Ресурс двс: Двигатель современного автомобиля | Продлеваем срок службы

Содержание

Какой ресурс  у двигателя: иномарки и отечественные авто

Как правило, вопросом, какой ресурс у двигателя того или иного автомобиля, задаются водители, которые планируют приобрести машину на вторичном рынке.  Другими словами, данная тема больше волнует покупателей подержанных автомобилей. Вполне логично, что после приобретения авто б/у далеко не каждый захочет тратиться на капитальный ремонт двигателя через 30-50 тыс. км.  пробега.

По этой причине желательно знать, сколько в среднем способен выходить тот или иной двигатель, то есть когда агрегат нужно ремонтировать с учетом особенностей и практической эксплуатации. В этой статье мы поговорим о том, какой ресурс закладывают производители современных ДВС, а также сколько такие двигатели  выхаживают у среднестатистического водителя.

Содержание статьи

Средний срок службы современных моторов

Начнем с того, что еще продолжает оставаться на слуху информация о сверхнадежных двигателях старых иномарок, для которых при должном обслуживании и уходе вполне реальной цифрой до капремонта была отметка в миллион километров.

С учетом  ряда изменений в мировой политике, глобализации производства и постоянного ужесточения экологических норм, крупные зарубежные автопроизводители  больше не стремятся разрабатывать и оснащать свои автомобили такими надежными двигателями (миллионниками и даже полумиллионниками).

Причина проста – чтобы «намотать» такой солидный пробег, среднестатистическому водителю  с годовым пробегом около 30 тыс. км. нужно будет ездить на одной машине не менее 15 лет, чтобы пройти 500 000 км. За это время автомобиль безнадежно устареет в плане оснащения и безопасности, силовой агрегат больше не будет вписываться в актуальные  экологические стандарты и т.п.

Если же по какой-либо причине владелец не расстается с машиной и продолжает ее эксплуатировать, тогда источником дополнительной прибыли являются продажи запчастей. Другими словами, сокращать ресурс моторов и других узлов также выгодно в экономическом плане.

С учетом данной информации становится понятно, что  для большинства современных иномарок усредненной цифрой ресурса ДВС можно считать отметку около 300-350 тыс. км. Что касается отечественного автопрома, показатель составляет около 150-200 тыс. км.

При этом важно понимать, что на ресурс двигателя огромное влияние также оказывает целый ряд индивидуальных условий. В одних случаях силовой агрегат может с легкостью пройти и 500-600 тыс., тогда как в других капремонт необходимо делать уже через 100 тыс.

При этом другие владельцы предпочитают лить самую дешевую смазку, меняя масло даже позже определенного регламентом интервала. Становится понятно, что ресурс силового агрегата сильно зависит не только от качества изготовления мотора, но и от самого водителя.

Также важно понимать, что современный двигатель стал мощнее и одновременно экономичнее своих предшественников. Это значит, что силовой агрегат форсируют всеми доступными способами (турбонаддув, изменение фаз газораспределения и т.п.) при этом рабочий объем не увеличивается.

За последнее время моторы стали намного более оборотистыми, технологичными и сложными, увеличилась степень сжатия, была повышена температура термостатирования, двигатели стали работать на сверхобедненных смесях (например, моторы GDI) в целях максимальной экономии топлива и т.п.

Параллельно с этим снизился вес силового агрегата, более прочные материалы (например, чугун) уступили место облегченным алюминиевым сплавам, на поверхности стали наносится особые покрытия (Никасил, Алюсил и т.д).

Другими словами, с небольшого по объему агрегата сегодня снимается максимум мощности и крутящего момента. Вполне очевидно, что такой ДВС постоянно испытывает большие нагрузки, причем даже в штатных режимах. Если сравнить двигатели нового поколения со старыми моторами с большим рабочим объемом, предшественники потребляли больше топлива, однако были менее тепло и механически нагруженными, в их конструкции использовались проверенные временем прочные материалы, что и обеспечивало увеличенный ресурс.

Хотя сегодня технологии производства деталей и точность изготовления и сборки шагнули далеко вперед, общие мировые тенденции все равно подтолкнули авто производителей к выпуску так называемых «одноразовых» моторов, которые должны отработать заявленный гарантийный период (100-150 тыс. км. пробега), после чего еще пройти отрезок, который как раз и упирается в среднюю отметку около 300 тыс.

Отметим, что данное утверждение справедливо для атмосферных двигателей. Если говорить о турбированных версиях (особенно бензиновых ДВС), большая мощность при скромном рабочем объеме сокращает их ресурс как минимум на треть, то есть до 200 тысяч километров до ремонта. Что касается турбодизелей, средней отметкой для них можно считать показатель около 300-350 тыс. км.

Еще важно понимать, что дальнейший ремонт «одноразового» двигателя может быть даже не предусмотрен заводом-изготовителем (нет возможности расточить блок цилиндров, в каталогах запчастей отсутствуют ремонтные поршни, кольца и т.д). Конечно, в ряде случаев вопрос решается гильзовкой блока у квалифицированных специалистов, однако сумма восстановления агрегата получается довольно значительной.

Плучается, полностью и качественно отремонтировать современный двигатель с большим пробегом может оказаться экономически нецелесообразным решением, так как стоимость ремонта может дойти до 30-40% от общей стоимости всего подержанного авто.

Полезные советы

Итак, с учетом приведенной выше информации становится понятно, что атмосферный бензиновый мотор современной иномарки имеет средний ресурс около 300 тыс. км. При этом уход, грамотная эксплуатация и своевременное профессиональное обслуживание позволяет продлить жизнь двигателя до 400-450 тыс. км.

Исключением можно считать  разве что маленькие форсированные ДВС. Например, трехцилиндровые агрегаты на компактных малолитражках с объемом около 1.0 литра служат, в среднем, 150-180 тыс. км. Дело в том, что такие моторы часто перекручивают, чтобы не отставать от потока и  динамично поддерживать заданный темп.

Если говорить о турбированных бензиновых двигателях, в этом случае пробег от 130-160 тыс. км. уже является поводом к серьезным размышлениям при покупке подержанного автомобиля. Однако на турбодизели это не распространяется, так дизельный мотор изначально имеет больший ресурс по сравнению с бензиновым.

Теперь давайте рассмотрим ресурсы двигателей иномарок,  таблица наглядно иллюстрирует  средние показатели срока службы двигателей на отечественных авто и машинах иностранного производства различных брендов.

Ваз

150-200 тыс.км.

Nissan/Mazda/Mitsubishi

250-500 тыс.км.

Toyota

350-550 тыс.км.

Hyundai/Kia

200-250 тыс.км.

Opel/ Chevrolet

200-300 тыс.км.

Peugeot/Renault

250-400 тыс.км.

Mercedes/BMW

300-600 тыс.км.

VW/Audi/Skoda

250-550 тыс.км.

Ford

300-500 тыс.км.

Также стоит отдельно упомянуть бренд Subaru. Оппозитные моторы этого производителя способны проходить, в среднем, 250-350 тыс. Также заслуживает внимания и роторный двигатель Mazda, который служит всего 50-100 тыс. км.

Напоследок хотелось бы отметить, что приведенные выше данные являются средним показателем. На практике часто можно встретить модели ВАЗ (например, 2110, Калина, Приора), пробег которых составляет 250 тыс. км. и двигатель не нуждается в ремонте.

Также наглядным примером являются как бюджетные модели Renault Logan, Chevrolet Aveo/Lacetti, ЗАЗ Lanos и Hyundai Accent/Solaris, так и более дорогие Mitsubishi Lancer, Mazda 3-6, BMW 3-5 серии, VW Polo/Golf или Toyota Corolla, где пробеги составляют по 250-350 тыс. км и двигатель работает без явных проблем.

Как видно, при должном уходе и обслуживании практически любой современный атмосферный бензиновый мотор с рабочим объемом от 1.4 до 1.8 литра пройдет около 250-300 тыс. км. При этом чем проще силовая установка конструктивно, а также во многих случаях чем меньше мощности было снято с каждого «кубика» объема, тем больше окажется ресурс ДВС.

Другими словами, простой двигатель будет дольше ходить до серьезного ремонта при грамотной эксплуатации по сравнению с высокотехнологичным форсированным атмосферным или турбированным силовым агрегатом. При выборе подержанного автомобиля данную особенность также необходимо обязательно учитывать.

 

Читайте также

Пять систем, которые снижают ресурс двигателя автомобиля — Российская газета

Не секрет, что новые моторы разрабатываются исходя из требований экономичности и экологичности, а потребительские характеристики при этом уходят на дальний план. В итоге снижается надежность и ресурс двигателя.

При выборе автомобиля стоит учитывать эту тенденцию. Есть список характеристик, которые неизбежно сокращают ресурс двигателя.

Первый пункт - это снижение объема камер сгорания. Это уменьшает выброс вредных веществ в атмосферу. При этом обозначенная мощность мотора обеспечивается за счет увеличенной степени сжатия, которая позволяет улучшить скорость сгорания.

Степень сжатия ограничена топливными характеристиками и материалами, из которых сделаны механизмы поршневой группы. Если степень сжатия увеличивается на треть, то воздействие на поршень и подвижные части вырастает в два раза. С этой точки зрения в легковых авто оптимальными потребительскими свойствами обладают 1,6-литровые 4-цилиндровые двигатели, пишет aif.ru.

Второй пункт - применение поршней с короткой юбкой. Логика производителя следующая. Чем меньше поршень, тем он легче. И благодаря этому он обеспечивает большую отдачу и эффективность. Сокращение юбки поршня в сочетании уменьшением плеча шатуна влечет за собой рост нагрузки на стенки цилиндров. На высоких оборотах такой поршень иногда пробивает масляную пленку и соприкасается с металлом цилиндров. Что, конечно, не продляет службу поршневой группы.

Третьим в списке идет использование турбонаддува на малообъемных моторах. Чаще всего встречается турбонаддув, работающий на энергии выхлопных газов для вращения центростремительной турбины. Температура в ней достигает 1000 градусов. Чем больше литровая мощность мотора - тем сильнее износ. Чаще всего турбоагрегат ломается на пороге 100 тысяч километров. Турбина может быстро вывести из строя поршневую часть, поскольку турбокомпрессор возьмет весь запас моторного масла.

Четвертый пункт - отсутствие прогрева двигателя при минусовых температурах. Действительно, современные моторы могут начинать работу без прогрева благодаря новейшим системам впрыска. При понижении температуры нагрузка на детали резко возрастает: двигателю нужно прокачать масло и прогреться хотя бы минут пять. Но из-за экологических требований производители опускают эту рекомендацию. А срок службы шатунно-поршневой группы сокращается.

Пятой в списке стоит система "старт/стоп". Ее придумали немецкие автопроизводители для отсечения режима холостого хода, при котором в атмосферу выбрасывается немало вредных веществ. Как только скорость автомобиля падает до нуля, система отключает двигатель. Проблема в том, что каждый мотор рассчитан на определенное число пусков. Без этой системы за 20 лет двигатель запустится, в среднем, 100 тысяч раз. С ней - около 10 миллионов. Чем больше пусков - тем сильнее происходит выработка трущихся частей.

Рейтинг надежности двигателей автомобилей: два литра проблем

Какой двигатель надежнее и долговечнее? Расставляем по местам восемь атмосферных бензиновых моторов объемом 2,0 литра.

Двигатель — основной и самый дорогостоящий агрегат, от его надежности во многом зависит, затратным ли окажется содержание автомобиля. Особенно это актуально для покупателей подержанных машин. Хотя бы потому, что обычно моторы начинают требовать внимания уже по истечении гарантийного срока — чаще у вторых или третьих хозяев. Именно им в первую очередь адресован наш рейтинг, подготовленный совместно с московской компанией ИНОМОТОР, которая около двадцати лет занимается профессиональным ремонтом двигателей.

Материалы по теме

Мы запланировали несколько сравнительных материалов, в которых рассмотрим двигатели разного объема. Начнем с атмосферных бензиновых двухлитровых моторов. Поскольку добротный капитальный ремонт — удовольствие недешевое, к мотористам почти не привозят агрегаты меньшей кубатуры: их восстановление обойдется дороже так называемого контрактного двигателя с пробегом, привезенного из-за границы. Поэтому статистика по таким моторам слишком скудна для сравнительного анализа.

В рейтинге представлены хорошо изученные и популярные двигатели, дебютировавшие 10–15 лет назад. Примерно в это время произошло значительное падение качества — существенно снизились ресурс моторов и их надежность. По большей части эти агрегаты ставили на автомобили предпоследнего поколения, многие из которых стали бестселлерами на вторичном рынке. Они накатали солидные пробеги, дав достаточно материала для размышлений о надежности.

Основной критерий при распределении мест — общий ресурс двигателей. Кроме того, оцениваем надежность их отдельных систем и элементов, а также качество изготовления деталей. Технологии ремонта мы подробно рассматривали в материале «Вторая жизнь» (ЗР, 2015, № 1). Практически все элементы моторов можно восстановить — вопрос лишь в экономической целесообразности. Подходы к ремонту двигателей, представленных в обзоре, идентичны, разница лишь в количестве деталей, требующих лечения. Поэтому в качестве дополнительного критерия сравнения рассматриваем стоимость и доступность запчастей.

В целом атмосферные бензиновые моторы объемом 2,0 л — довольно ресурсная и не самая проблемная группа; многие двигатели тех же семейств, но с бóльшим объемом, например 2,3–2,5 литра, значительно капризнее. Это справедливо и для «призеров» нашего рейтинга.

8-е место: BMW

Двигатели BMW серий N43, N45 и N46 принадлежат к одному семейству, хотя имеют конструктивные различия. Их основные носители — модели 318i, 320i (E90) и 520i (E60) — представители предпоследних поколений BMW третьей и пятой серий.

Средний ресурс моторов по износу цилиндропоршневой группы оценивают ниже 150 000 км — качество изготовления деталей не выдающееся. Двигатели технически сложны для своего времени — пожалуй, даже чересчур. У них много систем и узлов, начинающих капризничать еще до наступления естественного износа цилиндров и поршневых колец.

Материалы по теме

Моторы конструктивно склонны к потреблению масла, причем ситуацию усугубляют некоторые неисправности. По причине выхода из строя резиновой диафрагмы клапана вентиляции картерных газов масло начинает попадать во впускной трубопровод — автомобиль дымит, как паровоз. К 100 000 км пробега из-за износа направляющих втулок возникает повышенный люфт клапанов системы ГРМ, в результате масло через маслосъемные колпачки попадает прямиком в камеру сгорания. К тому же неполное закрытие клапанов приводит к пропускам зажигания и перебоям при холодном пуске мотора зимой.

До 150 000 км обычно не доживают цепь ГРМ и муфты изменения фаз газораспределения. Из-за неравномерного удлинения цепь начинает шуметь, возможен даже обрыв, и тогда встреча поршней с клапанами неизбежна. Но чаще она только перескакивает на несколько зубьев без катастрофических последствий. Вдобавок к механическому износу муфт изменения фаз примерно к 100 000 км пробега масляные отложения забивают управляющий ими соленоид — мотор переходит в аварийный режим.

Капризна и система изменения высоты подъема впускных клапанов (Valvetronic), которая работает вместо привычной дроссельной заслонки. После 100 000 км пробега масляными отложениями забивается дорогостоящий электромотор, и в конце концов его заклинивает. Из-за частой езды по пробкам на клапанах нарастает нагар, что оборачивается их неполным закрытием. На оборотах холостого хода чувствительная система воспринимает это как серьезную неисправность, мотор начинает работать с перебоями, загорается контрольная лампа Check Engine.

Эти моторы BMW, как и многие их современники, не имеют заводских ремонтных размеров. В случае критического износа стенок цилиндров мотористы растачивают и гильзуют блоки, сохраняя при этом номинальный размер поршневой группы. Увы, оригинальные запчасти моторов BMW — самые дорогие среди прочих из нашей подборки, а аналогов им практически нет. Капитальный ремонт этих моторов наиболее затратный.

7-е место: Volkswagen

Моторы 2.0 FSI ставили на многие модели концерна Volkswagen. Самые распространенные — Golf V, Passat B6, Octavia и Audi A3 второго поколения.

Материалы по теме

Средний ресурс двигателей — 150 000 км. Мотористы оценивают уровень качества изготовления их элементов как средний. Подобно моторам BMW, фольксвагеновские агрегаты 2.0 FSI из-за технически сложной конструкции не блещут надежностью, но масштабы бедствия поменьше.

Топливная аппаратура непосредственного впрыска капризна. Дорогостоящие, но недолговечные форсунки и ТНВД умирают уже после 100 000 км пробега. Кроме того, вследствие конструктивного недостатка системы питания возникает неравномерный износ цилиндров: форсунка распыляет бензин практически на противоположную стенку цилиндра, тем самым смывая с нее масло. Уже к 120 000 км пробега цилиндр в этой зоне из-за износа имеет отчетливую бочкообразную форму.

Еще один недостаток непосредственного впрыска: топливо не очищает впускные клапаны от нагара. Рано или поздно это приводит к их неполному закрытию и нестабильным холодным пускам мотора, особенно зимой. Усугубляет ситуацию быстрый износ направляющих втулок клапанов (как у моторов BMW), что вдобавок ведет к повышенному расходу масла.

Отметились двигатели FSI и частым залеганием поршневых колец. Заметное уменьшение их толщины значительно повлияло на жесткость. Кстати, это одна из тенденций в современном двигателестроении: снижение массы сказывается на надежности. Менее жесткие кольца быстрее теряют свою исходную геометрию, закоксовываются и фактически перестают работать. Один из предвестников этого — затрудненный холодный пуск мотора в зимний период.

Ремонтные размеры для моторов FSI не предусмотрены. Оригинальные запчасти не из дешевых. Благо, на рынке предостаточно заменителей. В целом стоимость капитального ремонта двигателей FSI высока, дороже только у агрегатов BMW.

6-е место: Ford/Mazda

Совместное детище компаний Ford и Mazda — двигатели семейства Duratec HE/MZR. Эти идентичные моторы широко распространены, их устанавливали на такие массовые модели, как Mazda 3 и Mazda 6 первых двух поколений, Focus и Mondeo предыдущих генераций.

Материалы по теме

Ресурс моторов — 150 000–180 000 км. Конструктивно они довольно просты, но, увы, качество деталей оставляет желать лучшего. Кроме того, эти двигатели особенно чувствительны к масляному голоданию и перегревам.

При активной езде значительно возрастает расход масла. Если владелец не уследил за его уровнем, велик риск проворота шатунных и коренных вкладышей коленчатого вала. На этих двигателях вкладыши выполнены без замков и установлены внатяг — на месте они удерживаются лишь благодаря упругости металла. К сожалению, сегодня это еще одно распространенное решение. Достаточно непродолжительного масляного голодания или незначительного перегрева мотора, и вкладыши теряют свою геометрию.

При провороте вкладышей страдают шейки коленвала и его постели в блоке цилиндров. При их ремонте всплывает посредственное качество изготовления. Нередки случаи, когда трескаются шейки вала: дорогостоящий вал — на выброс. А при откручивании болтов коренных крышек из отверстий высыпаются ошметки резьбы. Очевидно, что при сборке она уже не выдержит требуемого момента затяжки. Приходится ее восстанавливать с помощью футорок.

У двигателей нет ремонтных размеров. При этом для двигателей моделей Ford запчасти по отдельности недоступны — только как шорт-блок (блок цилиндров в сборе). Благо, в продаже есть аналогичные детали Мазды. На рынке представлены и неоригинальные запчасти. Цена капитального ремонта моторов средняя.

5-е место: Renault-Nissan

Моторы концерна Renault-Nissan семейств M4R/MR20 больше знакомы по японским кроссоверам. Агрегатом MR20 вооружали X‑Trail предыдущего поколения, а Qashqai не расстался с ним и поныне. Французский аналог стоял на Мегане третьего поколения и пока еще доступен для Флюэнса.

Ресурс моторных братьев составляет 180 000–200 000 км. Качество деталей лучше, чем у ближайших конкурентов — моторов для автомобилей Ford и Mazda, но без слабых мест тоже не обошлось. Иногда появляются трещины на шейках коленчатых валов и возникает деформация четвертого цилиндра — как правило, когда сервисмены при установке коробки передач перетягивают болты крепления. Недолговечна цепь ГРМ: растягивается уже к 80 000 км пробега.

Как обычно, ремонтные размеры не предусмотрены. Доступны оригинальные запчасти по отдельности. По стоимости капитального ремонта эти двигатели сопоставимы с парой Ford/Mazda.

4-е место: Mitsubishi

Мотор Mitsubishi серии 4B11 открывает подгруппу двигателей, лишенных серьезных болезней. Его ставили на Outlander предыдущего поколения и Lancer Х первых лет выпуска.

Ресурс двигателя — 180 000- 200 000 км. Качество изготовления его элементов хорошее. Общая надежность мотора во многом обусловлена еще и простотой конструкции, лишенной капризных систем. Как правило, двигатели попадают к ремонтникам из-за естественного износа цилиндропоршневой группы.

Мотор имеет ремонтный размер. Доступны оригинальные запчасти по отдельности.

По стоимости восстановления двигатель Mitsubishi сопоставим с моторами Renault, Nissan, Ford, Mazda.

3-е место: Honda

Мотор Honda серии R20 ставили преимущественно на Accord седьмого и восьмого поколений и на CR-V двух последних генераций.

Ресурс — около 200 000 км. Качество изготовления деталей чуть выше, чем у мотора Mitsubishi. Двигатель R20 надежен и конструктивно прост. Простая схема регулировки клапанов «винт — гайка» не требует подбора и замены толкателей клапанов. При соблюдении регламента этой операции (каждые 45 000 км) R20 не будет доставлять хлопот вплоть до возникновения естественного износа цилиндропоршневой группы.

Ремонтные размеры для двигателя не предусмотрены. Запчасти для моторов Honda недешевы, поэтому капитальный ремонт один из самых дорогих в японской подгруппе.

2-е место: Toyota

Хорошо зарекомендовавший себя мотор Toyota серии 1‑AZ трудился под капотом, например, Авенсиса второго поколения и кроссовера RAV4 предпоследней генерации.

Ресурс — около 200 000 км. Качество изготовления элементов очень хорошее. В нашем списке два явных лидера по этому показателю — Toyota и Subaru. Двигатель 1‑AZ опередил хондовский R20 и по другому параметру: оригинальные детали для него относятся к числу наиболее дешевых. Цена восстановления двигателя 1‑AZ — самая низкая в нашем рейтинге.

1-е место: Subaru

Самым надежным и «долгоиграющим» двигателем в группе мотористы назвали оппозитный агрегат Subaru серии EJ20, знакомый с конца 1990‑х. Его до сих пор ставят на некоторые модели, предназначенные для японского рынка. В Европе эпоха этого оппозитника закончилась в 2011 году, когда ему на смену пришел обновленный мотор серии FB с цепным приводом ГРМ вместо ременного. Среди последних распространенных моделей Subaru мотором EJ20 вооружают Forester и Импрезу третьего поколения.

Ресурс — 250 000 км. Качество деталей такое же высокое, как у тойотовского 1‑AZ, и вдобавок у EJ20 есть еще один козырь. Это один из немногих двигателей из нашего списка, для которого предусмотрен хотя бы один заводской ремонтный размер — большая редкость для моторов начала 2000‑х годов.

Однако и у двигателя Subaru есть свой минус. Хотя и имеется альтернатива гильзовке блока, но оригинальные запчасти дороговаты, а аналогов очень мало.

Среди японской «большой четверки» мотор Subaru потребует самых больших расходов на капитальный ремонт. Высокий ресурс и надежность стоят денег.

Благодарим ООО «ИНОМОТОР» (г. Москва) за помощь в подготовке материала

Фото: компании-производители

Ресурс двигателя автомобиля - как продлить ресурс (советы для начинающих)

Расскажем - что такое ресурс двигателя автомобиля: какие факторы влияют и как его продлить. Советы от профессионалов для начинающих автолюбителей.

Что это такое

Если обратиться к справочной литературе, под ресурсом принимается пробег авто до капитального ремонта двигателя. На практике за критерий наступления предельного состояния принимают снижение мощности, появление стука, предельно высокий расход топлива и масла. Т.е. совокупность ситуаций, которые ведут к серьезному ремонту. Легче заранее предотвратить появление проблем, чем позже ремонтировать двигатель. Данные правила продлят его работу:
  • Применять топливо, масло и антифриз рекомендуемые заводом.
  • Следить за состоянием воздушного, масляного и топливного фильтра;
  • Не допускать частых повышенных нагрузок;
  • Во время проводить техосмотр и не экономить на запчастях.

Расшифровка правил

Применять топливо, рекомендуемое изготовителем. Если для авто положен «95-ый» бензин, то заливаем в бак его. Если хотите сэкономить и залить вместо АИ-95 - АИ-92 - это отрицательно скажется на ресурсе. Объясняется тем, что каждый мотор предназначен для определенного вида топлива. О чём можете прочитать в инструкции к машине или увидеть соответствующую наклейку на внутренней стороны заправочного лючка.

Применение бензина низкого качества опасно из-за преждевременной детонации (взрыва). Особенно критично для турбированных моторов, когда заливаете «95-ый» или «92-ой» вместо положенного «98-ого». Это приведёт к раннему ремонту двигателя или турбины. То же самое относится к атмосферным моторам без турбины. Если производитель сказал лить в бак «95-ый» бензин - то так и поступаем. Иначе последующие проблемы будем оплачивать за свой счёт.

Правильно выбранное моторное масло также положительно сказывается на ресурсе. Если завод-изготовитель рекомендует для машины применять фирменное масло, то нужно при замене заливать его. Если будет лить в мотор масло для него не предназначенное или с другими характеристиками, то это скажется на смазывающихся характеристиках, что приведет к снижению ресурса.

Важно придерживаться сроков замены моторного масла. Если не менять его длительное время, то придётся делать "капиталку". А увеличение срока замены в 2 раза - во столько же снижает ресурс двигателя. Зимой используйте масло с низкой степенью вязкости.


Заливайте качественную охлаждающую жидкость и меняйте антифриз в установленные сроки. Опасно вместо антифриза в систему охлаждения заливать водопроводную воду. Она хорошо охлаждает мотор, но может разъедать некоторые детали, что приведёт к засорению системы охлаждения и перегреву. Зимой вода замерзает. Если ранее она была залита в двигатель, то разрушит его детали при сильном морозе. Так что зимой заливаем антифриз, а летом - можно доливать воду, но не обычную из-под крана, а дистиллированную, купленную в магазине. Если её количество залито больше 10% от всего объема антифриза, то меняем её перед морозами.

Следить за состоянием воздушного фильтра, вовремя его менять. Несвоевременная замена сокращает ресурс, т.к. в двигатель будет попадать больше пыли и грязи, а фильтр не сможет с ними бороться. Если долго не меняли его, то он забьется грязью. Следовательно, снизится мощность авто и возрастет расход топлива.

Ездить без фильтра двигателя категорически запрещено! На практике, такая езда многократно снижает ресурс автомобиля, буквально за несколько тысяч километров.


Не допускать нештатных режимов работы. Резкие старты с места, рваный режим движения и постоянная езда на высоких оборотах - не продлевают «жизнь» двигателю. Но если ездить в «пенсионерском режиме», это тоже не хорошо. Нужно иногда давать мотору поработать на оборотах, близких к максимальному. Когда он работает на постоянных оборотах, то внутри него скапливается нагар. Чтобы его удалить нужно поездить на повышенных оборотах, чтобы удалить скопившийся нагар. Вовремя проходите техосмотр. Во время него, мастера устраняют замеченные неисправности и делают те работы, которые рекомендовал завод-изготовитель, чтобы сохранить ресурс всего автомобиля. Если будете вовремя проходить техосмотр, то проблем с авто на протяжении гарантийного срока возникнуть не должно. Главное - не экономьте на запчастях. Если поставите «подделки» или дешевый аналог, то это снизит ресурс машины.

Для примера, решили сэкономить и установить дешевый воздушный фильтр неизвестного производителя. Он не будет хорошо фильтровать воздух от загрязнений и в мотор попадут частички пыли и грязи. А это снизит пробег двигателя до капитального ремонта.

По поводу поддельных запчастей - смотря какие брать. С воздушным фильтром, как с другими запчастями, надо покупать оригинал или качественную замену. Например, я беру фильтра Bosch или Mann - они не хуже оригинала. А например продукцию фирмы "Filtron" я бы не стал ставить. Другое дело, например, с рулевыми наконечниками. Оригинал дорого, но можно найти качественную замену. Выбираем не самое дешевое, а из средней ценовой категории. Тогда качество будет не хуже оригинала и немного сэкономим.

Ремонт двигателей Caterpillar, диагностика ДВС (двигателя) Cat

Компания «Восточная Техника» оказывает профессиональные услуги по обслуживанию и ремонту двигателей Caterpillar. Наши сервисные центры оснащены передовым оборудованием и имеют постоянный доступ к информационному центру компании Катерпиллер. Это позволяет нам проводить диагностические и восстановительные работы на безупречном уровне.

Почему стоит заказать ремонт двигателя Caterpillar в компании «Восточная Техника»

Полный комплекс услуг. Он включает в себя капитальный, аварийный и плановый ремонт ДВС Катерпиллер, а также полноценную диагностику и сервис для данного оборудования. Это позволяет вам заказать в одном месте все услуги, необходимые для проверки состояния и/или восстановления работоспособности двигателей Cat.

Оригинальные запчасти. При проведении ремонта мы используем только оригинальные запчасти, предназначенные для спецтехники Caterpillar. Это обеспечивает полную технологическую и конструктивную совместимость установленных деталей с двигателем внутреннего сгорания. После восстановления эксплуатационные параметры компонента не отличаются от показателей нового агрегата.

Предоставление гарантии. Ремонтом техники Катерпиллер занимаются опытные мастера, прошедшие обучение в России и за границей. Это позволяет нам обеспечивать качество результата и предоставлять клиентам гарантию на проведенные работы и установленные запчасти. Ее срок зависит от типа работ и использованных деталей.

Каким бывает ремонт двигателей Катерпиллер

В зависимости от состояния и ресурса двигателей различают следующие разновидности их ремонта:

  • текущий. Это плановый ремонт спецтехники, который обычно проводится с периодичностью, рекомендуемой производителем. Он заключается в замене изношенных запчастей и узлов, смазке движущихся механизмов и др. Регулярное проведение текущего ремонта позволяет продлить ресурс агрегата и предупредить его неожиданные поломки;
  • аварийный. Он проводится при выходе двигателя из строя. Причиной этого может послужить как несвоевременное проведение текущего ремонта или использование некачественных запчастей, так и нарушение условий эксплуатации;
  • капитальный. Такой ремонт проводится после того, как двигатель внутреннего сгорания выработает определенный ресурс. Он необходим, чтобы восстановить работоспособность оборудования и сделать возможной его дальнейшую эксплуатацию.

Как и зачем проводится диагностика двигателей Caterpillar

Перед проведением ремонта мастера компании «Восточная Техника» проводят диагностику с использованием передового оборудования, что позволяет оценить реальное состояние двигателя и составить алгоритм восстановления компонента. Диагностика может быть:

  • визуально-технической. Мастера сервисных центров проводят осмотр двигателя внутреннего сгорания, что позволяет определить состояние ключевых узлов и механизмов;
  • компьютерной. Она проводится с помощью соответствующего ПО и оборудования и предусматривает получение исчерпывающей информации о состоянии всего компонента или его отдельных деталей.

Как проводится ремонт двигателей Катерпиллер

Наши центры по сервису для ДВС Caterpillar расположены на территории Сибири и Дальнего Востока. По согласованию с представителем ООО «Восточная Техника» вы можете доставить двигатель в ближайший к вам сервисный центр компании либо заказать выезд специалистов полевого сервиса непосредственно к вам в автопарк, на стройплощадку или другой объект, где находится оборудование Cat. Наши ремонтные бригады приезжают со всем оборудованием, необходимым для проведения диагностики. Если по каким-либо причинам ремонт невозможно сделать на месте, двигатель демонтируется в полевых условиях и доставляется в наш сервисный центр. Мы понимаем, как важно для клиентов не допустить длительного простоя спецтехники, поэтому стремимся оперативно выполнять работы вне зависимости от их объема и сложности.

Чтобы заказать ремонт двигателя Катерпиллер на выгодных условиях, обратитесь в ближайший к вам сервисный центр компании «Восточная Техника»!

Ресурс двигателя автомобиля | SUPROTEC

Ресурс двигателя это такая штука, на которую никто не обращает внимания, пока он есть. Зато, когда он заканчивается, начинается форменная паника: «Как же так!», «Как не вовремя!» и «Что же теперь делать, мне же ехать надо!». А «ехать»-то и не получится! Только после ремонта.

Ресурс двигателя - от чего он зависит?

Что же такое – ресурс? В точном определении из Большого толкового словаря это – внимание! – «предполагаемая продолжительность эксплуатации машины, механизма или отдельной детали». Предполагаемую продолжительность трудно измерить и невозможно пощупать руками. Только сильно продвинутые транспортные средства в футуристических фильмах на ходу докладывают водителю: «ресурс 45%». В жизни ресурс заканчивается куда менее приятными звуками: внезапным скрежетом, стуком, а иногда и тишиной – в том случае, если двигатель запускаться и вовсе отказывается.

Куда уходит детство можно узнать из песен, а вот куда девается ресурс? Значительная его часть медленно выходит из двигателя вместе с мелкой металлической стружкой. Оставшееся приходится на загрязнения и на изменения в материалах, из которых изготовлены детали. Двигатель это сложнейший агрегат, состоящий из множества различных узлов, каждый из которых содержит множество деталей. Забавно, что при этом ресурс двигателя можно грубо приравнять к ресурсу его самой слабой детали – сломается она, встанет и весь движок.

В реальности, конечно, разные детали имеют разное значение в работе двигателя. В ряде случаев он сможет продолжить работу, даже если деталь вышла из строя. Например, из-за того самого «изменения в материале» случается, что резиновые маслосъемные колпачки теряют свою эластичность, в народе говорят: «задубели». Колпачок перестает выполнять свои функции, однако двигатель будет работать, хотя и появится угар масла, которое будет вылетать в выхлоп.

Загрязнения так же сокращают срок службы всего агрегата, нарушая нормальные процессы. Скажем, если грязь в соплах топливных форсунок не дает им сформировать правильный факел, топливо сгорает не полностью, его частицы попадают в выхлоп в значительном количестве, а значит попадают на лопатки турбокомпрессора, нарушая ее баланс, в каталитические нейтрализаторы, заставляя их работать с повышенной нагрузкой. Все это приводит к тому, что и турбина и катализатор закончат свой путь земной раньше, чем могли бы, если бы в них не летело топливо. Кроме того, неправильное сгорание нарушает распределение термической нагрузки на поршень, клапана, стенки цилиндров и другие агрегаты. Кончается это прогоревшим клапаном или треснувшим поршнем. Конец ресурса, казалось бы, надежного двигателя.

Такая логика характерна для любого узла. Как только одна из деталей перестает справляться со своей работой это неминуемо ведет к нарушению баланса всех процессов почти повсеместно по всему двигателю, потому что в таком сложном агрегате работа всех деталей зависит друг от друга. Это означает, что ресурс надежных компонентов существенно сокращается засчет других. Когда к первой детали виновнице присоединится вторая, к ним очень скоро примкнут и третья, и четвертая, а за ними придет и системный сбой.

Механический износ двигателя

Королем же среди врагов ресурса является износ. Не бывает такого трения двух поверхностей, чтобы при этом они совершенно не страдали. Обязательно появятся частицы, которые «обдерутся» и улетят прочь. Чем грубее поверхность, тем крупнее частицы. Потрите друг об друга два кирпича и получите горку керамического порошка. Но даже самые гладкие на глаз поверхности на микроуровне все равно имеют микровпадины и микровыступы, которые неизбежно будут друг за друга цепляться и «сковыривать».

Для борьбы с трением в агрегаты добавляют смазки, конкретно в двигатели – моторное масло. Однако, даже с маслом дела идут не всегда гладко и металлические поверхности регулярно встречаются. Многое зависит и от качества жидкости - заливка ненадежного масла в агрегат не продлит его ресурс, так как оно быстро потеряет свои свойства. Даже качественное масло не всегда является надежным защитником, вспомнить хотя бы про момент запуска, когда все масло сосредоточено в поддоне картера и прежде, чем насос успеет прокачать его по системе, поршни уже несколько раз сходят туда-обратно по «сухим» цилиндрам, а коленчатый вал сделает несколько оборотов в «сухих» вкладышах.

У новой машины и, соответственно, у нового двигателя некоторый ресурс изначально заложен конструкторами. Это ведь «предполагаемый срок службы» - помните? Пусть трутся детали, как бы говорит конструктор, пусть изнашиваются, на некоторое время нормальной работы их хватит и с каждой новой моделью это время не увеличивается. Однако по мере нарастания износа, то есть на самом деле «убывания поверхности трения» - износ начинает происходить все быстрее. Расширились зазоры, появился микролюфт, это означает, что возросли нагрузки при соприкосновении деталей, а значит они «отковыривают» более полотно державшиеся микровыступы, чем раньше. Это если разбирать только механическую часть и не говорить, о том, что расширенные зазоры мешают работать маслу, способствуют возникновению загрязнений и так далее по кругу. Скорость изнашивания увеличивается и в какой-то момент доводит его до критической величины – двигатель готов сломаться и сделает это при первом же удобном случае, не в одном месте, так в другом.

Таблица признаков неисправности двигателя — шумы, некоторые популярные проблемы у бензиновых двигателей

Характеристики шума

Возможная неисправность

Способ устранения неисправности

Стук коренных подшипников коленчатого вала. Стук глухой, металлический, ритмичный, частота увеличивается при увеличении оборотов двигателя

Износ вкладышей коренных шеек коленвала

Установить новые вкладыши

Износ упорных полуколец коленчатого вала

Установить новые упорные полукольца

Самопроизвольное отворачивание болтов крепления коленчатого вала

Затянуть болты с использованием динамометрического ключа

Падение давления масла

Устранить причину низкого давления масла

Стук шатунных подшипников коленчатого вала. Стук более резкий, чем стук коренных подшипников, при поочередном отключении свечей зажигания стук локализуется в какой-то части двигателя

Износ шатунных подшипников коленвала

Установить новые шатунные подшипники

Падение давления масла

Найти и устранить причину падения давления масла

Стук (биение) поршней. Стук приглушенный, наиболее отчетливо слышен на холостом ходу и при работе двигателя под нагрузкой

Износ поршней или поршневых колец, в результате чего увеличивается зазор между кольцами и канавками на поршне

Установить новые кольца либо новые поршни и кольца

Износ поршней и гильз

Заменить поршни, произвести расточку и хонингование цилиндров

Стук клапанов. Стук металлический (щелкающий), малой интенсивности, нерегулярный, частота ниже любых других стуков двигателя

Увеличение зазоров в клапанном механизме

Отрегулировать все зазоры

Износ направляющей втулки и штока клапана

Установить новые втулки и клапаны

Поломка одной или нескольких пружин клапанов

Установить новые пружины

Износ и изменение геометрии кулачков распределительного вала

Установить новый вал ГРМ

Постоянный скрежет или увеличившийся свист

Износ или поломка цепи ГРМ, а также нарушение ее регулировки

Произвести необходимые регулировки или установить новую цепь

Ремонт мотора

Разумеется, двигатель можно надежно отремонтировать. Тут, правда, можно задаться некоторым философский вопросом – если в двигателе заменили поршни, кольца, свечи, прокладки, колпачки, гидрокомпенсаторы, а заодно ГРМ и помпу – это все еще тот же двигатель, или уже другой? А если поменяли блок цилиндров?

Есть ли что-нибудь, что можно противопоставить износу и увеличить или продлить ресурс двигателя до того, как дело дойдет до ремонта? Ответ – можно. Лучшие умы бьются над этой проблемой и время от времени предлагают различные идеи. Однако, как у палки два конца, так и у любой идеи есть положительные и отрицательные стороны.

Металлоплакирующие составы

Если износ - это отделение частиц металла от поверхности трения, то по логике для того, чтобы с износом бороться, надо изобрести что-то, что возмещало бы утраченный металл. Следующий шаг – добавить в масло какой-нибудь металл, чтобы он «прилипал» к поверхностям трения и таким образом восстанавливал их. Таким образом появился класс металлоплакирующих материалов от слова plaque – покрывать.

Не будем вдаваться в технологические подробности, однако, надо понимать, что эти подробности есть. Металл, конечно, никак не «прилипает» к поверхностям – там работают сразу несколько физико-химических механизмов и целый список разнообразных веществ взаимодействует между собой сложным образом. Помимо непосредственно металлов – таких как медь, олово, цинк, хром, молибден и не только – в состав этих присадок для продления ресурса двигателя входят поверхностно-активные вещества, чтобы удерживать металлы в масле, антиоксиданты и ингибиторы коррозии, чтобы не дать солям металлов окислять стальную поверхность, и другие штуки, которые зависят от конкретной технологии конкретной присадки.

Польза от такого подхода в том, что он работает. Действительно снижается трение, действительно восстанавливается изношенное, действительно все это вместе продлевает ресурс. Недостатки в том, что имеется много побочных эффектов. Некоторые из которых крайне сложно предусмотреть. Особенно если на протяжении истории двигателя пользоваться добавками разных сортов. Попытка покрыть медью поверхности уже покрытые хромом или молибденом или наоборот – приведет к появлению еще большего числа различных сочетаний взаимодействующих компонентов. Опять же – не вдаваясь в подробности, на основе здравого смысла, можно предположить, что шансы получить какие-либо неприятности сильно возрастают.

Кроме того, металлы, которые достаточно мягкие (пластичные) и активные, чтобы «прилепиться» к поверхности трения оказываются не очень стойкими. Хорошо, когда в масле есть постоянный запас такого металла, для восстановления ободранного. А если запаса нет, если вы сменили моторное масло на чистое – то металлические пленки, образованные при обработке в общем случае довольно быстро износятся.

Если почитать статьи по этой технологии в интернете, то вам, скорее всего гордо предъявят российские научные разработки 1962 года про некий избирательный перенос меди и безызносное трение. Разработки, без сомнения, были, российские исследования и наука были на высоте, а ученые совершали прорывные открытия. В 1962 году. Если вы проявите терпение и настойчивость и погрузитесь в непосредственные технические описания всех этих процессов, то обнаружите, что условия их протекания, это совсем не условия в современном двигателе легкового автомобиля.

Принцип действия – безусловно тот же. Точный механизм в конкретных условиях – заметно отличается. Автолюбители задаются вопросом: "будет ли это безызносное трение с участим меди работать именно так в современном движке?", - описания присадок ясного ответа не дают. Описание же технологий металлоплакирования в серьезных инженерных книжках как правило говорит о том, что для эффективного и безопасного их использования не лишне подбирать их исходя из особенностей конструкции конкретного агрегата и смазочных жидкостей, а также отслеживать их действие во времени и в зависимости от условий работы агрегата – нагрузки, температурные режимы, замена смазки и так далее.

Другая идея о продлении ресурса связана с использованием неметаллических покрытий. В общем речь идет о том, чтобы образовать на поверхности трение полимерную пленку, которая бы изолировала сталь и – ура! – нет больше трения металл-металл. Такие штуки есть, работают и в некоторых случаях весьма эффективны. В частности, когда речь идет о промышленном оборудовании, которое работает под присмотром профессионалов. Про автомобили, заметим только одну вещь – полимерное трение в двигателе не входило в расчеты конструкторов этого двигателя. Попытки улучшить работу такого сложного устройства некоторыми нерасчетными средствами скорее всего приведут не к увеличению ресурса, а наоборот. Наверное, поэтому такого рода препаратов на рынке совсем немного.

Модификаторы трения

Еще один надежный подход к борьбе с износом заключается в применении так называемых модификаторов трения – препаратов, которые изменяют процессы трения металл-металл. Эта статья расположена на сайте компании «Супротек» которая с 2002 года разрабатывает и выпускает триботехнические составы, основанные именно на этой технологии. Поэтому здесь можно найти с десяток, если не больше, статей описывающих эту технологию. Не будем повторяться здесь, отметим только, что принцип действия в том, чтобы заставить продукты износа – те самые частицы металла, что оторвались от поверхности и плавают в масле – «приделаться» обратно.

Достоинство в том, что эта технология а) работает и б) работает безопасно. Активный минерал, который модифицирует процессы трения химически нейтрален и ни с чем, кроме металлических поверхностей в условиях локального трения не взаимодействует.

Есть и недостатки, конечно. Эффект возникает значительно позже, чем в случае с плакированием. Для изменения процессов и «приделывания» металла обратно требуется больше времени. Эффекты могут быть слабее выражены «в ощущении». Водитель обработанного автомобиля не почувствует ракетообразного ускорения при нажатии на педаль или драматического снижения расхода топлива. Но вед эта статья и не об этом. Она о продлении ресурса, который можно измерить, только дождавшись, когда двигатель выйдет из строя.

С трибосоставами этого придется ждать довольно долго. Новая поверхность, образованная «приделанными обратно» частицами металла никуда не девается из двигателя, даже после замены масла и удаления состава. Конечно, она изнашивается, но в силу особенностей структуры даже медленнее, чем оригинальная сталь. Через 50 или 70 тысяч километров пробега можно повторить обработку и ждать поломки дальше. Известны случаи, когда у людей хватало терпения дождаться миллиона километров пробега. Потом они продавали автомобиль потому что сгнил кузов, или просто хотелось современное мультимедиа.

Подробнее можно прочитать в статьях:

-Как продлить ресурс двигателя

-Продление присадками ресурса двигателя

-Анализ ресурсных показателей двигателей карьерных самосвалов КАМАЗ 65115 в результате выполнения обработки триботехническими составами «СУПРОТЕК»

10 самых надежных современных двигателей

Продолжаем серию публикаций на тему самых надежных и неприхотливых двигателей. Если в первой части мы представили вниманию десятку хорошо зарекомендовавших себя дизелей, то сейчас речь пройдет про современные бензиновые моторы объемом не более 2,0 литров

Иван Матиешин

История «вечных» двигателей завершилась с приходом эпохи даунсайзинга, когда с минимального объема конструкторы стали выжимать максимальную мощность. Поэтому с каждым годом надежные двигатели, которые можно было бы назвать не то что «миллионниками», но способными отслужить без серьезных проблем хотя бы четверть этого пробега, встречаются все реже.

В отличие от дизельных долгожителей «старой школы», речь о которых шла в предыдущей статье, современные бензиновые силовые агрегаты переживут автовладельца только преклонных лет и с очень слабым здоровьем, так как их ресурс ощутимо ниже. Однако и среди «урезанных» экологами и маркетологами агрегатов попадаются довольно неплохие, в плане надежности, агрегаты. Их подборку я составил основываясь на личном опыте работы на СТО.

VAG 1.4 TSI (EA211)

Начну с турбированных моторов Volkswagen AG серии EA211. Прошлая версия печально известного семейства EA111, которая попала в число проблемных, изменилась после 2012 года. В силовом агрегате заменили блок цилиндров (теперь он алюминиевый, с чугунными гильзами), а в приводе газораспределительного механизма установили ремень, который нужно менять каждые 60 тыс. км. То есть все прошлые ошибки, включая проблемы с цепью ГРМ, слабую поршневую группу и топливный насос, неудачную систему вентиляции картера и интеркулера, немецкие конструкторы исправили. И теперь это совсем другой агрегат в плане надежности. Он может спокойно отходить 300 тыс. км, конечно же, при условии щадящей эксплуатации и щепетильного отношения к обслуживанию.

OPEL 1.4 (A14NET)

Одним из лучших турбированных движков Opel в плане надежности является A14NET с рабочим объемом 1,4 литра. С 2009 года он устанавливается на целый ряд популярных моделей компании, таких как, Astra, Corsa, Insignia, Meriva, Mokka и Zafira. Моторы этой серии славятся шумом, щелканьем и свистом в работе, но это нормально. На втором месте по жалобам идут течи масла из-под клапанной крышки либо сальника коленвала - в общем, ничего серьезного. До первых серьезных вложений в ремонт он может пробежать больше 300 тыс. км, разве что турбина потребует замены где-то на 150 тыс. км. Кстати, в первые годы выпуска у этих двигателей регулярно случалось разрушение поршней, что сильно подпортило его репутацию. Проблема была вскоре решена, но осадочек остался.

MERCEDES-BENZ 1.6 и 2.0 (М274/М270)

Еще одним надежным турбомотором является детище «Мерседеса» - агрегат серии М274/М270 объемом 1,6 и 2,0 литра, который устанавливали на множество моделей Mercedes-Benz с 2011 года. М274 получился гораздо надежнее предшественников и редко беспокоит владельцев. Но совсем беспроблемным его не назовешь. Самой распространенной жалобой клиентов СТО был сильный треск сразу после запуска холодного двигателя. Возникал он, как правило, после 100 тыс. км пробега и указывал на износ фазовращателя. После ноября 2014 года старую версию фазовращателя заменили на новую (A2700501147), и о проблеме теперь почти не слышно. Также возникают сбои в работе форсунок – но тут все напрямую зависит от качества топлива. В приводе ГРМ использована цепь, которая служит около 100 тыс. км – иногда меньше, иногда больше. Турбина редко ходит больше 200 тыс. км. Для долгой и беспроблемной эксплуатации этого мотора нужно лить хорошее масло и проводить его замену в два раза чаще положенного, а также прогревать двигатель в холодное время года. Ну и, конечно же, спокойно эксплуатировать автомобиль, хотя последнее будет сделать непросто - ведь эти двигатели можно легко перепрошить на большую мощность.

NISSAN 1.6 MR16DDT (M5Mt)

Японский представитель турбированных бензиновых двигателей, 1,6 литровый агрегат серии MR, был впервые представлен 2010 году и с тех пор устанавливается на множество популярных моделей концерна (на автомобилях Renault он идет под индексом M5Mt). Основные жалобы автовладельцев на этот мотор связаны со всевозможными шумами или стуками, нередко глючит датчик массового расхода воздуха (это приводит к подергиваниям), а цепь ГРМ редко служит больше 150 тыс. км. Любителям динамичной езды предлагалось менять цепь на усиленную, так как она растягивалась.Однако если проблемные детали были поменяны, а автомобиль правильно эксплуатируется (щадящий режим плюс своевременное ТО с качественными расходниками), то проблем не будет. «Масложор» обычно раньше 200 тыс. км себя особо не проявляет, а средний ресурс движка составляет 250 тыс. км.

FORD 1.5 ECOBOOST

Также на вторичном рынке можно найти надежный турбированный силовой агрегат от компании Ford  – 1,5-литровый Ecoboost семейства Sigma. Только не стоит рассматривать покупку сильно форсированных версий на 160 и 180 л.с. – самый надежный и беспроблемный из них это 150-сильный движок. Он был представлен в 2014 году и попал под капоты таких моделей, как Focus 3-го поколения, С-Max 2-го поколения и других. Такой мотор боится перегрева, так что нужно следить за чистотой радиаторов. Примерный ресурс двигателя до капитального тремонта составляет 250 тыс. км.

На этом с турбо-моторами можно заканчивать, возможно, многие с этим коротким списком будут не согласны, ведь такие силовые агрегаты сами по себе противоречивы. Они очень уж сложны и чувствительны к качеству топлива, масла, а также к условиям эксплуатации. Так что, у одного автомобиль может проехать 300 тыс. км без проблем и даже без «масложора», а у другого уже на 100 тыс. начнутся серьезные вложения. При покупке автомобиля с турбомотором на вторичном рынке нужно обязательно проверять его сервисную историю. Либо обратить внимание на атмосферные двигатели – они проще, надежнее и ремонтопригоднее. О них расскажем далее.

MAZDA SKYACTIV-G 1.3, 1.5, 2.0

«Скайэктивы» начали устанавливать на все модели Mazda начиная с 2012 года, а сменили они старые и не менее надежные моторы серии MZ. Такие агрегаты оснащены всеми современными «наворотами», включая непосредственный впрыск топлива, изменение фаз газораспределения на двух валах и облегченную шатунно-поршневую группу. Больше всего жалоб автовладельцев вызывает шумная работа и вибрации мотора на холостых оборотах. Правда, по мере прогрева эти симптомы уходят. Еще «Скайэктивы» требовательны к качеству бензина. Ресурс мотора составляет около 300 тыс. км. А вот проедет он больше или меньше – зависит только того, как с ним обращались. В целом двигатели этой серии каких-либо проблем не доставляют. Однако нужно использовать качественное топливо, а также лить хорошее масло и следить за его уровнем (особенно в автомобилях до 2016 года выпуска). Масло может подтекать из под электроклапана OCV, клапанной крышки, датчика давления масла или в месте подачи масла к фазовращателю. Также после пробега в 100 тыс. км, скорее всего, придется менять катушки с ионными датчиками. А после 150 тыс. км пробега уделить внимание ТНВД и форсункам.

RENAULT 1.6 (K4M/K7M)

Бензиновый 1,6-литровый мотор Renault K4M/K7M успел снискать славу простого и надежного. Им оснащались различные модели Renault, Dacia и даже Lada. Это первый двигатель из списка, у которого нет такой чувствительности качеству топлива. Здесь нет ни турбины, ни прямого впрыска, ни цепи. Словом, ломаться практически нечему. Его ресурс мотористы оценивают примерно в 400 тыс. км. Из явных недостатков выделяют плавающие обороты, течи масла и поломки катушки зажигания -  не такой уж большой список. Правда, за простоту и надежность приходится расплачиваться посредственными динамическими показателями и повышенным расходом топлива. Последний момент можно исправить установкой ГБО, с которым, кстати, покупать б/у авто лучше не стоит.

VAG 1.6 MPI (BSF, BSE, CFNA, CFNB)

Мотор 1.6 MPI также является очень надежным силовым агрегатом: его пробег до первого серьезного ремонта оценивают в 350 - 400 тыс. км. Из проблем могу выделить только плавающие обороты и вибрацию. Он ставился на многие модели Audi, Skoda, Seat и Volkswagen. Правда, тут следует отметить, что у этого двигателя очень много модификаций, и есть такие, которые сильно подпортили репутацию. Самые надежные версии – это двигатели с приставкой BSF и BSE  (выпускались с 2002 по 2015 годы). Существует еще неплохие серии CFNA и CFNB, но их рекомендовать сложно из-за отзывной кампании по поршневой группе и не очень долговечной цепи ГРМ. А вот новые версии после 2015 года заметно хуже в плане надежности, в частности из-за «масложора».

TOYOTA 1.6, 1.8 и 2.0  (1ZR-FE)

Как в этом списке можно обойтись без моторов Toyota серии ZR? Их начали выпускать с 2006 года, как приемника семейства моторов ZZ, которые страдали от повышенного расхода масла, но у нового агрегата такой ярко выраженной проблемы нет. Если «масложор» появился, то устранить его можно заливкой масла другой вязкости. Шум и стук в работе мотора лечится заменой натяжителя цепи. Ресурс этих агрегатов - плюс/минус 300 тыс. км. Проблемы в виде повышенного расхода масла, «сопливости» помпы и закоксовки колец проявятся не ранее, чем на 200 тысячах. На таком пробеге стоит также поменять прокладки и маслосъемные колпачки.

HONDA 1.8 и 2.0 (R-series)

Еще одно надежное семейство атмосферных бензиновых двигателей есть у другого японского производителя - это хондовские R-series i-VTEC. Серия была представлена в 2006 году и на некоторых моделях Honda 2,0-литровый вариант устанавливают до сих пор, а вот 1,8-литровый двигатель сняли с производства в 2014 году. В начальный период производства попадались моторы с повышенным расходом масла: производитель менял ГБЦ по гарантии, если же гарантийный период кончился, то можно было ограничиться заменой только направляющих клапанов. Опрос знакомых мотористов в целом подтверждает мое мнение о большом ресурсе этих двигателей. Со своего опыта и с их слов тоже, покупая автомобиль с одним из таких агрегатов, можно ожидать, что он с без проблем отходит 300 – 400 тыс. км.

Материал предоставлен порталом etlib.ru

Редакция рекомендует:




Хочу получать самые интересные статьи
Основы двигателя внутреннего сгорания

| Министерство энергетики

Двигатели внутреннего сгорания обеспечивают исключительную управляемость и долговечность, от них в Соединенных Штатах полагается более 250 миллионов транспортных средств, работающих по шоссе. Наряду с бензином или дизельным топливом они также могут использовать возобновляемые или альтернативные виды топлива (например, природный газ, пропан, биодизель или этанол). Их также можно комбинировать с гибридными электрическими силовыми агрегатами для повышения экономии топлива или подключаемыми гибридными электрическими системами для расширения ассортимента гибридных электромобилей.

Как работает двигатель внутреннего сгорания?

Горение, также известное как горение, является основным химическим процессом высвобождения энергии из топливно-воздушной смеси. В двигателе внутреннего сгорания (ДВС) воспламенение и сгорание топлива происходит внутри самого двигателя. Затем двигатель частично преобразует энергию сгорания в работу. Двигатель состоит из неподвижного цилиндра и подвижного поршня. Расширяющиеся газы сгорания толкают поршень, который, в свою очередь, вращает коленчатый вал.В конечном итоге это движение приводит в движение колеса транспортного средства через систему шестерен трансмиссии.

В настоящее время производятся два типа двигателей внутреннего сгорания: бензиновый двигатель с искровым зажиганием и дизельный двигатель с воспламенением от сжатия. Большинство из них представляют собой четырехтактные двигатели, а это означает, что для завершения цикла требуется четыре хода поршня. Цикл включает четыре различных процесса: впуск, сжатие, сгорание, рабочий ход и выпуск.

Бензиновые двигатели с искровым зажиганием и дизельные двигатели с воспламенением от сжатия различаются по способу подачи и воспламенения топлива.В двигателе с искровым зажиганием топливо смешивается с воздухом, а затем вводится в цилиндр во время процесса впуска. После того, как поршень сжимает топливно-воздушную смесь, искра воспламеняет ее, вызывая возгорание. Расширение дымовых газов толкает поршень во время рабочего хода. В дизельном двигателе только воздух всасывается в двигатель, а затем сжимается. Затем дизельные двигатели распыляют топливо в горячий сжатый воздух с подходящей дозированной скоростью, вызывая его возгорание.

Улучшение двигателей внутреннего сгорания

За последние 30 лет исследования и разработки помогли производителям снизить выбросы ДВС определенных загрязняющих веществ, таких как оксиды азота (NOx) и твердые частицы (PM), более чем на 99%, чтобы соответствовать стандартам выбросов EPA. .Исследования также привели к улучшению характеристик ДВС (мощность в лошадиных силах и время разгона 0-60 миль в час) и эффективности, помогая производителям поддерживать или увеличивать экономию топлива.

Узнайте больше о наших передовых исследованиях и разработках двигателей внутреннего сгорания, направленных на повышение энергоэффективности двигателей внутреннего сгорания с минимальными выбросами.

Заправка двигателей внутреннего сгорания | Давайте поговорим о науке

AB Химия 30 (2007 г., обновлено 2014 г.) 12 Блок A: Термохимические изменения

AB Химия 30 (2007 г., обновлено 2014 г.) 12 Блок C: Химические изменения органических соединений

AB Наука о знаниях и возможностях трудоустройства 8, 9 (пересмотрено в 2009 г.) 9 Блок B: Материя и химические изменения

AB Наука 10 (2005 г., обновлено в 2015 г.) 10 Блок A: Энергия и материя в химических изменениях

AB Наука 20 (2007 г., обновлено 2014 г.) 11 Блок A: Химические изменения

AB Наука 24 (2003 г., обновлено 2014 г.) 11 Блок A: Применение материи и химических изменений

AB Наука 24 (2003 г., обновлено 2014 г.) 11 Блок B: Общие сведения о системах преобразования энергии

AB Наука 30 (2007 г., обновлено 2014 г.) 12 Раздел B: Химия и окружающая среда

AB Наука 30 (2007 г., обновлено 2014 г.) 12 Блок D: Энергия и окружающая среда

AB Наука 7-8-9 (2003 г., обновлено в 2014 г.) 9 Блок B: Материя и химические изменения

до н.э Химия 11 (июнь 2018) 11 Большая идея: материя и энергия сохраняются в химических реакциях.

до н.э Химия 11 (июнь 2018) 11 Большая идея: органическая химия и ее приложения имеют большое значение для здоровья человека, общества и окружающей среды.

до н.э Science Grade 10 (март 2018 г.) 10 Большая идея: изменение энергии требуется, поскольку атомы перестраиваются в химических процессах.

МБ Химия 11 класс (2006) 11 Тема 5: Органическая химия

МБ Старший 1 по науке (2000) 9 Кластер 2: атомы и элементы

МБ Старший 2 науки (2001) 10 Кластер 2: химия в действии

NB Химия 111/112 (2009) 11 Блок 2: Стехиометрия

NB Химия 121/122 (2009) 12 Раздел 1: Термохимия

NB Химия 121/122 (2009) 12 Раздел 4: Органическая химия

NB 10 класс естественных наук (2002) 10 Физическая наука: химические реакции

NB Естественные науки 9 класс (2002) 9 Атомы и элементы

NL Химия 2202 (2018) 11 Раздел 3: Органическая химия

NL Химия 3202 (2005) 12 Раздел 3: Термохимия

NL Земляные системы 3209 (н. Д.) 12 Блок 5: Ресурсы Земли: Реальные приложения

NL Наука об окружающей среде 3205 (редакция 2010 г.) 12 Раздел 5: Атмосфера и окружающая среда

NL 9 класс естествознания 9 Раздел 2: Атомы, элементы и соединения (редакция 2011 г.)

NL Наука 1206 (2018) 10 Блок 2: Химические реакции

NL Наука 3200 (2005) 12 Блок 1: Химические реакции

NS Химия 11 (2003) 11 Органическая химия

NS Химия 12 (2003) 12 Термохимия

NS Структура результатов обучения: естественные науки 9 класс (2014 г.) 9 Атомы и элементы

NS Наука 10 (2012) 10 Физическая наука: химические реакции

NT Химия 30 (Альберта, 2007 г., обновлено 2014 г.) 12 Блок A: Термохимические изменения

NT Химия 30 (Альберта, 2007 г., обновлено 2014 г.) 12 Блок C: Химические изменения органических соединений

NT Наука о знаниях и возможностях трудоустройства 9 (Альберта, редакция 2009 г.) 9 Блок B: Материя и химические изменения

NT Наука 10 (Альберта, 2005 г., обновлено в 2015 г.) 10 Блок A: Энергия и материя в химических изменениях

NT Наука 20 (Альберта, 2007 г., обновлено 2014 г.) 11 Блок A: Химические изменения

NT Наука 24 (Альберта, 2003 г., обновлено 2014 г.) 11 Блок A: Применение материи и химических изменений

NT Наука 24 (Альберта, 2003 г., обновлено 2014 г.) 11 Блок B: Общие сведения о системах преобразования энергии

NT Наука 30 (Альберта, 2007 г., обновлено 2014 г.) 12 Раздел B: Химия и окружающая среда

NT Наука 30 (Альберта, 2007 г., обновлено 2014 г.) 12 Блок D: Энергия и окружающая среда

NT Наука 9 (Альберта, 2003 г., обновлено в 2014 г.) 9 Блок B: Материя и химические изменения

НУ Химия 30 (Альберта, 2007 г., обновлено 2014 г.) 12 Блок A: Термохимические изменения

НУ Химия 30 (Альберта, 2007 г., обновлено 2014 г.) 12 Блок C: Химические изменения органических соединений

НУ Наука о знаниях и возможности трудоустройства 9 (Альберта, редакция 2009 г.) 9 Блок B: Материя и химические изменения

НУ Наука 10 (2005 г., обновлено в 2015 г.) 10 Блок A: Энергия и материя в химических изменениях

НУ Наука 20 (Альберта, 2007 г., обновлено 2014 г.) 11 Блок A: Химические изменения

НУ Наука 24 (Альберта, 2003 г., обновлено 2014 г.) 11 Блок A: Применение материи и химических изменений

НУ Наука 24 (Альберта, 2003 г., обновлено 2014 г.) 11 Блок B: Общие сведения о системах преобразования энергии

НУ Наука 30 (Альберта, 2007 г., обновлено 2014 г.) 12 Раздел B: Химия и окружающая среда

НУ Наука 30 (Альберта, 2007 г., обновлено 2014 г.) 12 Блок D: Энергия и окружающая среда

НУ Наука 9 (Альберта, 2003 г., обновлено в 2014 г.) 9 Блок B: Материя и химические изменения

НА Химия, 11 класс, ВУЗ (СЧ4У) 11 Нить C: химические реакции

НА Химия, 12 класс, техникум (СЧ5С) 12 Строка C: органическая химия

НА Химия, 12 класс, ВУЗ (СЧ5У) 12 Направление B: органическая химия

НА Науки о Земле и космосе, 12 класс, Университет (SES4U) 12 Strand E: Земляные материалы

НА Экология, 11 класс, Университет / колледж (SVN3M) 11 Strand B: Научные решения современных экологических проблем

НА Экология, 11 класс, Университет / колледж (SVN3M) 11 Strand F: Сохранение энергии

НА Экология, 11 класс, рабочее место (SVN3E) 11 Strand D: Энергосбережение

НА Естественные науки 10 класс, академический (SNC2D) 10 Нить C: химические реакции

НА Прикладная наука 10 класс (SNC2P) (2008) 10 Нить C: химические реакции и их практическое применение

НА Естественные науки, 12 класс, рабочее место (SNC4E) 12 Направление C: химические вещества в потребительских товарах

PE Химия 521A (2006) 11 Органическая химия

PE Химия 621А (2006) 12 Термохимия

PE Наука 421A (2005) 10 Блок 3: Химические реакции

PE Science 421A (проект, 2018 г.) 10 СК 2.1 Предскажите продукты химических реакций.

PE Science 421A (проект, 2018 г.) 10 CK 2.2 Анализируйте реальные химические реакции, применяя принципы химической реактивности.

PE Наука 431A (без даты) 10 Блок 2: Химические реакции

PE Science 7e année (2016) (только на французском) 7 Тема 2: L’univers vivant - Понятие D: Режимы воспроизведения

PE Естественные науки 9 класс (2018) 9 Блок 2: Атомы и элементы

КК Прикладная наука и технологии Раздел IV Материальный мир

КК Химия Раздел V Энергетические изменения в реакциях

КК Наука и технология Раздел IV Материальный мир

SK Химия 30 (2016) 12 Химическая связь и материаловедение

SK Химия 30 (2016) 12 Химическое равновесие

SK Науки о Земле 30 (фев 2018) 12 Литосфера

SK Физические науки 20 (2016) 11 Основы химии

SK Физические науки 20 (2016) 11 Нагревать

YT Chemistry 11 (Британская Колумбия, июнь 2018 г.) 11 Большая идея: материя и энергия сохраняются в химических реакциях.

YT Chemistry 11 (Британская Колумбия, июнь 2018 г.) 11 Большая идея: органическая химия и ее приложения имеют большое значение для здоровья человека, общества и окружающей среды.

YT Science Grade 10 (Британская Колумбия, июнь 2016 г.) 10 Большая идея: изменение энергии требуется, поскольку атомы перестраиваются в химических процессах.

Будущее конструкции двигателей внутреннего сгорания: 5 тенденций на 2020 год

Изобретение двигателя внутреннего сгорания (IC) стало благом для транспорта, повышения эффективности и всего остального Америки.Но по мере того, как технологии ИС стареют, а экологические проблемы усиливаются, на их место стремятся альтернативы.

Автопроизводители и потребители в равной степени размышляют о будущем производства двигателей внутреннего сгорания и рассматривают , что заменит двигатель внутреннего сгорания, или какие детали были задействованы в порошковой металлургии (ПМ).

Подумайте, где в двигателе использовались PM. Достижения включают в себя самосмазывающиеся направляющие клапана, шатуны, регулировку фаз газораспределения и так далее.

Если посмотреть на предысторию того, что привело нас сюда, а также на новые проблемы эффективности и защиты окружающей среды, которые может помочь решить порошковый металл, это урок, который нельзя пропустить ни одному OEM-инженеру.

Будущее конструкции двигателей внутреннего сгорания

Откройте изображение в новой вкладке, чтобы увидеть полную версию этой инфографики:


1. Ограничения на выбросы CO2

Глобальный углеродный проект сообщил, что выбросы углерода во всем мире достигли рекордно высокого уровня в 2018 году, и ожидается, что в 2019 году их количество снова увеличится.

Агентство по охране окружающей среды опубликовало рекомендации по выбросам парниковых газов для легковых и грузовых автомобилей, при этом Фаза 2 затрагивает модельные годы до 2025 года. Хотя Управление по охране окружающей среды, похоже, переосмысливает некоторые рекомендации, политическая и экологическая атмосфера все еще способствует повышению эффективности двигателей внутреннего сгорания. , больше, чем потребительский спрос.

Независимо от того, согласны ли инженеры и руководители лично с изменениями в воздухе, отрасль неуклонно движется в этом направлении.

2. Как повысить эффективность выбросов двигателя внутреннего сгорания?

Управление энергоэффективности и возобновляемых источников энергии сообщает, что производители снизили выбросы загрязняющих веществ более чем на 99% за последние 30 лет. Творческие умы достигли этого, сохранив или увеличив экономию топлива.

Помимо бензина и дизельного топлива производители изучают другие способы увеличения экономии топлива:

  • Использование биодизеля
  • Использование других альтернативных или возобновляемых видов топлива
  • Комбинирование двигателей внутреннего сгорания с гибридными электрическими силовыми агрегатами


3.Дизельные двигатели против. Традиционные бензиновые двигатели

Когда европейцы перешли с дизельных автомобилей на бензиновые, произошло соответствующее увеличение выбросов углекислого газа. Неожиданным поворотом стало то, что некоторые из сегодняшних автомобильных стратегий основаны на дизельных двигателях.

Многие большие дизельные грузовики на самом деле производят меньше выбросов CO2, чем небольшие газовые автомобили, свидетельствуют отчеты. Благодаря усовершенствованным технологиям были произведены дизельные двигатели, которые могут использоваться в транспортных средствах меньшего размера и обеспечивать:

  • Увеличение расхода топлива
  • Снижение выбросов углерода
  • Больший крутящий момент
  • Двигатель с более длительным сроком службы


4.Конкуренция с электрическими двигателями

Вы знали, что это произойдет. Хотя бензиновые двигатели, похоже, не исчезнут полностью, они сталкиваются с жесткой конкуренцией со стороны своих электрических конкурентов.

В то время как некоторые видят будущее за электромобилями, даже BMW пока не отказывается от двигателей внутреннего сгорания.

Единственная вещь, которую опоры двигателей IC могли повесить над головами сторонников электричества, - это их аккумулятор. В частности, это:

  • Размер
  • Стоимость
  • Долговечность
  • Возможности зарядки или их отсутствие

Однако, согласно прогнозам, цены на электромобили будут конкурентоспособными уже в 2022 году, поскольку стоимость аккумуляторов резко упадет.Когда-то аккумулятор составлял около 50% стоимости автомобиля, но к 2025 году он может упасть с до 20% от . Эти сокращения, безусловно, происходят быстрее, чем ожидал рынок.

Опасения по поводу дальности полета в будущем для электромобилей не так важны. Технология развивается, и появляется все больше зарядных станций. «Беспокойство о запасе хода» (опасения потребителей, что им негде подзарядить аккумулятор) по-прежнему остается реальной проблемой, которую OEM-производителям все еще необходимо решить.

5.Порошковая металлургия поддерживает переход к экологичности

Порошковая металлургия становится все более важным фактором при проектировании компонентов двигателей, нравится это разработчикам двигателей внутреннего сгорания или нет.

«Зеленая» технология порошковой металлургии идет рука об руку с экологичным автомобилем будущего. Спеченные магнитомягкие материалы с более высокой плотностью обеспечивают невиданный ранее рост производительности. Возможно, вы слышали историю о металлическом порошке раньше, но эти новые материалы отличаются от материалов Standard 35, на которые производители полагались на протяжении десятилетий.

Стандарт 35

MPIF является отличной базой для производителей порошковой металлургии, но для ваших будущих проектов могут потребоваться материалы и процессы, которые превосходят «стандартные» уровни производительности. В некоторых случаях можно даже исключить компонент из сборки , спроектировав с использованием металлического порошка.

Современная передовая технология уплотнения может быть немного дороже вначале, но в долгосрочной перспективе она может значительно сэкономить производителям (и водителям).

Многие компоненты можно преобразовать в металлический порошок.Порошковая металлургия добилась больших успехов в создании мелких деталей для электродвигателей и других автозапчастей по многим причинам:

  • Уменьшает вес
  • Повышает КПД электродвигателя, включая улучшенные магнитные свойства
  • Создает детали в форме сетки
  • Позволяет использовать современные материалы и процессы
  • Повышенная прочность и твердость

В частности, магнитомягкие композитные материалы являются лидером в создании сверхэффективного электродвигателя.

Порошковая металлургия - это больше не просто стержни и заглушки!

Куда вы пойдете дальше?

Современные услуги порошковой металлургии позволяют плавно перейти от традиционной конструкции двигателей внутреннего сгорания к более эффективным и экологически безопасным двигателям будущего. Это стало возможным благодаря развитию PM-материалов (как вы найдете ниже) и процессов (например, спекания).

Конечно, внутренние двигатели будут еще долгое время.Металлический порошок по-прежнему может принести значительные преимущества и двигателям внутреннего сгорания.

Если вы хотите увидеть, как новые материалы и процессы порошковой металлургии меняют мир двигателей, посетите наш ресурсный центр по электродвигателям:

Связанные ресурсы

(Примечание редактора: эта статья была первоначально опубликована в сентябре 2019 года и недавно была обновлена.)

Портал для сжигания

Стационарные поршневые двигатели внутреннего сгорания (RICE)

Стационарный поршневой двигатель внутреннего сгорания (RICE) - это любой двигатель внутреннего сгорания, который использует возвратно-поступательное движение для преобразования тепловой энергии в механическую работу и не является мобильным.Стационарные поршневые двигатели отличаются от мобильных поршневых двигателей тем, что они не используются в дорожных транспортных средствах или внедорожных мобильных устройствах, таких как бульдозеры, косилки, краны и т. Д. Некоторые двигатели труднее классифицировать, например, генератор, установленный на поддоне или прицепе. не будет считаться стационарным, если он не будет оставаться на одном участке в течение, по крайней мере, полного года или полного сезона, для сезонного источника ( дополнительная информация о стационарных, внедорожных, передвижных и т. д. ).

Есть два основных типа стационарных поршневых двигателей - искровое зажигание и воспламенение от сжатия. В двигателях с искровым зажиганием для воспламенения сжатой топливно-воздушной смеси используется искра (через свечу зажигания). Типичными видами топлива для таких двигателей являются бензин и природный газ. Двигатели с воспламенением от сжатия сжимают воздух до высокого давления, нагревая воздух до температуры воспламенения топлива, которое затем впрыскивается. Высокая степень сжатия, используемая в двигателях с воспламенением от сжатия, обеспечивает более высокий КПД, чем это возможно с двигателями с искровым зажиганием.Дизельное топливо обычно используется в двигателях с воспламенением от сжатия, хотя некоторые из них работают на двойном топливе (природный газ сжимается вместе с воздухом для горения, а дизельное топливо впрыскивается в верхней части такта сжатия для инициирования сгорания).

Несколько миллионов стационарных поршневых двигателей используются на всей территории США. В целом промышленность использует эти двигатели для привода технологического оборудования, такого как компрессоры, насосы и другое оборудование, а также для резервных генераторных установок.

Воздушные правила

Производители и владельцы стационарных поршневых двигателей внутреннего сгорания (RICE) подпадают под действие федеральных правил по загрязнению воздуха, поэтапно вводимых с 2004 года.

Чтобы узнать больше о том, как EPA регулирует стационарные двигатели и о применимости правила RICE, см. EPA Region 1 RICE page .

Дополнительные ресурсы

Национальная программа помощи малому бизнесу (NSBAP) представляет различные ресурсы стационарных двигателей внутреннего сгорания.

Заявление об отказе от ответственности

Основы двигателя внутреннего сгорания 2E

Часто используемые символы, индексы и сокращения
ГЛАВА 1 Типы двигателей и их работа
1.1 Введение и историческая перспектива
1.2 Классификация двигателей
1.3 Рабочие циклы двигателя
1.4 Компоненты двигателя
1.5 Многоцилиндровые двигатели
1.6 Работа двигателя с искровым зажиганием
1.7 Различные типы четырехтактных двигателей SI
1.7.1 Двигатели с искровым зажиганием на портовом топливе Впрыск
1.7.2 Двигатели SI для гибридных электромобилей
1.7.3 Двигатели SI с форсункой
1.7.4 Двигатели SI с прямым впрыском
1.7.5 Двигатели SI с форкамерой
1.7.6 Роторные двигатели
1.8 Работа двигателя с воспламенением от сжатия
1.9 Различные типы дизельных двигателей
1.10 Работа двухтактных двигателей
1.11 Топливо
1.11.1 Бензин и дизельное топливо
1.11.2 Альтернативные виды топлива Проблемы

Ссылки
ГЛАВА 2 Конструкция двигателя и рабочие параметры
2.1 Важные характеристики двигателя
2.2 Геометрические соотношения для поршневых двигателей
2.3 Силы в поршневом механизме
2.4 Тормозной момент и мощность
2.5 Расчетная работа за цикл
2.6 Механический КПД
2.7 Среднее эффективное давление
2.8 Удельный расход топлива и КПД
2.9 Соотношение воздух / топливо и топливо / воздух
2.10 Объемный КПД
2.11 Удельная мощность, удельный вес и удельный объем
2.12 Поправочные коэффициенты для мощности и объемного КПД
2.13 Удельные выбросы и индекс выбросов
2.14 Взаимосвязь между рабочими параметрами
2.15 Конструкция двигателя и данные о рабочих характеристиках
2.16 Требования к мощности автомобиля. Проблемы

Ссылки
ГЛАВА 3 Термохимия топливно-воздушных смесей
3.1 Характеристики пламени
3.2 Модель идеального газа
3.3 Состав воздуха и топлива
3.4 Стехиометрия горения
3.5 Первый закон термодинамики и горения
3.5. 1 Энергетический и энтальпийный балансы
3.5.2 Энтальпии образования
3.5.3 Значения нагрева
3.5.4 Процессы адиабатического сгорания
3.5.5 Эффективность сгорания двигателя внутреннего сгорания
3.6 Второй закон термодинамики применительно к горению
3.6.1 Энтропия
3.6.2 Максимальная работа двигателя внутреннего сгорания и КПД
3.7 Химически реагирующие газовые смеси
3.7.1 Химическое равновесие
3.7.2 Скорость химических реакций
Проблемы
Ссылки
ГЛАВА 4 Свойства рабочих жидкостей
4.1 Введение
4.2 Состав несгоревшей смеси
4.3 Взаимосвязь свойств газа
4.4 Простая аналитическая модель идеального газа
4.5 Таблицы термодинамических свойств
4.5.1 Таблицы несгоревших смесей
4.5.2 Таблицы сгоревших смесей
4.5.3 Связь между несгоревшими и сгоревшими таблицами смесей
4.6 Таблицы свойств и состава
4.7 Компьютерные программы для расчета свойств и состава
4.7.1 Несгоревшие Смеси
4.7.2 Сгоревшие смеси
4.8 Транспортные свойства
4.9 Состав выхлопных газов
4.9.1 Данные о концентрации видов
4.9.2 Определение коэффициента эквивалентности по компонентам выхлопных газов
4.9.3 Влияние неоднородности соотношения топливо / воздух
4.9.4 Неэффективность сгорания
Проблемы
Ссылки
ГЛАВА 5 Идеальные модели циклов двигателя
5.1 Введение
5.2 Идеальные модели процессов двигателя
5.3 Термодинамические соотношения для процессов двигателя
5.4 Анализ цикла с идеальным газом Рабочая жидкость с постоянными cv и cp
5.4.1 Цикл постоянного объема
5.4.2 Циклы ограниченного и постоянного давления
5.4.3 Сравнение циклов
5.5 Анализ цикла топливо-воздух
5.5.1 Моделирование цикла двигателя SI
5.5.2 Моделирование цикла двигателя CI
5.5.3 Результаты расчетов цикла
5.6 Перерасширенные циклы двигателя
5.7 Анализ доступности процессов двигателя
5.7.1 Взаимосвязи доступности
5.7.2 Изменения энтропии в идеальных циклах
5.7 .3 Анализ доступности идеальных циклов
5.7.4 Эффект отношения эквивалентности
5.8 Сравнение с реальными циклами двигателя
Проблемы
Ссылки
ГЛАВА 6 Процессы газообмена
6.1 Процессы впуска и выпуска в четырехтактном цикле
6.2 Объемный КПД
6.2.1 Квазистатические эффекты
6.2.2 Сопротивления потоку на впуске и выпуске
6.2.3 Теплопередача на впуске и в цилиндре
6.2.4 Время работы впускного клапана Эффекты
6.2.5 Дросселирование воздушного потока на впускном клапане
6.2.6 Регулировка впуска и выпуска
6.2.7 Комбинированные эффекты: двигатели без наддува
6.2.8 Воздействие турбонаддува
6.3 Поток через клапаны и порты
6.3.1 Клапан и порт Геометрия и работа
6.3.2 Расходы и коэффициенты нагнетания
6.3.3 Регулируемое время клапана
6.4 Доля остаточного газа
6.5 Изменение расхода выхлопного газа и температуры
6.6 Удаление продувки в двухтактных двигателях
6.6.1 Конфигурации двухтактных двигателей
6.6. 2 Параметры и модели продувки
6.6.3 Фактические процессы продувки
6.7 Поток через порты двухтактного двигателя
6.8 Наддув и турбонаддув
6.8.1 Методы повышения мощности
6.8.2 Основные взаимосвязи
6.8.3 Компрессоры
6.8.4 Турбины
6.8.5 Компрессор, двигатель, согласование турбины
6.8.6 Устройства волнового сжатия
Проблемы
Ссылки
ГЛАВА 7 Приготовление смеси в двигателях SI
7.1 Смесь для двигателей с искровым зажиганием Требования
7.2 Обзор дозирования топлива
7.2.1 Подходы к образованию смеси
7.2.2 Соответствующие характеристики топлива
7.3 Центральный (дроссельный) впрыск топлива
7.4 Портовый (многоточечный) впрыск топлива
7.4.1 Схема, компоненты и функции системы
7.4.2 Распыление топлива
7.4.3 Воздействие обратного потока
7.5 Явления воздушного потока
7.5.1 Поток мимо дроссельной заслонки
7.5.2 Поток во впускных коллекторах
7.5.3 Воздушный поток Модели
7.6 Явления потока топлива: Портовый впрыск топлива
7.6.1 Поведение жидкого топлива
7.6.2 Переходные процессы: Топливно-пленочные модели
7.7 Прямой впрыск топлива
7.7.1 Обзор подходов с прямым впрыском
7.7.2 Процессы приготовления смеси DI
7.7.3 Система и компоненты двигателя DI
7.8 Датчики кислорода в выхлопных газах
7.9 Системы подачи топлива
7.10 Сжиженный нефтяной газ и природный газ
Проблемы
Ссылки
ГЛАВА 8 Движение заряда внутри цилиндра
8.1 Потоки, создаваемые всасываемым газом
8.2 Характеристики средней скорости и турбулентности
8.2.1 Определения соответствующих параметров
8.2.2 Применение к данным о скорости двигателя
8.3 Завихрение
8.3.1 Измерение завихрения
8.3.2 Образование завихрения во время индукции
8.3.3 Модификация завихрения в цилиндре
8.4 Потоки
8.5 Поршневые потоки: сжатие
8.6 Завихрение, опрокидывание, сжатие потоков
8.7 Потоки в форкамерном двигателе
8.8 Щелевые потоки и прорыв
8.9 Потоки, создаваемые взаимодействием поршневого цилиндра и стенки

Ссылки
ГЛАВА 9 Сгорание в двигателях с искровым зажиганием
9.1 Основные характеристики процесса
9.1.1 Основы сгорания
9.1.2 Процесс сгорания в двигателе SI
9.2 Термодинамика сгорания двигателя внутреннего сгорания
9.2.1 Состояния сгоревшей и несгоревшей смеси
9.2.2 Анализ данных о давлении в цилиндре
9.2.3 Характеристика процесса сгорания
9.3 Структура и скорость пламени
9.3.1 Общие наблюдения
9.3.2 Структура пламени
9.3.3 Скорость ламинарного горения
9.3.4 Зависимость распространения пламени
9.3.5 Горение с прямым впрыском топлива
9.4 Циклические изменения горения, частичного горения и пропусков зажигания
9.4.1 Наблюдения и определения
9.4.2 Причины колебаний от цикла к циклу и от цилиндра к цилиндру
9.4.3 Частичное горение, пропуски зажигания и стабильность двигателя
9.5 Искровое зажигание
9.5.1 Основы зажигания
9.5.2 Стандартные системы зажигания
9.5.3 Альтернативное зажигание Подходы к
9.6 Ненормальное горение: самовозгорание и детонация
9.6.1 Описание явлений
9.6.2 Основы детонации
9.6.3 Топливные факторы
9.6.4 Спорадические преждевременные воспламенения и детонация
9.6.5 Подавление детонации
Проблемы
Ссылки
Горение в двигателях с воспламенением от сжатия
10.1 Основные характеристики процесса
10.2 Типы дизельных систем сгорания
10.2.1 Системы с непосредственным впрыском топлива
10.2.2 Другие дизельные системы сгорания
10.2.3 Сравнение различных систем сгорания
10.3 Сгорания дизельного двигателя
10.3.1 Оптические исследования дизеля Сжигание
10.3.2 Сгорание в системах с несколькими распылителями с прямым впрыском
10.3.3 Анализ скорости тепловыделения
10.3.4 Концептуальная модель сгорания дизельного топлива с прямым впрыском
10.4 Поведение при распылении топлива
10.4.1 Впрыск топлива
10.4.2 Общая структура распылителя
10.4.3 Распыление и проявление распыления
10.4.4 Проникновение распыления
10.4.5 Распределение размеров капель
10.4.6 Испарение распылением
10.5 Задержка воспламенения
10.5.1 Определение и обсуждение
10.5 .2 Качество воспламенения топлива
10.5.3 Самовоспламенение и предварительно приготовленное горение
10.5.4 Физические факторы, влияющие на задержку воспламенения
10.5.5 Влияние свойств топлива
10.5.6 Корреляция задержки воспламенения в двигателях
10.6 Сжигание под контролем смешения
10.6.1 Предпосылки
10.6.2 Структура распыления и пламени
10.6.3 Смешивание топлива с воздухом и скорости горения
10.7 Альтернативные подходы к сжиганию от сжатия-воспламенения
10.7.1 Сжигание дизельного топлива с несколькими впрысками
10.7.2 Передовые концепции сжигания с воспламенением от сжатия
Проблемы
Ссылки
ГЛАВА 11 Образование загрязняющих веществ и борьба с ними
11.1 Природа и масштабы проблемы
11.2 Оксиды азота
11.2.1 Кинетика образования NO
11.2.2 Образование NO2
11.2.3 Образование NO в двигателях с искровым зажиганием
11.2.4 Образование NOx в двигателях с воспламенением от сжатия
11.3 Окись углерода
11.4 Выбросы углеводородов
11.4.1 Общие сведения
11.4.2 Основы тушения пламени и окисления
11.4 .3 Выбросы углеводородов из двигателей с искровым зажиганием
11.4.4 Механизмы выброса углеводородов в дизельном двигателе
11.5 Выбросы твердых частиц
11.5.1 Твердые частицы двигателя с искровым зажиганием
11.5.2 Характеристики частиц дизельного топлива
11.5.3 Распределение твердых частиц в цилиндре
11.5.4 Основы образования сажи
11.5.5 Окисление сажи
11.5.6 Адсорбция и конденсация
11.6 Очистка выхлопных газов
11.6.1 Доступные опции
11.6.2 Основные принципы катализаторов
11.6.3 Каталитические преобразователи
11.6.4 Фильтры или уловители твердых частиц
11.6.5 Системы обработки выхлопных газов
Проблемы
Ссылки
ГЛАВА 12 Теплопередача двигателя
12.1 Важность теплопередачи
12.2 режима теплопередачи
12.2.1 Проводимость
12.2.2 Конвекция
12.2.3 Излучение
12.2.4 Общий процесс теплопередачи
12.3 Теплопередача и энергетический баланс двигателя
12.4 Конвективная теплопередача
12.4.1 Анализ размеров
12.4 .2 Корреляции для усредненного по времени теплового потока
12.4.3 Корреляции для мгновенных пространственных средних коэффициентов
12.4.4 Корреляции для мгновенных местных коэффициентов
12.4.5 Теплопередача выхлопной и впускной систем
12.5 Радиационная теплопередача
12.5.1 Излучение газов
12.5.2 Излучение пламени
12.6 Измерение мгновенных скоростей теплопередачи
12.6.1 Методы измерения
12.6.2 Измерения двигателя с искровым зажиганием
12.6.3 Измерения дизельного двигателя
12.6 .4 Оценка корреляции теплопередачи
12.6.5 Поведение пограничного слоя
12.7 Термическая нагрузка и температура компонентов
12.7.1 Влияние переменных двигателя
12.7.2 Распределение температуры компонентов
12.7.3 Прогрев двигателя
Проблемы
Ссылки
ГЛАВА 13 Трение и смазка двигателя
13.1 Общие сведения
13.2 Определения
13.3 Основы трения
13.3.1 Трение со смазкой
13.3.2 Турбулентное диссипация
13.3.3 Полное трение Данные о трении двигателя
13.5.1 Двигатели SI
13.5.2 Дизельные двигатели
13.6 Механические компоненты трения
13.6.1 Тесты на поломку моторизованного двигателя
13.6.2 Система смазки двигателя
13.6.3 Трение и смазка поршневого узла
13.6.4 Трение коленчатого вала
13.6.5 Трение клапанного механизма
13.7 Насосное трение
13.8 Требования к мощности вспомогательного оборудования
13.9 Моделирование трения двигателя
Контекст масла 13.10 Расход масла
13.10.1
13.10.2 Транспортировка масла в цилиндр
13.10.3 Испарение масла
13.10.4 Продувка и унос масла
13.11 Смазочные материалы
Проблемы
Ссылки
ГЛАВА 14 Моделирование реального потока в двигателе и процессов сгорания
14.1 Назначение и классификация моделей
14.2 Управляющие уравнения для открытой термодинамической системы
14.2.1 Сохранение массы
14.2.2 Сохранение энергии
14.3 Модели всасываемого и выхлопного потока
14.3.1 Предпосылки
14.3.2 Модели квазистационарного потока
14.3.3 Методы наполнения и опорожнения
14.3.4 Газодинамические модели
14.4 Термодинамические модели цилиндров
14.4.1 Предпосылки и общая структура модели
14.4.2 Модели двигателей с искровым зажиганием
14.4.3 Модели двигателя с прямым впрыском
14.4.4 Модели двигателя с форкамерой
14.4.5 Модели многоцилиндровых и сложных систем двигателя
14.4.6 Анализ процессов двигателя во втором законе
14.5 Многомерные модели на основе механических жидкостей
14.5. 1 Базовый подход и управляющие уравнения
14.5.2 Модели турбулентности
14.5.3 Численная методология
14.5.4 Прогнозы поля потока
14.5.5 Моделирование распыления топлива
14.5.6 Моделирование горения
Ссылки
ГЛАВА 15 Рабочие характеристики двигателя
15.1 Цели проектирования двигателя
15.2 Рабочие характеристики двигателя
15.2.1 Основные характеристики дизельных двигателей и двигателей
15.2.2 Характеристики двигателя
15.2.3 Крутящий момент, мощность и среднее эффективное давление
15.2.4 Карты характеристик двигателя
15.3 Рабочие переменные, которые Влияет на производительность, эффективность и выбросы двигателя SI
15.3.1 Время искры
15.3.2 Состав смеси
15.3.3 Нагрузка и скорость
15.3.4 Степень сжатия
15.4 Конструкция системы сгорания двигателя SI
15.4.1 Цели и варианты
15.4.2 Факторы, влияющие на горение
15.4.3 Факторы, которые контролируют производительность
15.4.4 Требование октанового числа камеры
15.4.5 Выбросы двигателя SI
15.4.6 Оптимизация
15.5 Переменные, которые влияют на производительность дизельного двигателя, эффективность, и выбросы
15.5.1 Нагрузка и скорость
15.5.2 Конструкция системы сгорания
15.5.3 Впрыск топлива и EGR
15.5.4 Общее поведение системы
15.6 Двухтактные двигатели
15.6.1 Рабочие параметры
15.6.2 Двухтактные бензиновые двигатели SI
15.6.3 Двухтактные двигатели CI
15.7 Шум, вибрация и жесткость
15.7.1 Шум двигателя
15.7.2 Динамика поршневого механизма
15.7.3 Балансировка двигателя
15.8 Мощность двигателя и сводка по топливу
Проблемы
Ссылки
ПРИЛОЖЕНИЕ A Коэффициенты пересчета единиц
ПРИЛОЖЕНИЕ B Соотношения идеальных газов
B.1 Закон идеального газа
B.2 Моль
B.3 Термодинамические свойства
B.4 Смеси идеальных газов
ПРИЛОЖЕНИЕ C Уравнения для потока жидкости через ограничение
C.1 Поток жидкости
C.2 Расход газа
Ссылки
ПРИЛОЖЕНИЕ D Данные о рабочих жидкостях Указатель

двигателей будущего - ASME

За последние несколько лет в автомобильном транспорте произошел значительный прогресс в том, что считается альтернативными технологиями. Накопители энергии, системы электропривода и технологии топливных элементов, похоже, готовы занять значительное место на автомобильном рынке.

Но было бы ошибкой полагать, что такие технологии полностью отметят то, что было раньше. Вместо этого в обозримом будущем двигатель внутреннего сгорания останется неотъемлемой частью перевозки людей и грузов.

Это не означает, что все останется так, как есть сейчас. Двигатель претерпевает значительную эволюцию, поскольку новые стандарты экономии топлива и выбросов в секторах малой и большой грузоподъемности подталкивают разработку новых технологий в беспрецедентном масштабе к теоретическим пределам работы двигателя.В сочетании с продолжающимся исследованием фундаментальных процессов в двигателях, внедрением доступных высокопроизводительных вычислений и внедрением передовых производственных технологий во всей отрасли эти новые технологии открывают потенциально прорывные возможности для внедрения двигателей с чрезвычайно высокой эффективностью. То, как эти новые двигатели работают и как они будут интегрированы в новую архитектуру транспортных средств, станет историей личной мобильности в этой половине 21-го века.

Работая в Национальной лаборатории Ок-Ридж, я смог увидеть пересечение открытия знаний, разработки передовых технологий двигателей и транспортных средств, а также использования уникальных вычислительных ресурсов. Хотя общественность склонна считать исследования автомобилей и двигателей сугубо частным делом, мои коллеги и я из ORNL помогаем реализовать весь потенциал эффективности двигателей внутреннего сгорания.

Двигатель внутреннего сгорания претерпел значительную эволюцию за последнее столетие.До 1970 года эволюция конструкции двигателя была обусловлена ​​стремлением к повышению производительности и увеличению октанового числа в подаваемом топливе. Однако с тех пор настоятельно необходимо соблюдать новые правила по выбросам и экономии топлива.

Виталий Приходько из отдела исследований топлива, двигателей и выбросов ORNL изучает усовершенствованные катализаторы, которые используются для уменьшения загрязнения автомобилей. Изображение: ORNL

Исторически эффективность двигателя внутреннего сгорания ограничивалась в большей степени состоянием технологий, чем нововведениями.Например, потенциал таких технологий, как прямой впрыск бензина, был известен и опробован в производстве более 50 лет назад, но прямой впрыск стал широко доступным в производстве только в течение последнего десятилетия и сейчас составляет примерно 38 процентов от новых легковых автомобилей. дежурная продажа автомобилей. Другим примером являются режимы низкотемпературного горения, такие как сгорание с воспламенением от сжатия однородного заряда, при котором топливо и воздух впрыскиваются во время такта впуска, а затем сжимаются до тех пор, пока вся смесь не прореагирует спонтанно, - которые были продемонстрированы в лаборатории более 30 лет назад, но являются до выхода на рынок еще много лет.

Революционные достижения последних лет заключаются в усовершенствовании технологий двигателей, датчиков и вычислительной мощности бортовых компьютеров. Эта комбинация технологий позволит беспрецедентно управлять процессом сгорания, что, в свою очередь, позволит реализовать в реальных условиях низкотемпературное сгорание и другие передовые стратегии, а также повысить надежность и топливную гибкость. Фактически, технический прогресс стирает наше историческое различие между двигателями с искровым зажиганием и двигателями с воспламенением от сжатия; мы увидим новые концепции двигателей, которые сочетают в себе лучшие характеристики обоих типов двигателей, чтобы раздвинуть границы эффективности при соблюдении строгих норм по выбросам во всем мире.

Стремление к двигателям с более высоким КПД приведет к изменению температуры и химического состава выхлопных газов и может создать проблемы для технологий контроля выбросов.

Например, новые двигатели с более высоким КПД будут иметь более низкие температуры выхлопных газов из-за более эффективного отвода рабочего материала на поршне. Более низкие температуры выхлопных газов, в свою очередь, потребуют разработки новых технологий контроля выбросов, которые должны быть не только эффективными при низких температурах, но также должны выдерживать высокие температуры выхлопных газов, возникающие в условиях высоких нагрузок.

; custompagebreak;

Даже самые эффективные и надежные двигатели никогда не выйдут на рынок, если система транспортного средства не будет соответствовать нормативам по выбросам. Но это не первый случай, когда для вывода технологии сжигания на рынок потребовались значительные достижения в области контроля выбросов. Достижения в области каталитических технологий более 40 лет назад сыграли решающую роль в соблюдении возникающих норм по выбросам; эффективность катализаторов для обычных двигателей с искровым зажиганием с тех пор улучшилась в 100 раз при одновременном значительном сокращении количества дорогих металлов платиновой группы.Решение новых задач - очень активная область исследований в ORNL и других национальных лабораториях Министерства энергетики США, а также в промышленности.

Процессы низкотемпературного горения представляют значительный интерес из-за очень высокой тепловой эффективности при значительном сокращении многих критериев загрязняющих веществ. Как упоминалось выше, LTC представляет собой проблему из-за состояния технологий: в отличие от обычных режимов горения с искровым зажиганием и воспламенением от сжатия, большинство режимов LTC управляются кинетически и, следовательно, гораздо более чувствительны к условиям окружающей среды и постоянно меняющимся требованиям скорости / нагрузки. .Последние достижения в таких технологиях, как системы впрыска топлива, турбомашины, срабатывание клапанов, датчики и бортовые компьютеры, привели к новым возможностям управления в реальном времени, которые раскрывают потенциал двигателей LTC с жизнеспособным в производстве оборудованием.

Стеклянные капилляры диаметром порядка человеческого волоса позволяют проводить отбор проб выхлопных загрязнителей внутри проточных каналов каталитических нейтрализаторов (слева), обеспечивая критическое понимание химического процесса для всего устройства (ниже).Фото: ORNL

Сгорание с воспламенением от сжатия на бензине представляет собой усовершенствованный режим сгорания, которому в последние годы уделяется значительное внимание. Хотя сжигание GCI не является новой концепцией, за последние несколько десятилетий оно эволюционировало по мере совершенствования технологий. Ранее исследования GCI были сосредоточены в первую очередь на сгорании с воспламенением от сжатия с однородным зарядом, но в последние годы мы наблюдали растущий интерес к непрерывному диапазону режимов сгорания GCI, охватывающих полностью гомогенный HCCI, режимы частичной стратификации топлива и режимы полной стратификации, которые подобны дизельному топливу. исполнение.Эти технологии также вызвали большой интерес к сжиганию с воспламенением от сжатия с контролируемой реактивностью (RCCI), в котором используются различия в реакционной способности двух видов топлива для управления процессом сгорания для достижения максимальной эффективности с минимально возможными выбросами.

Понимание потенциала этих режимов сгорания, а также понимание проблем, связанных с выбросами и контролем за выбросами, а также возможностей топливных технологий, составляет основу большинства исследований топлива, двигателей и выбросов в ORNL и опирается на более чем двадцатилетний опыт в этих области.Это исследование также включает подробное сравнение режимов горения GCI и RCCI, чтобы лучше понять проблемы и возможности с точки зрения эффективности, выбросов, шума и управляемости. Одновременно другие национальные лаборатории проводят дополнительные и синергетические исследования, дающие новое понимание таких областей, как основы сгорания, передовые технологии двигателей, распыление распылением и моделирование.

Стабильность и управляемость были основными препятствиями на пути к внедрению многих усовершенствованных режимов горения.Многие низкотемпературные режимы сгорания, такие как GCI и RCCI, работают на грани стабильности - другими словами, в условиях, при которых очень небольшие изменения граничных условий двигателя (например, температуры на впуске) могут привести к непреднамеренным отклонениям, которые приводят к нежелательным выбросам, снижение эффективности и возможность разрушения двигателя или системы контроля выбросов. Можно представить себе проблему этих типов режимов горения в постоянно меняющихся условиях реального ездового цикла, когда одно непреднамеренное отклонение от нормы может иметь катастрофические последствия.Для решения этой задачи требуется система управления, которая прогнозирует предотвращение, а не реагирует на возникновение потенциально опасного события.

ORNL имеет долгую историю в улучшении понимания и контроля этих нестабильностей горения, чтобы расширить рабочее окно и преимущества расширенных режимов горения. Это исследование и подход основаны на теории детерминированного хаоса и за прошедшие годы эволюционировали от горения искровым зажиганием с высоким разбавлением до горения GCI и RCCI в последние годы.

Исследование

ORNL показало, что для этих режимов сгорания циклическая дисперсия состоит из стохастических или случайных процессов, вызванных смешиванием топлива и воздуха в цилиндрах, и детерминированных или неслучайных процессов, вызванных предыдущим событием сгорания через остаточные газы. Возникающий в результате высокий уровень нестабильности еще больше усиливается за счет изменения количества цилиндров от цилиндра к цилиндру. Хотя высокий уровень нестабильности представляет собой проблему, существование детерминированной структуры - неслучайного поведения - дает возможность краткосрочного прогнозирования и управления и, в конечном итоге, принудительной стабилизации изначально нестабильных режимов горения.

Такого рода прогнозирование и контроль были бы немыслимы с жизнеспособными технологиями даже 10 лет назад. Однако с недавними значительными достижениями в области недорогих датчиков, быстрых исполнительных механизмов и бортовых компьютеров такой уровень управления станет возможным на серийных автомобилях в самом ближайшем будущем.

Хотя значительные достижения в технологиях управления двигателем, датчиках и бортовых компьютерах открывают беспрецедентные возможности, эта работа также ведет к постоянно расширяющемуся и неуправляемому пространству параметров в современных двигателях.Текущие тенденции показывают экспоненциальное увеличение пространства параметров, которое, как ожидается, продолжит расти в обозримом будущем. Неспособность эффективно оптимизировать это пространство параметров приводит к неоптимальным двигателям на рынке и вызывает потребность в новых подходах к проектированию и оптимизации двигателей.

; custompagebreak;

Основанные на модели и самообучающиеся элементы управления будут важны для более надежной и оптимальной калибровки, а также для ускорения процесса калибровки.Современные подходы к калибровке двигателей зависят в первую очередь от справочных таблиц, экспериментально выведенных алгоритмов взаимодействия параметров и ручной оптимизации калибровочных транспортных средств. Элементы управления на основе моделей уменьшат количество экспериментов, в то же время лучше представляя сложные взаимодействия аппаратного обеспечения двигателя. Самообучающиеся элементы управления сделают еще один шаг вперед, чтобы включить автономные интеллектуальные системы, которые будут иметь возможность изучать, адаптировать и манипулировать элементами управления двигателем, чтобы максимизировать эффективность и минимизировать выбросы в условиях постоянно меняющихся требований транспортных средств.

Самообучающиеся средства управления также будут важным компонентом при разработке подключенных и автономных транспортных средств, которые будут использовать информацию между транспортными средствами и транспортными средствами с инфраструктурой для дальнейшей оптимизации топливной экономичности двигателя и транспортного средства.

Более быстрое и предсказуемое моделирование будет иметь важное значение для проектирования и оптимизации двигателей внутреннего сгорания следующего поколения. Это будет важно для открытия критически важных знаний, управления постоянно расширяющимся пространством параметров и разработки моделей пониженного порядка, которые можно использовать для управления в реальном времени.Постоянное увеличение скорости вычислений и доступность высокопроизводительных вычислений ведет к новому рубежу в разработке двигателей и транспортных средств, включая способность решать проблемы, которые когда-то считались неразрешимыми.

Используя нейтроны для проникновения во внутреннюю структуру детали двигателя, исследователи изучают кавитацию - физическое явление, которое приводит к образованию пузырьков внутри корпуса бензинового топливного инжектора. Изображение: ORNL

Тенденции в стоимости высокопроизводительных вычислений указывают на то, что компьютеры с «петашкалом» (и не только) станут доступными для промышленности в течение десятилетия.Для справки, петафлоп - это один квадриллион операций с плавающей запятой в секунду. Суперкомпьютер ORNL Titan имеет теоретическую пиковую производительность, превышающую 27 петафлопс. (Для сравнения: 28 петафлопс эквивалентны тем, что все 7 миллиардов человек в мире одновременно выполняют 4 миллиона вычислений в секунду.) Доступность и доступность этих типов ресурсов для промышленности будет революционной для проектирования и калибровки двигателей, поскольку а также автомобили.

Суперкомпьютеры в национальных лабораториях в настоящее время используются для поддержки Министерства энергетики и в сотрудничестве с промышленностью для улучшения моделирования распыления, усовершенствованного сгорания и проектирования двигателей.ORNL имеет текущие проекты, которые используют эти ресурсы для дальнейшего понимания нестабильности горения, ускорения оптимизации конструкции форсунок и даже наведения мостов с высокой точностью сгорания и структурных кодов для прогнозирования свойств материала.

ORNL недавно провел встречу с заинтересованными сторонами отрасли с несколькими другими национальными лабораториями, чтобы изучить следующие шаги в использовании огромной мощности высокопроизводительных вычислений для проектирования транспортных средств. В частности, встреча была сосредоточена на потенциале высокопроизводительных вычислений и заинтересованности отрасли в разработке интегрированной программной среды для объединения нескольких технологий для мультифизического полного трехмерного высокоточного моделирования транспортных средств, чтобы использовать возможности следующее поколение передовых вычислительных архитектур.

Новая среда моделирования будет разработана специально для транспортных средств на основе недавнего опыта разработки аналогичных сред для ядерных реакторов и батарей. В качестве примера рассмотрим интеграцию трехмерных высокоточных моделей для интегрированного проектирования теплового управления, аэродинамики и конструкции: этот подход может не только значительно ускорить процесс проектирования, но и раскрыть синергетические возможности, выходящие за рамки того, что можно отождествить с более традиционными подходами.

Большая часть обсуждения до сих пор была сосредоточена на обнаружении знаний и разработке более совершенных технологий двигателей - всех областях, находящихся под контролем производителей автомобилей и двигателей. В настоящее время в Министерстве энергетики и национальных лабораториях существует амбициозная программа, направленная на совместную оптимизацию технологий топлива и двигателей для достижения максимальной производительности с минимальными выбросами парниковых газов, другими словами, устранение ограничений, которые нынешние виды топлива накладывают на конструкцию двигателей.

; custompagebreak;

Программа «Оптима» объединяет обширный опыт и ресурсы Управления автомобильных технологий и Управления биоэнергетических технологий Министерства энергетики. Общий план включает краткосрочную фазу, которая основывается на текущих технологиях двигателей с целью вывода новых топливных и транспортных технологий на рынок к 2025 году, а также более долгосрочную - и, возможно, более амбициозную - фазу, ориентированную на кинетически контролируемые процессы сгорания и топливные технологии с ожидаемым эффектом в 2030 году.Команда Optima тесно сотрудничает с широким кругом заинтересованных сторон, представляющих производителей автомобилей и двигателей, энергетические компании, производителей биотоплива, дистрибьюторов топлива и розничных продавцов, а также выявляет и решает потенциальные проблемы развертывания для обеспечения максимального успеха.

Один из способов сократить выбросы двигателя - снизить нагрузку на автомобиль. Суперкомпьютерное моделирование, проведенное в Ок-Ридж, смоделировало систему, которая могла бы уменьшить лобовое сопротивление - и повысить эффективность грузовых перевозок - в грузовиках дальнего следования.Изображение: Майкл Мэтисон, ORNL

Сочетание новых правил, ожиданий потребителей и меняющейся роли двигателей внутреннего сгорания с передовой архитектурой транспортных средств увеличивает требования к двигателям следующего поколения и ускоряет развитие технологий. Представитель автомобильной компании недавно сказал, что двигатель изменился больше за последние 10 лет, чем за предыдущие 100 лет. Я полностью согласен и верю, что следующие 10 лет принесут еще более быстрые изменения с достижениями, которые были далеко за пределами воображения всего несколько лет назад.

Я призываю членов ASME изучить обширные исследования, проводимые при поддержке Министерства энергетики и во многих национальных лабораториях. Национальные лаборатории находятся в уникальном положении, чтобы соединить большие уникальные научные ресурсы с приложениями и найти решения для энергетических проблем будущего. ME

Роберт М. Вагнер - директор Исследовательского центра по топливу, двигателям и выбросам и видный член технического персонала Окриджской национальной лаборатории в Теннесси.Он также является членом Общества инженеров автомобильной промышленности и профессором Центра междисциплинарных исследований и последипломного образования Бредесена Университета Теннесси в Ноксвилле. Он является техническим председателем конференции ASME-ICEF 2015 в Хьюстоне.

Достижения открывают путь к появлению новых концепций, сочетающих лучшие характеристики двигателей с искровым и компрессионным воспламенением.

Книжный магазин Обернского университета - ОСНОВЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ

Примечание издателя. Издатель не гарантирует качество, подлинность или доступ к каким-либо онлайн-правам, включенным в комплект поставки продуктов, приобретенных у сторонних продавцов.

Долгожданная редакция самого уважаемого ресурса по двигателям внутреннего сгорания, раскрывающая основы усовершенствованного управления двигателями с искровым зажиганием и дизельными двигателями.

Написанный одним из наиболее признанных и уважаемых имен в двигателях внутреннего сгорания, этот надежный образовательный и профессиональный справочник охватывает ключевые физические и химические процессы, которые определяют работу и конструкцию двигателей внутреннего сгорания. «Основы двигателя внутреннего сгорания», второе издание, был тщательно пересмотрен с учетом последних достижений, включая повышение производительности, повышение эффективности и технологии сокращения выбросов.В книге с подробными иллюстрациями и перекрестными ссылками обсуждаются вопросы воздействия этих двигателей на окружающую среду и требования к ним. Вы получите исчерпывающее объяснение рабочих характеристик двигателя с искровым зажиганием и воспламенением от сжатия (дизельного), а также характеристик потока и сгорания двигателя, а также требований к топливу.

Покрытие включает:

* Типы двигателей и их работа

* Конструкция и рабочие параметры двигателя

* Термохимия топливовоздушных смесей

* Свойства рабочих жидкостей

* Идеальные модели циклов двигателя

* Газообмен

* Приготовление смеси в двигателях с искровым зажиганием

* Движение заряда в цилиндре

* Сгорание в двигателях с искровым зажиганием

* Сгорание в двигателях с воспламенением от сжатия

* Образование и контроль загрязняющих веществ

* Теплопередача двигателя

* Трение и смазка двигателя

* Моделирование реального потока в двигателе и процессов сгорания

* Рабочие характеристики двигателя

Учебники можно приобрести только выбрав курсы.

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *