Схема датчик уровня воды: Бесконтактный датчик воды Y25 T12V , или Перестаем дырявить бочки

Содержание

Сигнализатор-датчик уровня воды своими руками

Любители принимать ванны сталкиваются с необходимостью постоянного контроля уровня воды при ее наполнении. Благодаря наличию сливного отверстия вода не затопит помещение, но ее бесполезный расход зафиксирует счетчик, что увеличит стоимость коммунальных услуг.

Для того, чтобы избавиться от наблюдений и сэкономить средства можно воспользоваться звуковым сигнализатором, который оповестит, когда уровень воды при наполнении ванны или любой другой емкости, достигнет необходимого.

Существуют готовые сенсорные звуковые сигнализаторы, но стоят они в несколько раз больше и питается от батареи типа «Крона», которой хватает ненадолго.

Можно было самому сделать емкостной датчик уровня воды, но гораздо проще переделать звуковой магнитный сигнализатор для двери, стоимостью в 1$, дополнив магнитиком, пружинкой, нитью и поплавком.

Изготовление звукового поплавкового датчика уровня воды

Для оповещения достижения заданного уровня воды при наполнении ванны я за пару часов переделал звуковой охранный сигнализатор для дверей под эту задачу.

Как разобрать сигнализатор

Сначала надо снять крышку батарейного отсека, сдвинув его вдоль корпуса сигнализатора. Далее нужно снять вторую часть крышки, в которой установлен звуковой излучатель.

При внешнем осмотре крепежных элементов не наблюдалось. Предположил, что крышка держится на защелках. Но попытка снять ее, освободив защелки, не увенчалась успехом. Оказалось, что крышка закреплена саморезом.

С обратной стороны сигнализатора был наклеен двухсторонний скотч. С помощью иголки было найдено место нахождения самореза, и он выкручен крестовой отверткой.

На фотоснимке показана снятая крышка с громкоговорителем пьезоэлектрического типа. Слева от него видна стойка для самореза. Выводы излучателя были отпаяны и обозначена полярность.

Звуковой сигнализатор разобран и теперь стало понятно, как его переделать под сигнализатор уровня воды. В качестве датчика использовался геркон, представляющий собой герметичную стеклянную ампулу, в которой размещены два контакта.

При воздействии магнитного поля, контакты служат магнитопроводом и, притягиваясь, друг к другу, замыкают электрическую цепь. Ведут себя как включатель.

Доработка сигнализатора двери

Решено было вместо штатного магнита с большими размерами, разместить в корпусе небольшой неодимовый магнит. Но мешал геркон и резистор, которые были установлены сверху на печатной плате.

После снятия печатной платы оказалось, что под ней в корпусе имелось достаточно места, для переноса мешающих элементов на сторону с печатными проводниками.

При выпайке резистора у него отвалился один из выводов, пришлось заменить другим. Заодно выяснил, что резистор задает частоту излучения пьезоэлектрического излучателя. Геркон был установлен таким образом, чтобы, магнит замыкал его контакты, находясь в нижнем положении, то есть звука не было.

Неодимовый магнит был взят от отказавшего жесткого диска компьютера. От него с помощью зубила был отколот небольшой кусочек. Острые края закруглены на наждачной бумаге.

Для закрепления магнита на капроновом шнурке на нее был надет отрезок полихлорвиниловой трубки подходящего диаметра и в нее с усилием вставлен магнит. При желании можно трубку опустить на десяток минут в ацетон, тогда она увеличится в диаметре в два раза, а после испарения ацетона уменьшиться до исходного размера.

Пружина растяжения была закреплена в корпусе сигнализатора с помощью, вплавленной в него паяльником металлической скобки. Шнурок был привязан на узел к противоположному ее концу.

Крепление магнита с помощью трубки позволило определить оптимальное место его расположения относительно геркона и заодно ограничить свободу перемещения. После регулировки магнит был приклеен с помощью клея «Момент». На фотографии показан магнит в положении, когда уровень воды не поднял поплавок.

Проверка работы системы показала стабильную ее работу. При натяжении шнурка звук отсутствовал, а при отпускании ее раздавалась сирена большой громкости.

Поплавок был сделан из пластиковой банки подходящего размера. Для крепления нити в крышке банки было установлено ушко, сделанное из полоски нержавеющего металла. Можно использовать и отрезок алюминиевого провода для электропроводки.

Полоска с отверстием была с помощью паяльника вплавлена в крышку банки и загнута, как показано на фотографии.

Для исключения попадания воды внутрь поплавка место вхождения ушка в крышку с внутренней стороны было залито силиконом.

Для того чтобы поплавок при попадании в воду принимал вертикальное положение внутрь банки был помещен груз в виде кусков припоя. Общий вес поплавка составил 50 гр.

Для получения оптимального погружения поплавка в воду, в него добавлялся очередной кусок припоя, пока поплавок не начал плавать в воде, как показано на фотографии.

Для сигнализатора уровня воды над ванной было решено использовать проволочную полку, имевшуюся в углу стены. Поэтому в корпус сигнализатора был вплавлен крючок, сделанный из такой же полоски металла, как и ушко поплавка. Можно было закрепить на кафеле с помощью присоски, но они часто отваливаются, а датчик не герметичный. Поэтому я предпочел этот способ крепления не применять.

В сигнализатор были установлены батарейки ААА, и осталось только отрегулировать длину шнурка на требуемый уровень воды. Поэтому шнурок не был привязан к поплавку, а зафиксирован с помощью зажима.

Многократное использование звукового сигнализатора уровня воды в ванной при наполнении ее водой подтвердило эффективность самоделки. При возникновении сирены, сигнализатор выключается с помощью имеющегося штатного выключателя. С тех пор бесполезный расход воды при наборе ванны был исключен.

ультразвуковой датчик + микроконтроллер » Журнал практической электроники Датагор (Datagor Practical Electronics Magazine)


Я большой любитель русской бани. Летом прошлого года, принимая банные процедуры, я остался без холодной воды. Почему так получилось? Дело в том, что бак для холодной воды установлен на чердаке бани.
Воду, в бак закачиваем насосом, а сливается она самотеком по трубам. Контролировать количество воды, как при наполнении, так и при использовании задача непростая – бак скрыт под крышей бани. По струе воды тоже сложно определить, сколько воды осталось – я не определил .
Нужно устройство для контроля уровня воды – уровнемер!!!

Внимание!
Описанное устройство с усовершенствованиями
доступно в виде нового датагорского кита —

набор для сборки или как готовое изделие!

Содержание / Contents

Уровнемеров в продаже великое множество. Но мне как-то даже и мысль в голову не пришла искать что-то готовое, не спортивно это, не по «нашему». Вот и решил сделать прибор сам. Более того, мне недостаточно было знать, верхний и нижний уровень, я хотел знать, сколько точно литров в баке. Конечно, для данной цели – контроль уровня воды в баке, эта информация избыточна, но так солидней. Поскольку моя нынешняя работа связана с ультразвуковой дефектоскопией, то выбор способа измерения был нетрудным. В продаже есть много предложений ультразвуковых датчиков расстояния. Есть дорогие с цифровым интерфейсом и на большое расстояние, есть дешевые с более простым интерфейсом, на меньшее расстояние. Выбор пал на самый простой и дешевый датчик HC-SR04.
Датчик представляет из себя печатную плату. На которой установлены передающий и приёмные пьезоэлементы. На плате собрана схема формирования зондирующей пачки импульсов с частотой 40кГц, которая подается на драйвер, выполненный на преобразователе уровня TTL в RS232.
Да-да, вот такое необычное применение. Не совсем правильное, но дешевое и работоспособное решение позволяющее обойтись без дополнительного высокого напряжения для раскачки излучающего пьезоэелемента. Также плата содержит усилитель для приемного пьезоэлемента и небольшой управляющий микроконтроллер. У датчика четыре ножки управления: питание +5 Вольт (VCC), вход запуска (Trig), выход (Echo), и земля (GND).

На вход Trig мы подаем импульс 10 мкС, на выходе Echo, при получении датчиком эхо-сигнала (отражения), будет сформирован импульс длительностью пропорциональной времени прохождения звука от датчика до отражателя и обратно. Это время мы делим на два и умножаем на скорость звука в воздухе, среднее значение 340 м/с – получаем расстояние до отражателя (объекта).

Ниже диаграмма работы датчика.

Прототип был собран на макетной плате на микроконтроллере ATmega16 и индикаторе TIC3321. Для дополнительной визуализации есть линейка из десяти светодиодов. Схему прототипа я не привожу, кому будет нужно, в приложенном архиве проект для Протеус.
В конечном варианте я решил поставить светодиодный индикатор вместо TIC3321 – лучше подходил по габаритам к корпусу, четыре против трех разрядов и лучше видно в темноте. Микроконтроллер поставил ATmega32, давно валявшийся у меня на полке.
Две кнопки, для включения наполнения и слива. Эти же кнопки используются при процедуре калибровки, пара транзисторов и реле для включения электромагнитных клапанов или насоса.
Некоторое время назад, мой бывший коллега принес мне три сломанных теплосчетчика мол: сделаешь что-нибудь полезное.

Из полезного — отрезал от теплосчетчиков термодатчики, пока лежат на полке. Понравился конструктив теплосчетчика. Корпус состоит из двух половинок. В нижней половинке, устанавливаемой стационарно, стоят две платы с клемниками для внешних подключений и колодка для соединения с платой в верхней части корпуса. А в верхней части корпуса стоит основная плата счетчика. Вот этот корпус и будем использовать с такой же идеологией.

Примерка индикатора

Для верхней части корпуса была изготовлена печатная плата, в нижнюю часть, плату делать я не стал – собрал все на монтажной плате.



Питается устройство от импульсного блока питания некогда служившим для питания ADSL-роутера. После был списан на пенсию за слабость свою, после ремонта вновь введен в строй, но уже для питания моего устройства.Для передней панели была изготовлена наклейка. Приятным бонусом для меня оказалось то, что при печати на прозрачном полимере краски получаются полупрозрачными, это позволило мне отказаться от светофильтра индикатора, я просто сделал прямоугольную заливку красного цвета.


Поскольку минимальный формат печати оказался А3, то наклеек я заказал три варианта в двух экземплярах. Мне больше понравился темный. Ну, или если надоест, то всегда можно заказать новую наклейку.Датчик, я установил в корпус от елочной гирлянды.

Корпус закрепил на крышке бака.

Просверлил отверстия для установки датчика.


Припаял кабель, электролитический конденсатор и залил все термоклеем.

При подаче питания на схему сначала проходит тестирование семисегментного индикатора и линейки светодиодов. Если прибор не калиброван, то на индикаторе мы увидим, лишь измеренную дистанцию. Линейка светодиодов не работает, так же не доступна функция управления наполнения и слива бака. Больше про работу не калиброванного прибора рассказывать нечего.
Ну, так давайте откалибруем его! Калибровка состоит из трех этапов:
1. Калибровка нуля. Показываем прибору нижний уровень бака – пустой бак.
2. Калибровка верхнего уровня. Показываем прибору максимальный уровень.
3. Ввод объема бака.

Вход в режим калибровки происходит после теста индикатора при удерживании обеих кнопок. После отпускания кнопок на индикаторе отображается дистанция до дна в миллиметрах, а на линейке светодиодов горит нижний светодиод, символизируя режим калибровки нуля.

Для калибровки параметра на пустом баке нажимаем кнопку «Слить», переходим к следующему этапу – калибровке максимального уровня. На индикаторе так же отображается дистанция в миллиметрах. На линейке горят все светодиоды, символизируя режим калибровки максимального уровня. Дальше возможны варианты – либо мы наполняем бак на сто процентов и после этого жмем кнопку «Наполнить» для установки верхнего уровня. Или можно просто поднести отражатель к датчику на предполагаемый максимальный уровень.

После калибровки уровней переходим к вводу объема бака. Кнопкой «Наполнить» меняем значение разряда, а кнопкой «Слить» меняем разряд и так все четыре разряда по очереди. В калибровке предусмотрены две блокировки. Не критическая – если объем не введен, то устанавливается объем 100, соответственно отображение будет в процентах или в литрах, если бак при этом на сто литров. Вторая — критическая блокировка, поскольку расположение датчика у нас верхнее, то значение верхнего уровня не может быть больше нижнего.
В этом случае прибор калибровку не проходит, а просто отображает дистанцию.

После успешной калибровки прибор отображает объем воды в литрах и уровень в десятках процентов на линейке светодиодов. Также становятся доступными функции наполнения и слива бака. В приборе предусмотрено автоматическое наполнение, которое неактивно после подачи питания. Для активации автоматического наполнения необходимо нажать кнопку «Наполнить» после чего бак наполнится на 90%.

При наполнении бака, уровень на светодиодной линейке будет отображаться как при зарядке аккумулятора в телефоне. Повторное наполнение включиться автоматически при отпускании уровня ниже 10%. Наполнение бака можно запускать в любой момент. Для остановки наполнения нужно нажать кнопку «Слить» во время наполнения. Функция слива предусмотрена для вывода бака из эксплуатации на зимний период. Может быть, и не очень нужная функция, прибор опытный трудно вот так все сразу продумать, пускай пока будет.

Для активации слива нажимаем кнопку «Слить», включается реле включения клапана слива. Реле выключается при достижении нулевого уровня после задержки необходимой для слива воды с трубопровода. Теперь, во время слива, батарейка — бак будет уже не заряжаться, а разряжаться. После активации слива, режим автоматического наполнения выключается, повторно включить его можно нажав на кнопку «Наполнить».

Вот собственно и все, смотрим демо-видео.

Видео прототипа:

Схема, плата, даташиты: ▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

Файл прошивки для варианта на led-индикаторах: ▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

Внимание!
Описанное устройство с усовершенствованиями
доступно в виде нового датагорского кита —
набор для сборки или как готовое изделие!

Хотя на дворе уже весна, но дачный сезон еще не наступил, поэтому придется подождать, пока можно будет начать пользоваться баком. Более того, мне еще долго не придется использовать прибор в полном объеме, так как в старой бане нет постоянно подключенного водоснабжения, а новую я еще не достроил.
Но смотреть уровень уже можно!!!
:yahoo:

 

Схемы контроля уровня жидкости и сыпучих веществ


Схема устройства для автоматического пополнения водой резервуара типа Еврокуб

Устройство предназначено для автоматического пополнения резервуара типа Еврокуб водой из колодца или водопровода, схема и описание. В первом случае схема управляет погружным насосом типа «Малыш»,во втором — электроклапаном. Схема показана на рисунке. Она построена на четырех …

1 326 0

Схема контроллера для ограничения количества потребляемой воды

Самодельное устройство, которое контролирует количество используемой воды и при превышении лимита закрывает клапан подачи. В частных домах редко бывает центральная канализация, — обычно это септик. Но септик от центральной канализации отличается тем, что рассчитан на суточный сброс воды не более …

1 462 0

Управление электронасосом на 220В, схема простой автоматики на двух транзисторах

Обычно индивидуальная водопроводная система, подающая воду из колодца в дом состоит из погружного насоса, находящегося в колодце, резервуара, например, на чердаке, и водопровода. Резервуар на чердаке нужен на тот случай, если уровень воды в колодце будет временно недостаточен для работы насоса …

1 636 0

Как управлять погружным насосом, схема выключателя (К561ЛА7)

Схема простого устройства для управления погружным насосом, построена на микросхеме К561ЛА7. В дачных поселках и сельской местности зачастую отсутствует централизованный водопровод, а источником воды служит колодец. В дачный период, чтобы не таскать тяжелые ведра многие дачники пользуются …

0 1770 0

Схема реле времени для управления скважным электронасосом

В сельской местности, приотсутствии водопровода, люди пользуются колодцами или скважинами. Сейчас наиболее популярны скважины. Но, индивидуальная скважина производит не очень много воды, и для того чтобы обеспечить большую единоразовую подачу воды применяют своеобразные водонапорные башни — котлы …

1 3317 0

Реле времени для насоса жидкостной системы отопления (CD4060)

Сейчас во многих частных домах используют жидкостную систему отопления, состоящую из отопительного котла иотопительных радиаторов (батарей). Сделать систему жидкостного отопления на самотоке так, чтобы все радиаторы нагревались равномерно довольно сложно (нужны трубы большого диаметра, нужно …

1 3440 1

Схема автомата-контроллера уровня воды в емкости (К561ЛЕ10)

Схема позволяет выполнять автоматический контроль и поддержание в наполненном водою состоянии резервуара или водонапорной башни. Она не сложна в изготовлении и не содержит дефицитных радиоэлектронных компонентов. С изготовлением и настройкой справится даже начинающий радиолюбитель или мастер …

3 3591 2

Автоматическое управление водяным насосом (К561ЛА7, КТ604АМ)

В сельской местности водопровод есть не всегда и не везде, в лучшем случае водоснабжение из скважины, но чаще и из обычного колодца. Такая система водопровода требует использования накопительной емкости, в которую вода закачивается из колодца. Для того чтобы поддерживать необходимый запас воды нужно периодически пополнять эту емкость, включая находящийся в колодце водяной погружной насос…

0 3345 2

Сигнализаторы уровня воды на микросхемах-таймерах

Варианты схем, которые могут служить в качестве сигнализатора воды, приведены ниже. Тут используется свойство обычной (не дистиллированной) воды за счет наличия в ней различных примесей проводить электрический ток. При этом через цепь датчика F1 поступает напряжение на. ..

2

Измеритель уровня воды — RadioRadar

В системе водоснабжения дачного дома накопительным элементом служит полиэтиленовая бочка объёмом 160 л, установленная на чердаке [1 ]. Весьма полезным дополнением к системе является описываемый в этой статье измеритель уровня (объёма) воды в бочке.

