Регулятор яркости светодиодов 12 вольт: 403 — Доступ запрещён – 403 — Доступ запрещён

Выбираем лучший диммер для светодиодной ленты

Чтобы управлять яркостью светодиодной ленты, в схему наряду с блоком питания (БП) устанавливают диммер (иногда его называют LED-контроллер или светорегулятор). С его помощью можно как минимум управлять яркостью светодиодов, а при использовании RGB модели – изменять цвет свечения и задавать различные режимы работы. В продаже присутствуют десятки разновидностей диммеров для светодиодных лент, в которых рядовому потребителю легко запутаться. Чтобы не допустить ошибку в момент покупки, желательно заранее узнать, как правильно выбрать, подключить и установить светорегулятор и какой дополнительный функциональностью он должен обладать.

Немного о сфере применения

Приобретая светодиодную ленту, например, для дома, многие из нас даже не задумываются о возможности диммирования её светового потока. Почему? Потому что зачастую в этом нет необходимости. Например, организация подсветки на кухне под навесными шкафами или подсветка шкафа-купе, где для получения должного эффекта всегда требуется максимальная светоотдача. Другое дело, когда одноцветная или RGB-лента смонтирована по периметру потолка комнаты. В этом случае диммер поможет снизить интенсивность свечения и подобрать комфортный полумрак, а в детской комнате – на ночь задать минимальную яркость, чтобы ребёнок не спал в темноте.

Практическое применение диммера для белой светодиодной ленты оправдано в случае, когда она используется в качестве основного источника освещения в комнате. Многофункциональные RGB диммеры являются неотъемлемой частью системы «Умный дом».

Какие бывают?

Современные технологии позволяют создавать диммеры для светодиодных лент самой разной конфигурации. В связи с этим их можно классифицировать сразу по нескольким признакам.

По способу преобразования сигнала:

  • аналоговые, в которых за изменение выходного напряжения отвечает тиристор или аналоговая микросхема;
  • цифровые, работа которых основана на микроконтроллере.

По способу управления:

  • кнопочные, когда механические или сенсорные кнопки расположены на самом диммере;
  • дистанционные, управляемые с помощью ПДУ;
  • совмещённые, поддерживающие два способа управления.

По форме и способу монтажа:

  • модульные – выполнены в виде блока с клеммами для подключения проводов;
  • накладные и встраиваемые – имеют вид обычного выключателя и устанавливаются на стену;
  • миниатюрные – выполнены в виде модуля с проводами размером не больше спичечного коробка и имеющие от одной до трёх кнопок.

По назначению:

  • одноканальные для монохромных лент;
  • многоканальные для RGB и RGBW лент.

По функциональному набору:

  • только диммирование;
  • диммирование и дополнительные функции (вкл/откл, режим мигания, цветомузыки, поддержка DMX-протокола, управление несколькими зонами освещения и пр.)

Схема подключения

Электрическую схему разрабатывают в зависимости от типа светодиодной ленты и её длины. В самом простом варианте диммер для одноцветной светодиодной ленты включается последовательно в разрыв цепи между БП и нагрузкой. Суммарная мощность подключённых отрезков не должна превышать как мощность БП, так и диммера. простая схемаСитуация, когда мощности диммера недостаточно для управления яркостью длинных светодиодных отрезков решается путём добавления в схему усилителя. Опираясь на предварительные расчёты, один из отрезков можно подключить напрямую к диммеру, а можно использовать 2 усилителя. схема подключения двух лент через диммер

Для подключения светодиодных лент типа SMD 5050, SMD 5730 длиною 5 метров следует использовать медные многожильные провода сечением 1-1,5 мм2, способные длительно (без перегрева!) пропускать ток до 10А.

Чтобы одновременно управлять яркостью четырёх одноцветных светодиодных лент (одинаковых или разных по цвету свечения), можно воспользоваться схемой на рисунке ниже. В данном варианте один отрезок запитан напрямую от диммера, а ещё 3 – от RGB усилителя, управляющие входы которого замкнуты между собой. применение RGB усилителя для диммирования 4 LED-лентДля управления не только яркостью, но и оттенками RGB или RGBW ленты простого диммера недостаточно. Вместо него в схему устанавливают соответствующий контроллер. схема подключение ленты до 5 метров

При необходимости схему дополняют RGB или RGBW усилителем, или дополнительным блоком питания.

Стоимость диммера для LED-ленты

Как и любой электронный прибор хороший светодиодный диммер не может быть дешёвым. Но при этом следует понимать, что для каждого типа светорегуляторов существует свой ценовой диапазон. Например, стоимость миниатюрных проводных диммеров от Arlight составляет около 8$. Такие устройства могут управлять только одним цветом и выдавать в нагрузку мощность до 36 Вт.

Более дорогими являются одноканальные модели, внешне напоминающие блок питания светодиодной ленты. На их корпусе нет кнопок, а управление яркостью осуществляется с пульта по ИК или радиоканалу. Розничная цена таких диммеров сильно зависит от максимальной выходной мощности и колеблется от 20$ до 40$.

При заказе через интернет-магазин внимательно ознакомьтесь с комплектацией. В некоторых моделях пульт не входит в комплект и приобретается отдельно.

Самую высокую цену имеют диммеры для RGB и RGBW светодиодных лент с многофункциональным пультом управления. Стоимость таких регуляторов яркости среднего качества начинается от 40$. В то же время на AliExpress можно купить аналогичный товар в 2 раза дешевле. Вот только стабильную работу и соответствие заявленным техническим характеристикам поставщики из Китая не гарантируют. На низкое качество продукции AliExpress указывают и многочисленные отрицательные отзывы покупателей.

Чтобы не покупать товар сомнительного качества из Китая и в то же время не тратить деньги на дорогостоящую брендовую продукцию, можно собрать диммер самому из доступных радиокомпонентов.

Диммер для светодиодной ленты на 12 вольт своими руками

Диммер для светодиодной ленты в простейшем виде – это регулируемый источник постоянного напряжения линейного типа, в котором значение выходного напряжения должно изменяться от 0 до 12В. Принципиальная схема такого самого простейшего устройства показана ниже. простой LED-диммерЕё главными элементами являются биполярный транзисторы  КТ819 и простой переменный резистор на 10 кОм.

Стабильная работа схемы обеспечивается при подаче на вход постоянного напряжения 12-14 вольт, которое предварительно было выпрямлено и сглажено емкостным фильтром. Регулировка напряжения на выходе достигается за счёт вращения ручки потенциометра (переменного резистора).

К недостаткам такого самодельного диммера относятся:

  • невысокий уровень КПД;
  • низкая точность диммирования, которая во многом зависит от качества переменного резистора;
  • низкая нагрузочная способность, так как весь ток нагрузки протекает через транзистор КТ819. При подключении светодиодной ленты большой длины, транзистор следует устанавливать на радиатор.

Более высокими эксплуатационными показателями обладают схемы диммеров, в основе работы которых лежит принцип широтно-импульсной модуляции. Одно из таких решений рассмотрено в статье «Схема ШИМ-регулятора яркости светодиодов». Она прекрасно подходит для сборки диммера для светодиодной ленты своими руками и имеет ряд преимуществ по сравнению с первым вариантом:

  • более высокий КПД и нагрузочную способность, которая зависит только от мощности транзистора;
  • транзистор работает в ключевом режиме на частоте более 1 кГц;
  • таймер NE555 стабильно работает от любого источника постоянного тока напряжением 5-18В.

Cветодиодная лампа с регулировкой яркости / Habr

Самодельная светодиодная лампа снабжена увеличительным стеклом, и предназначена для комфортного мелкого монтажа и разборок с миниатюрными радиодеталями — многие радиолюбители знают, что на некоторых SMD-деталях трудно разглядеть маркировку даже под увеличительным стеклом. Наличие качественно рассеянной подсветки значительно улучшает чтение маркировки, и упрощает визуальный поиск дефектов в электронных приборах. Коротко характеристики лампы:
— напряжение питания 12 вольт постоянного тока, максимальная потребляемая мощность около 6..7 Вт, количество светодиодов — 20 шт.
— встроенный режим автоматической калибровки под напряжение источника питания.
— плавное включение и выключение лампы.
— плавная регулировка яркости от нуля до заранее запрограммированного предела — с помощью ручки энкодера. Метод регулировки мощности — ШИМ (широтно-импульсная модуляция).
— энергонезависимое запоминание всех параметров лампы и последней установленной яркости.
— встроенное сервисное меню, доступное через подключение по USB. Меню позволяет настраивать рабочие параметры лампы и просматривать её текущее состояние.

Увеличительная линза на штативе, которая в будущем получит подсветку.

На обод линзы по замыслу должны быть установлены светодиоды.

Для изготовления лампы использовались одноваттные светодиоды компании ARL (Arlight), тип OS-1W WarmWhite (75 Lm, 3000K, максимально допустимый ток 0.35 А), цвет свечения — белый теплый. На максимальном токе требуется эффективное охлаждение светодиодов, чтобы не произошло их перегрева свыше 85 градусов Цельсия. Для этого обычно используются специальные радиаторы. Однако я упростил себе задачу — установил светодиоды на простое текстолитовое кольцо, и ограничил максимальный ток до 0.1 А, чем автоматически снималась проблема охлаждения.

Внешний вид одного светодиода. «Толстый» вывод — анод.

Итак, для крепления светодиодов из двухстороннего фольгированного текстолита было вырезано кольцо. На кольце дремелем сделана разводка на 5 секций светодиодов, по 4 светодиода и резистору в каждой секции. Резистор и светодиоды в каждой секции включены последовательно, а все секции — параллельно друг другу, благодаря чему массив из светодиодов оказался рассчитанным на 12 вольт напряжения питания (см. принципиальную схему далее).


На кольцо были припаяны светодиоды и SMD-резисторы. Получилось довольно симпатично.


На обратной стороне кольца дремелем была сделана специальная канавка, разделяющее кольцо меди вдоль — получились две шины питания, которые соединяют 5 секций светодиодов параллельно.


Теплопроводным клеем «Радиал» кольцо было приклеено к ободу линзы. Хотя теплопроводность тут не особенно помогла — обод линзы все равно пластмассовый.



В качестве контроллера и драйвера для управления светодиодами использовалась макетная плата AVR-USB-MEGA16, у которой есть очень удобная возможность обновления программного обеспечения через прошитый в плату USB-бутлоадер. На макетном поле платы был допаян контроллер. Благодаря тому, что на макетной плате было почти все готово, схема получилась очень простая. Допаять нужно было только силовую часть — управление ключевым транзистором, стабилизатор напряжения 5 вольт и RC-цепочку фильтра напряжения с выхода датчика тока.

Вид на готовое смонтированное устройство с обратной и верхней стороны. Силовой транзистор используется без радиатора, так как на нем рассеивается маленькая мощность (он работает в ключевом режиме на частоте порядка 400 Гц).


Написание и отладка программы заняла немного времени, потому что алгоритм работы очень простой, и были использованы готовые куски из других проектов — ledlight, usb-console, encoder.

Консоль управления лампой сделана на основе проекта «USB консоль для управления радиолюбительскими приборами» (см. ссылки [2]). Правки были сделаны минимальные, и все сразу заработало, отладки не потребовалось.

Краткое описание алгоритма — при включении питания считываются настройки из EEPROM, и лампа зажигается с той яркостью, на которой она была ранее выключена. Вращение ручки энкодера влево плавно уменьшает яркость, вращение вправо — яркость увеличивает. Энкодер также имеет кнопку, нажатие на которую включает и выключает лампу. Включение и выключение происходит с плавным изменением яркости — смотрится довольно красиво. Если при подключении внешнего питания была нажата кнопка энкодера, то все настройки EEPROM сбрасываются, и программа перекалибровывает максимальный предел тока регулирования — основываясь на сопротивлении датчика тока и максимально допустимом токе.

Ток через светодиоды измеряется с помощью встроенного в микроконтроллер АЦП (см. ссылки [3]). ШИМ для управления мощностью генерируется благодаря встроенному в микроконтроллер узлу PWM (см. ссылки 4).

Провода от лампы были собраны в кембрик, а контроллер был прикреплен к ножке линзы.


В результате получилась удобная лампа, которую можно применять при точном радиомонтаже.


Несмотря на то, что максимальный ток через светодиоды был уменьшен в три раза (с целью защиты от перегрева), лампа получилась очень яркой.

Скучные технические подробности см. по ссылке [1].

[Что можно улучшить в конструкции лампы]

1. Для светодиодов можно использовать радиатор. Это позволит в 2..3 раза уменьшить количество используемых светодиодов при той же яркости лампы.
2. Для светодиодов нужен какой-нибудь светорассеиватель, потому что каждый светодиод по отдельности светится очень ярко, что некомфортно для глаза — даже если смотреть на светодиод сбоку.
3. Можно точнее подобрать сопротивление датчика тока, чтобы падение напряжения на нем лучше подходило к интервалу опорного напряжения — это позволит повысить точность измерения тока. Для низкоомных датчиков тока (1 Ом и менее) можно включить АЦП в режим дифференциального входа с коэффициентом умножения X10.
4. Для сглаживания пульсаций тока через светодиоды увеличить частоту ШИМ и поставить последовательно с ними дроссель (так делается в схемах с аппаратным драйвером). Эта доработка позволит увеличить максимально допустимое напряжение питания схемы (сейчас оно 12 вольт). Еще один канал АЦП можно использовать для измерения напряжения питания светодиодов — это позволит автоматически стабилизировать ток через светодиоды при изменении напряжения питания.

[Ссылки]

1. AVR-USB-MEGA16: контроллер/драйвер светодиодов с регулировкой яркости свечения. Исходники, принципиальная схема, документация, фото.
2. USB консоль для управления радиолюбительскими приборами.
3. ATmega16 (32): аналогово-цифровой преобразователь (ADC).
4. ATmega16 — PWM с помощью T/C0, T/C1, T/C2.
5. Особенности схемотехники драйверов сверхярких светодиодов.
6. Драйвера накачки белых светодиодов фирмы National Semiconductor.
7. HV9910 — ШИМ-драйвер для сверхярких светодиодов (даташит на английском).
8. LT3474/LT3474-1 — Step-Down 1A LED Driver (описание на английском).

Диммер для светодиодной ленты, и не только…

РадиоКот >Схемы >Аналоговые схемы >Бытовая техника >

Диммер для светодиодной ленты, и не только…

Рецепт приготовления красивого диммера, с простой, но очень полезной, начинкой.

Для приготовления диммера нам потребуется:

Не глубокая розетка (советская). Накладная или под-штукатурная, выбираете по вкусу или месту применения.

Пластиковая крышечка от пищевого продукта, продукт выбираете по своему вкусу, а вот с крышечкой следуйте рецепту.

Ручка регулировки, от какого либо старого приемника, в мое «блюдо» очень хорошо вписалась ручка настройки на волну от приемника «ВЭФ».

Материнская плата от компьютера.

     Так… подробности о крышечке. Она должна очень точно подойти под диаметр углубления в декоративной накладке на электроарматуру или вовсе его перекрывать на небольшую величину. Далее… разбираем розетку на составляющие и из получившейся кучи берем только металлическую арматуру с креплениями, декоративные накладку и рамку. В декоративной накладке по центру есть отверстие для крепежного винта. Нам необходимо рассверлить это отверстие до диаметра оси потенциометра, который мы будем применять. В моем случае был потенциометр со стандартной осью, выдернутый из какой-то китайской автомагнитолы, прихвеченой по случаю на каком-то стихийном мусорном отвале.

      Ручку настройки от приемника необходимо вклеить внутрь крышечки от пищевого продукта, соблюдая правила симметрии.

      Из материнской платы, аккуратно выпаиваем пару транзисторов, которые прячутся, как правило, в области с большими конденсаторами и дросселями. Мне попались IPB09N03LA. Производители материнских плат прям как в воду глядели.

      Далее это все надо скомпоновать, и определить геометрию монтажной платы. Я использую для этого плотный картон, шило и ножницы. Это процесс весьма занимательный, творческий и художественный. У меня получилось вот так.      Теперь переходим к начинке.  

   Схема (Рис.1) представляет собой самый обычный мультивибратор (VT1, VT3), только дополненный переменным резистором R3 и транзистором VT2. Переменным резистором изменяется скважность импульсов генерируемых мультивибратором. Период следования импульсов можно считать постоянным, во всем диапазоне регулирования, и длительность его составляет 70µС. Это значение выбрано для того чтобы нагрузка не «звенела». Если звон не смущает, то период можно значительно увеличить, тем самым облегчить жизнь транзистору VT4.

   В качестве силового элемента применен полевой транзистор с изолированным затвором (VT4). Очень часто можно встретить эти транзисторы под названиями MOSFET, МОП или МДП. Еще их могут обзывать P-FET и N-FET, а иногда HEXFET. Как и биполярные транзисторы бывают разной структуры (n-p-n, p-n-p), так и МОП-транзисторы бывают N-типа и P-типа. В данной схеме применен транзистор с индуцированным каналом N-типа (N-chenl). Да… а есть еще и с встроенным каналом. Как их распознать на схеме, показано на рисунке (смотрим Рис.2). Так чем нам так приглянулся именно с индуцированным каналом? А тем, что управляющее напряжение, при котором транзистор надежно закрыт и хорошо открыт, не покидает области положительных напряжений. То есть, им проще управлять, как раз то, что нам и нужно. И не требуется двухполярного источника питания, как раз того, чего у нас нет.

 

   Затвор транзистора представляет собой почти обычный конденсатор и управление транзистором происходит величиной заряда этого конденсатора. Транзистор, в нашей схеме, работает в ключевом режиме. Поэтому для уменьшения потерь на транзисторе во время открытия и закрытия, емкость затвора надо «тягать» очень быстро. Чем мы ее быстрей зарядим, тем быстрей транзистор полностью откроется, и наоборот. Для этих целей как нельзя лучше подходит двухтактный каскад на комплементарных транзисторах. Именно он и «запихнут» во все интегральные драйверы управления. Ну а мы обошлись своим, на «рассыпухе», и в данной ситуации ничуть не потеряли от этого. Для этого мы дополнили мультивибратор еще одним транзистором VT2. Транзисторы мультивибратора VT1, VT3, работают в паре, поочередно открываясь и закрываясь. Но транзистор VT1 имеет еще и «прицеп». Открываясь, транзистор VT1 «тащит» за собой VT2. Когда закрыт транзистор VT3, открыт транзистор VT2, и на оборот. Таким образом, транзисторы VT2 и VT3 образуют двухтактный драйверный каскад для управления транзистором VT4. Достоинство такого каскада очевидно – отсутствует пассивная фаза в управлении силовым МОП-транзистором, мы всегда на него «давим» (…открывайся! закрывайся…) не позволяя ему, расслабится. Создавая низкоомные, разрядную и зарядную цепи, для емкости затвора VT4, транзисторами VT2 и VT3.  От этого и ему лучше, и для дела пользы больше.

   Диапазон изменения коэффициента заполнения D, составляет от 1% до 90%. На завершающих 10% угла поворота оси потенциометра происходит заклинивание мультивибратора в устойчивом состоянии. Происходит это из-за асимметрии нагрузок в плечах мультивибратора (сопротивление R1 против сопротивления открытого VT3). При этом транзистор VT2 закрыт, а транзисторы VT1 и VT3 открыты. Напряжение на затворе силового транзистора VT4 «намертво» подтягивается к +11,4 Вольта, и он остается открытым постоянно. При этом на вашу нагрузку поступает постоянное напряжение источника питания.

    В схеме можно применить и Р-канальные «мосфеты», при этом местами меняются только транзистор и нагрузка (смотрим рис. 3). Крайние выводы переменного резистора тоже необходимо поменять местами, в противном случае увеличение яркости будет происходить при вращении оси потенциометра против часовой стрелки, что не совсем удобно. На последних 10% поворота оси потенциометра, нагрузка будет - надежно отключатся, это тоже весьма удобно в некоторых случаях.

 

    Диод VD1 необходим в случае подключения к регулятору индуктивной нагрузки. Например, коллекторного двигателя печки в авто. В особо ответственных случаях диодами необходимо зашунтировать и переходы исток-затвор силовых транзисторов. Внешний диод включается параллельно «штатному» диоду, который интегрирован в сам транзистор. Такой прием позволяет снизить нагрев транзистора при большом уровне отрицательного импульсного напряжения и увеличивает надежность устройства в целом, потому как встроенные диоды не совсем диоды, а некий неизбежный элемент эквивалентной схемы МОП-транзистора, подогнанный под - «типа нужный диод». На примере транзистора VT5, показано как легко масштабируется схема по току нагрузки. Количество силовых транзисторов, при сохранении типа транзисторов VT2 и VT3, можно увеличить до трех. Если требуется больше, то VT2 и VT3 необходимо заменить на КТ814 и КТ815 соответственно. Элементы схемы С1, R8, С2, VD1, при димировании активной нагрузки (лампы накаливания, светодиодной ленты) существенно важной роли не играют, и могут быть исключены из схемы.

     Параллельное включение силовых транзисторов имеет смысл и не только для увеличения предела коммутируемого диммером тока, но и для уменьшения габаритных размеров устройства и снижения тепловыделения на силовых транзисторах. При параллельном включении внутренние сопротивления открытых транзисторов складываются по параллельному правилу. Давайте придумаем, что мы применили транзисторы с сопротивлением канала равным 17,5 милиом (оказались заурядными умниками и просто купили в магазине IRFZ44N). Таким образом при токе нагрузки равным трем амперам (что вполне в рамках бытовых нужд) на транзисторе будет рассеиваться мощность в 175 миливатт и этого будет достаточно для того чтоб применить небольшой радиатор охлаждения. При включении параллельно двух транзисторов суммарное сопротивление транзисторов в цепи коммутируемого тока составить 8,75 милиом. А суммарная рассеиваемая мощность на транзисторах составит 78,75 мливатт, по 40 миливат на каждый. И транзисторы могут вполне себе обойтись и без радиаторов. Особенно выгодным это оказывается при монтировании устройства в под-штукатурной электро-коробке, Таким вот образом, наше расточительство сыграло нам на руку.

 

ЗЫ. Чертеж печатной платы я решил не приводить, потому как вам наверняка потребуется разработать свой дизайн, под свои ингредиенты и целевую нагрузку…  Удачи!


Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

Беспроводной регулятор яркости для светодиодов 12-24V 8A

Здравствуйте. Предлагаю обзор устройства полученного с БИК.
Заказал спонтанно, но думаю применять в гараже. Пришел прибор завернутый в пупырчатку, пульт был уже с батарейкой.
Диммер — по русски светорегулятор, устройство для изменения яркости свечения ламп. В данном случае имеем беспроводной диммер

Провода цепляются к зажимам.

Пульт

Имеет 3 кнопки вкл выкл. кнопка с большим треугольником повышает, а с маленьким понижает яркость

Внутренности
Платка затерялась внутри, коробочку можно было сделать и поменьше раза в три, хотя если встраивать например в люстру, то и коробка не нужна.

Технические характеристики с сайта
Brand new and high quality.
Soft and stable, no flickering
Mainly used to adjust the brightness of single color LED lights
PWM digital dimming, avoid rush current, protect your LED lights
Suitable for MR16 LED spotlight, LED recessed light, LED strip light, etc.
Max losd current: 8 A
Rated load current: <8A
Output power: 9V<72W, 12V<96W, 24V<192W
Working temperature: -20-60°C
Net weight:130g
Supply voltage:DC12-24V
Output: 1 channel
Adjust single color LED light / lamps.
Product Size: L110 X W56 X h44 mm
Function:can achieve stepless dimming
Wireless remote:
1. Up arrow button: to increase brightness
2. Down arrow button: to decrease brightness
3. On/off button


Как видно из видео диммер запоминает вольтаж при котором выключается. Минимально можно понизить напряжение до 3 вольт. Сам процесс изменения напряжения довольно неспешный, где то вольт в секунду
Видео непосредственно со светодиодом, на полную не включал, чтобы не повредить матрицу фотоаппарата.


Дальность действия пульта- в пределах квартиры работает из любой точки, через 2 стены. Можно подключать и обычные лампы мощностью до 90 ватт. Сам подключил галогенку, но блок питания слабомощный(12 вт), напряжение упало до 6 вольт, нить накала еле тлела, но все равно диммер менял яркость.

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *