Регулятор тока на транзисторе для зарядного устройства
Русский: English:. Бесплатный архив статей статей в Архиве. Справочник бесплатно. Параметры радиодеталей бесплатно. Даташиты бесплатно. Прошивки бесплатно.
Поиск данных по Вашему запросу:
Схемы, справочники, даташиты:
Прайс-листы, цены:
Обсуждения, статьи, мануалы:
Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.
Содержание:
- Простой регулятор мощности для зарядного устройства
- :: МОЩНЫЙ БЛОК ПИТАНИЯ НА ПОЛЕВОМ ТРАНЗИСТОРЕ ::. Схема стабилизатор тока на полевом транзисторе
- Особенности и управление зарядным устройством с регулировкой по первичной обмотке трансформатора
- Стабилизатор тока для зарядки аккумулятора — зарядное со стабилизацией тока
Простое зарядное устройство своими руками - Регулируемый стабилизатор тока на LM317
- Зарядное со стабилизацией тока
- Как сделать простой регулятор напряжения своими руками
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Нереально просто!!! Регулятор тока для Зарядного Устройства.
Простой регулятор мощности для зарядного устройства
В конструкции самодельного зарядного устройства для автомобильного аккумулятора важной частью является узел стабилизации и ограничения тока.
Такой узел дает возможность выставить любой угодный ток заряда, при этом будет делать это за счет повышения или понижения выходного напряжения.
Схема предложенная в статье может отлично работать в совместимости с любым зарядным устройством. Вариант реализации такого блока до безобразия прост и собран на одном элементе ОУ.
Зарядное устройство должно отдавать напряжение 13,,5 Вольт при токе до 10 Ампер. Полевой транзистор — основной силовой элемент и весь ток проходит по нему, поэтому обязательно устанавливают на теплоотвод. Можно использовать низковольтные полевые транзисторы с током от 20 , а еще лучше от 40 Ампер.
Силовой шунт в моем случая в виде низкоомного резистора, если кому лень искать, можете использовать шунт , который стоит в дешевых китайских мультиметрах, такие шунты можно использовать для довольно точных замеров при токах до Ампер. Полевой транзистор при желании можно заменить на биполярный, но с учетом того, что последний должен иметь большой ток коллектора, к примеру КТГМ или КТ из наших , тоже устанавливают на теплоотвод. Имя обязательное. E-Mail обязательное.
Подписаться на уведомления о новых комментариях. Выбираем объектив к камере видеонаблюдения. Основная дилемма при выборе камеры для системы видеонаблюдения, это фокусное расстояние линзы, именно от него зависит то, что Вы в итоге увидите. С одной стороны человеку надо видеть все вокруг, то есть иметь максимальный угол обзора, с другой стороны нужна детализация изображения, которой можно добиться, только уменьшая угол обзора. Запомнить меня. Поиск по сайту. Новейшее из новостей Предыдущая Следующая.
Как узнать сколько з… Как в ворде вставить… Супер хрустящие огур… Календарь грибника —… Как правильно посади…. Дагестанские народные игры — Выбей из круга Выбей из круга Подробнее Выбираем объектив к камере видеонаблюдения Выбираем объектив к камере видеонаблюдения.
Авторизация Логин Пароль Запомнить меня Забыли пароль? Забыли логин? Предыдущая Следующая. Дагестанские народные игры — Выбей из круга. Выбей из круга.
:: МОЩНЫЙ БЛОК ПИТАНИЯ НА ПОЛЕВОМ ТРАНЗИСТОРЕ ::. Схема стабилизатор тока на полевом транзисторе
Обновлю тему по мере экспериментов. Проанализировал советы в комментариях за которые я очень благодарен их авторам и пришёл к выводу, что надо при повышении напряжения выше порогового начинать подтягивать базу КТ к минусу. Потом я по-человечески перерисовал схему. Полный размер. Возник вопрос, как организовать регулирование с учётом того, что ключи в минусе стоят. Тут пришла мысль про оптрон, а под руками был 6n
Стабилизатор тока для зарядки аккумуляторов на транзисторе КТ VD10 выведенный на переднюю панель зарядного устройства.
Особенности и управление зарядным устройством с регулировкой по первичной обмотке трансформатора
Добавить в избранное. Передатчик на МГц Приемный тракт радиосигнализации кГц Автоматический выключатель света Схема усилителя высокой частоты — трансивера Ручной реверсивный счетчик Мощные кварцевые генераторы для мостовых измерителей Схема брелка для электронного выключателя Высокачастотный пробник. ПОХОЖИЕ СХЕМЫ: Схема автоматического выключателя аппаратуры Схема стабилизатора напряжения сети В Схема преобразователя напряжения электронных часов Схема простого лабораторного источника питания В Схема мощного лабораторного источника питания Схема поддержания работы резервных аккумуляторов Схема автомата включения освещения Схема питания мультиметра от прикуривателя авто. Ру — Все права защищены. Публикации схем являются собственностью автора. Схема простого зарядного устройства аккумулятора. Категория: Автомобильные устройства , Зарядные устройства Нарушение режима эксплуатации аккумулятора вследствие неправильной работы реле-регулятора автомобиля, или длительного хранения почти всегда приводит к сульфатизации пластин. В результате внутреннее сопротивление батареи возрастает, и даже в заряженном виде она не может выдать необходимый пусковой ток.
Стабилизатор тока для зарядки аккумулятора — зарядное со стабилизацией тока
Ремонт телефона. Магазин автомобильных аккумуляторов. Забыл пароль? Ремонт телефона Недорогой ремонт смартфонов!
В прошлых статьях мы разглядели конструкцию ШИМ регулятора мощности, что рекомендован для регулировки выходного напряжения зарядного устройства либо блока питания.
Простое зарядное устройство своими руками
Всем привет друзья, в этой записи хочу рассказать вам про стабилизатор тока для зарядного устройства который сможет собрать своими руками практически каждый. Полный размер Данный стабилизатор не имеет в схеме ни каких дефицитных деталей, прост по своему принципу работы, а тем более прост в изготовлении. С помощь данного устройства можно любой подходящий блок питания превратить в автоматическое зарядное устройство с возможностью регулировки выходного тока. Полный размер Более подробно я расскажу вам в видео. Буду благодарен за адекватную критику. Спасибо за внимание.
Регулируемый стабилизатор тока на LM317
Используя в схеме стабилизатора мощный полевой транзистор, можно собрать простой стабилизатор, тем не менее имеющий очень хорошие параметры. Он имеет в открытом состоянии сопротивление канала всего 0,02 Ома, а так-же обеспечивает ток до 30 А. Мощность, рассеиваемая транзистором, может превышать Вт. Принципиальная схема одного из вариантов такого стабилизатора приведена на рисунке, клик — для увеличения. Переменное напряжение поступает на выпрямитель и сглаживающий фильтр, и далее на сток полевого транзистора и через резистор R1 на затвор, открывая транзистор. Часть выходного напряжения через резисторный делитель подается на вход микросхемы, замыкая цепь ООС. Напряжение на выходе стабилизатора возрастает вплоть до того момента, пока напряжение на входе управления микросхемы DA1 не достигнет порогового, около 2,5 В.
На его основе можно изготовить зарядное устройство — тот же самый стабилизатор тока. Параметры элементов вычисляются по закону Ома.
Зарядное со стабилизацией тока
В этой статье пойдет речь о небольшой и простенькой приставке — стабилизаторе тока, для импульсного блока питания, предназначенного в прошлом для питания ЖКИ монитора. С ее помощью можно будет подзаряжать автомобильные аккумуляторы. Эта идея и просьба принадлежит одному из посетителей сайта. Выходные данные блока питания можно увидеть на фотографии.
Как сделать простой регулятор напряжения своими руками
ВИДЕО ПО ТЕМЕ: Регулятор тока на LM358
Зачастую при изготовлении самодельных зарядных устройств для аккумулятора, а также в дешевых покупных зарядных устройствах, разработчики забывают о такой важной функции как регулятор тока. В большинстве случаев он задается автоматически в зависимости от степени просадки аккумулятора и прочих факторов. Регулятор тока в свою очередь позволяет выставить необходимое значение тока без просадки напряжения. Это полезно для аккумулятора и не приведет к критическим режимам зарядки, что естественно увеличит его срок службы и предотвратит от не желательных отказов.
Стабилизатор тока на транзисторе очень напоминает стабилизатор напряжения. Эта простая схема может быть использована как стабилизатор выходного тока независимо от входного напряжения.
В обычных условиях автомобильный аккумулятор заряжается при движении автомобиля. Но если машина долго стоит в гараже, то аккумуляторная батарея разряжается. Для ее зарядки нужна зарядка для аккумуляторов с регулировкой зарядного тока. Один из вариантов этих приборов — зарядное устройство с регулировкой по первичной обмотке трансформатора. Скорость заряда аккумулятора зависит от тока, протекающего через него, но слишком быстрый заряд приводит к перегреву аппарата и выходу его из строя.
Поэтому для зарядки аккумуляторных батарей используются устройства с регулировкой выходных параметров. Это значит, что аккумулятор с емкостью 60Ач заряжается током не более 6А.В конструкции самодельного зарядного устройства для автомобильного аккумулятора важной частью является узел стабилизации и ограничения тока. Такой узел дает возможность выставить любой угодный ток заряда, при этом будет делать это за счет повышения или понижения выходного напряжения. Схема предложенная в статье может отлично работать в совместимости с любым зарядным устройством.
Регулятор тока на транзисторе
Электрика и электрооборудование, электротехника и электроника — информация! Стабилизаторы тока предназначены для стабилизации тока на нагрузке. Напряжение на нагрузке зависит от его сопротивления. Стабилизаторы необходимы для функционирования различных электронных приборов, например газоразрядные лампы. Для качественного заряда аккумуляторов также необходимы стабилизаторы тока.
Поиск данных по Вашему запросу:
Схемы, справочники, даташиты:
Прайс-листы, цены:
Обсуждения, статьи, мануалы:
Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.
Содержание:
- Вы точно человек?
- Простые линейные стабилизаторы тока для светодиодов своими руками
- Регулятор тока для зарядного устройства аккумулятора. Схема регулятор тока
- Простейший стабилизатор постоянного тока
- ДВА ПРОСТЫХ РЕГУЛЯТОРА НАПРЯЖЕНИЯ
- Простой регулятор напряжения на 12 вольт своими руками. Регулятор напряжения на транзисторе
- Стабилизаторы тока
- Параметрический стабилизатор напряжения на транзисторе
- Стабилизатор тока на транзисторе
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Регулятор тока на транзисторе
Вы точно человек?
Таким образом, источник тока отличается от источника напряжения, как вода отличается от суши. Типичное применение источников тока — питание светодиодов, зарядка аккумуляторов и т.
Не путайте стабилизатор тока со стабилизатором напряжения! Это регулируемые стабилизаторы напряжения способные работать с токами до 1,5А, входными напряжениями до 40В и рассеивают мощность до 10Вт при соблюдении теплового режима. Схема и применение показаны на рисунках ниже.
Стабилизатор тока на КРЕН в качестве зярядного устройства. Собственное потребление данных микросхем относительно невелико — около 8мА и это потребление практически не меняется при изменении тока протекающего через крен или изменения входного напряжения. Как видим, в вышеприведенных схемах, стабилизатор LM работает как стабилизатор напряжения, удерживая на резисторе R3 постоянное напряжение, которое можно регулировать в некоторых пределах построечным резистором R2.
В данном случае R3 называется токозадающим резистором. Поскольку сопротивление R3 неизменно, то ток через него будет стабильным. Ток на входе крен будет примерно на 8мА больше. Таким образом, мы получили простой как веник стабилизатор тока, который может применяться как электронная нагрузка, источник тока для заряда аккумуляторов и т. Интегральные стабилизаторы достаточно шустро реагируют на изменение входного напряжения.
Недостаток же такого регулятора тока — весьма большое сопротивление токозадающего резистора R3 и как следствие необходимость применять более мощные и более дорогие резисторы. Достаточно широкое распространение получили простенькие стабилизаторы тока на двух транзисторах. Основной минус данной схемы — не очень хорошая стабильность тока в нагрузке при изменении питающего напряжения.
Впрочем, для многих применений сгодятся и такие характеристики. Далее показана схема стабилизатора тока на транзисторе. В данной схеме токозадающим резистором является R2. При увеличении тока через VT2, увеличится напряжение на токозадающем резисторе R2, которое при величине примерно 0,5…0,6В начинает открывать транзистор VT1.
Стабилитрон VD1 выбирается на напряжение 8…15В и необходим в случаях, когда напряжение источника питания достаточно велико и может пробить затвор полевого транзистора. Нужно учитывать, что MOSFET открываются при напряжении на затворе не менее 2В, соответственно увеличивается и напряжение, необходимое для нормальной работы схемы стабилизатора тока.
При зарядке аккумуляторов и некоторых других задачах вполне достаточно будет включить транзистор VT1 с резистором R1 непосредственно к источнику питания так, как это показано на рисунке:. В схемах стабилизатора тока на транзисторах необходимое значение токозадающего резистора для заданного значения тока примерно в два раза меньше, чем в схемах со стабилизатором на КРЕН12 или LM Это позволяет применить токозадающий резистор меньшей мощности.
Если необходимо собрать регулируемый в широких пределах стабилизатор тока или стабилизатор тока с токозадающим резистором на порядок или даже два ниже, чем на схемах, показанных ранее, можно применить схему с усилителем ошибки на ОУ операционном усилителе. Схема такого стабилизатора тока показана на рис:. В данной схеме токозадающим является резистор R7. ОУ DA2. Обратите внимание, что схема требует отдельного питания, подаваемого на разъем XP2. В качестве генератора опорного напряжения в схеме на рис.
В случае электронного управления схемой вывод 3 DA2. Для настройки схемы необходимо выставить ползунок переменного резистора R1 в верхнее по схеме положение, подстроечным резистором R3 установить необходимое значение тока — это значение будет максимальным. Теперь резистором R1 можно регулировать ток через VT1 от 0 до установленного при настройке максимального тока.
Элементы R2, C2, R4 необходимы для предотвращения возбуждения схемы. Из-за этих элементов временные характеристики не являются идеальными, что видно по осциллограмме. На осциллограмме луч 1 желтый показывает напряжение нагружаемого ИП источника питания , луч 2 голубой показывает напряжение на токозадающем резисторе R7.
Как видно, в течение 80 мкс через схему протекает ток в несколько раз больше установленного. Иногда от стабилизатора тока требуется не только работать в широком диапазоне питающих напряжений и нагрузок, но и иметь высокий КПД.
В этих случаях компенсационные стабилизаторы не годятся и на смену им приходят стабилизаторы импульсные ключевые. Кроме того, импульсные стабилизаторы могут при небольшом входном напряжении получать высокое напряжение на нагрузке. Далее предлагается к рассмотрению широко распространенная микросхема MAX Основные характеристики MAX На рисунке показан один из вариантов включения микросхемы, именно его мы и возьмем за основу нашей схемы.
MAX включен как повышающий стабилизатор напряжения. Упрощенно процесс стабилизации выглядит следующим образом. Резисторы R1 и R2 являются делителями выходного напряжения микросхемы, как только делимое напряжение, поступающее на вывод FB микросхемы MAX, больше опорного напряжения 1,5V микросхема уменьшает выходное напряжение и наоборот — если напряжение на выводе FB меньше 1,5V, микросхема увеличивает входное напряжение.
Очевидно, что если контрольные цепи изменить так, чтобы MAX реагировала и соответственно регулировала выходной ток, то мы полчим стабилизированный источник тока. Ниже показаны модифицированная схема с ограничением выходного напряжения и вариант нагрузки. При небольшой нагрузке, пока падение напряжения на токоизмерительном резисторе R3 меньше 1,5V, схема на Рис. Как только ток нагрузки становится достаточно большим, на R3 падение напряжения увеличивается и схема переходит в режим стабилизации тока.
Резистор R8 устанавливается в том случае, если напряжение стабилизации может быть большим — больше 16,5V. Недостатком схемы является достаточно большое падение напряжения на токоизмерительном резисторе R3. Данный недостаток устраняется применением операционного усилителя ОУ для усиления сигнала с резистора R3.
Например, если резистор требуется уменьшить в 10 раз при заданном токе, то усилитель на ОУ должен усилить напряжение падающее на R3 тоже в 10 раз. Итак, было рассмотрено несколько схем выполняющих функцию стабилизации тока. Конечно же, эти схемы можно улучшать, увеличивая быстродействие, точность и т. Можно применять в качестве датчика тока специализированные микросхемы и делать сверхмощные регулирующие элементы, но эти схемы идеально подходят в тех случаях, когда требуется быстро создать инструмент для облегчения своей работы или решения определенного круга задач.
Метки:: Стабилизатор тока. Статьи хорошие. Но такое количество ядреной вирусной рекламы на сайт из пяти страничек — перебор. А кто вам мешает установить дополнительный плагин к браузеру AdBlock? Я лично рекламы совсем не вижу… Со мною что-то не так? В результате за что боролись, на то и напоролись! Собирал драйверы на двух транзисторах, силовой ключ брал полевик от материнской платы с цепипитания vcore. Схема работает больше 2x лет. Подписка на RSS. Карта сайта О сайте.
Схемы, платы, код Стабилизаторы тока Далее подробно рассмотрены схемы стабилизаторов и регуляторов тока Источники тока, в отличие от источников напряжения, стабилизируют выходной ток, изменяя выходное напряжение так, чтобы ток через нагрузку всегда оставался одинаковым. Стабилизатор тока на транзисторах. Зарядка аккумуляторов. Стабилизатор тока на полевом транзисторе.
Стабилизатор тока на операционном усилителе. Осциллограмма стабилизатора тока на ОУ. Схема стабилизатора тока на MAX Нагрузка для стабилизатора тока. Ваш отзыв Отменить. Поиск по сайту. Войти Имя пользователя. Запомнить меня.
Простые линейные стабилизаторы тока для светодиодов своими руками
Собранный однажды простейший регулятор напряжения на одном транзисторе был предназначен для определённого блока питания и конкретного потребителя, никуда больше его подключать было конечно не нужно, но как всегда наступает момент, когда правильно поступать мы перестаём. Следствием этого являются хлопоты и раздумья как жить-быть дальше и принятие решения восстанавливать сотворённое ранее или продолжать творить. Имелся стабилизированный импульсный блок питания, дающий на выходе напряжение 17 вольт и ток миллиампер. Требовалось периодическое изменение напряжения в пределе 11 — 13 вольт. И общеизвестная схема регулятора напряжения на одном транзисторе с этим прекрасно справлялась.
Стабилизаторы тока, в отличие от стабилизаторов напряжения, стабилизируют ток. Стабилизаторы тока требуются для питания светодиодов или.
Регулятор тока для зарядного устройства аккумулятора. Схема регулятор тока
Стабильность напряжения — это весьма важная характеристика электропитания для большинства электронных устройств. В них содержатся электрические цепи с нелинейными элементами. Для оптимальной настройки этих цепей существует определенная величина разности потенциалов. И если она будет изменяться, электрическая цепь утратит правильные эксплуатационные характеристики. Поскольку напряжение 12 вольт является стандартом не только для автомобилей, но и для многих других устройств, далее пойдет речь именно о таких регуляторах. Речь о том или ином регуляторе 12 вольт имеет смысл вести только при указании дополнительных данных:. Каждый из перечисленных параметров связан с определенными техническими решениями, которые отражаются в схеме. Общая схема регулятора — это нагрузка, которая соединена с некоторым устройством. Оно условно обозначено прямоугольником на схеме, показанной далее.
Простейший стабилизатор постоянного тока
Переменный резистор на 10 кОм. Резистор обычный 0. Форум по источникам питания. Собранный однажды простейший регулятор напряжения на одном транзисторе был предназначен для определённого блока питания и конкретного потребителя, никуда больше его подключать было конечно не нужно, но как всегда наступает момент, когда правильно поступать мы перестаём. В данной статье рассмотрим простой регулятор напряжения своими руками.
Светодиодные светильники выполняют свои функции полноценно при качественном питании. Даже незначительные колебания силы тока в цепи провоцируют видимые пульсации, ухудшают долговечность.
ДВА ПРОСТЫХ РЕГУЛЯТОРА НАПРЯЖЕНИЯ
Собранный однажды простейший регулятор напряжения на одном транзисторе был предназначен для определённого блока питания и конкретного потребителя, никуда больше его подключать было конечно не нужно, но как всегда наступает момент, когда правильно поступать мы перестаём. Следствием этого являются хлопоты и раздумья как жить-быть дальше и принятие решения восстанавливать сотворённое ранее или продолжать творить. Имелся стабилизированный импульсный блок питания, дающий на выходе напряжение 17 вольт и ток миллиампер. Требовалось периодическое изменение напряжения в пределе 11 — 13 вольт. И общеизвестная схема регулятора напряжения на одном транзисторе с этим прекрасно справлялась.
Простой регулятор напряжения на 12 вольт своими руками. Регулятор напряжения на транзисторе
Схема, представленная на рис. У нормально открытого полевого транзистора ток стока течет даже тогда, когда вспомогательное напряжение равно нулю. Этот режим работы транзистора представляет особый интерес, так как схема стабилизатора тока может быть выполнена в виде двухполюсника, как показано на рис. Благодаря этой особенности схема может быть включена вместо любого омического сопротивления Чтобы найти сопротивление обратной связи следует определить величину для заданного тока стабилизации I по передаточной характеристике транзистора. В соответствии с формулой 5.
Регулятор тока для зарядного устройства аккумулятора — Поделки для авто И общеизвестная схема регулятора напряжения на одном транзисторе с.
Стабилизаторы тока
Зачастую при изготовлении самодельных зарядных устройств для аккумулятора, а также в дешевых покупных зарядных устройствах, разработчики забывают о такой важной функции как регулятор тока. В большинстве случаев он задается автоматически в зависимости от степени просадки аккумулятора и прочих факторов. Регулятор тока в свою очередь позволяет выставить необходимое значение тока без просадки напряжения. Это полезно для аккумулятора и не приведет к критическим режимам зарядки, что естественно увеличит его срок службы и предотвратит от не желательных отказов.
Параметрический стабилизатор напряжения на транзисторе
Бывают случаи, когда необходимо пропускать стабильный ток через светодиоды, ограничить ток зарядки аккумуляторов или испытать источник питания, а реостата под рукой нет. В этом, и не только, случае помогут специальные схемотехнические решения ограничивающие, регулирующие и стабилизирующие ток. Далее подробно рассмотрены схемы стабилизаторов и регуляторов тока. Источники тока, в отличие от источников напряжения, стабилизируют выходной ток, изменяя выходное напряжение так, чтобы ток через нагрузку всегда оставался одинаковым.
В процессе работы электрических сетей постоянно возникает необходимость в стабилизации тока. Данная процедура осуществляется с помощью специальных приборов, в число которых входит стабилизатор тока на транзисторе.
Стабилизатор тока на транзисторе
Итак, справа изображена схема простейшего транзисторного стабилизатора напряжения. Как такой стабилизатор работает и чем его работа отличается от работы параметрического стабилизатора на стабилитроне? Да почти ничем их работа не отличается, — напряжение на выходе схемы остаётся стабильным в результате наличия на вольт-амперных характеристиках стабилитрона и p-n перехода база-эмиттер транзистора участков, на которых падение напряжения слабо зависит от тока. То есть как и у всех параметрических стабилизаторов стабильность достигается внутренними свойствами компонентов. Действительно, как видно из рисунка, падение напряжения на нагрузке равно разности падений напряжений на стабилитроне и на p-n переходе БЭ транзистора.
В электрических схемах для изменения уровня выходного сигнала используется регулятор напряжения. Основное его назначение — изменять подаваемую на нагрузку мощность. C помощью устройства управляют оборотами электродвигателей, уровнем освещённости, громкостью звука, нагревом приборов. В радиомагазинах можно приобрести готовое изделие, но несложно изготовить регулятор напряжения своими руками.
Рассмотрены простые схемы регуляторов напряжения и тока
В этой статье мы анализируем некоторые важные схемы регуляторов напряжения с использованием дискретных компонентов, таких как транзисторы, стабилитроны, резисторы и т. д. Эти регуляторы очень гибки благодаря своим конструктивным характеристикам и могут быть настроены для создания любых уровень постоянного напряжения и постоянного тока, по желанию.
Содержание
Что такое регулятор
Основная функция схемы регулятора постоянного тока заключается в создании напряжения и тока, которые являются фиксированными и постоянными на определенных заданных уровнях. Таким образом, регулятор используется в источнике питания для поддержания выходного напряжения или тока в определенных фиксированных пределах.
Также рекомендуется для вас: Схемы регулятора напряжения с использованием транзистора и стабилитрона выходное напряжение или ток не зависят от нагрузки. Эти источники должны были бы быть в состоянии производить бесконечное количество энергии, и они, очевидно, просто существовали бы только в теории.
Когда требуется действительно чистый источник постоянного тока, часто становятся полезными линейные стабилизаторы, поскольку они производят меньший шум, пульсации и лучшее управление. Эти стабилизаторы, как правило, представляют собой устройства с тремя клеммами (вход, общая земля и выход), поэтому требуется лишь несколько внешних компонентов (для популярных микросхем регуляторов серий 7800 и 7900 требуется всего пара конденсаторов емкостью от 0,01 мкФ до 1 мкФ, и только при определенных условиях. )
Эти регуляторы могут буквально демонстрировать регулирование намного ниже 1%, а также обеспечивать значительное ограничение тока и встроенную функцию предотвращения отказов. Существуют также импульсные стабилизаторы и микросхемы преобразователей напряжения, которым действительно требуется очень мало внешних конденсаторов и ничего больше. Эти недорогие регуляторы и преобразователи делают возможным и простым обеспечение дискретных цепей напряжениями, которые не могут быть поданы через основной источник питания системы. Такие конфигурации часто позволяют избежать ограничений по питанию, предоставляя большую свободу проектирования.
Простейший регулятор
В простейшем регуляторе используется устройство с двумя выводами, такое как стабилитрон, с характеристикой поддержания постоянного напряжения на нем. На рисунке 1 ниже показана базовая схема.
Зенеровские диоды могут быть соединены последовательно в любой конфигурации для получения еще более высоких напряжений. Должен быть встроен токоограничивающий (балластный) резистор, поскольку эти устройства будут пытаться поддерживать постоянное напряжение на клеммах, вытягивая любой ток, доступный от источника питания.
Эффективность важна.
Полное сопротивление регулирующего устройства может быть очень низким, и оно может быстро потреблять катастрофические количества тока при отсутствии ограничительного резистора и выйти из строя.
Поэтому для стабилитрона необходим ограничительный резистор. Поскольку регулирующий компонент шунтирован поперек нагрузки, этот тип схемы стабилитрона (рис. 1) часто называют стабилизатором шунтирующего типа.
Этот метод очень хорошо работает для приложений с низким энергопотреблением, когда требуется ток всего в несколько миллиампер, а регулирования (% изменения напряжения или тока при различных нагрузках) достаточно всего на несколько процентов.
Поскольку весь ток, протекающий через ограничительный резистор, представляет собой сумму тока нагрузки и тока регулятора, необходимого для поддержания напряжения, эффективность часто бывает низкой, особенно при малых нагрузках.
Большой ток может проходить через регулятор при отключении или изменении нагрузки. Хотя это не проблема для крошечных схем, таких как схема генератора , которая потребляет всего несколько миллиампер, это может быть проблемой в схеме, такой как крошечное цифровое устройство, для которого может потребоваться около 1 ампера при 5 вольтах.
В некоторых случаях (светодиодные индикаторы, выключатели) система может потреблять менее 50 миллиампер в режиме ожидания и 1 ампер в активном режиме. В таких случаях стабилизатор на стабилитроне будет крайне неэффективен, поскольку ему придется пропускать примерно 1 А через стабилитрон, пока система простаивает и, следовательно, не потребляет свой рабочий ток.
В таком случае, если бы входное напряжение составляло 12 вольт, эффективность регулятора 12 В на 5 В могла бы быть крайне низкой из-за наличия постоянной нагрузки более 1 ампера на источнике 12 вольт, даже если нагрузка на 5 сторона питания вольта была маленькой.
Это эквивалентно 12 Вт или даже больше выделению тепла, что является крайне неэффективным условием.
Простым решением является использование активного регулятора, который может не потреблять столько тока для работы.
Следует, однако, отметить, что всегда будет некоторая потеря напряжения на регуляторе. Поскольку схема регулятора представляет собой усилитель, для ее работы требуется некоторое напряжение.
Напряжение база-эмиттер проходного транзистора составляет от 0,6 до 0,7 вольт, и в резисторах смещения будут некоторые потери напряжения. Входное напряжение должно быть постоянно как минимум на 2–5 вольт выше максимального ожидаемого выходного напряжения; он никогда не должен опускаться ниже этого уровня, иначе это повлияет на управление выходом.
Это минимальное напряжение должно всегда поддерживаться при минимальном входном линейном напряжении при полной нагрузке. Ниже этого порога мгновенные изменения из-за пульсаций входного питания, переходных процессов нагрузки и т. д. приведут к потере регулирования («пропаданию»).
Регулятор с использованием транзисторного эмиттерного повторителя
На рис. 2 ниже транзистор эмиттерного повторителя используется для минимизации тока, потребляемого устройством регулятора. На стабилитрон поступает 10 или 20 мА. Это напряжение подается на базу транзистора, который называется «проходным» транзистором, поскольку он предназначен для прохождения тока нагрузки.
Это может быть мощный транзистор, рассчитанный на многоамперный ток.
Ток нагрузки состоит из тока коллектора, составляющего основную часть тока, и тока базы. Ток базы равен току коллектора, деленному на коэффициент усиления транзистора по постоянному току (или бета, которая обычно равна 50).
Предполагая, что транзистор имеет усиление по току β, равное 50, и ток нагрузки 1 ампер, ток коллектора можно рассчитать, как указано ниже
Ток коллектора = β/(β+1) = 1 ампер или 50/51 ампер.
Базовый ток можно рассчитать по следующей формуле:
Базовый ток = 1/(β +1) или 1/51 ампер.
Это несколько меньше 20 миллиампер. На рис. 2 выше показана базовая конструкция регулятора.
Использование транзистора Дарлингтона с проходным транзистором
На рис. 3 ниже показано, как можно использовать вспомогательный транзистор в качестве промежуточного каскада, если проходной транзистор является устройством с очень высоким током и низким значением hFE.
Промежуточный транзистор сконфигурирован как пара Дарлингтона с проходным транзистором, что значительно увеличивает коэффициент усиления по току, а также повышает его способность передавать ток.
Следует отметить, что при отсутствии нагрузки единственным током, потребляемым схемой, является ток только стабилитрона.
Создание регулируемого регулятора
Также можно присоединить переменный резистор или потенциометр к стабилитрону, и если вы подсоедините движок потенциометра к базе транзистора, вы можете получить переменное выходное напряжение, как показано на рис. Рис. 4 ниже.
Проблема с этой схемой в том, что она не лучше (на самом деле, несколько хуже), чем стабилитрон в качестве регулятора. Не существует системы, гарантирующей, что выходное напряжение на нагрузке остается постоянным.
Кроме того, падение напряжения между базой и эмиттером проходного транзистора приводит к небольшому снижению выходного напряжения (обычно от 0,6 до 0,7 В на транзистор). Если потенциометр используется для изменения выходного напряжения, вы можете обнаружить дополнительные потери из-за сопротивления потенциометра.
Это сопротивление приводит к снижению регулирования. Регулятор не может узнать, упало ли выходное напряжение. Что действительно необходимо, так это средство для измерения выходного напряжения, сравнения его с заданным эталоном и автоматического изменения выходного напряжения на соответствующее значение.
Это требует использования механизма обратной связи для регулирования выходного напряжения. С еще несколькими элементами мы покажем вам действительно простой способ добиться этого.
Регулятор с обратной связью для повышения точности выходного сигнала
На рис. 5 ниже показан очень простой регулятор с обратной связью, в котором выходное напряжение имеет некоторый контроль над своим точным уровнем. R1 и R2 образуют делитель напряжения, который измеряет выходное напряжение и посылает его на базу транзистора Q1.
Падение напряжения на стабилитроне D1 удерживает на эмиттере транзистора Q1 заданное и регулируемое напряжение. Ток смещения от R3 и ток эмиттера от Q1 вызывают этот провал.
Это падение создается током смещения R3 и током эмиттера Q1.
Если выходное напряжение падает, транзистор Q1 отключается, позволяя меньшему току течь через резистор смещения R4. Напряжение на коллекторе увеличится, увеличивая напряжение на базе проходного транзистора Q2 и, следовательно, на эмиттере Q2, который, как правило, является выходным выводом регулятора питания.
Это увеличение напряжения будет отправлено на базу Q1, компенсируя первоначальный провал. Общее воздействие приведет к повышению стабильности выходного напряжения.
100% Совершенство невозможно
Эта настройка, однако, не идеальна. Схема регулятора представляет собой усилитель с обратной связью с ограниченным коэффициентом усиления. Поскольку усиление по напряжению в основном обеспечивается Q1, схема может иметь чистое усиление по напряжению без обратной связи, которое может составлять около 20-100, в зависимости от усиления Q1, нагрузки источника питания, импеданса стабилитрона и других параметров. Усиление контура можно определить как произведение общего усиления на коэффициент обратной связи.
В этой ситуации коэффициентом обратной связи является отношение R2 /(R1 + R2). При прочих равных, чем больше коэффициент усиления контура, тем лучше регулирование. На самом деле эта схема будет предлагать улучшение регулирования в 10 или более раз по сравнению с более ранними схемами. Однако эта схема имеет определенные ограничения, некоторые из которых следующие:
- В Q1 выходное напряжение не может быть ниже, чем напряжение стабилитрона + потери база-эмиттер.
- Нет ограничения тока или защиты от короткого замыкания. Поскольку на резисторе R4 всегда будет потеря напряжения, максимальное регулируемое выходное напряжение ограничено.
- Поскольку коэффициент обратной связи R2 /(R1 + R2) уменьшается с увеличением выходного напряжения, регулирование постепенно ухудшается.
- Поскольку часть токов смещения (через R3 и R4) возникает с нерегулируемой стороны, на выход будут влиять колебания входного напряжения, что ухудшит регулирование.
Эти проблемы могут быть решены путем настройки схемы и установки нескольких дополнительных компонентов. Первую проблему можно решить с помощью низковольтного стабилитрона, хотя самые надежные стабилитроны рассчитаны примерно на 5–8 вольт.
Можно использовать вторичную плавающую цепь источника питания для подачи напряжения ниже (отрицательного) земли и переводить R2 на отрицательное напряжение, а не на землю.
Подключите сопротивление к входу, и падение напряжения на нем может работать как функция тока нагрузки, которая может влиять на выход регулятора. Дополнительный коэффициент усиления без обратной связи можно получить, используя дополнительные транзисторы или операционный усилитель.
Ограничение тока
На рис. 6 ниже показан один из способов включения ограничения тока. Резистор R4 соединен последовательно с PNP-транзистором Q1, который служит источником тока.
Этот резистор необходим для ограничения тока, подаваемого на D1. На базе транзистора Q1 диоды D2 и D3 генерируют очень постоянное напряжение, которое на 1,4 В ниже входного напряжения регулятора.
Q1 проводит ток до тех пор, пока падение напряжения, вызванное током коллектора проходного транзистора, составляет менее 0,7 В на выборочном резисторе R5. По мере нарастания тока нагрузки падение на резисторе R5 возрастает до такой степени, что оно начинает отключать транзистор Q1.
Резистор R4 теперь может вызывать падение базового напряжения проходного транзистора Q2, вызывая уменьшение выходного напряжения регулятора. Поскольку этот ток также смещает эталонный стабилитрон D1, опорное напряжение падает, снижая выходное напряжение. Таким образом, ток, отбираемый от регулятора, может быть ограничен таким образом.
Падение на 0,7 В на резисторе R5 инициирует ограничение тока, поэтому сопротивление резистора R5 должно быть равно 0,7/(Предел тока) или около 0,7 Ом для 1 ампера, 0,35 Ом для 2 ампер и т. д.
Использование операционного усилителя
На рис. 7 ниже показано, как можно использовать операционный усилитель для улучшения управления. Обратите внимание, что прирост теперь резко увеличится. Тем не менее, в определенных обстоятельствах почти наверняка потребуется частотная коррекция, так как фазовый сдвиг контура может вызывать колебания на некоторых или всех стадиях нагрузки.
Хотя напряжение смещения для операционного усилителя может подаваться напрямую от стабилизатора, обычно желателен дополнительный вспомогательный источник малой мощности.
Для операционного усилителя может потребоваться отрицательный источник, особенно в том случае, если регулятор предназначен для регулировки или понижения выходного напряжения до нуля вольт, как в лабораторном источнике питания.
На этом мы завершаем нашу статью о простых схемах стабилизаторов напряжения. Если у вас есть какие-либо вопросы или изменения, связанные с вышеуказанными концепциями, пожалуйста, не стесняйтесь комментировать ниже для быстрого ответа.
Транзисторный активный источник » Примечания по электронике
Простейшей формой источника тока является резистор, но активные источники тока, использующие транзисторы, способны обеспечить гораздо более постоянный или контролируемый ток.
Типы транзисторных схем Включает:
Типы транзисторных схем
Общий эмиттер
Повторитель эмиттера
Общая база
Пара Дарлингтона
Пара Шиклаи
Текущее зеркало
Длиннохвостая пара
Источник постоянного тока
Множитель емкости
Двухтранзисторный усилитель
Фильтр верхних частот
См. также: Схема транзистора
Активные источники постоянного тока часто используются в электронных схемах. Некоторые схемы постоянного тока могут быть изготовлены с использованием очень небольшого количества электронных компонентов, но другие, обеспечивающие лучшую производительность, могут использовать несколько больше.
В простейшем источнике постоянного тока используется один электронный компонент: резистор, но часто в источниках постоянного тока используются транзисторы, хотя также могут использоваться полевые транзисторы и, где это применимо, вакуумные настройки термоэлектронных клапанов.
Можно создать активный источник постоянного тока, используя один транзистор и пару резисторов, хотя также доступны более сложные конструкции с использованием нескольких дополнительных электронных компонентов.
Символы цепи источника токаЧто такое источник постоянного тока
Основным элементом является источник тока, и это элемент или блок в цепи, функция которого заключается в обеспечении тока, при этом основное внимание уделяется обеспечению тока, а не напряжения.
Более полезным элементом с точки зрения обеспечения тока является то, что называется источником постоянного тока. Этот объект обеспечивает заданный уровень тока независимо от импеданса нагрузки, на которую он подает ток.
Теоретический источник постоянного тока сможет обеспечить постоянный ток полностью независимо от импеданса. Проблемы могут возникнуть, когда встречаются очень высокие уровни импеданса или даже разомкнутые цепи, поскольку для достижения требуемых уровней тока могут потребоваться очень высокие напряжения.
Ввиду этого реальные источники постоянного тока имеют ограничения, накладываемые на диапазон уровней импеданса, при которых они могут обеспечивать постоянный ток.
На графике ВАХ выхода источника постоянного тока характеристика представлена прямой линией.
Существует два типа источников постоянного тока:
Независимый источник тока: Для этой формы источника тока ток не зависит ни от какой переменной в цепи. Другими словами, он производит фиксированный ток.
Управляемый источник тока: Эта форма устройства постоянного тока создает уровень тока, которым можно управлять с помощью внешнего фактора, такого как управляющее напряжение, но он сможет обеспечивать требуемый уровень тока независимо от Загрузка.
Приложения с активным источником тока
Источники тока необходимы в ряде различных областей проектирования электронных схем.
Источники тока можно использовать для смещения транзисторов, а также в качестве активных нагрузок для каскадов усилителей с высоким коэффициентом усиления. Их также можно использовать в качестве источников эмиттеров для дифференциальных усилителей, например, их можно использовать в транзисторной паре с длинными хвостами.
Они также могут использоваться в качестве подтягивающих звеньев с широким диапазоном напряжения в источниках питания и других цепях с широким диапазоном напряжения. Если бы использовались обычные резисторы, то ток значительно варьировался бы в диапазоне напряжений.
Одним из распространенных примеров использования источников тока является управление стабилитроном в цепи регулятора. Сохранение постоянного тока независимо от тока, потребляемого последовательным транзистором в цепи, помогает поддерживать гораздо лучший уровень регулирования.
Кроме того, в различных процессах, включая электрохимию и электрофорез, необходимы автономные источники тока.
Таким образом, видно, что источник постоянного тока является важным схемным блоком, используемым в самых разных областях проектирования электронных схем.
Простая схема источника тока с резистором
В самой простой форме цепи постоянного тока используется один электронный компонент: резистор. Если напряжение источника напряжения намного выше напряжения, при котором требуется ток, то выходной ток будет практически не зависеть от нагрузки.
Для идеального источника постоянного тока источник напряжения будет иметь бесконечное напряжение, а резистор будет иметь бесконечное сопротивление.
Для практических применений напряжение и сопротивление должны обеспечивать постоянство тока в требуемом диапазоне нагрузки.
Простой источник постоянного тока, состоящий из источника высокого напряжения и высокоомного резистора. Для приведенной выше схемы ток можно рассчитать очень легко, так как он приблизительно равен I = V / R, поскольку Vload (напряжение на нагрузке) намного меньше, чем V (напряжение источника).
Эта простая форма источника тока имеет много ограничений:
- Высокие значения необходимого сопротивления рассеивают мощность, делая схемы неэффективными.
- Необходимы источники высокого напряжения, которые не всегда легко доступны.
- Изменения нагрузки могут вызвать некоторые изменения тока, если не доступны достаточно высокие значения напряжения источника.
Ввиду этих ограничений этот простой источник постоянного тока не нашел широкого применения там, где требуется настоящий постоянный ток.
Для достижения лучших характеристик с источником более низкого напряжения и с меньшим рассеиванием мощности, хотя и с несколькими дополнительными электронными компонентами, более широко используется активная цепь постоянного тока, которая обеспечивает лучшие общие характеристики для большинства практических требований.
Транзисторный активный источник постоянного тока, основы
Простое использование транзистора позволяет создать гораздо более эффективный источник тока, используя всего несколько дополнительных электронных компонентов, включая транзистор, несколько резисторов и несколько простых уравнений для проектирования электронной схемы.
Источник тока работает из-за того, что ток коллектора в транзисторной схеме в В раз больше тока базы. Это не зависит от напряжения коллектора, при условии, что имеется достаточное напряжение для управления током через нагрузочное устройство в коллекторе.
Источник активного тока на одном транзисторе
В этой схеме ток коллектора в β раз превышает ток базы. Обычно β велико, и поэтому можно предположить, что ток эмиттера, который в (β + 1) раз превышает ток базы, и ток коллектора, который в β раз превышает ток базы, одинаковы.
Ввиду этого легко спроектировать цепь для заданного тока.
Ie = (β + 1) Ib
Iload = Ic = βIb
Iload = β Ve(β + 1) Re
Iload = Vb — 0,6Re
NB: Это предполагает использование кремниевого транзистора в качестве Падение базового эмиттера указано как 0,6 В
Подстройкой резисторов R1 и R2 можно установить базовое напряжение. Напряжение эмиттера будет меньше на 0,6 вольта, если предположить кремниевый транзистор. Зная напряжение эмиттера, можно рассчитать ток эмиттера, просто зная закон Ома.
Схема простого стабилизированного источника активного тока
Чтобы устранить любые колебания тока, возникающие из-за изменений напряжения питания, достаточно просто добавить некоторую регулировку в базовую схему, изменив несколько электронных компонентов. Это достигается заменой R2 стабилитроном или диодом опорного напряжения.
Транзисторный активный источник тока с использованием стабилитрона для повышения стабильностиПрименяются те же уравнения, что и раньше, но единственное отличие состоит в том, что базовое напряжение поддерживается на более постоянном уровне благодаря наличию стабилитрона, диода опорного напряжения.
Зависимость активного источника тока от температуры
Одним из основных недостатков базового активного источника тока является то, что он в некоторой степени зависит от температуры. Для многих применений это может быть неважно, но там, где требуются очень жестко контролируемые условия, температурные характеристики могут быть очень важны.
Существует два основных варианта:
Цепи активных источников тока с хорошей температурной стабильностью
Можно спроектировать схемы активных источников тока на транзисторах, в которых собственная температурная стабильность лучше, чем в простых схемах, приведенных выше.
Одной из самых простых схем является использование схемы, в которой используются транзисторы NPN и PNP. В показанной схеме изменения падения напряжения Vbe в TR1 компенсируются изменениями в TR2. Следует отметить, что в этой схеме резистор R3 является подтягивающим резистором для коллектора TR1, потому что база TR2 может потреблять ток, но не отдавать его.
Транзисторный активный источник тока с температурной компенсациейСхемы, прежде всего, включают транзисторы, но также могут использоваться другие активные электронные компоненты, включая полевые транзисторы и даже вакуумные лампы/термоэлектронные клапаны. При использовании других электронных компонентов в качестве активного устройства в источнике тока устройства смещения и схемы должны учитывать тот факт, что и полевые транзисторы, и клапаны/трубки управляются напряжением, а не током.