Датчиком предлагаемого измерителя является конденсатор, образованный двумя обкладками из полос фольги, укреплёнными на наружной поверхности пластмассовой бочки вертикально с противоположных сторон. Ёмкость такого датчика практически линейно зависит от уровня воды: от 7 пФ — для пустой бочки, до 270 пФ — для почти полной. Индикатором может быть мультиметр или стрелочный микроамперметр.

Для получения электрического сигнала, пропорционального ёмкости, использован хорошо известный принцип — импульсы прямоугольной формы пропускают через измеряемую ёмкость датчика и диодный выпрямитель, собранный по схеме удвоения напряжения. Если сопротивление нагрузки выпрямителя мало и падение напряжения на ней существенно меньше амплитуды импульсов, средний выпрямленный ток в первом приближении пропорционален ёмкости: I = U·f·Cд, где U — амплитуда импульсов за вычетом падения напряжения на выпрямительных диодах; f — частота следования импульсов; Сд — ёмкость датчика.

Этот ток можно подать на микроамперметр и подобрать частоту импульсов так, чтобы его показания были прямопропорциональны объёму воды в литрах или в процентах (от максимального объёма). Если на выход выпрямителя установить резистор и подключить к нему цифровой вольтметр (мультиметр в режиме измерения напряжения), получить ту же информацию можно в цифровом виде.

Рис. 1. Схема измерителя

 

Схема такого измерителя показана на рис. 1. Он состоит из генератора прямоугольных импульсов, собранного на трёх логических элементах DD1.1 — DD1.3, буферного каскада на элементе DD1.4 и выпрямителя на диодах VD1 и VD2 со сглаживающим конденсатором С4. Генератор работает на частоте около 100 кГц. При напряжении питания 9 В, падении напряжения на двух диодах около 1,2 В и ёмкости датчика 270 пФ выходной ток, рассчитанный по приведённой выше формуле, составит I = (9-1,2)х100х103х270х10-12 = 210х10-6 = 210 мкА. Поэтому расчётное падение напряжения на резисторе R5 составит UR5 = 210х10-6х820 = 170 мВ. Реально измеренное напряжение при почти полной бочке меньше — около 150 мВ.

Измеритель рассчитан на совместную работу с широко распространёнными цифровыми мультиметрами серии М83хх, справа на рис. 1 показаны точки подключения к нему. Если в мультиметре установить предел измерения 200 мВ, разрешающая способность измерителя (вес младшего разряда) будет 0,1 л. Конечно, погрешность измерения количества воды будет больше, прежде всего, из-за нецилиндрической формы бочки. Если же установить предел измерения мультиметра 2 В, показания будут в литрах.

Представляет интерес подключение выхода выпрямителя измерителя к входам мультиметра при питании их от одного источника. В мультиметре ни один из входов непосредственно не соединён с источником питания, но и выход выпрямителя по постоянному току также не обязательно должен быть связан с источником питания. Это позволило подключить выход выпрямителя непосредственно ко входам мультиметра «COM» и «VΩmA», а для соединения выхода выпрямителя по переменному току с источником питания пришлось установить конденсатор С3.

Все детали измерителя установлены на односторонней печатной плате из фольгированного стеклотекстолита толщиной 1,5 мм, чертёж которой показан на рис. 2. Применены постоянные резисторы — МЛТ, подстроечный — импортный СA9V или отечественный СП3-19а, конденсатор С2 — К10-17, КМ-5. Диоды КД510А можно заменить любыми маломощными импульсными кремниевыми.

Рис. 2. Чертёж платы

 

Для подключения к источнику питания, цепям мультиметра и к датчику в плату впаяны штырьки диаметром 1 мм от разъёма серии РП, а для подключения к разъёму питания мультиметра к двум штырькам подпаяна колодка от использованной девятивольтовой батареи. Вариант установки платы измерителя в отсек батареи питания мультиметра М83х показан на рис. 3. В качестве источника питания использован блок питания (адаптер) от телевизионного антенного усилителя. В нём микросхемный стабилизатор на напряжение 12 В заменён на девятивольтовый (78L09). 

Рис. 3. Вариант установки платы

 

Если для индикации использовать не мультиметр, а микроамперметр, в качестве источника питания можно использовать зарядное устройство 5 В от сотового телефона. При этом следует увеличить частоту генерации за счёт подбора конденсатора С2, а резистор R5 исключить. Следует, однако, иметь в виду, что часто стабильность напряжения зарядных устройств невысока, а само выходное напряжение незначительно превышает 5 В. Поэтому необходимо предварительно проверить, что напряжение практически не меняется при подключении к выходу зарядного устройства резистора сопротивлением 100…200 Ом и при изменении напряжения сети. Если это не так, на его выход следует установить интегральный стабилизатор с малым падением напряжения, так называемый Low drop на напряжение 5 В, например, LM2931Z-5.0 или КР1158ЕН5 с любым буквенным индексом.

Датчик изготовлен из двух полос алюминиевой фольги для кулинарной выпечки шириной 120 мм и длиной, соответствующей высоте бочки. Для подключения использованы узкие полоски медной фольги, которые завёрнуты в концы полос фольги, а к этим полоскам припаяны провода, идущие к плате. Полосы закреплены на поверхности бочки с помощью липкой упаковочной плёнки. Если расстояние между бочкой и платой преобразователя больше полуметра, для устранения влияния ёмкостной связи между проводниками подключение датчика к выходу элемента DD1.4 следует произвести экранированным проводом, экран которого нужно подключить к плюсу или минусу источника питания, а сопротивление резистора R4 уменьшить вдвое. При расстоянии между бочкой и индикатором более трёх метров лучше разнести плату и индикатор, установив плату не далее полуметра от бочки.

Налаживать устройство не сложно. Если в качестве индикатора применён стрелочный микроамперметр, следует, не впаивая резистор R5, подборкой конденсатора С2 и резистором R3 добиться показаний (при почти полной бочке), соответствующих 150 л, или 100%. При использовании мультиметра этого добиваются подборкой конденсатора С2 и резистора R5, а также плавно резистором R3. Конструкцию датчика иллюстрирует рис. 4. Для индикации автор использовал изготовленный много лет назад мультиметр со светодиодными индикаторами [2].

Рис. 4. Конструкция датчика

 

Устройство можно дополнить вторым датчиком в виде двух горизонтальных полуколец, закреплённых на верхней части бочки, и изготовить автомат, выключающий насос при наполнении бочки. Одно полукольцо соединяют с выходом генератора, другое — со входом выпрямителя. Конденсатор С3 не устанавливают, нижний по схеме выход выпрямителя соединяют с минусом источника, а другой выход — с пороговым устройством, выключающим насос. Шланг с обратным клапаном [1] для исключения последствий аварийного перелива надо установить обязательно!

Литература

1. Бирюкове. Водоснабжение на даче.- САМ, 2015, № 6, с. 12-14.

2. Бирюков С. Портативный цифровой мультиметр. — Сборник «В помощь радиолюбителю», вып. 100. — М.: ДОСААФ, 1988.

Автор: С. Бирюков, г. Москва

Датчик уровня воды — виды, принцип работы, как сделать своими руками

Для регулирования и контроля уровня жидкости либо твердого вещества (песка или гравия) на производстве, в быту используют специальный прибор. Он получил название датчик уровня воды (или другого интересующего вещества). Существует несколько разновидностей подобных устройств, значительно отличающихся друг от друга принципом действия. Как работает датчик, преимущества, недостатки его разновидностей, на какие тонкости при выборе устройства стоит обратить внимание и как сделать упрощенную модель с реле своими руками, читайте в этой статье.

Общая классификация приборов

Датчик уровня воды используется для следующих целей:

  • Для восприятия изменения количества жидкости и передачи дискретного сигнала в случае завышения максимально допустимой отметки в резервуаре на реле;
  • Для включения реле сигнализации (световой или звуковой) в главном корпусе управления;
  • Для передачи показателей уровня жидкости на табло пульта управления с отображением конкретных резервуаров;

    Классификация датчиков для воды

  • Для организации замкнутой схемы системы автоматического контроля воды в резервуаре. Для этого дополнительно потребуется контроллер, электродвигатель насоса.

Возможные методы определения загруженности резервуара

Существует несколько методов измерения уровня жидкости:

  1. Бесконтактный — зачастую приборы такого типа используются для контроля уровня вязких, токсичных, жидких либо твердых, сыпучих веществ. Это емкостные (дискретные) приборы, ультразвуковые модели;
  2. Контактный — устройство располагается непосредственно в резервуаре, на его стенке, на определенном уровне. По достижению водой этого показателя датчик срабатывает. Это поплавковые, гидростатические модели.

По принципу действия различают следующие виды датчиков:

  • Поплавкового типа;
  • Гидростатические;
  • Емкостные;
  • Радарные;
  • Ультразвуковые.

Кратко о каждом виде приборов

  1. Датчик уровня жидкости поплавковый — отличается простотой конструкции, зачастую используется в сочетании с электрическим реле. Система действует просто: при достижении определенного уровня вода воздействует на поплавок. Он в свою очередь изменяет положение, замыкает контакт реле, к которому прикреплен одним концом.

    Виды датчиков уровня воды

Поплавковые модели бывают дискретные и магнитострикционные. Первый вариант — дешевый, надежный, а второй — дорогой, сложной конструкции, но гарантирует точное показание уровня. Однако общий недостаток поплавковых приборов — это необходимость погружения в жидкость.

Поплавковый датчик определения уровня жидкости в баке

  1. Гидростатические устройства — в них все внимание обращено на гидростатическое давление столба жидкости в резервуаре. Чувствительный элемент прибора воспринимает давление над собой, отображает его по схеме для определения высоты столба воды.

Главные преимущества таких агрегатов — компактность, непрерывность действия и доступность по ценовой категории. Но использовать их в агрессивных условиях нельзя, потому как без контакта с жидкостью не обойтись.

Гидростатический датчик уровня жидкости

  1. Емкостные приборы — для контроля уровня воды в баке предусмотрены пластины. По изменению показателей емкости можно судить о количестве жидкости. Отсутствие подвижных конструкций и элементов, простая схема устройства гарантируют долговечность, надежность работы прибора. Но нельзя не отметить недостатки — это обязательность погружения в жидкость, требовательность к температурному режиму.
  2. Радарные устройства — определяют степень повышения воды путем сравнения частотного сдвига, задержки между излучением и достижением отраженного сигнала. Таким образом, датчик действует как излучатель и улавливатель отражения.

Подобные модели считаются лучшими, точными, надежными устройствами. Они обладают рядом достоинств:

  • Не имеют подвижных деталей;
  • Не контактируют с жидкой средой;
  • Не привередливы к среде, условиям функционирования;
  • Точность показателей.

    Выбираем датчики уровня воды правильно

К недостаткам модели можно отнести только их высокую стоимость.

Радарный датчик уровня жидкости в резервуаре

  1. Ультразвуковые датчики — принцип функционирования, схема устройства аналогичны радарным приборам, только используется ультразвук. Генератор создает ультразвуковое излучение, которое по достижению поверхности жидкости отражается и попадает через некоторое время на приемник датчика. После небольших математических вычислений, зная временную задержку и скорость движения ультразвука, определяют расстояние до поверхности воды.

Плюсы радарного датчика присущи и ультразвуковому варианту. Единственное, менее точные показатели, более простая схема работы.

Тонкости выбора подобных устройств

При покупке агрегата обратите внимание на функциональность прибора, некоторые его показатели. Крайне важные вопросы при покупке прибора — это:

  1. Для каких веществ может использоваться прибор, условия работы, схема устройства;
  2. Влияет ли материал резервуара на точность показаний, принцип действия устройства;

    Популярные датчики уровня воды

  3. Используется встроенная схема обработки, преобразования сигнала, либо датчик работает как реле;
  4. Точность показаний, в том числе при быстром понижении или повышении уровня жидкости;
  5. Входит ли в комплектацию дисплей для отображения действительных показателей, регулирования заданных параметров, изменения настроек;
  6. Наличие сертификатов на продукцию;
  7. Реагирование системы на температурные перепады;
  8. Как на прибор и его точность могут влиять внешние факторы, например, вибрация, агрессивность среды или электромагнитные волны;
  9. Материал исполнения устройства и возможность его работы в заданных условиях;
  10. Собственно отзывы об агрегате, гарантии срока службы.

Варианты датчиков определения уровня воды или твердых сыпучих веществ

Датчик уровня жидкости своими руками

Можно сделать элементарный датчик для определения и контроля уровня воды в скважине или баке своими руками. Для выполнения упрощенного варианта необходимо:

  1. Подготовить выпрямительные диоды. Для этого верхнюю колбу у деталей нужно аккуратно спилить, чтобы получилось трубчатое соединение.
  2. В корпусе вывода элемента просверлить отверстие, диаметром 1,5 мм.
  3. Тонкую проволоку продеть в специальную трубочку, выполненную из фторопласта.

    Схема как сделать датчик уровня воды своими руками

  4. В просверленное отверстие в диоде вдеть подготовленную проволоку.
  5. Верхний конец проволоки запаивается, а нижний заворачивается в петлю и укрепляется клеем.
  6. Деталь соединяется со схемой системы, подключается к реле сигнального индикатора.
  7. Для уверенности, надежности работы системы можете своими руками сделать несколько аналогичных моделей и подключить их соответственно к реле.
  8. Усовершенствовать прибор, выполненный своими руками, можно с помощью стрелочного циферблата или монитора.

Выполненное своими руками устройство можно использовать для регулирования воды в бачке, скважине или насосе.

Итак, большой ассортимент датчиков уровня воды позволяет выбрать лучший, максимально подходящий вариант. Схема системы контроля над жидкостью легко регулируется своими руками. Для этого потребуется немного внимательности, точности, определенных знаний в области физики.

Вас могут заинтересовать:

Датчики для воды: виды, принцип действия

Датчик уровня воды в условиях современной техники выполняет функцию одного из органов чувств человека. От того, насколько правильно удается управлять и контролировать состояние водного потока, зависит исправная работа всего механизма. Важность надежности устройства сенсора сложно переоценить, хотя бы потому, что прибор, контролирующий воду, как правило, становится тем самым «узким» звеном современной техники.

Конструкция и принцип действия

Независимо от того, какой принцип действия положен в основу устройства, работает ли оно только в режиме сигнализатора или параллельно выполняет функции сторожа, автомата или управляющего механизма, конструкция прибора всегда состоит из трех основных узлов:

  • Чувствительного элемента, способного реагировать на характеристики водяного потока. Например, фактическое наличие воды, высота столба или уровень в баке, факт движения водяного потока в трубе или магистрали;
  • Балластного элемента, уравновешивающего сенсорную часть датчика. Без балласта чувствительный сенсор срабатывал бы при малейшем толчке или случайной капле воды;
  • Передающая или исполнительная часть, преобразующая сигнал сенсора, вмонтированного в датчик воды, в конкретный сигнал или действие.

Примерно 90% всей водной техники, так или иначе, связано с электрическими исполнительными механизмами – насосами, клапанами, нагревателями и управляющими электронными автоматами. Понятно, что такое устройство, работающее с водяными потоками, должно быть в первую очередь безопасным.

Из всех сигнальных систем датчик, контролирующий состояние воды, считается наиболее простым и доступным в настройке и ремонте. В отличие от сенсоров и устройств, работающих с измерениями температуры, давления или расхода, датчик воды очень просто контролировать с помощью простейших устройств, или, на крайний случай, увидеть уровень или прокачанный поток своими глазами.

Виды датчиков уровня

Одним из условий успешной работы сенсора является высокая чувствительность датчика, чем выше, тем лучше, тем точнее удается считать контролируемый параметр воды. Поэтому в качестве величины, измеряемой сенсором, стараются выбирать ту, которая сильнее всего меняется за время измерения.

На сегодня существует около двух десятков различных способов и методов измерения механических характеристик воды, но все они используются для получения сведений:

  • Высоты уровня водяного столба в емкости или баке;
  • Скорости движения потока или расхода воды;
  • Факта наличия-отсутствия воды в закрытой емкости, резервуаре, трубе или теплообменнике.

Разумеется, промышленные сенсоры могут быть достаточно сложными конструктивно, но используемые в них принципы работы такие же, как и в бытовой, садово-огородной или автомобильной технике.

Поплавковый тип датчика перелива

Наиболее простой способ измерять уровень воды используется в нехитрой механической конструкции, состоящей из герметичного поплавка, качающегося рычага или кулисы и запорного клапана. В данном случае датчиком является поплавок, балластом считается пружина и поплавковый утяжелитель, а исполнительным механизмом выступает сам клапан.

Во всех поплавковых системах датчик или поплавок регулируется на определенную высоту срабатывания. Вода, поднявшаяся в баке до контрольного уровня, поднимает поплавок и открывает клапан.

Поплавковая система может быть оборудована электрическим исполнительным устройством. Например, внутрь поплавкового датчика устанавливают вкладыш-магнит, при подъеме воды до рабочего уровня магнитное поле заставляет вакуумный геркон замыкать контакты, и тем самым включает или выключает электрическую цепь.

Поплавковый датчик может также выполняться по свободной схеме, как, например, в погружных насосах. В этом случае геркон замыкается не под воздействием магнитного поля вкладыша, а только за счет перепада давлений внутри корпуса насоса и на уровне поплавка. На сегодня магнитно-поплавковый датчик с электрическим исполнительным реле считается одним из самых безопасных и надежных вариантов контроля уровня жидкости.

Ультразвуковой сенсор

Конструкция датчика воды предусматривает наличие двух устройств – источника ультразвука и приемника сигнала. Звуковая волна направляется на поверхность воды, отражается и возвращается на датчик приемник.

На первый взгляд, идея использовать ультразвук для изготовления датчика контроля уровня или скорости движения воды выглядит не очень удачной. Ультразвуковая волна способна отражаться от стен бака, преломляться и создавать помехи в работе приемного датчика, а кроме того, потребуется сложное электронное оборудование.

На самом деле ультразвуковой сенсор для измерения уровня воды или любой другой жидкости помещается в коробку чуть больше пачки сигарет, при этом использование ультразвука в качестве датчика дает определенные преимущества:

  • Возможность измерять уровень, и даже скорость воды при любой температуре, в условиях вибраций или движения;
  • Ультразвуковой датчик может измерять расстояние от сенсора до поверхности воды даже в условиях сильного загрязнения, с переменным уровнем жидкости.

Кроме того, датчик может измерять уровень воды, расположенной на значительной глубине, при этом точность измерения достигается 1-2 см на каждые 10 м высоты.

Электродный принцип контроля воды

Тот факт, что вода обладает электропроводностью, успешно используется для изготовления контактных датчиков уровня жидкости. Конструктивно система представляет собой несколько электродов, установленных в емкости на разной высоте и соединенных в одну электрическую цепь.

По мере заполнения емкости водой жидкость последовательно замыкает пару контактов, что включает цепь управляющего реле насоса. Как правило, у датчика воды имеется два-три электрода, поэтому измерение потока воды получается слишком дифференцированным. Датчик сигнализирует лишь о достижении минимального уровня и запускает мотор насоса, или о полном заполнении емкости и отключает его, поэтому подобные системы используются для контроля резервных или поливных цистерн с водой.

Емкостной тип датчика воды

Конденсаторный или емкостной тип сенсора используется для измерения уровня воды в узких и глубоких емкостях, это может быть колодец или скважина. С помощью емкостного датчика можно определить высоту водяного столба в скважине с точностью до десятка сантиметров.

Конструкция сенсора состоит из двух коаксиальных электродов, фактически трубы и внутреннего металлического электрода, погруженных в ствол скважины. Вода заполняет часть внутреннего пространства системы, меняя тем самым его емкость. С помощью подключенной электронной схемы и катушки колебаний с кварцем можно точно определить емкость датчика и количество воды в скважине.

Радарный измеритель

Волновой, или радарный датчик используется для работы в наиболее сложных условиях, например, если нужно измерить уровень или объем жидкости в резервуаре, открытом водоеме, колодце несимметричной и неправильной формы.

Принцип действия не отличается от ультразвукового прибора, а использование электрического импульса позволяет выполнить измерение с большой точностью.

Гидростатический вариант сенсора

Один из вариантов гидростатического датчика приведен на схеме.

К сведению! Подобный сенсор используется в стиральных машинах и бойлерах, где очень важно контролировать высоту водяного столба внутри бака.

Гидростатический датчик представляет собой коробку с эластичной подпружиненной мембраной, делящей корпус датчика на два отделения. Одну из секций соединяют прочной полиэтиленовой трубкой со штуцером, впаянным в днище бака.

Давление водяного столба передается по трубке на мембрану и заставляет замыкаться контакты пускового реле, чаще всего для запуска исполнительного механизма используется пара — магнитный вкладыш и геркон.

Датчик давления воды

Гидростатическое давление определяется в условиях, когда поток или определенный объем воды находится в состоянии покоя. Чаще всего гидростатический сенсор используется в нагревательных и отопительных приборах – бойлерах, котлах отопления.

Устройство датчика давления воды

Такие устройства чаще всего работают в режиме триггера:

  • При высоком давлении воды сенсор замыкает контакты реле и разрешает работу насоса или нагревателя;
  • При низком давлении в сенсоре блокируется даже физическая возможность включения исполнительного механизма, то есть никакие удары или временные скачки напора не заставят устройство заработать.

При исправном датчике давления воды сенсор выдаст сигнал на запуск мотора, только если нагрузка на сильфон сохраняется более трех секунд.

Типовое устройство «умного» сенсора представлено на схеме.

Чувствительным элементом системы является диафрагма, соединенная с сильфоном, центральный шток может подниматься и опускаться в зависимости от величины давления, и тем самым менять емкость встроенного конденсатора.

Подключение датчика давления воды

Упрощенная модель сенсора используется в домашних системах «гидроаккумулятор — скважинный насос». Внутри прибора находится коробка с мембраной, соединенной с качающимся рычагом и двумя балансирующими пружинами.

Конструкция наворачивается на выходной штуцер гидроаккумулятора. С увеличением внутреннего давления мембрана поднимается и размыкает главную пару контактов, чтобы система исправно реагировала на давление воды, момент выключения и включения необходимо отрегулировать осадкой малой и большой пружины в соответствии с показаниями стрелочного манометра.

Датчик протечки воды

Уже из названия становится понятным, что речь идет об устройстве, фиксирующем наличие утечки воды из водопроводных коммуникаций. Принцип работы устройства напоминает электродную систему. Внутри пластиковой коробки в специальном кармане установлена одна или несколько пар электродов. В случае аварии скапливающая на полу вода затекает внутрь кармана и замыкает контакты. Срабатывает электронная схема, и по сигналу сенсора в работу вступают шаровые краны с электроприводом.

Понятно, что датчик, сам по себе, — вещь бесполезная, если используется без системы управления и автоматических отсекателей воды, установленных на вводе в дом или на одной из веток водопровода.

В качестве примера можно привести одну из наиболее популярных систем защиты — датчик протечки воды Нептун. В систему входят три основных блока:

  • Сам датчик протечки Нептун в проводной или беспроводной модификации, обычно в комплект входит три отдельных сенсора;
  • Шаровой кран с электроприводом, производства итальянской компании «Бугатти», в количестве двух штук;
  • Блок управления «Neptun Base».

Наиболее ценная часть комплекта — автоматические краны, их выпускают для установки на полудюймовой и дюймовой трубной резьбе. Конструкция выдерживает давление до 40 Атм., а итальянское качество привода гарантирует не менее 100 тыс. циклов открывания-закрывания.

Сам датчик выглядит, как две латунные пластины в коробке, к которым подведено низковольтное напряжение с очень высоким сопротивлением входа, при замыкании сенсора ток ограничен 50 мА. Сама конструкция выполнена по протоколу IP67, поэтому является абсолютно безопасной для человека.

Установка беспроводных датчиков протечки воды

В системе «Нептун» датчик может быть удален от блока управления на расстояние более 50 м. В более совершенных беспроводных системах NEPTUN PROW+ вместо системы проводов используются датчики протечки воды, оборудованные модулем WF.

Блок управления оборудован защищенным от помех и влаги каналом, системой включения-выключения шаровых кранов. Считается, что никакие помехи или случайные капли влаги, конденсат не влияют на работу датчиков.

Коробки с сенсором протечки устанавливают на удалении от труб не более чем на 2 м, сенсоры нельзя экранировать металлической сантехникой или мебелью.

Беспроводной датчик протечки воды

Устройство беспроводного измерителя сложнее, чем обычного двухэлектродного варианта с проводным подключением. Внутри установлен контроллер, который непрерывно сравнивает ток, протекающий между электродами, с эталонным значением, зашитым в память. При этом эталонное значение «сухой пол» можно настраивать по собственному выбору.

Очень удобное решение, учитывая, что уровень влажности в ванной комнате может быть очень высоким, а регулярно выпадающий конденсат может привести к ложным срабатываниям.

Как только контроллер определяет уровень, соответствующий затоплению, прибор контроля воды отправляет на базовый блок сигнал об аварии. Наиболее продвинутые модели способны дублировать команду СМС-сообщением по GSM каналу.

Датчик протока воды

Во многих случаях для стабильной и безаварийной работы техники мало датчика наличия воды, требуется информация о том, движется ли поток по трубопроводу, какова его скорость и напор. Для этих целей используются датчики протока воды.

Виды датчиков протока воды

В бытовой и наиболее простой промышленной технике используют четыре основных вида датчиков протока:

  • Напорный измеритель;
  • Лепестковый тип сенсора;
  • Лопаточная схема измерения;
  • Ультразвуковая система.

Иногда используется устаревшая конструкция на основе трубки Пито, но для ее надежной работы требуется как минимум отсутствие загрязнений и ламинарный характер течения воды. Первые три датчика являются механическими, поэтому часто подвергаются засорению или водяной эрозии чувствительного элемента. Последний тип сенсора, ультразвуковой, способен работать практически в любых условиях.

Принцип работы ультразвукового измерителя можно понять из схемы. Внутри трубки расположен излучатель волн и приемник. В зависимости от скорости потока звуковая волна может отклоняться от первоначального направления, что и служит основанием для измерения характеристик потока.

Устройство и принцип работы

Простейшие лепестковые датчики потока работают по принципу гребного весла. В поток погружается лепесток, подвешенный на шарнире. Чем выше скорость потока, тем сильнее отклоняется лепесток датчика.

В более точных лопаточных датчиках применяется крыльчатка или турбинка из полиамида или алюминиевого сплава. В этом случае удается измерять скорость потока по частоте вращения подвижного элемента. Единственным недостатком является повышенное сопротивление, создаваемое лепестками и лопатками в потоке воды.

Напорный сенсор работает с использованием динамического давления потока. Под напором воды подвижный элемент с магнитным вкладышем выдавливается вверх, освобождая тем самым пространство для движения жидкости. Установленный в головке геркон моментально реагирует на магнитное поле вкладыша и замыкает цепь.

Область применения

Датчики водяного потока используются исключительно в системах нагрева и системах автоматики одноконтурных теплообменников. Чаще всего выход из строя сенсора наличия потока приводит к прогару и тяжелейшим повреждениям раскаленных радиаторов и нагревателей.

Датчик уровня воды своими руками

Простейший вариант устройства, способного сигнализировать о наполнении водой бака или любой другой емкости, приведен на схеме ниже.

Конструктивно определитель уровня состоит из трех металлических электродов, установленных на текстолитовой пластинке. Схема, собранная на обычном маломощном транзисторе, позволяет определять предельно допустимый верхний и нижний уровень воды в емкости.

Конструкция абсолютно безопасна в пользовании и не требует каких-либо дорогостоящих деталей или приборов управления.

Заключение

Датчики уровня воды широко используются в бытовой технике, поэтому чаще всего для вспомогательных нужд гаражной или садовой техники используют уже готовые конструкции от старой техники, переделанные и адаптированные к новым условиям. При правильном подключении такое устройство прослужит гораздо дольше самодельной схемы.

 

Простой индикатор уровня воды с сигнализацией (3 проверенных контура)

Обычно вода, хранящаяся в верхнем баке, расходуется впустую из-за перелива, когда бак полон. Сигнализация уровня воды с помощью микроконтроллеров типа 8051 и AVR была показана в предыдущих статьях. В этой статье показаны простые схемы индикатора уровня воды с сигнализацией.

Здесь были показаны три простые схемы, построенные на транзисторах, таймере 555 и ULN2003 IC. Для начала построим сигнализацию уровня воды на простых транзисторах.

Индикатор уровня воды на простых транзисторах

Принципиальная схема

Необходимые компоненты
  • BC548 транзисторы-Q1, Q2, Q3, Q4
  • Резисторы R1, R2, R3, R4 — 2,2 кОм
  • R5, R6, R7 — 100 Ом
  • Светодиод — красный (LED3), зеленый (LED1), желтый (LED2)
  • Металлические контакты — M1, M2, M3, M4.
Рабочий
  • Схема предназначена для индикации трех уровней воды, хранящейся в баке: низкий, но не пустой, наполовину и полный, но не переполненный.
  • Когда в баке нет воды, все светодиоды не горят, что указывает на то, что бак полностью пустой.
  • Когда уровень воды увеличивается и достигает M2, контакты M1 и M2 закорачиваются, поскольку вода действует как проводящая среда между M1 и M2.
  • Это включит транзистор Q1, и зеленый светодиод начнет светиться. Когда уровень воды будет продолжать повышаться и достигнет половины бака, M3 войдет в контакт с водой и получит небольшое напряжение от M1.
  • В результате Q2 включается и горит желтый светодиод.Когда вода в баке достигает полного бака, M4 также замыкается на M1, и Q3 и Q4 включаются.
  • Горит красный светодиод, а также включается звуковой сигнал, указывающий на то, что резервуар полон и можно выключить водяной насос или двигатель.

Примечание : Эта схема не показывает зуммера. Подключите зуммер, резистор и транзистор последовательно и подключите его параллельно последнему светодиоду.

Сигнализация уровня воды с использованием таймера 555

Вот схема, использующая микросхему таймера 555.

Принципиальная схема

Необходимые компоненты
  • NE555 Таймер
  • Резисторы
    • R1, R4-1K
    • R2-22k
    • R3-570 Ом
  • Конденсатор — 1 мкФ
  • Зуммер
  • Соединительные провода
Рабочий

В схеме используется таймер 555 в нестабильном режиме с R1 = 22 кОм, R2 = 570 Ом и C1 = 1 мкФ. Частота данной нестабильной цепи составляет около 62 Гц.

Два датчика, показанные на схеме, должны находиться на высоком уровне для воды. Расстояние между зондами должно быть меньше нескольких сантиметров, чтобы обеспечить проводимость между зондами при попадании воды на эти зонды.

Когда уровень воды поднимается на высоту зондов, тогда включается цепь 555, и на выходе таймера 555 формируется прямоугольный сигнал с частотой около 62 Гц. Этот вывод передается на зуммер.

Логика, реализованная в этой схеме: таймер 555 активируется, когда его вывод сброса подключен к высокому логическому уровню. Но изначально он подключен к земле. Когда уровень воды максимален, этот вывод активируется, и это переводит таймер 555 в нестабильный режим.

Индикатор уровня воды и сигнализация с использованием ULN2003

Эту схему можно реализовать на простой микросхеме ULN2003. IC ULN2003 состоит из массива из семи пар транзисторов Дарлингтона.

Принципиальная схема

Необходимые компоненты
  • L1-L3-светодиоды
  • R1-R3-1кОм
  • M1-M7-Металлические контакты
  • ULN2003 IC
Рабочий
  • Этот контур можно использовать для обозначения трех уровней воды в баках.
  • Когда достигается металлический контакт, каждый светодиод начинает светиться.
  • Когда бак заполнен, начинает звучать зуммер, при этом горят все светодиоды.

Также прочтите сообщение: Индикатор уровня воды с использованием микроконтроллера AVR

Работа контура

и его применение

Индикатор уровня воды

Контур сигнализации уровня воды представляет собой простой механизм для обнаружения и индикации уровня воды в верхнем баке, а также в других емкостях.В настоящее время все домовладельцы / владельцы хранят воду в верхних резервуарах с помощью насосов. Когда вода хранится в резервуаре, никто не может определить уровень воды, а также никто не может знать, когда резервуар для воды наполнится. Следовательно, в баке происходит перелив воды, что приводит к потере энергии и воды. Для решения этого типа проблем с помощью цепи сигнализации уровня воды таймера 555 это помогает и показывает уровень воды в верхних баках. Стоимость контура аварийной сигнализации уровня воды низкая, и его использование полностью для верхних резервуаров с водой, бойлеров плавательных бассейнов и т. Д.. Цепи сигнализации уровня воды используются на заводах, химических предприятиях и электрических подстанциях, а также в других системах хранения жидкости.

Что такое индикатор уровня воды?

Индикатор уровня воды определяется как система, которая получает информацию об уровне воды в резервуарах или резервуарах, которая используется в домах. С помощью индикатора уровня воды мы можем преодолеть перелив воды из автоцистерн.

Цепь сигнализации уровня воды с использованием таймера 555

Следующая схема представляет собой цепь сигнализации уровня воды с использованием таймера 555 IC.Когда уровень воды достигает своей отметки, он издает чистый звук. Напряжение питания схемы составляет около 3 В, поэтому схему довольно удобно использовать. Эта схема основана на нестабильном мультивибраторе, который подключен к IC1, а IC — NE555. Рабочая частота нестабильного мультивибратора зависит от значений таких компонентов, как конденсатор С1, резисторы R1 и R2, а также сопротивление между датчиками в точках A и B. Если уровень воды не достигает уровня датчиков, чем обрыв цепи.

Цепь сигнализации уровня воды с использованием таймера 555

Если вода не достигает уровня датчиков, то нестабильный мультивибратор с разомкнутой цепью не будет производить никаких колебаний. Таким образом, цепь не производит звука. Если уровень воды достигает датчиков, тогда в воде течет ток, следовательно, звук издается схемой. Следовательно, нестабильный мультивибратор создает колебания, пропорциональные значениям C1, R1 и R2 и резисторов на датчиках.Теперь зуммер издаст звуковой сигнал, указывающий, что уровень воды достигнут.

Если вода не достигает уровня датчиков, то нестабильный мультивибратор с разомкнутой цепью не будет производить никаких колебаний. Таким образом, цепь не производит звука. Если уровень воды достигает датчиков, тогда в воде течет ток, следовательно, звук издается схемой. Следовательно, нестабильный мультивибратор создает колебания, пропорциональные значениям C1, R1 и R2 и резисторов на датчиках.Теперь зуммер издаст звуковой сигнал, указывающий, что уровень воды достигнут.

Индикатор уровня воды и схема цепи сигнализации

Принцип работы этой схемы очень прост для понимания и очень практичен. Элементы, которые используются в этой схеме, совместимы с входом CMOS, 7-канальная ИС, которая представляет собой матрицу Дарлингтона. Если уровень воды в баке повышается, то вода контактирует с датчиками, которые находятся от P1 до P7 и, таким образом, от контакта 7 до 1 последовательно.Следовательно, эквивалентные выходные контакты с 10 по 16 будут переключаться на низкий уровень один за другим, а светодиоды с 1 по 7 будут переключаться в указанном порядке. Если уровень воды находится на последнем датчике P7, звук воспроизводится пьезо-зуммером, который подключен к выходному контакту 16 вместе со светодиодом 7.

Схема цепи индикатора и сигнализации уровня воды

Схема цепи индикатора уровня воды

Схема цепи индикатора уровня воды контролирует уровень воды в резервуаре и одновременно включает водяной насос всякий раз, когда уровень воды в резервуаре понижается.Уровень воды в резервуаре отображается с помощью 5 светодиодов, и если уровень воды в резервуаре полный, водяной насос полностью отключается. На следующей схеме показана принципиальная схема индикатора уровня воды, состоящая из 4 датчиков, которые размещены в верхнем резервуаре и связаны с портом 2 микроконтроллера.

Схема цепи индикатора уровня воды

Датчики размещены на расстоянии 1/4, 1/2 и 3/4 и на полном уровне, и они расположены на равном расстоянии друг от друга, один с нижним положительным зонд.Положительное напряжение помещается в нижнюю часть верхнего резервуара для воды, а датчики полного уровня находятся в верхнем резервуаре, а другой конец подключается к клемме базы транзистора Q4 с помощью резистора R16.

Когда уровень воды в баке увеличивается до максимума, ток течет через базовый вывод, а напряжение коллектора становится низким, и он соединяется с портом 2.4 микроконтроллера. Программирование микроконтроллера завершено, и данные могут быть переданы для микроконтроллера и светодиода.Мотор автоматически отключается, если уровень воды показывает D1.

Когда уровень воды опускается ниже датчика полного уровня, база второго транзистора Q2 открывается, выключая его. Для второго транзистора Q2 напряжение коллектора равно P2.4. Следовательно, верхний бак не заполнен, и тот же процесс применяется к остальным зондам, например, 1/4-я, 1/2-я, 3/4-я, они подключены к клемме базы транзистора Q1, Q2, Q3. Они связаны с портами микроконтроллера, такими как P2.5, P2.6 и P2.7, когда программирование выполняется микроконтроллером. При индикации уровня воды в баке загорятся светодиоды D3, D4 и D5. Следовательно, транзистор будет включен, а двигатель будет включен.

Порты микроконтроллера P0.0, P0.1, P0.3 и P0.4 связаны со светодиодами, указывающими уровень воды, и они подключены к резисторам. Порт P0.5 используется для регулирования насоса, транзистор Q6 остается включенным, а реле также активируется. Чтобы узнать индикацию низкого уровня воды в поддоне P0.7 порт подключен к светодиоду D7.

Цепь аварийного сигнала уровня воды

Электронная цепь аварийного сигнала уровня воды подключена к аварийному сигналу и размещена в указанной выше электронной цепи уровня воды, которая может предупреждать человека в доме. Когда уровень воды высокий или низкий или превышает верхний предел. На следующей схеме показана цепь аварийного сигнала уровня воды.

Цепь аварийной сигнализации уровня воды

Цепь аварийной сигнализации уровня воды аналогична электронной цепи уровня воды, но в цепи аварийной сигнализации уровня воды имеется подключенная к цепи аварийная сигнализация.Для внешнего уровня воды в верхнем резервуаре датчики могут показывать подходящие контакты микроконтроллера. Когда на этих выводах высокий уровень, сигнал управления передается от микроконтроллера к динамику, а также светодиодный индикатор, который зависит от программы микроконтроллера.

Электронная сигнализация уровня воды сообщает об уровне воды в резервуаре для воды, если резервуар для воды полон или резервуар для воды пуст. Следовательно, любой человек может определить уровень воды.С помощью датчика уровня жидкости мы можем измерить уровень воды в резервуаре для воды.

Цепь сигнализации уровня воды с использованием датчика уровня

На следующей схеме показана электрическая схема уровня воды. В этой схеме Эта схема использует датчик уровня жидкости для измерения уровня воды в резервуаре для воды. Схема издает звук, когда датчик обнаруживает каплю утечки воды. Схема очень проста в создании с помощью микроконтроллера, а также с использованием основных электрических и электронных компонентов.

Цепь аварийного сигнала уровня воды с использованием датчика уровня

В этой цепи используется микросхема LM1801, которая представляет собой маломощный компаратор и при необходимости может обеспечивать высокий выходной ток. Когда вода достигает датчика опорного напряжения находится ниже минимального уровня, и ИС приводит в действие керамический преобразователь для звукового сигнала. В цепи датчика уровня воды возможно использование нескольких датчиков. Из датчиков легко сделать небольшой кусок печатной платы, на котором нанесен правильный рисунок. Конденсатор C3 — это развязывающий конденсатор, это электролитический конденсатор 100 мкФ / 16 В.

Применение указателя уровня воды
  • Указатель уровня воды используется в отелях, домашних квартирах, коммерческих комплексах и на заводах.
  • Насосы, используемые в указателе уровня воды, представляют собой однофазный двигатель, погружной двигатель и трехфазный двигатель.
  • Используя два двигателя, два отстойника, два подвесных резервуара, мы не можем управлять одним контуром.
  • Насос автоматически включается / выключается, когда уровень воды в резервуаре пустой и полный.
  • Мы также можем измерять уровень топлива в автотранспортных средствах.
  • Контейнеры уровня жидкости огромны в компаниях
Преимущества индикатора уровня воды
  • Индикаторы уровня воды дешевы на рынке
  • Любой человек может определить уровень воды легко слышать звуковой сигнал
  • С его помощью мы можем безопасно и легко контролировать уровень воды

Информация в статье касается контура сигнализации уровня воды с использованием 555timer.Я надеюсь, что, прочитав эту статью, вы получили некоторые базовые знания об индикаторе уровня воды, и если у вас есть какие-либо вопросы относительно этой статьи или инженерных проектов, не стесняйтесь оставлять комментарии в нижеследующем разделе. Вот вам вопрос, каковы функции контура сигнализации уровня воды.

Фото:

Схема цепи сигнализации простого индикатора уровня воды

Переполнение резервуара для воды — распространенная проблема, которая приводит к нерациональному использованию воды.Хотя есть много решений для этого, например, шаровые краны, которые автоматически останавливают поток воды после заполнения резервуара. Но, будучи энтузиастом электроники, разве вам не понравится электронное решение для нее? Итак, вот простое и удобное руководство по проекту сигнализации воды DIY , которое поможет вам создать схему, которая будет определять уровень воды и поднимать сигнализацию при заполнении резервуара для воды или заданном уровне.

Эта схема простого транзисторного индикатора уровня воды очень полезна для индикации уровня воды в резервуаре.Когда резервуар наполняется, мы получаем оповещения на определенных уровнях. Здесь мы создали 4 уровня (низкий, средний, высокий и полный), мы можем создавать сигналы для большего количества уровней. Мы добавили 3 светодиода для обозначения трех начальных уровней (A, B, C) и один зуммер для индикации ПОЛНОГО уровня (D). Когда резервуары полностью заполнены, мы слышим звуковой сигнал от зуммера. Если вы хотите улучшить проект, добавив дисплей и автоматическое управление включением и выключением двигателя, вы можете просто добавить микроконтроллер, такой как Arduino, чтобы определять подмены воды и соответственно управлять дисплеем и двигателем. Если вы хотите получить более подробную информацию об этом проекте, вы можете ознакомьтесь с проектом индикатора и контроллера уровня воды на базе Arduino.

Компоненты, необходимые для цепи сигнализации уровня воды

Цепь сигнализации переполнения резервуара для воды

Полную принципиальную схему для проекта сигнализации перелива воды можно найти ниже. Как видите, схема проста и удобна в сборке, поскольку в ней всего несколько основных компонентов, таких как транзисторы, резисторы, светодиоды и зуммер

.

Мы можем рассматривать весь этот контур как 4 маленьких контура, каждый для индикации / сигнализации, когда был достигнут определенный уровень (A, B, C, D) воды.

Когда уровень воды достигает точки A, цепь с КРАСНЫМ светодиодом и транзистором Q1 замыкается, и КРАСНЫЙ светодиод светится. Точно так же, когда уровень воды достигает точки B, цепь с ЖЕЛТЫМ светодиодом и транзистором Q2 завершается, и желтый светодиод светится, то же самое происходит с точкой C. И, наконец, когда резервуар заполняется (точка D), цепь с зуммером завершается, и зуммер начинает пищать.

Цепь сигнализации низкого уровня воды — рабочая

Здесь мы используем транзистор (типа NPN) в качестве коммутатора.Первоначально на базу транзистора Q1 не подается напряжение, и транзистор находится в выключенном состоянии, и ток не течет через коллектор и эмиттер, а светодиод не горит (см. Схему ниже, чтобы понять структуру выводов транзистора).

Когда уровень воды достигает точки А в резервуаре, положительный полюс батареи подключается к базе транзистора Q1 через воду. Таким образом, когда на базу транзистора Q1 было подано положительное напряжение, он переходит в состояние ВКЛ, и ток начинает течь от коллектора к эмиттеру.И красный светодиод светится.

Вы можете видеть резисторы (R1, R2, R3) на базе каждого транзистора, которые используются для ограничения максимального тока базы. Как правило, транзистор полностью переходит в состояние ВКЛ, когда на базу подается напряжение 0,7 В. Также есть резисторы (R4, R5, R6) с каждым из светодиодов для падения напряжения на светодиодах, в противном случае светодиод может взорваться.

То же явление происходит, когда уровень воды достигает точки B. Как только уровень воды достигает точки B, на транзистор Q2 подается положительное напряжение, он включается, и ток начинает течь через ЖЕЛТЫЙ светодиод, и светодиод светится.По тому же принципу, ЗЕЛЕНЫЙ светодиод светится, когда уровень воды достигает точки C.И, наконец, зуммер издает звуковой сигнал, когда уровень воды достигает D.

Обратите внимание, что крайний левый провод в резервуаре должен быть длиннее, чем другие четыре провода в резервуаре, потому что это провод, который подключен к положительному напряжению.

Антикоррозийные датчики для контроллера уровня воды

В этом посте мы узнаем, как изготавливать антикоррозионные датчики для цепей датчиков и контроллеров уровня воды, используя переменное питание между датчиками.

Как это работает

Давайте разберемся с концепцией, использованной при разработке этой схемы антикоррозионного зонда для датчиков и контроллеров уровня воды.

Коррозия датчиков датчика уровня воды происходит из-за источника постоянного тока, который обычно используется для срабатывания датчиков через воду. Это усугубляется процессом незначительного электролиза на выводах зонда, который при длительном использовании приводит к образованию слоев химикатов и минералов, постепенно препятствуя эффективной работе зондов и влияя на способность цепи чувствовать воду.

Чтобы исправить это, рекомендуется использовать источник переменного тока, чтобы процесс электролиза не мог развиваться на датчиках из-за постоянного переключения полярности питания на датчиках из-за переменного характера питания.

В схеме, представленной выше, питание переменного тока поступает от трансформатора 12 В через пару резисторов высокого номинала для снижения тока через щупы.

Питание подается на входы логического элемента «ИЛИ», который специально работает с этим переменным током и выдает соответствующий выходной сигнал в зависимости от того, присутствует ли вода на датчиках или нет.

В отсутствие воды приложенный переменный ток генерирует попеременно изменяющиеся потенциалы на двух входных контактах логического элемента ИЛИ. Согласно таблице истинности логического элемента ИЛИ, 0 и 1 или 1 и 0 на его входах соответственно создают выход логической 1. Это означает, что, хотя альтернативное переключение применяется к двум входам логического элемента ИЛИ, вызывает его выход чтобы постоянно быть на уровне 1.

Теперь, если вода перекрывает точки зонда, это мгновенно вызывает относительное короткое замыкание между точками, в результате чего переменный ток исчезает на входах логического элемента ИЛИ.

В этой ситуации оба входа логического элемента ИЛИ удерживаются на уровне логического 0, что вызывает возврат его выхода с логической 1 на логический 0.

Вышеупомянутое действие включает транзистор PNP, позволяя выходу запускать заданную нагрузку. например реле или светодиод.

Можно использовать большее количество затворов с параллельными точками датчиков на разной глубине резервуара с водой для определения различных уровней воды, если это необходимо, для создания схемы зонда датчика для защиты от коррозии с несколькими уровнями воды

Затвор OR IC может быть IC 4071 или любым другим подобным.

Простая схема датчика уровня воды без коррозии

На следующем рисунке показан возможный более простой метод создания клемм датчика уровня воды, не подверженных коррозии.

ПРИМЕЧАНИЕ. Подключите резистор 100 кОм между базой / коллектором транзистора BC557, в противном случае он не будет реагировать на переключение базы 100 Гц

На схеме мы видим, что клемма заземления в нижней части резервуара поставляется с переменный +/- 6В вместо обычного постоянного тока. Это вынуждает другие клеммы проводить двухтактный режим со ссылкой на эту базовую клемму, и мы надеемся, что это предотвратит развитие коррозии на подключенных клеммах измерения уровня воды.

Использование оптопары

Идеальный зонд для измерения влажности без коррозии может быть построен с использованием каскада оптрона между зондом и схемой контроллера, как показано ниже:

светодиод оптрона и обратный диод. Одна половина цикла переменного тока проходит через воду и датчики посредством оптического светодиода, который запускает схему контроллера, в то время как другая половина цикла переменного тока проходит через обратный диод.

Постоянно меняющие циклы переменного тока гарантируют, что электролиз воды не может происходить через зонды, что предотвращает любую форму окисления или коррозии зондов.

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

Схема датчика уровня воды для беспроводного мониторинга

Re: Схема датчика уровня воды для беспроводного мониторинга

Привет,

Вы знаете, что говорят — задайте неопределенный вопрос, получите бесполезный ответ… Низкое энергопотребление: 1 мА или 1 нА в день или в год? Это в темном вольере? Это на 1000000 литров или на 50 мл? и т.д.

Как бы то ни было, большая часть потребляемого тока питает TLV431 ~ 800 мкА. Было бы неплохо использовать эталон с более низким током питания, например резистивный делитель (но это привело бы к падению эталонного напряжения батареи). Фактическая измерительная цепь, которая, как вы можете видеть, является всего лишь вариантом очень, очень стандартного помещения / конструкции (так называемый «детектор лжи», также известный как «датчик влажности почвы» или «датчик уровня воды», открытый или закрытый путь к земле или где угодно дизайнеру), при моделировании потребляет примерно от 130 до 170 мкА при напряжении 3 В и, безусловно, будет работать до 2.4 В или ниже. Откровенно говоря, вы даже можете обойтись без компаратора, но тогда придется потратить время на расчет падения напряжения батареи и обеспечение достижимости Vbe и / или VOH.

Мне бы хотелось увидеть серьезные предложения по схеме измерения уровня воды малой мощности.

— — — Обновлено — — —

Привет,

Я тоже думал об обнаружении уровня воды датчиком давления, потому что я думал о том, чтобы избежать коррозии проводов и так далее, но на первый взгляд кажется, что это больше сложные части и расчеты, чем действительно требует простая схема да / нет.например Мониторинг уровня жидкости с помощью датчика давления

Я смоделировал приведенную выше схему компаратора, используя NPN с диодным соединением в качестве эталона (вместо TLV431), и он действительно использует гораздо меньший ток покоя / обслуживания и, по-видимому, работает в диапазоне от 0 до 100 ° C. Не уверен, что я бы хотел испытать такую ​​зависящую от температуры эталонную версию, если не провёл сначала какое-нибудь реальное тестирование.

Намного более экономичный резистор тока — это трио bjt, встречающееся во многих из этих схем. Глядя на то, что я моделировал, я думаю, что лучше, чтобы выход был низким, когда уровень воды опускается ниже любого уровня, так как таким образом основная часть тока отводится тогда, а не все время, просто чтобы пользователь знал, что есть вода выше уровня x.Поскольку вы, похоже, используете PIC / MCU, это не проблема, я думаю, поскольку уровни ввода, и то, что они означают, можно определить в коде. Еще два скриншота моделирования для сравнения этой идеи о минимизации потребления тока с активными высокими или активными низкими сигналами:

IOT Контроль уровня воды с помощью ультразвукового датчика

  • Дом
  • Политика конфиденциальности
  • Заявление об ограничении ответственности
  • DMCA
  • О нас
  • Свяжитесь с нами
  • Карта сайта
  • Рекламируйте с нами
Меню
  • Статьи
  • языков
    • Программирование на C ++
    • Программирование на Java
    • разработка приложений для Android
    • Программирование на Python
    • C-диез (C #)
    • Html и CSS
    • JavaScript
    • PHP
    • компьютер
  • Проектов
    • Проекты Arduino
    • Простые проекты
    • Продвинутые проекты
    • Arduino + vb.чистые проекты
    • Arduino + обработка изображений
    • Проекты роботов Arduino
    • Беспроводные проекты Arduino
    • Проекты IOT
    • esp32 iot проекты
    • Энергетические проекты
      • Производство электроэнергии
      • машины постоянного тока и батареи
  • Электроника
    • Базовая электроника
    • Продвинутая электроника
    • Цифровая электроника
    • Силовая электроника
  • Промышленное
    • Промышленные проекты Arduino
    • PLC Проекты
    • PLC и проекты Scada
  • Инжиниринг
    • Электрооборудование
    • Телекоммуникации
  • малиновый пи
  • Магазин Amazon
    • Платы Amazon Arduino
    • Датчики и комплекты Amazon Arduino
    • Amazon Лучшие инструменты и комплекты
    • Amazon Electronics
    • Основные устройства Amazon
    • Amazon Спорт и фитнес
    • Подарочные карты Amazon
    • Amazon Trending Fashion

Страниц

  • Дом
  • Политика конфиденциальности
  • Заявление об ограничении ответственности
  • DMCA
  • О нас
  • Свяжитесь с нами
  • Карта сайта
  • Рекламируйте с нами

Категории

  • Статьи
  • языков
  • Проектов
  • Электроника
  • Промышленное
  • Машиностроение
  • малиновый пи
  • Магазин Amazon
Проекты IOT Энгр Фахад — 9 мая, 2019 11 комментариев .

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *