импульсный выход. Выход Таймер 555 запускает драйвер симистора оптоизолятора с нулевым переходом MOC 3041 через транзистор. Это дает трансформатору зарядного устройства мягкий пуск через симистор и демпферную цепь. Маленький блок питания необходим для схемы и состоит из T1 a трансформатор 15V 0.1A вторичный, выпрямитель мостовой, а регулятор и две заглушки.Потому что этот проект включает зарядное устройство то есть (X) результат может отличаться по производительности от одного случай к другому. Однако это не означает, что ваш проект не работает, но эффективность может быть разной. Некоторые отмечают snubbercap — это высоковольтный тип переменного тока (X), и резисторы на сторона сети должна быть не менее 0,5 Вт. Используйте симистор, который может беру 400В + и 10А +, я использую BTA 25.600, но это перебор большинство случаев. Нет печатной платы, извините!

Как это работает:
Ну краткая версия. Цель состоит в том, чтобы получить напряжение ячейки достаточно высокий, чтобы сульфат растворился без кипячения или плавление аккумулятора. Это достигается применением более высоких напряжение на более короткие периоды и дайте батарее отдохнуть на в то время как. Импульсы на коротком расстоянии около 0.5 с вкл. / 3 с выкл. И диапазон длинных импульсов составляет 1,4 с / 2 с. Это время может меняться в зависимости от допусков компонентов. Начните с длинного пульса, и если вы обнаружите «закипание» (больше, чем при обычной зарядке) в переключение электролита на короткие импульсы. Не уходи из процесса без присмотра, по крайней мере, пока вы не узнаете, как ваша конкретная версия этого проекта получается. Я построил вер.1 этой схемы некоторые 10 лет назад и экспериментировал с этим, но я уверен кто-то может улучшить это дальше.


Удачи! Ante
[email protected]

.

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *