Регулятор мощности на полевом транзисторе: Регулятор мощности на полевых транзисторах с ШИ-управлением + устройство для питания 110-вольтовой аппаратуры от 220 Вольт – Сетевой регулятор мощности на MOSFET-транзисторах с фазоимпульсным управлением

Сетевой регулятор мощности на MOSFET-транзисторах с фазоимпульсным управлением

В сетевых регуляторах мощности в основном применяют фазоимпульсное управление, когда момент открывания полупроводникового ключа (тиристора, симистора) задерживается относительно момента перехода сетевого напряжения через ноль, а закрывание происходит, когда ток через прибор становится меньше тока удержания. Особенность регулятора мощности, рассмотренного в этой статье, в том, что силовые ключи на MOSFET-транзисторах открываются при переходе сетевого напряжения через ноль, а закрываются после формирования временной задержки 555-м таймером.

С появлением мощных полевых высоковольтных транзисторов с изолированным затвором (MOSFET) появилась возможность разрабатывать схемы регуляторов с применением их в качестве полупроводниковых ключей. Одна из таких конструкций описана в [1]. Но в этой схеме не применяется фазоимпульсное управление.

В конструкции, предложенной в [2], рассмотрен сетевой регулятор на мощном триаке типа ВТ136-600Е с фазоимпульсным управлением. При сопоставлении этих двух схем возникла мысль взять самое лучшее из рассматриваемых конструкций и создать новую на мощных полевых транзисторах с фазоимпульсным управлением на 555-м таймере. В результате была разработана схема, показанная на

рис.1.

Рис. 1

Схема управления ключами \/Т2 и \/ТЗ типа IRF840 взята из [2], только 555-й таймер в этой схеме обеспечивает не задержку включения, как в [2], а формирование времени включенного со­стояния полупроводниковых ключей VТ2 и VТЗ. Длительность включённого состояния транзисто­ров можно определить по формуле:

Твкл=1,1(R8+R9)-(С2+СЗ).

Диоды VD7 и VD8 — это двухсторонний диодный ограничитель напряжения на затворах полевых транзисторов VT2, VТЗ. Питание таймера DА2 ор­ганизованно так, как предложено в статье [3], с по­мощью ограничителя на стабилитроне VD10 и ре­зисторах R12, R1З и выпрямителя VD9, С5.

Конструкция и детали

В предлагаемой схеме необходимо использо­вать заведомо исправные радиоэлементы. По­стоянные резисторы типа МЛТ, не менее указанной на схеме мощностью. Переменный резистор типа СПЗ-4аМ. Элементы, обведенные на схеме пунк­тирной линией, относятся к схеме формирования импульса при переходе сетевого напряжения че­рез ноль. Схема выполнена на SMD-элементах ти­поразмера 1206, исключая оптрон DA1 и диоды мо­ста VD1-VD4, но вместо КД102Б в этих позициях можно использовать SMD-диоды типа GS1K.

Детали формирования импульса при переходе сетевого напряжения через ноль установлены на плате из одностороннего фольгированного стекло­текстолита размерами 36×36 мм (фото 1). Оптрон запаян в отверстия с обратной стороны этой платы.

Фото 1

Чертеж печатной платы формирователя и рас­положение деталей на ней показано на рис.2.

Рис. 2

Остальные элементы, исключая мощные транзи­сторы VТ2, VТЗ и элементы R14, НL1,VD11, разме­щены на второй плате из одностороннего фольги­рованного стеклотекстолита размерами 66×36 мм

(фото 2).

Фото 2

Чертеж этой платы показан на рис.3, а расположение деталей на ней — на рис.4.

Рис. 3

Рис. 4

Конденсаторы С2 и СЗ типа К73-17 или К73-9. Электролитический конденсатор С5 импортный, например, фирмы НIТАNО. Диоды VD7, VD8 мож­но заменить отечественными типа КД522Б. Светодиод может быть любого цвета свечения, как им­портный, так и отечественный. Он устанавливается в отверстие на лицевой панели конструкции.

Полевые транзисторы можно применить типа КП707В или иные, импортные, с характеристика­ми, соответствующими применяемой нагрузке. Элементы R14 и VD11 монтируются непосред­ственно на выводах розетки устройства.

Внутри корпуса установлена общая плата из стеклотекстолита размерами 80×110 мм. На пла­те имеются отверстия для крепления радиатора. Радиатор использован от устройства регулировки температуры РТ-3. Размеры радиатора 70×40 мм. Радиатор имеет 8 ребер высотой 20 мм. На ради­аторе через изоляционные прокладки из слюды закреплены транзисторы VТ2, VТЗ. Выводы тран­зисторов соединены с платой

(фото 3) проводом МГТФ. Силовые цепи выполнены двойным прово­дом этого типа. Плата формирования импульса при переходе сети через ноль смонтирована с обрат­ной стороны общей платы, напротив радиатора. Плата управления транзисторами установлена на втулки над переменным резистором R8. Монтаж внутри корпуса также выполнен проводом МГТФ. Вся конструкция расположена в корпусе устрой­ства регулировки температуры РТ-3.

Фото 3

Налаживание

При наличии осциллографа, контролируя на­пряжение на выводе 3 таймера, необходимо про­верить длительность импульса, при вращении руч­ки резистора R8. Длительность должна меняться в пределах от 2 мс до 9,8 мс, но ни в коем случае она не должна превышать 10 мс, что может нарушить правильность запуска схемы. Времязадающие ре­зисторы R8, R9 и конденсаторы С2, СЗ имеют раз­брос параметров. Поэтому при налаживании воз­никнет необходимость подбора R9, С2 и СЗ.

Все пайки и замены элементов необходимо производить только при извлеченной вилки сете­вого шнура из розетки бытовой сети. В противном случае, можно получить поражение электрическим током, так как элементы конструкции находятся под потенциалом сети.

При отсутствии осциллографа настрой­ку схемы можно провести, включив вместо нагрузки лампу накаливания мощностью 40… 100 Вт, контролируя накал нити нака­ла. При минимальном напряжении нить на­кала светит еле заметным темно-красным цветом. При полностью выведенной ручке регуляторе вправо лампа накаливания должна светить в полный накал. Впрочем, при желании, можно сузить диапазон ре­гулировки. Работа этого регулятора прове­рялась совместно с электроплиткой мощ­ностью 1 кВт.

Литература

  1. Белоусов О. Регулятор напряжения на МОSFЕТ-транзисторах // Электрик. — 2012. -№12-С.64-66.
  2. Белоусов О. Сетевой регулятор напряжения на 555-м таймере // Радиоаматор. — 2013. — №5 — С.26-28.
  3. Калашник В. Мощный коммутатор с опторазвязкой // Электрик. — 2013. — №5 — С.51, 52.

Автор: Олег Белоусов, г. Черкассы

Фазовый регулятор мощности на полевом транзисторе — Ваша техника

Представленный регулятор предназначен для регулирования температуры жала паяльника на номинальное напряжение от 100 до 220 В, но может работать и с другими нагрузками. В качестве регулирующего элемента использован мощный переключательный полевой транзистор IRF840.

Данный транзистор имеет высокое рабочее напряжение сток-исток до 500 В и ток стока до 8 А при температуре корпуса 25 °С (5 А при 100 °С). Импульсный же ток может достигать 32 А, а допустимое напряжение затвор-исток ±20 В, рассеиваемая мощность составляет 125 Вт, сопротивление открытого канала 0,85 Ом, а ток закрытого канала всего 25 мкА. Для управления транзистора, требуется очень малая статическая мощность, благодаря чему регулятор получается весьма экономичным.

Нагрузка подключена последовательно с регулирующим элементом. Поскольку транзистор содержит встроенный защитный диод, включенный параллельно каналу (катодом к стоку), регулирование мощности потребляемой нагрузкой, возможно изменять от 50 до 100% от номинальной, чего вполне достаточно для паяльника.

На логических элементах DD1.1-DD1.4, резисторах R1-R4, конденсаторе C1 и диоде VD2 собран формирователь управляющих транзистором импульсов. При этом элементы DD1.1, DD1.2 и резистор R4 включены по схеме триггера Шмитта, а включенные параллельно элементы DD1.3, DD1.4 представляют собой буфер-инвертор. Питается формирователь от параметрического стабилизатора напряжения R5VD1.

Диод VD3 — развязывающий, он не дает возможности разряжаться конденсатору C2 в минусовые полупериоды сетевого напряжения, тем самым поддерживая стабильным напряжение питания микросхемы. Диоды VD4, VD5 защищают выход логических элементов буфера от импульсных сетевых наводок со стороны полевого транзистора VT1.

При положительной полуволне сетевого напряжения (плюс — на правом по схеме выводе резистора R5) на стабилитроне VD1 будет около 10В и конденсатор С2 через диод VD3 зарядится примерно до 9 В. Это напряжение используется для питания микросхемы DD1. Одновременно через резисторы R1,R2 сравнительно медленно заряжается конденсатор С1. Когда напряжение на нем достигнет уровня 30…40% от напряжения питания микросхемы, триггер Шмитта переключится, на выходе элемента DD1.1 высокий уровень сменится низким, на выходе буфера появится высокий уровень (около 9 В), поэтому полевой транзистор VT1 откроется и с этого момента напряжение поступит на нагрузку.

Регулятор мощности на IRF840

Представленный регулятор предназначен для регулирования температуры жала паяльника на номинальное напряжение от 100 до 220 В, но может работать и с другими нагрузками. В качестве регулирующего элемента использован мощный переключательный полевой транзистор IRF840.

Данный транзистор имеет высокое рабочее напряжение сток-исток до 500 В и ток стока до 8 А при температуре корпуса 25 °С (5 А при 100 °С). Импульсный же ток может достигать 32 А, а допустимое напряжение затвор-исток ±20 В, рассеиваемая мощность составляет 125 Вт, сопротивление открытого канала 0,85 Ом, а ток закрытого канала всего 25 мкА. Для управления транзистора, требуется очень малая статическая мощность, благодаря чему регулятор получается весьма экономичным.

принципиальная схема регулятора мощности на IRF840

принципиальная схема регулятора мощности на IRF840

Нагрузка подключена последовательно с регулирующим элементом. Поскольку транзистор содержит встроенный защитный диод, включенный параллельно каналу (катодом к стоку), регулирование мощности потребляемой нагрузкой, возможно изменять от 50 до 100% от номинальной, чего вполне достаточно для паяльника.

На логических элементах DD1.1-DD1.4, резисторах R1-R4, конденсаторе C1 и диоде VD2 собран формирователь управляющих транзистором импульсов. При этом элементы DD1.1, DD1.2 и резистор R4 включены по схеме триггера Шмитта, а включенные параллельно элементы DD1.3, DD1.4 представляют собой буфер-инвертор. Питается формирователь от параметрического стабилизатора напряжения R5VD1.

Диод VD3 — развязывающий, он не дает возможности разряжаться конденсатору C2 в минусовые полупериоды сетевого напряжения, тем самым поддерживая стабильным напряжение питания микросхемы. Диоды VD4, VD5 защищают выход логических элементов буфера от импульсных сетевых наводок со стороны полевого транзистора VT1.

При положительной полуволне сетевого напряжения (плюс — на правом по схеме выводе резистора R5) на стабилитроне VD1 будет около 10В и конденсатор С2 через диод VD3 зарядится примерно до 9 В. Это напряжение используется для питания микросхемы DD1. Одновременно через резисторы R1,R2 сравнительно медленно заряжается конденсатор С1. Когда напряжение на нем достигнет уровня 30…40% от напряжения питания микросхемы, триггер Шмитта переключится, на выходе элемента DD1.1 высокий уровень сменится низким, на выходе буфера появится высокий уровень (около 9 В), поэтому полевой транзистор VT1 откроется и с этого момента напряжение поступит на нагрузку.

Отрицательная полуволна сетевого напряжения через защитный диод полевого транзистора беспрепятственно проходит к нагрузке, хотя транзистор и закрыт. Поскольку стабилитрон оказывается включенным в прямом направлении, на нем будет напряжение около 0,7 В и конденсатор С1 быстро разрядится через диод VD2. На входе триггера Шмитта появляется низкий уровень, триггер переключается в прежнее состояние, низкий уровень на выходе буфера закрывает транзистор.

Чем больше сопротивление резистора R1, тем медленнее заряжается конденсатор C1 и тем позднее от момента появления положительной полуволны открывается транзистор. Таким образом, изменяя сопротивление резистора R1, можно регулировать эффективное напряжение на нагрузке.

Кроме указанной на схеме, можно применить микросхемы К561ЛА7, К564ЛА7, К564ЛЕ5, К561ЛН2. Стабилитрон Д814В можно заменить на Д814Г, КС510А; диоды КД522Б на КД102Б, КД103А, КД503А, КД510А, КД521А. Переменный резистор — СПО-0,15, СП4-1а.

Не забывайте, что детали устройства находятся под сетевым напряжением! Это требует продуманности конструкции и осторожности при эксплуатации.

При налаживании регулятора может потребоваться подборка переменного резистора R1 или конденсатора C1 с тем, чтобы регулирование мощности было плавным, без «мертвых зон». На это время удобно в качестве нагрузки использовать маломощную лампу накаливания.

Регулятор может работать и при меньшем питающем напряжении вплоть до 30 В. В этом случае надо подобрать резистор R5 таким, чтобы напряжение питания микросхемы было стабильным. Если оно будет меньше напряжения стабилизации стабилитрона, то постепенно, шагами не более 10%, уменьшают сопротивление резистора R5 до тех пор, пока напряжение не восстановится до нормального уровня.

Если ток нагрузки регулятора будет превышать 2 Ампера, транзистор придется снять с платы и установить на теплоотвод. Необходимо отметить, что описанный регулятор нагружает сеть несимметрично, т. е. для плюсовой и минусовой полуволн сетевого напряжения потребляемая мощность различна. Эксплуатировать такую сетевую нагрузку, если ее мощность превышает 50 Вт, запрещено государственными нормативами.

Чтобы обеспечить симметричность нагрузки регулятора, достаточно включать его в сеть через мостовой выпрямитель, собранный из диодов соответствующей мощности (плюсовой вывод моста должен быть подключен к правому по схеме выводу резистора R5). При этом через нагрузку будет протекать пульсирующий однополярный ток, но для нагревательных приборов и ламп накаливания это значения не имеет.

Кроме этого, потребуется обеспечить разрядку конденсатора C1 в конце каждого полупериода. Для этого нужно стабилитрон VD1 шунтировать резистором сопротивлением 10 кОм (уточнить при налаживании). Оно должно быть как можно большим, но таким, чтобы в положении движка резистора R1, соответствующем минимальной мощности в нагрузке, транзистор не открывался.

Управление мощной нагрузкой · Вадим Великодный

06 Jan 2017

На практике часто возникает необходимость управлять при помощи цифровой схемы (например, микроконтроллера) каким-то мощным электрическим прибором. Это может быть мощный светодиод, потребляющий большой ток, или прибор, питающийся от электрической сети. Рассмотрим типовые решения этой задачи.

Будем считать, что нам нужно только включать или выключать нагрузку с низкой частотой. Части схем, решающие эту задачу, называют ключами. ШИМ-регуляторы, диммеры и прочее рассматривать не будем (почти).

Условно можно выделить 3 группы методов:

  1. Управление нагрузкой постоянного тока.
    • Транзисторный ключ на биполярном транзисторе.
    • Транзисторный ключ на МОП-транзисторе (MOSFET).
    • Транзисторный ключ на IGBT.
  2. Управление нагрузкой переменного тока.
    • Тиристорный ключ.
    • Симисторный ключ.
  3. Универсальный метод.

Выбор способа управления зависит как от типа нагрузки, так и от вида применяемой цифровой логики. Если схема построена на ТТЛ-микросхемах, то следует помнить, что они управляются током, в отличие от КМОП, где управление осуществляется напряжением. Иногда это важно.

Простейший ключ

Простейший ключ на биполярном транзисторе проводимости n-p-n выглядит следующим образом.

Простейший ключ

Вход слева подключается к цифровой схеме. Если у нас цифровая схема построена на основе КМОП-логики с двухтактным («push-pull») выходом, то логическая «1» фактически означает подключение этого входа к питанию, а логический «0» — к земле.

Таким образом, при подаче «1» на вход нашей схемы ток от источника питания потечёт через резистор R1, базу и эмиттер на землю. При этом транзистор откроется (если, конечно, ток достаточно большой), и ток сможет идти через переход коллектор — эмиттер, а значит и через нагрузку.

Резистор R1 играет важную роль — он ограничивает ток через переход база — эмиттер. Если бы его не было, ток не был бы ничем ограничен и просто испортил бы управляющую микросхему (ведь именно она связывает линию питания с транзистором).

Максимальный ток через один выход микроконтроллера обычно ограничен значением около 25 мА (для STM32). В интернете можно встретить утверждения, что микроконтроллеры AVR выдерживают ток в 200 мА, но это относится ко всем выводам в сумме. Предельное допустимое значение тока на один вывод примерно такое же — 20-40 мА.

Это, кстати, означает, что подключать светодиоды напрямую к выводам нельзя. Без токоограничивающих резисторов, микросхема просто сгорит, а с ними светодиодам не будет хватать тока, чтобы светить ярко.

Обратите внимание, что нагрузка (LOAD) подключена к коллектору, то есть «сверху». Если подключить её «снизу», у нас возникнет несколько проблем.

Допустим, мы хотим при помощи 5 В (типичное значение для цифровых схем) управлять нагрузкой в 12 В. Это значит, что на базе мы можем получить максимум 5 В. А с учётом падения напряжения на переходе база — эмиттер, на эмиттере будет напряжение ещё меньше. Если падение напряжения на переходе равно 0,7 В,то получаем, что на нагрузку остаётся только 4,3 В, чего явно недостаточно. Если это, например, реле, оно просто не сработает. Напряжение не может быть выше, иначе тока через базу вообще не будет. Наличие падения напряжения на нагрузке также приведёт к уменьшению тока через базу.

Для расчёта сопротивления R1 нужно вспомнить соотношение для упрощённой модели транзистора:

Коэффициент $\beta$ — это коэффициент усиления по току. Его ещё обозначают $h_{21э}$ или $h_{FE}$. У разных транзисторов он разный.

Зная мощность нагрузки $P$ и напряжение питания $V$, можно найти ток коллектора, а из него и ток базы:

По закону Ома получаем:

Коэффициент $\beta$ не фиксированная величина, он может меняться даже для одного транзистора в зависимости от режима работы, поэтому лучше брать значение тока базы при расчёте чуть больше, чтобы был запас по току коллектора. Главное помнить, что ток базы не должен превышать предельно допустимое для микросхемы.

Также важно при выборе модели транзистора помнить о предельном токе коллектора и напряжении коллектор — эмиттер.

Ниже как пример приведены характеристики некоторых популярных транзисторов с проводимостью n-p-n.

Модель$\beta$$\max\ I_{к}$$\max\ V_{кэ}$
КТ315Г50…350100 мА35 В
КТ3102Е400…1000100 мА50 В
MJE1300225…401,5 А600 В
2SC4242107 А400 В

Модели выбраны случайно, просто это транзисторы, которые легко найти или откуда-то выпаять. Для ключа в рассматриваемой схеме, конечно, можно использовать любой n-p-n-транзистор, подходящий по параметрам и цене.

Доработка схемы

Если вход схемы подключен к push-pull выходу, то особой доработки не требуется. Рассмотрим случай, когда вход — это просто выключатель, который либо подтягивает базу к питанию, либо оставляет её «висеть в воздухе». Тогда для надёжного закрытия транзистора нужно добавить ещё один резистор, выравнивающий напряжение между базой и эмиттером.

Кроме того, нужно помнить, что если нагрузка индуктивная, то обязательно нужен защитный диод. Дело в том, что энергия, запасённая магнитным полем, не даёт мгновенно уменьшить ток до нуля при отключении ключа. А значит, на контактах нагрузки возникнет напряжение обратной полярности, которое легко может нарушить работу схемы или даже повредить её.

Совет касательно защитного диода универсальный и в равной степени относится и к другим видам ключей.

Если нагрузка резистивная, то диод не нужен.

В итоге усовершенствованная схема принимает следующий вид.

Усовершенствованная схема на биполярном ключе

Резистор R2 обычно берут с сопротивлением, в 10 раз большим, чем сопротивление R1, чтобы образованный этими резисторами делитель не понижал слишком сильно напряжение между базой и эмиттером.

Для нагрузки в виде реле можно добавить ещё несколько усовершенствований. Оно обычно кратковременно потребляет большой ток только в момент переключения, когда тратится энергия на замыкание контакта. В остальное время ток через него можно (и нужно) ограничить резистором, так как удержание контакта требует меньше энергии.

Для этого можно применить схему, приведённую ниже.

Ограничение тока удержания реле

В момент включения реле, пока конденсатор C1 не заряжен, через него идёт основной ток. Когда конденсатор зарядится (а к этому моменту реле перейдёт в режим удержания контакта), ток будет идти через резистор R2. Через него же будет разряжаться конденсатор после отключения реле.

Ёмкость C1 зависит от времени переключения реле. Можно взять, например, 10 мкФ.

С другой стороны, ёмкость будет ограничивать частоту переключения реле, хоть и на незначительную для практических целей величину.

Пример расчёта простой схемы

Пусть, например, требуется включать и выключать светодиод с помощью микроконтроллера. Тогда схема управления будет выглядеть следующим образом.

Управление светодиодом

Пусть напряжение питания равно 5 В.

Характеристики (рабочий ток и падение напряжения) типичных светодиодов диаметром 5 мм можно приблизительно оценить по таблице.

Цвет$I_{LED}$$V_{LED}$
Красный20 мА1,9 В
Зеленый20 мА2,3 В
Желтый20 мА2,1 В
Синий (яркий)75 мА3,6 В
Белый (яркий)75 мА3,6 В

Пусть используется белый светодиод. В качестве транзисторного ключа используем КТ315Г — он подходит по максимальному току (100 мА) и напряжению (35 В). Будем считать, что его коэффициент передачи тока равен $\beta = 50$ (наименьшее значение).

Итак, если падение напряжения на диоде равно $V_{LED} = 3{,}6\,В$, а напряжение насыщения транзистора $V_{CE} = 0{,}4\,В$ то напряжение на резисторе R2 будет равно $V_{R2} = 5{,}0 — 3{,}6 — 0{,}4 = 1\,В$. Для рабочего тока светодиода $I_{LED} = 0{,}075\,А$ получаем

Значение сопротивление было округлено, чтобы попасть в ряд E12.

Для тока $I_{LED} = 0{,}075\,А$ управляющий ток должен быть в $\beta = 50$ раз меньше:

Падение напряжения на переходе эмиттер — база примем равным $V_{EB} = 0{,}7\,В$.

Отсюда

Сопротивление округлялось в меньшую сторону, чтобы обеспечить запас по току.

Таким образом, мы нашли значения сопротивлений R1 и R2.

Транзистор Дарлингтона

Если нагрузка очень мощная, то ток через неё может достигать нескольких ампер. Для мощных транзисторов коэффициент $\beta$ может быть недостаточным. (Тем более, как видно из таблицы, для мощных транзисторов он и так невелик.)

В этом случае можно применять каскад из двух транзисторов. Первый транзистор управляет током, который открывает второй транзистор. Такая схема включения называется схемой Дарлингтона.

Схема Дарлингтона

В этой схеме коэффициенты $\beta$ двух транзисторов умножаются, что позволяет получить очень большой коэффициент передачи тока.

Для повышения скорости выключения транзисторов можно у каждого соединить эмиттер и базу резистором.

Схема Дарлингтона с ускоренным выключением

Сопротивления должны быть достаточно большими, чтобы не влиять на ток база — эмиттер. Типичные значения — 5…10 кОм для напряжений 5…12 В.

Выпускаются транзисторы Дарлингтона в виде отдельного прибора. Примеры таких транзисторов приведены в таблице.

Модель$\beta$$\max\ I_{к}$$\max\ V_{кэ}$
КТ829В7508 А60 В
BDX54C7508 А100 В

В остальном работа ключа остаётся такой же.

Простейший ключ

В дальнейшем полевым транзистором мы будет называть конкретно MOSFET, то есть полевые транзисторы с изолированным затвором (они же МОП, они же МДП). Они удобны тем, что управляются исключительно напряжением: если напряжение на затворе больше порогового, то транзистор открывается. При этом управляющий ток через транзистор пока он открыт или закрыт не течёт. Это значительное преимущество перед биполярными транзисторами, у которых ток течёт всё время, пока открыт транзистор.

Также в дальнейшем мы будем использовать только n-канальные MOSFET (даже для двухтактных схем). Это связано с тем, что n-канальные транзисторы дешевле и имеют лучшие характеристики.

Простейшая схема ключа на MOSFET приведена ниже.

Простой ключ на MOSFET

Опять же, нагрузка подключена «сверху», к стоку. Если подключить её «снизу», то схема не будет работать. Дело в том, что транзистор открывается, если напряжение между затвором и истоком превышает пороговое. При подключении «снизу» нагрузка будет давать дополнительное падение напряжения, и транзистор может не открыться или открыться не полностью.

Несмотря на то, что MOSFET управляется только напряжением и ток через затвор не идёт, затвор образует с подложкой паразитный конденсатор. Когда транзистор открывается или закрывается, этот конденсатор заряжается или разряжается через вход ключевой схемы. И если этот вход подключен к push-pull выходу микросхемы, через неё потечёт довольно большой ток, который может вывести её из строя.

При управлении типа push-pull схема разряда конденсатора образует, фактически, RC-цепочку, в которой максимальный ток разряда будет равен

где $V$ — напряжение, которым управляется транзистор.

Таким образом, достаточно будет поставить резистор на 100 Ом, чтобы ограничить ток заряда — разряда до 10 мА. Но чем больше сопротивление резистора, тем медленнее он будет открываться и закрываться, так как постоянная времени $\tau = RC$ увеличится. Это важно, если транзистор часто переключается. Например, в ШИМ-регуляторе.

Основные параметры, на которые следует обращать внимание — это пороговое напряжение $V_{th}$, максимальный ток через сток $I_D$ и сопротивление сток — исток $R_{DS}$ у открытого транзистора.

Ниже приведена таблица с примерами характеристик МОП-транзисторов.

Модель$V_{th}$$\max\ I_D$$\max\ R_{DS}$
2N70003 В200 мА5 Ом
IRFZ44N4 В35 А0,0175 Ом
IRF6304 В9 А0,4 Ом
IRL25052 В74 А0,008 Ом

Для $V_{th}$ приведены максимальные значения. Дело в том, что у разных транзисторов даже из одной партии этот параметр может сильно отличаться. Но если максимальное значение равно, скажем, 3 В, то этот транзистор гарантированно можно использовать в цифровых схемах с напряжением питания 3,3 В или 5 В.

Сопротивление сток — исток у приведённых моделей транзисторов достаточно маленькое, но следует помнить, что при больших напряжениях управляемой нагрузки даже оно может привести к выделению значительной мощности в виде тепла.

Схема ускоренного включения

Как уже было сказано, если напряжение на затворе относительно истока превышает пороговое напряжение, то транзистор открывается и сопротивление сток — исток мало. Однако, напряжение при включении не может резко скакнуть до порогового. А при меньших значениях транзистор работает как сопротивление, рассеивая тепло. Если нагрузку приходится включать часто (например, в ШИМ-контроллере), то желательно как можно быстрее переводить транзистор из закрытого состояния в открытое и обратно.

Относительная медленность переключения транзистора связана опять же с паразитной ёмкостью затвора. Чтобы паразитный конденсатор зарядился как можно быстрее, нужно направить в него как можно больший ток. А так как у микроконтроллера есть ограничение на максимальный ток выходов, то направить этот ток можно с помощью вспомогательного биполярного транзистора.

Кроме заряда, паразитный конденсатор нужно ещё и разряжать. Поэтому оптимальной представляется двухтактная схема на комплементарных биполярных транзисторах (можно взять, например, КТ3102 и КТ3107).

Ключ на MOSFET с двухтактным управлением

Ещё раз обратите внимание на расположение нагрузки для n-канального транзистора — она расположена «сверху». Если расположить её между транзистором и землёй, из-за падения напряжения на нагрузке напряжение затвор — исток может оказаться меньше порогового, транзистор откроется не полностью и может перегреться и выйти из строя.

Драйвер полевого транзистора

Если всё же требуется подключать нагрузку к n-канальному транзистору между стоком и землёй, то решение есть. Можно использовать готовую микросхему — драйвер верхнего плеча. Верхнего — потому что транзистор сверху.

Выпускаются и драйверы сразу верхнего и нижнего плеч (например, IR2151) для построения двухтактной схемы, но для простого включения нагрузки это не требуется. Это нужно, если нагрузку нельзя оставлять «висеть в воздухе», а требуется обязательно подтягивать к земле.

Рассмотрим схему драйвера верхнего плеча на примере IR2117.

Драйвер MOSFET

Схема не сильно сложная, а использование драйвера позволяет наиболее эффективно использовать транзистор.

IGBT

Ещё один интересный класс полупроводниковых приборов, которые можно использовать в качестве ключа — это биполярные транзисторы с изолированным затвором (IGBT).

Они сочетают в себе преимущества как МОП-, так и биполярных транзисторов: управляются напряжением, имеют большие значения предельно допустимых напряжений и токов.

Управлять ключом на IGBT можно так же, как и ключом на MOSFET. Из-за того, что IGBT применяются больше в силовой электронике, они обычно используются вместе с драйверами.

Например, согласно даташиту, IR2117 можно использовать для управления IGBT.

Драйвер IGBT

Пример IGBT — IRG4BC30F.

Все предыдущие схемы отличало то, что нагрузка хоть и была мощной, но работала от постоянного тока. В схемах была чётко выраженные земля и линия питания (или две линии — для контроллера и нагрузки).

Для цепей переменного тока нужно использовать другие подходы. Самые распространённые — это использование тиристоров, симисторов и реле. Реле рассмотрим чуть позже, а пока поговорим о первых двух.

Тиристоры и симисторы

Тиристор — это полупроводниковый прибор, который может находится в двух состояниях:

  • открытом — пропускает ток, но только в одном направлении,
  • закрытом — не пропускает ток.

Так как тиристор пропускает ток только в одном направлении, для включения и выключения нагрузки он подходит не очень хорошо. Половину времени на каждый период переменного тока прибор простаивает. Тем не менее, тиристор можно использовать в диммере. Там он может применяться для управления мощностью, отсекая от волны питания кусочек требуемой мощности.

Симистор — это, фактически двунаправленный тиристор. А значит он позволяет пропускать не полуволны, а полную волну напряжения питания нагрузки.

Открыть симистор (или тиристор) можно двумя способами:

  • подать (хотя бы кратковременно) отпирающий ток на управляющий электрод;
  • подать достаточно высокое напряжение на его «рабочие» электроды.

Второй способ нам не подходит, так как напряжение питания у нас будет постоянной амплитуды.

После того, как симистор открылся, его можно закрыть поменяв полярность или снизив ток через него то величины, меньшей чем так называемый ток удержания. Но так как питание организовано переменным током, это автоматически произойдёт по окончании полупериода.

При выборе симистора важно учесть величину тока удержания ($I_H$). Если взять мощный симистор с большим током удержания, ток через нагрузку может оказаться слишком маленьким, и симистор просто не откроется.

Симисторный ключ

Для гальванической развязки цепей управления и питания лучше использовать оптопару или специальный симисторный драйвер. Например, MOC3023M или MOC3052.

Эти оптопары состоят из инфракрасного светодиода и фотосимистора. Этот фотосимистор можно использовать для управления мощным симисторным ключом.

В MOC3052 падение напряжения на светодиоде равно 3 В, а ток — 60 мА, поэтому при подключении к микроконтроллеру, возможно, придётся использовать дополнительный транзисторный ключ.

Встроенный симистор же рассчитан на напряжение до 600 В и ток до 1 А. Этого достаточно для управления мощными бытовыми приборами через второй силовой симистор.

Рассмотрим схему управления резистивной нагрузкой (например, лампой накаливания).

Управление через симистор

Таким образом, эта оптопара выступает в роли драйвера симистора.

Существуют и драйверы с детектором нуля — например, MOC3061. Они переключаются только в начале периода, что снижает помехи в электросети.

Резисторы R1 и R2 рассчитываются как обычно. Сопротивление же резистора R3 определяется исходя из пикового напряжения в сети питания и отпирающего тока силового симистора. Если взять слишком большое — симистор не откроется, слишком маленькое — ток будет течь напрасно. Резистор может потребоваться мощный.

Нелишним будет напомнить, что 230 В в электросети (текущий стандарт для России, Украины и многих других стран) — это значение действующего напряжения. Пиковое напряжение равно $\sqrt2 \cdot 230 \approx 325\,В$.

Управление индуктивной нагрузкой

При управлении индуктивной нагрузкой, такой как электродвигатель, или при наличии помех в сети напряжение может стать достаточно большим, чтобы симистор самопроизвольно открылся. Для борьбы с этим явлением в схему необходимо добавить снаббер — это сглаживающий конденсатор и резистор параллельно симистору.

Управление через симистор со снаббером

Снаббер не сильно улучшает ситуацию с выбросами, но с ним лучше, чем без него.

Керамический конденсатор должен быть рассчитан на напряжение, большее пикового в сети питания. Ещё раз вспомним, что для 230 В — это 325 В. Лучше брать с запасом.

Типичные значения: $C_1 = 0{,}01\,мкФ$, $R_4 = 33\,Ом$.

Есть также модели симисторов, которым не требуется снаббер. Например, BTA06-600C.

Примеры симисторов

Примеры симисторов приведены в таблице ниже. Здесь $I_H$ — ток удержания, $\max\ I_{T(RMS)}$ — максимальный ток, $\max\ V_{DRM}$ — максимальное напряжение, $I_{GT}$ — отпирающий ток.

Модель$I_H$$\max\ I_{T(RMS)}$$\max\ V_{DRM}$$I_{GT}$
BT134-600D10 мА4 А600 В5 мА
MAC97A810 мА0,6 А600 В5 мА
Z06075 мА0,8 А600 В5 мА
BTA06-600C25 мА6 А600 В50 мА

Электромагнитные реле

С точки зрения микроконтроллера, реле само является мощной нагрузкой, причём индуктивной. Поэтому для включения или выключения реле нужно использовать, например, транзисторный ключ. Схема подключения и также улучшение этой схемы было рассмотрено ранее.

Реле подкупают своей простотой и эффективностью. Например, реле HLS8-22F-5VDC — управляется напряжением 5 В и способно коммутировать нагрузку, потребляющую ток до 15 А.

Твердотельные реле

Главное преимущество реле — простота использования — омрачается несколькими недостатками:

  • это механический прибор и контакты могу загрязниться или даже привариться друг к другу,
  • меньшая скорость переключения,
  • сравнительно большие токи для переключения,
  • контакты щёлкают.

Часть этих недостатков устранена в так называемых твердотельных реле. Это, фактически, полупроводниковые приборы с гальванической развязкой, содержащие внутри полноценную схему мощного ключа.

Таким образом, в арсенале у нас достаточно способов управления нагрузкой, чтобы решить практически любую задачу, которая может возникнуть перед радиолюбителем.

  1. Хоровиц П., Хилл У. Искусство схемотехники. Том 1. — М.: Мир, 1993.
  2. Управление мощной нагрузкой переменного тока
  3. Управление мощной нагрузкой постоянного тока. Часть 1
  4. Управление мощной нагрузкой постоянного тока. Часть 2
  5. Управление мощной нагрузкой постоянного тока. Часть 3
  6. Щелкаем реле правильно: коммутация мощных нагрузок
  7. Управление мощной нагрузкой переменного тока
  8. Управление MOSFET-ами #1
  9. Современные высоковольтные драйверы MOSFET- и IGBT-транзисторов
  10. Ключ на плечо! – особенности применения высоковольтных драйверов производства IR

Все схемы нарисованы в KiCAD. В последнее время для своих проектов использую именно его, очень удобно, рекомендую. С его помощью можно не только чертить схемы, но и проектировать печатные платы.

Регулятор мощности на MOSFETах

электроника для дома

Регуляторы мощности переменного тока с фазоимпульсным управлением получили широкое распространение как в устройствах промышленной автоматики, так и в радиолюбительских конструкциях. Регулирующим элементом таких устройств является триодный тиристор, момент (угол) открывания которого регулируется подачей импульса или уровня напряжения на управляющий электрод,

а закрывание происходит в момент уменьшения тока, протекающего через тиристор, до нуля (при активной нагрузке — в момент перехода сетевого напряжения через ноль). Такое управление называется неполным, поскольку можно регулировать только угол открывания тиристора, а момент закрывания не регулируется. Разработанные в последние годы мощные полевые транзисторы с изолированным затвором (MOSFET) позволяют построить несложный ключ для коммутации переменного тока с полным управлением, т.е. открыванием и закрыванием ключа.

Схема регулятора мощности представлена на рис.1. Силовой ключ выполнен на транзисторах VT1, VT2, включенных встречно-последовательно. Наличие в каждом транзисторе внутреннего защитного диода, включенного параллельно каналу в обратной полярности (анодом к истоку, катодом к стоку), позволяет обеспечивать протекание тока в нагрузке при положительных и отрицательных полупериодах сетевого напряжения.

На трех логических элементах микросхемы DD1 выполнен генератор импульсов с регулируемой скважностью. Частота импульсов — около 2 кГц (значительно выше частоты сетевого напряжения). При наличии высокого уровня на выходе инвертора DD1.3 транзисторный ключ открыт, и ток протекает через нагрузку. При этом в положительный полупериод ток протекает через открытый канал транзистора VT1 и защитный диод транзистора VT2, а в отрицательный полупериод — наоборот, через защитный диод транзистора VT1 и открытый канал транзистора VT2. Если же на выходе DD1.3 — низкий уровень, то оба транзистора закрыты, и нагрузка обесточена. Временные диаграммы работы регулятора показаны на рис.2. Очевидно, что изменение скважности импульсов позволяет изменять мощность нагрузки от нуля до максимального значения, соответствующего полному напряжению сети.

Питание микросхемы DD1 производится от однополупериодного выпрямителя с параметрическим стабилизатором, собранным на элементах R2 VD3, VD4, С2 Следует обратить внимание, что стабилизатора напряжения соединен с истоками полевых транзисторов и с общим проводом микросхемы, поэтому напряжение на затворы транзисторов подается относительно их истоков

Преимущество данного способа регулирования мощности перед фазоимпульсным состоит в том, что коммутация нагрузки происходит со значительно большей частотой, чем в регуляторах на тиристорах, это позволяет регулировать мощность для малоинерционных нагрузок.

Указанные на схеме полевые транзисторы IRF840 имеют следующие параметры: ток стока — 8 А, максимальное напряжение между стоком и истоком — 500 В, сопротивление канала в открытом состоянии — 0,85 Ом, рассеиваемая мощность — 125 Вт. Эти транзисторы можно заменить на IRF740, IRFP450, IRFP460, IRFPC50, IRFPC60, IRFP350, IRFP360 BUZ80. Перед установкой в устройство следует убедиться, что транзистор имеет защитный диод (это легко сделать с помощью омметра). Максимальная мощность нагрузки определяется предельным током открытого транзистора, при этом мощность, выделяющаяся на открытом канале, не должна превышать предельно допустимую Частота генератора в случае необходимости может быть изменена подбором емкости С1.

 

Литература

1. Колдунов А Транзисторы MOSFET. — Радиомир, 2004, N4 С 26

2 Семенов Б.Ю Силовая электроника для любителеи и профессионалов — М. СОЛОН-Р 2001

А.ЕВСЕЕВ,

г.Тула.


Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *