Расчет трансформатора для инвертора — Морской флот
Бесплатная программа для расчёта импульсного трансформатора двухтактного преобразователя на ферритовых кольцах
Приведены образцы схем преобразования и выпрямления. На некоторых полях ввода программы и на некоторых результатах расчета, которые нуждаются в комментариях, размещены всплывающие подсказки.
Подробнее о программе
1. Основная работа в программе происходит в группе «Оптимизация».
Автоматический расчет применяется при выборе другого сердечника или при изменении любых исходных данных (за пределами группы «Оптимизация») для получения отправной точки при оптимизации намоточных данных трансформатора.
2. В группе «Оптимизация» при изменении значений с помощью стрелок старт оптимизации запускается автоматически.
Но если новое значение введено «вручную», то следует запускать оптимизацию этой кнопкой.
3. Для ШИМ-контроллеров задается частота, равная половине частоты задающего генератора микросхемы. Импульсы задающего генератора подаются на выходы по очереди, поэтому частота на каждом выходе (и на трансформаторе) в 2 раза ниже частоты задающего генератора.
Микросхемы IR2153, и подобные ей этого семейства микросхем, не являются ШИМ-контроллерами, и частота на их выходах равна частоте задающего генератора.
Не стоит гнаться за большой частотой. При высокой частоте увеличиваются коммутационные потери в транзисторах и диодах. Также при большой частоте из-за малого числа витков ток намагничивания получается слишком велик, что приводит к большому току холостого хода и, соответственно, низкому КПД.
4. Коэффициент заполнения окна характеризует, какую часть окна сердечника займет медь всех обмоток.
5. Плотность тока зависит от условий охлаждения и от размеров сердечника.
При естественном охлаждении следует выбирать 4 — 6 А/мм2.
При вентиляции плотность тока можно выбрать больше, до 8 — 10 А/мм2.
Большие значения плотности тока соответствуют маленьким сердечникам.
При принудительном охлаждении допустимая плотность тока зависит от интенсивности охлаждения.
6. Если выбрана стабилизация выходных напряжений, то первый выход является ведущим. И на него надо назначать выход с наибольшим потреблением.
Остальные выходы считаются по первому.
Для реальной стабилизации всех выходов следует применять дроссель групповой стабилизации.
7. При однополярном выпрямлении, несмотря на больший расход меди, имеет преимущество схема выпрямления со средней точкой, так как потери на двух диодах будут в 2 раза меньше, чем на четырех диодах в мостовой схеме.
8. Для правильной работы дросселя в выпрямителе после диодов перед дросселем не должно быть никаких конденсаторов! Даже маленького номинала.
9. На числах витков обмоток в результатах расчета помещены всплывающие подсказки с числом слоев, занимаемых обмотой.
10. На числах проводов в обмотках в результатах расчета помещены всплывающие подсказки с плотностью тока в обмотке.
Автор: Денисенко Владимир, г. Псков
Трансформатор Тр2 можно намотать на ферритовом кольце, на Ш – образном сердечнике или на сердечнике другой формы.
Сердечник трансформатора подбирается по требуемой мощности на выходе инвертора.
Есть много различных формул и разных программ по расчету ферритовых трансформаторов для импульсных источников питания. Я перепробовал различные способы расчета ферритовых трансформаторов. Не буду вдаваться в их достоинства и недостатки. Каждый выбирает свой вариант расчета ферритового сердечника для импульсного блока питания.
Вот некоторые мои рассуждения по этому поводу.
Во первых: рекомендуемые к использованию, в результате расчетов, ферритовые сердечники (кольца, Ш-образные, броневые) не всегда имеются в наличии в торговых точках.
Во вторых: тот ферритовый магнитопровод, что мы можем достать, как правило, не имеет никаких обозначений на корпусе о его магнитной проницаемости.
Вот и получается, что все с таким трудом проведенные выкладки и расчеты количества витков в обмотках ферритового трансформатора, из за неопределенности в магнитной проницаемости феррита, теряют ценность.
Я подошел к подбору выходного ферритового трансформатора с чисто практической стороны.
Из технической литературы приведу таблицу ферритовых колец для использования в качестве высокочастотный трансформаторов.
В этой таблице дан размер магнитопровода, его поперечное сечение по сердечнику, размер окна.
Произведение площадей, сечения магнитопровода и окна, дает возможность определить его габаритную мощность на частоте в 20 килогерц.
На другой частоте соответственно и мощности будут другие.
Ферритовые сердечники будут работать и на более высокой частоте, но увеличатся потери в магнитопроводе и КПД трансформатора уменьшится. Но ничего, для нашего случая частота автогенератора не превысит 45 — 50 КГц, это нормально.
В нашем случае нужно подобрать ферритовый сердечник на мощность свыше 20 ватт. У меня есть ферритовое кольцо снятое со старой аппаратуры вполне подходящее под наш случай. Его размер: К28×18х8 (наружний диаметр 28, внутренний 18, толщина 8 мм.).
По таблице его габаритная мощность свыше 200 ватт, что более чем достаточно для данного устройства. Не нужно стремиться брать ферритовое кольцо меньших размеров, это якобы уменьшает габариты устройства. Ничего подобного.
Чем больше окно кольца, тем удобнее расположить в нем витки и не нужно стеснять себя в диаметре провода. Чем больше диаметр провода в первичной и вторичной обмоток, тем меньше потерь в проводах и стабильнее выходное напряжение. К тому же, с увеличением сечения магнитопровода, уменьшается количество витков на вольт, то есть будет меньше витков во всех обмотках.
Количество витков на 1 вольт у ферритового трансформатора зависит от сечения сердечника магнитопровода.
Известная формула для определения количества витков на вольт при расчете обмоток трансформатора изготовленного из стальных листов и работающего на частоте 50 герц:
n = 50 /S
Где: n – количество витков на вольт;
S – площадь поперечного сечения сердечника в см. кв.
Для расчета количества витков на вольт ферритового трансформатора на частоты свыше 20 килогерц, я применяю немного видоизмененную формулу:
n = 0,7 / S;
где: S – площадь поперечного сечения ферритового сердечника в см. кв.
Площадь поперечного сечения выбранного нами кольца К28×18х 8 будет:
S = (D — d) / 2 x l = (28 — 18) / 2 x 8 = 10 / 2 x 8 = 40 мм. кв. или 0,4 см. кв. .
Количество витков на 1 вольт выбранного мной ферритового магнитопровода:
n = 0,7 / S = 0,7 / 0,4 = 1,75 витка на 1 вольт.
Тогда количество витков первичной обмотки трансформатора Тр2 будет:
w1 = n x U1 = 1,75 х 145 = 253,75 витка. Примем 254 витка.
Диаметр провода 0,25 — 0,35 мм. Чем больше диаметр провода, тем мощнее будет ИБП, но все должно быть в разумных пределах.
Вторичная обмотка состоит из двух полуобмоток w2-1 и w2-2, каждая из которых рассчитана на полное выходное напряжение.
Количество витков в каждой вторичной полуобмотке:
w2-1 = w2-2 = n x U2 = 1,75 х 15 = 26,25 витка.
С учетом падения напряжения на диодах Д9, Д10 количество витков во вторичной обмотке примем: w2-1 = w2-2 = 28 витков. Диаметр провода 0,6 — 0,7 мм.
Напряжение обратной связи в обмотке w3 должно быть достаточным для работы генератора. Для трансформатора Тр1 оно должно быть 6,5 вольт.
Количество витков в обмотке связи w3 = n x 6,5 = 1,75 x 6,5 = 11,3 витка. Примем: w3 = 12 витков. Диаметр провода 0,3 мм.
Трансформатор Тр2 будем мотать на ферритовом кольце по схеме приведенной на рисунке.
На рисунке показана последовательность намотки ферритового трансформатора.
Ферритовое кольцо (рис. а) необходимо обмотать лакотканью или лучше фторопластовой лентой (рис. б).
Поверх мотается первичная обмотка w1. На начало и конец провода, для жесткости, надевается хлорвиниловая трубочка и провод вместе с трубочкой закрепляется нитками.
Витки обмотки необходимо равномерно распределить по всей длине кольца (рис.в).
Для этого нужно заранее поверхность кольца разделить на секторы. Например на четыре сектора. Тогда в каждом секторе будет по 254 витка / 4 = 63,5 витков. Равномерно и последовательно намотав один сектор, переходим ко второму, еще 63,5 витка и т.д.
Идеальный случай, это намотать обмотку виток к витку, что вряд ли получится.
Начало и конец проводов обмотки не должны касаться друг друга, между ними надо сохранить промежуток в 2-3 мм. Это делается для избежания пробоя между витками начала и конца первичной обмотки.
Намотка на кольцо производится с помощью самодельного челнока, который можно изготовить из медной проволоки, по форме как на рисунке.
Предварительно рассчитав необходимую длину провода (количество витков в обмотке умноженное на длину одного витка, плюс длину выводов) с небольшим запасом, наматываем на челнок. Закрепляем начало провода обмотки , провод вместе с трубочкой, нитками на кольце и мотаем при помощи челнока. При намотке провода на кольцо необходимо следить, чтобы провод не скручивался и не образовывались «барашки». Нужно запастись большим терпением и тогда все получится.
Сначала процедура намотки кольца будет проходить с трудом, но по мере накопления опыта, работа ускорится.
Поверхность намотанной первичной обмотки w1 необходимо обмотать лентой шириной 8 — 10 мм. из лакоткани или лучше фторопласта (рис. г).
Далее мотается вторичная обмотка w2. Две полуобмотки w2-1 и w2-2 мотаются одновременно двумя проводами.
Нужно определить длину каждого провода для w2-1 и w2-2. Предварительно измеряется длина одного витка, а затем умножается на количество витков, плюс 10 сантиметров на длину выводов, плюс запас 20 см.
Провод для вторичной обмотки толстый и мотается без челнока, одновременно двумя проводами. Начала двух проводов закрепляются нитками, а затем виток за витком, двумя проводами продеваются в кольцо. Между началами и концами вторичных полуобмоток нужно оставить на кольце свободным расстояние 5-6 мм. В этот зазор разместить витки обмотки w3
Нужно стараться меньше гнуть провода и чтобы они оба не переплетались между собой.
Необходимо так же равномерно распределить количество витков вторичной обмотки по всему кольцу, т.е. разбить количество витков на четыре сектора, как и в случае первичной обмотки. Необходимо мотать так, чтобы намотка уложилась в один ряд по всей длине, как на рисунке д).
Конец одной полуобмотки (w2-1) спаять с началом другой полуобмотки (w2-2). Получится полная обмотка w2 с выводом посередине (рис. д).
Обмотка обратной связи w3 мотается на первичную обмотку в одном слое с вторичной w2. Мотать ее поверх обмотки w2 нельзя, так как это может повлиять на режим автогенерации.
Доброго времени суток, продолжаю цикл статей о правильной намотке трансформаторов. Будут рассмотрены исключительно практические вопросы, а кому необходима теоретическая часть с расчётами — просто скачайте этот документ и почитайте. Сегодня речь пойдет о намотке трансформатора для сварочного инвертора, который был недавно заказан одним знакомым. Сам инвертор должен легко тянуть тройку электрод, потому долго думал над выбором сердечника, было несколько вариантов — Е65, Е70 и R63, первые два состоят из двух половинок, третий трансформатор — кольцо с наружным диаметром 63 мм, было выбрано именно оно, так как почти вся обмотка на нём снаружи и охлаждение таким образом будет оптимальное, да и вторичную обмотку можно сделать потолще, площадь окна это позволяет, что только на руку. Кольцо обладает проницаемостью 2200 (НН), покупал на радиорынке за 53 гривны, не так уж и дорого. Прежде всего его надо разломить с зазором 0.1 мм, сделать это оказалось непросто: оно лопнуло сразу в 3-х местах, но ничего, на форуме знающие люди посоветовали обмазать его хорошенько эпоксидной смолой и обмотать изолентой, так и сделал, обмотал изолентой желтого цвета, ещё раз пропитал эпоксидной смолой. Первичная обмотка ферритового трансформатора намотана проводом 1.5 мм вдвое, содержит 38 витков, вторичная обмотка намотана литцендратом, а точнее петлёй размагничивания от старого кинескопного монитора, есть толстые и тонкие петли, надо найти толстую — её как раз хватило на 12 витков. Само собой, что лудить такую жилу очень неудобно, но есть другой, более удобный вариант — обжечь жилу над газовой плитой. После соскрести ножом лак, и посадить в медный наконечник. На этом пока что всё, до встречи. Колонщик. Обсудить статью ТРАНСФОРМАТОР ДЛЯ СВАРОЧНОГО ИНВЕРТОРА |
Расчет трансформатора для обратноходового импульсного источника питания (Flyback)
Популярность обратноходовых источников питания (ОИП, Flyback) последнее время сильно возросла в связи с простотой и дешевизной этого схемного решения – на рынке можно часто встретить интегральные схемы, включающие в себя практически всю высоковольтную часть такого источника, пользователю остается только подключить трансформатор и собрать низковольтную часть по стандартным схемам. Для расчета трансформаторов также имеется большое количество программного обеспечения – начиная от универсальных программ и заканчивая специализированным ПО производителей интегральных схем.Сегодня же я хочу поговорить о ручном расчете импульсного трансформатора. «Зачем это нужно?», может спросить читатель. Во-первых, ручной расчет трансформатора подразумевает полное понимание процессов, происходящих в источнике питания, чего зачастую не происходит, если начинающий радиолюбитель рассчитывает трансформатор в специальном ПО. Во-вторых, ручной расчет позволяет выбирать оптимальные параметры функционирования источника (и иметь представление, какой параметр в какую сторону надо изменить для достижения заданного результата) еще на этапе разработки.
Итак, начнем. Структурная схема ОИП представлена на рис. 1. Он состоит из следующих основных функциональных узлов: ключ Sw, трансформатор Т1, выпрямитель выходного напряжения VD1 и C2, фильтр высокочастотных помех С1 и снаббер Snb.
Рис. 1
Работает такой источник следующим образом (см. упрощенные графики на рис. 2): в начальный момент времени t0 ключ Sw открывается, подавая входное напряжение Uin на первичную обмотку трансформатора Т1. В это время напряжение на нижнем выводе обмотки I (точка а) равно нулю (относительно отрицательного провода входного напряжения), в обмотке I начинает линейно нарастать ток, а на обмотке II появляется напряжение, пропорциональное коэффициенту трансформации Т1 (UoutInv). Но полярность этого напряжения оказывается отрицательной (на верхнем по схеме выводе обмотки II, точка b), поэтому диод VD1 закрыт и напряжение на выходной конденсатор С2 не проходит. За промежуток Ton (от t0 до t1) ток через обмотку I линейно нарастает до значения Imax, и энергия запасается внутри трансформатора Т1 в виде магнитного поля.
Рис. 2
В момент времени t1 ключ Sw резко закрывается, ток через обмотку I прекращается и в ней возникает ЭДС самоиндукции, направленная так, чтобы продолжить прекратившийся ток. В этот момент обмотка I сама становится источником напряжения. Так получается потому, что энергия в катушке индуктивности запасается в виде тока (на самом деле, в виде магнитного поля, но он пропорционален току через катушку, поэтому формула энергии в катушке A = LI²/2), но по закону сохранения энергии она не может исчезнуть бесследно, она должна куда-то перейти. Следовательно, ток в катушке не может прекратиться мгновенно, поэтому катушка сама становится источником напряжения, причем любой амплитуды (!) – такой, чтобы обеспечить сразу после закрытия ключа продолжение того же самого тока Imax. Это является первой важной особенностью катушки индуктивности, которую следует запомнить –
Все, что описано выше так и происходило бы, если бы обмотка I была единственной обмоткой трансформатора Т1. Но в нем еще есть обмотка II, индуктивно связанная с I. Поэтому, в момент времени t1 в ней тоже возникает ЭДС, направленная так, что в точке b оказывается плюс по отношению к земле. Эта ЭДС открывает диод VD1 и начинает заряжать конденсатор C2 током I2max. Т.е. заряд конденсатора C2 и передача энергии в нагрузку происходит в тот момент времени, когда ключ Sw закрыт. Именно поэтому источники питания, построенные по такому принципу, называют обратноходовыми – потому что в них нет прямой передачи энергии из высоковольтной части в низковольтную, энергия сначала запасается в трансформаторе, а потом отдается потребителю.
В интервал времени от t1 до t2 линейно спадающий от I2max до 0 ток I2 вторичной обмотки поддерживает магнитное поле внутри катушки в соответствии с законом сохранения энергии и не дает напряжению на первичной обмотке (т.к. они индуктивно связаны) вырасти до неконтролируемого значения. Напряжение на обмотке I в этот момент становится равно напряжению выхода, умноженному на коэффициент трансформации Т1. Однако, полярность этого напряжения такова, что оно складывается с входным напряжением Uin и прикладывается к закрытому ключу Sw. Т.е. на закрытый ключ Sw прикладывается напряжение больше входного! Это также является важной особенностью ОИП, которую следует запомнить.
В момент времени t2 энергия, запасенная в трансформаторе Т1 заканчивается, диод VD1 закрывается, напряжение в точке b становится равным нулю, в точке a – входному напряжению питания, и все процессы в схеме прекращаются до момента t3, когда весь цикл повторяется с самого начала.
Описанный режим работы ОИП называется режимом разрывных токов – т.е. за интервал Toff (t1-t3) вся энергия, запасенная в трансформаторе Т1 передается в нагрузку, поэтому, в момент t3 ток через первичную обмотку I начинает нарастать с нуля. Существует также режим неразрывных токов, когда на момент t3 некоторая часть энергии еще продолжает находиться в трансформаторе Т1, и ток через обмотку I в момент t3 начинается не с нулевого значения. Данный режим имеет свои особенности, преимущества и недостатки, о которых мы поговорим в следующий раз.
Итак, какими основными особенностями обладает ОИП в режиме разрывных токов? Выпишем основные пункты:
- Передача энергии от источника к потребителю в ОИП не идет напрямую, энергия сначала запасается в трансформаторе, а затем передается в нагрузку. Это однозначно определяет фазировку первичной и вторичной обмоток, а также заставляет использовать только однополупериодный выпрямитель на выходе блока. Также отсюда следует неявный вывод 2, который, как показала моя личная практика, к сожалению, не до конца понимают даже достаточно опытные конструкторы блоков питания.
- Максимальная мощность, которую может выдать ОИП в нагрузку, кроме всего прочего, ограничена максимальным количеством энергии, которую может запасти трансформатор! А это, в свою очередь, определяется конструктивными особенностями сердечника и не зависит от обмоток и количества их витков (ниже в статье я рассмотрю данный «парадокс» отдельно и приведу математические доказательства). Эта особенность ограничивает применение ОИП там, где нужны большие выходные мощности.
- Низковольтная цепь ОИП состоит из диода, конденсатора и, возможно, дополнительных фильтрующих элементов. Однако, в ОИП первым всегда стоит диод, затем идет конденсатор и никак иначе.
- В установившемся режиме работы ОИП количество энергии, полученное первичной обмоткой I трансформатора Т1 за время Ton равно (без учета потерь) количеству энергии, отданному обмоткой II за время Toff. Поскольку скорость приема или отдачи энергии катушкой определяется напряжением на ней, то зависимость между напряжением «заряда» и «разряда» определяется именно интервалами Toff и Ton. Т.е., по сути, в самом сложном режиме работы блока Duty cycle (коэффициент заполнения, D), равный Ton/(Ton + Toff) определяет отношение обратного напряжения на обмотке I к напряжению питания Uin. Этот пункт будет пояснен подробнее ниже.
- По закону сохранения энергии, ток I2max, отдаваемый обмоткой II в нагрузку в момент времени t1 численно равен току Imax, только что протекавшему в первичной обмотке, умноженному на отношение количества витков в обмотке I к количеству витков в обмотке II (пояснение ниже).
- Импульсное значение тока I2max значительно превышает средний выходной ток блока питания (в 2.5 и более раз), поэтому на выпрямительном диоде VD1 может рассеиваться значительная мощность. Именно эта особенность ограничивает применение ОИП там, где нужны большие выходные токи.
- То же самое (высокое импульсное значение тока) относится и к вторичной обмотке II.
- Обратное напряжение на диоде VD1 в несколько раз выше выходного напряжения. Это происходит из-за того, что обычно обратное напряжение на первичной обмотке (которое является прямым для диода) выбирается в несколько раз ниже входного, поэтому входное (которое является обратным для диода) после трансформации оказывается в несколько раз выше выходного.
Пояснение к п. 4. Из физики мы помним формулу для катушки индуктивности:
которая означает, что напряжение на катушке прямо пропорционально ее индуктивности, умноженной на скорость изменения тока в ней. Что это нам дает? Прежде всего, то, что если мы прикладываем к катушке постоянное напряжение U, то скорость изменения тока в ней постоянна. Это позволяет переписать формулу для постоянного напряжения без дифференциалов:
U = L*(ΔI/Δt),
и именно в соответствии с этой формулой графики тока на рис. 2 прямые. Далее, если мы прикладываем напряжение Uin к катушке на время Ton, ток в ней возрастет до значения
Imax = Uin*Ton/L
Теперь мы хотим (в самом нагруженном режиме работы), чтобы вся энергия катушки, которую мы только что набрали, была передана в нагрузку за интервал Toff, т.е. на момент t3 ток в катушке должен упасть до нуля. Здесь для упрощения представим, что мы как подаем, так и снимаем напряжение/ток с одной и той же катушки I, позже я объясню, почему такое допущение возможно. Посчитаем, на какое напряжение мы можем «разряжать» катушку, чтобы ток в момент t3 достиг нуля:
Udis = L*Imax/Toff,
Подставляем и упрощаем:
Udis = L*Uin*Ton/(L*Toff) = Uin*Ton/Toff
Т.е. напряжение, на которое мы должны «разряжать» катушку в моменты закрытия ключа Sw зависит только от входного напряжения и интервалов «заряда»-«разряда». Вспомним формулу коэффициента заполнения D:
D = Ton/(Ton + Toff),
таким образом:
Udis = Uin*D/(1 – D)
Но, напряжение, на которое мы «разряжаем» катушку – это и есть то обратное напряжение, которое возникает в первичной обмотке в моменты закрытия ключа. Т.е. мы получили, что оно зависит только от входного напряжения и коэффициента заполнения D и определяется формулой:
Uinv = Uin*D/(1 – D)
При работе в реальных условиях значение коэффициента заполнения D будет меняться в зависимости от входного напряжения и нагрузки блока питания. Свое максимальное значение D будет принимать при минимальном входном напряжении и максимальной выходной мощности — этот режим работы считается самым сложным, и данное максимальное значение D и задается при проектировании блока. Что будет в те моменты, когда входное напряжение блока будет выше или нагрузка будет неполной? D будет принимать меньшие значения, т.к. от более высокого напряжения энергия быстрее «запасется» в первичной обмотке, или же (в случае меньшей нагрузки) надо просто «запасать» меньшее количество энергии. В любом случае, обратное напряжение на первичной обмотке будет всегда одинаковым, т.к. оно жестко связано с выходным напряжением, а то, в свою очередь, стабилизируется схемой. Итак, максимальное обратное напряжение на ключе равно:
Usw = Umax + Umin*D/(1 – D)
Это важный момент при проектировании ОИП, т.к. обычно максимальное обратное напряжение на ключе является исходным параметром, т.е. максимальный коэффициент заполнения D также является исходной величиной. На практике обычно применяют следующие максимальные значения D: 25% (1/4), 33% (1/3) и реже 50% (1/2). Как вы понимаете, в последнем случае максимальное обратное напряжение на ключе будет равно удвоенному минимальному входному напряжению, что усложняет выбор полупроводникового прибора. Более низкие максимальные значения D, в свою очередь, снижают максимальную мощность при том же токе Imax, затрудняют процесс управления ключом Sw и снижают стабильность работы блока.
Почему же здесь мы применили допущение, что мы как подаем энергию, так и снимаем ее с первичной обмотки I, и что будет в реальности, когда снимается энергия с катушки II? То же самое. Напряжение на выводах любой обмотки трансформатора пропорционально скорости изменения магнитного поля в сердечнике (а поле пропорционально току, поэтому напряжение пропорционально скорости изменения тока). Поэтому не важно, с какой обмотки мы будем снимать энергию, если мы будем делать это с одной и той же скоростью, магнитное поле в трансформаторе будет уменьшаться одинаково, а на выводах первичной обмотки будет одно и то же напряжение. Но на какое напряжение надо «разряжать» вторичную обмотку, чтобы снятие энергии происходило с той же самой скоростью? Для этого сначала рассмотрим ток во вторичной обмотке.
Пояснение к п. 5. Пусть обмотка I имеет N1 витков, в то время как обмотка II – N2. Магнитное поле создается током, проходящим через каждый виток катушки, т.е. оно пропорционально произведению I*N. Тогда, получаем Imax*N1 = I2max*N2 (исходя из того, что обе обмотки намотаны в абсолютно одинаковых условиях), отсюда начальный ток вторичной обмотки:
I2max = Imax*N1/N2
Итак, ток во вторичной обмотке будет в N1/N2 раз выше, чем в первичной. Но на какое напряжение мы должны «разряжать» вторичную обмотку, чтобы к моменту t3 потратить всю энергию, запасенную в трансформаторе? Очевидно, что делать это мы должны с точно такой же скоростью; т.е. в каждый отдельный момент времени трансформатор будет терять одно и то же значение энергии dA(t). Но в первом случае dA(t) = Udis*I1(t)*dt (получено из A = W*T, W = U*I), а теперь это будет dA(t) = Uout*I2(t)*dt. Приравняем эти две функции:
Uout *I2(t) = Udis*I1(t), следовательно, в самом начале «разряда» моментальные мощности разряда должны быть равны:
Uout*I2max = Udis*Imax,
Uout = Udis*Imax/I2max = Udis*Imax/(Imax*N1/N2) = Udis*N2/N1
Т.е. для того, чтобы потратить всю энергию трансформатора к моменту t3, мы должны «разряжать» вторичную обмотку II на напряжение Udis*N2/N1, при этом ток разрядки будет линейно падать от Imax*N1/N2 до нуля. Таким образом, мы установили связь между выходным напряжением блока, количеством витков в обмотках и обратным напряжением на первичной обмотке трансформатора.
На этом сугубо теоретическая часть заканчивается, и мы можем перейти к практике. Первый вопрос, который, скорее всего, возникает на данный момент у читателя – это с чего вообще начать разработку ОИП? Ниже я приведу рекомендованную последовательность шагов. Начнем с ситуации, когда трансформатор планируется изготовить полностью самостоятельно (на него нет жестких ограничений).
- Определяем выходные напряжения и токи источника питания.
- Увеличиваем выходные напряжения на величину, падающую на выпрямительных диодах (VD1). Лучше всего воспользоваться справочной информацией, но в первом приближении можно брать 1В для обычных кремниевых диодов и 0.3В для диодов Шоттки. Особую точность следует соблюдать, когда ОИП имеет несколько выходных обмоток с разным напряжением, т.к. стабилизовать напряжение возможно только на одной из них.
- Считаем суммарную выходную мощность трансформатора.
- Считаем расчетную входную мощность блока как Pin = Pout/0.8 (здесь берется КПД блока 80%).
- Определяем частоту преобразования F. Обычно выбирается частота от 20КГц до 150КГц. Частоты ниже 20КГц могут быть слышны человеческому уху (блок будет «пищать»), частоты выше 150КГц накладывают более серьезные ограничения на элементную базу, также увеличиваются потери на переключение полупроводников (ключа и диодов). Увеличение частоты преобразования позволяет уменьшить габариты трансформатора, наиболее распространенный диапазон частот для ОИП: от 66 до 100 Кгц.
- Вычисляем максимальное входное напряжение, от которого нам придется работать. Обычно оно вычисляется как выпрямленное напряжение сети +20%, т.е. Umax = Uсети*1.7 (391В для сети 230В). На это напряжение также должен быть рассчитан конденсатор входного фильтра (не менее 400В в данном случае).
- Вычисляем минимальное входное напряжение, от которого нам придется работать. Обычно вычисляется как минимальное допустимое рабочее напряжение -20%, минус просадка напряжения на фильтрующем конденсаторе за полупериод входного напряжения. Для сети 230В и емкости конденсатора входного фильтра из расчета не менее 1мкф на 1 ватт нагрузки, можно брать (в среднем) значение Umin = 220В. Если представить, что напряжение на конденсаторе вообще не просаживается от одного полупериода входного напряжения до другого, то Umin можно взять 260В.
- Определяем коэффициент заполнения D исходя из максимально допустимого обратного напряжения на ключе (считается по формуле Uinv = Umax + Umin*D/(1 – D)).
- Рассчитываем количество энергии, которую необходимо передать во вторичную обмотку за один импульс: Aimp = Рin*1s/F = Рin/F.
- Решаем систему уравнений для самого тяжелого режима работы: A = LImax²/2, Umin = LImax*F/D, получаем L = Umin²*D²/(2*Aimp*F²), Imax = Umin*D/(L*F) – это будет требуемая индуктивность первичной обмотки и максимальный ток, протекающий через нее.
- Исходя из полученного Imax выбираем ключ.
- Если Imax получился несколько больше, чем может обеспечить имеющийся (выбранный) ключ, меняем исходные параметры – увеличиваем D (насколько возможно исходя из допустимого обратного напряжения ключа), увеличиваем емкость фильтрующего конденсатора, чтобы поднять Umin. На первый взгляд может показаться удивительным, но максимальный ток в первичной обмотке не зависит от частоты – если всё подставить в формулы, получим Imax = 2*Pin/(Umin*D). Исходя из этой формулы, можно было рассчитать максимальный ток и на этапе 8 (сразу после выбора D), но там было бы сложно объяснить, откуда взялся такой расчет.
- Если значение Imax все равно оказывается больше допустимого и увеличить его никак нельзя, следует рассмотреть конструкцию ОИП в режиме неразрывных токов.
- Исходя из требуемой индуктивности первичной обмотки и максимального тока в ней, выбираем сердечник трансформатора, рассчитываем необходимый зазор и количество витков первичной обмотки (формулы будут ниже в статье).
- По формуле N2 = Uout*N1*(1 – D)/(Umin*D) рассчитываем количество витков вторичной обмотки.
- Определяем среднеквадратичное значение токов в обмотках трансформатора по формуле Irms = Imax*SQRT(D/3), исходя из которых рассчитываем диаметр провода, необходимого для намотки. Чаще всего в импульсных источниках питания применяется плотность тока от 2 до 5 А/мм².
- Мотаем трансформатор по всем правилам намотки трансформаторов для ОИП.
- Для того, чтобы убедиться в правильности намотки, измеряем индуктивность первичной обмотки.
Теперь немного рассмотрим сам трансформатор и его конструкцию. Традиционно для импульсных источников питания трансформатор изготавливается на каком-либо сердечнике, выполненном из материала с высокой магнитной проницаемостью. Это позволяет при том же самом количестве витков обмоток сильно увеличить их индуктивность, т.е. сократить количество витков для достижения заданной индуктивности, и, следовательно, уменьшить габариты намотки. Однако, применение сердечника добавляет и недостатки – за счет магнитного гистерезиса в сердечнике теряется некоторая часть энергии, сердечник нагревается, причем потери в сердечнике растут с увеличением частоты (еще одна причина, из-за которой нельзя сильно повышать частоту преобразования). Также добавление сердечника вносит новое, ранее нигде не озвучиваемое ограничение – максимально допустимую плотность потока магнитной индукции Bmax. На практике это проявляется в том, что если увеличивать ток через обмотку, в определенный момент времени, когда ток достигнет определенного максимального значения, сердечник войдет в насыщение и дальнейшее увеличение тока не будет вызывать такое же как раньше увеличение магнитного потока. Это, в свою очередь, приведет к тому, что «относительная индуктивность» обмотки резко упадет, что вызовет еще более быстрое нарастание тока через нее. На практике, если не предусмотреть защиту ключа Sw ОИП от входа сердечника в насыщение, ключ просто сгорит от перегрузки по току. Поэтому во всех схемах ОИП, за исключением простейших блокинг-генераторов, применяется контроль тока через ключ Sw и досрочное закрытие ключа при достижении максимально допустимого тока через первичную обмотку.
Насколько же велико это максимальное значение плотности потока магнитной индукции? Для наиболее распространенного материала сердечников – феррита – оно считается равным 0.3Т. Это – среднее значение, оно может отличаться для каждого конкретного материала, поэтому здесь неплохо обратиться к справочнику. Также, оно зависит от температуры сердечника и, как вы, наверное, уже догадались, падает с ее увеличением. Если вы проектируете ОИП, предназначенный для работы в экстремальных условиях, где температура сердечника может доходить до 125 градусов, уменьшайте Bmax до 0.2Т.
Основная формула, которой вам придется пользоваться при расчете трансформаторов – это индуктивность обмотки по ее габаритам:
L = (μ0*μe*Se*N²)/le, где
μ0 – абсолютная магнитная проницаемость вакуума, 4πе-7,
μe – эффективная магнитная проницаемость сердечника,
Se – эффективная площадь сечения магнитопровода, м².
N – количество витков
le – длина средней магнитной линии сердечника, м
Плотность потока магнитной индукции в сердечнике:
B = (μ0*μe*I*N)/le, где
I – ток через обмотку, А
Таким образом, исходя из максимальной допустимой плотности потока магнитной индукции, максимально допустимый ток для обмотки будет равен:
Imax = (Bmax*le)/(μ0*μe*N)
А теперь еще один очень важный момент – на практике, если подставить реальные данные трансформатора в вышеприведенные формулы, окажется, что максимально допустимый ток в первичной обмотке оказывается в несколько раз меньше того, который нам нужен! Т.е. сердечник будет введен в насыщения еще до того, как мы сможем «вкачать» в него требуемую энергию Aimp. Так что же делать, не увеличивать же габариты трансформатора до неприличных значений?
Нет. Надо вводить в сердечник немагнитный зазор! Введение немагнитного зазора сильно снижает эффективную магнитную проницаемость сердечника, позволяя пропускать через обмотки значительно больший ток. Но, как вы понимаете, это потребует большего числа витков для достижения требуемой индуктивности обмотки.
Рассмотрим формулы для сердечника с зазором. Эффективная магнитная проницаемость сердечника с зазором:
μe = le/g, где
g – суммарная толщина зазора, м.
Следует отметить, что данная формула справедлива только если получаемая μe много меньше исходной магнитной проницаемости (несколько раз), а g много меньше размеров поперечного сечения сердечника. Итак, рассмотрим формулу индуктивности обмотки на сердечнике с зазором:
L = (μ0*Se*N²)/g
Формула от введения зазора стала только проще. Максимально допустимый ток через обмотку:
Imax = (Bmax*g)/(μ0*N)
Ну и последняя формула, которую можно вывести и самостоятельно. Размер зазора для заданного тока:
g = (I*μ0*N)/Bmax
А теперь сделаем интересный вывод. Как вы помните, энергия, запасенная в катушке, выражается формулой A = LI²/2. Так какую максимальную энергию можно запасти в каком-то абстрактном сердечнике? Подставим данные в формулы.
Amax = (μ0*Se*N²)*(Bmax*g) ²/((μ0*N) ²*2g) = Se*g*Bmax²/2μ0
Сейчас вы можете удивиться, но максимальная энергия, которую можно запасти в сердечнике, не зависит от того, какие обмотки на нем намотаны! Но это и логично, ведь энергия выражается в магнитном поле, а обмотки лишь позволяют его менять в ту или другую сторону! Количество витков в обмотках определяет только скорость, с которой магнитная индукция может достигнуть своего максимального значения при данном подведенном напряжении, но это максимальное значение определяется только конструкцией сердечника!
Данный вывод имеет огромное значение при проектировании ОИП на унифицированных сердечниках. Если перед вами стоит именно такая задача, то, прежде всего, вам необходимо рассчитать, какое максимальное количество энергии способен «впитать» выбранный сердечник за один импульс, чтобы понять, подходит ли он для вашей мощности блока. Как вы понимаете, в этом случае максимальную мощность блока можно повысить только за счет повышения частоты преобразования – чем чаще мы будем перекачивать энергию Amax от входа на выход, тем большую мощность блока в результате сможем получить.
Также, из полученной формулы видно, что количество энергии, которое может «уместиться» в сердечнике прямо пропорционально немагнитному зазору! Это позволяет использовать маленькие сердечники на больших мощностях за счет увеличения зазора в них. Ограничением теперь будет только физические размеры – увеличение зазора вызывает уменьшение магнитной проницаемости, что требует большее количество витков.
А теперь вернемся к структурной схеме ОИП на рис. 1. В ней остались два блока, о которых я ничего не сказал – это конденсатор С1 и снаббер Snb.
Назначение конденсатора С1 – заземление выходной части блока по высоким частотам. Дело в том, что любой трансформатор, даже намотанный по всем правилам с экранами, имеет какую-то межобмоточную емкость. Прямоугольное высокочастотное напряжение огромной амплитуды из точки а проходит через эту емкость в выходные цепи блока. Конденсатор С1, имеющий емкость намного больше емкости трансформатора Т1, заземляет выход блока по высоким частотам. Значение емкости этого конденсатора в ОИП чаще всего выбирают в районе 2нф, напряжение – около киловольта. Если предполагается жесткое заземление выхода блока (например, используется только розетка с заземлением), С1 можно не ставить.
Необходимость в Снаббере Snb также вытекает из неидеальности трансформатора Т1, но уже совсем другого рода. Не смотря на то, что обмотки I и II индуктивно связаны между собой, эта связь не составляет 100%. В схемотехнике ОИП принято говорить, что обмотка I представляет собой две части, соединенные последовательно, где первая полностью индуктивно связана с обмоткой II, а вторая – полностью изолирована от нее. Эту вторую часть обмотки I называют «индуктивностью рассеяния».
Когда в момент t1 ток в первичной обмотке (обоих частях ее) резко прекращается, индуктивность рассеяния также пытается его продолжить. А так, как она не связана ни с какой другой обмоткой, она генерирует высоковольтный импульс, прикладываемый к закрытому ключу Sw. Энергия этого импульса во много раз меньше полезной энергии Aimp (чем лучше трансформатор, тем она меньше вообще), но и ее может оказаться достаточно, чтобы повредить ключ (в случае с биполярным транзистором, например, ее вполне хватит для лавинного пробоя). Для защиты ключа от этого импульса, он гасится на специальном схемном решении.
Рис. 3
Самый простой вариант – RCD снаббер, выполненный из диода, конденсатора и резистора (см. рис. 3). Обратное напряжение, возникающее на обмотке I, открывает диод VD и начинает заряжать конденсатор С. В результате, вся энергия импульса передается в конденсатор. В перерывах между импульсами конденсатор разряжается через резистор R. Т.е. энергия, снимаемая с индуктивности рассеяния, превращается в конечном счете в тепло на резисторе R, поэтому мощность этого резистора должна быть значительной (достигает единиц ватт). Преимуществом снаббера можно считать его схемную простоту, и то, что часть энергии из конденсатора С можно выкачать обратно в трансформатор Т применяя медленный диод VD, но эти процессы уже несколько сложней нашей простой статьи. Основным же недостатком снаббера является то, что на нем падает и полезная мощность! Ведь рабочее обратное напряжение первичной обмотки Vinv также заряжает конденсатор до этого значения, т.е. полезная мощность Uinv²/R теряется впустую.
Схемным решением, лишенным этого недостатка является супрессор. Он представляет собой последовательно соединенный быстрый диод VD1 и мощный и быстрый стабилитрон VD2. Когда индуктивность рассеяния генерирует свой высоковольтный импульс, он открывает диод VD1, пробивает стабилитрон VD2 и энергия импульса рассеивается на нем. Стабилитрон VD2 выбирается с большим напряжением пробоя, чем обратное напряжение Uinv, поэтому он не рассеивает полезной мощности блока. К недостаткам супрессора можно отнести более высокий уровень электромагнитных помех, связанный с резким открытием и закрытием полупроводниковых приборов.
Что будет, если этот высоковольтный импульс не погасить ничем? В случае биполярного ключа, скорее всего, в нем возникнет лавинный пробой и блок питания перейдет в режим кипятильника. Современные же полевые транзисторы устойчивы к лавинному пробою и позволяют рассеивать некоторое количество энергии на стоке (это описано в документации), поэтому такой транзистор может работать и без снаббера или супрессора – его роль будет выполнять сам транзистор. Более того, я встречал некоторые дешевые китайские блоки питания, в которых так и было сделано. Однако, я настоятельно не рекомендую такой режим работы, т.к. он дополнительно снижает надежность блока. Супрессорный диод (стабилитрон) стоит очень дешево и рассчитан на колоссальные импульсные мощности (600W, 1.5KW), так почему бы не применять его по назначению?
Также из вышеописанного следует еще один вывод. Независимо от того, решили ли вы применять снаббер или супрессор, обратное напряжение на закрытом ключе будет еще выше, чем рабочее рассчитанное значение Usw! Это следует иметь в виду при выборе ключа.
Обычно современные ключевые транзисторы и микросхемы имеют допустимое обратное напряжение 600 – 800 вольт. При Umax = 391В, Umin = 220В, обратное напряжение на ключе Usw будет иметь следующие значения (в зависимости от D): D = 25%, Usw = 464B; D = 33%, Usw = 501B; D = 50%, Usw = 611B. Это означает, что для ключей с максимальным обратным напряжением 600В следует выбирать только D = 33% или меньше. Для ключей с обратным напряжением 700В можно выбирать D = 50%.
Ну и в завершении статьи приведу простой пример расчета ОИП. Допустим, мы хотим сделать простой блок питания, позволяющий получить на своем выходе 12В 1А. Рассчитаем его по пунктам:
- Выход блока – 12В 1А.
- До выходного диода (будем применять обычный кремниевый) должно быть 13В.
- Выходная мощность трансформатора – 13Вт.
- Расчетная входная мощность блока Pin = 13/0.8 = 16Вт.
- F = 100 КГц.
- Umax = 391В.
- Umin = 220В (емкость конденсатора входного фильтра – 22мкф).
- D = 33%, Uinv = 110В, Usw = 501В. Будем ориентироваться на ключи с обратным напряжением 600В.
- Aimp = 16/100000 = 1.6e-4Дж = 160мкДж.
- L = 1.65е-3Гн = 1.65мГн, Imax = 0.44А
- Производим выбор сердечника, расчет параметров намотки и зазора.
А теперь, для сравнения рассчитаем тот же ОИП для случая, когда допустимое напряжение сети может быть в интервале 85-230В. В чем будут отличия?
- Umax = 391B
- Umin = 85B (емкость конденсатора фильтра надо будет увеличить до 47мкф)
- D = 60%, Uinv = 128В, Usw = 519В, Будем ориентироваться на ключи с обратным напряжением 600В.
- Aimp = 16/100000 = 1.6e-4Дж = 160мкДж.
- L = 813мкГн, Imax = 0.63А
Заметьте, что параметры максимального тока через ключ изменились не столь значительно — с 0.44А до 0.63А, индуктивность упала в два раза, однако диапазон допустимых входных напряжений расширился очень существенно. В этом заключается еще одно преимущество ОИП — легкость в создании источников питания, работающих от широкого диапазона входных напряжений.
Возможно, в данной статье не до конца рассмотрены все нюансы построения ОИП, однако ее объем и так получился больше, чем планировалось. Но тем не менее, я надеюсь, что она сможет помочь начинающим радиолюбителям понять принципы и самостоятельно создавать обратноходовые источники питания.
РадиоКот :: Расчёт импульсных трансформаторов
РадиоКот >Чердак >Расчёт импульсных трансформаторов
Хочу рассказать о расчёте импульсных трансформаторов т.к. в сети очень много методик, но все они какие – то отдалённые и примерные с какими то непонятными коэффициентами, числами, откуда они взялись никто не описывает а приводит конечный результат в итоге результат получается с большим отклонением!!
Начнём с того, что мы захотели разработать некое устройство, посчитали необходимую требуемую мощность на выходе, допустим она равна 250 Вт, далее необходимо выбрать магнитопровод обеспечивающий заданую мощность.
Для этого существует реальная формула для оценки входной габаритной мощности магнитного элемента:
- кф – коэффициент формы напряжения или тока: для синуса =1,11 для прямоугольника =1.
- Кзс – коэффициент заполнения геометрического сечения магнитопровода материалом феромагнетика Кзс = 0,6 – 0,95 и даётся в справочной литературе на магнитный элемент.
- Кок — коэффициент заполнения окна магнитопровода сечениями проводников, Кок =0,35.
- n0 – коэффициент показывающий какую часть катушки занимает первичная обмотка, для трансформаторов n0 = 0,5.
- Sc – сечение магнитопровода.
- Sок – сечение окна магнитопровода.
- J – плотность тока, при естественном охлаждении 3500000 А/м2, при принудительном 6000000 А/м2
- В – рабочая индукция магнитопровода.
- F — частота напряжения либо тока Гц.
И так по этой формуле мы оценим реальную габаритную мощность трансформатора и прикиним что можем выжать с этого сердечника!
Например:
Имеем трансформатор от компьютерного блока питания с параметрами.
Сечение магнитопровода Sс = 0,9 см2
Сечение окна Sок = 2,4 см2
Рабочая индукция В = 0,15 (ориентировочное значение)
Частота предпологаемой работы нашего устройства f = 50кГц.
Все величины в единицах СИ!!!!!!!!! Т.е. переводим всё в метры, амперы, герцы, и.т.д.
Получим:
Так сердечник оценили, идём дальше, теперь необходимо разобраться с витками и сечением провода.
Начнём с витков в первичной обмотки, для этого существует замечательная формула:
Все данные мы рассмотрели выше, кроме U1— это непосредственно напряжение на первичной обмотке.
Допустим строим полумостовой преобразователь, Еп = 24В, следовательно U1 = 12В т.к первичная обмотка будет подключена через ёмкостной делитель т.е 24/2.
Далее считаем.
Вторичная обмотка допустим имеет напряжение 50В.
Все значения округляем до целого числа!
Теперь посчитаем сечение проводников обмоток.
P1 – мощность необходимая нам на выходе и принятая ранее 250 Вт.
- Вторичной: (потерями пренебрежём)
При намотке трансформатора не забываем про вытеснение тока на поверхность проводника в зависимости от частоты и производим расщепление проводника (литцендрант) или используем фольгу.
- Формула для расчёта расщепленного проводника:
Теперь не трудно посчитать и диаметр провода и раскладку провода!
В этой статье я хотел коротко и доступно рассказать о расчёте импульсного трансформатора, с разъяснением основных коэффициентов, что откуда берётся.
Также не забываем, что для более качественного расчёта необходимо использовать справочные данные магнитного элемента.
В итоге хотелось сказать, что использую даную методику уже несколько лет для расчёта как низкочастотных так и ВЧ трансформаторов.
Используемая литература:
Обрусник В.П. Магнитные элементы электронных устройств: Учебное пособие. — Томск: ТУСУР 2006 — 154 с.
Файлы:
22
Все вопросы в Форум.
Как вам эта статья? | Заработало ли это устройство у вас? |
Онлайн расчет трансформатора за 6 простых шагов
Ремонт современных электрических приборов и изготовление самодельных конструкций часто связаны с блоками питания, пускозарядными и другими устройствами, использующими трансформаторное преобразование энергии. Их состояние надо уметь анализировать и оценивать.
Считаю, что вам поможет выполнить расчет трансформатора онлайн калькулятор, работающий по подготовленному алгоритму, или старый проверенный дедовский метод с формулами, требующий вдумчивого отношения. Испытайте оба способа, используйте лучший.
Содержание статьи
Сразу заостряю ваше внимание на том вопросе, что приводимые методики не способны точно учесть магнитные свойства сердечника, который может быть выполнен из разных сортов электротехнических стали.
Поэтому реальные электрические характеристики собранного трансформатора могут отличаться на сколько-то вольт или число ампер от полученного расчетного значения. На практике это обычно не критично, но, всегда может быть откорректировано изменением числа количества в одной из обмоток.
Поперечное сечение магнитопровода передает первичную энергию магнитным потоком во вторичную обмотку. Обладая определенным магнитным сопротивлением, оно ограничивает процесс трансформации.
От формы, материала и сечения сердечника зависит мощность, которую можно преобразовывать и нормально передавать во вторичную цепь.
Как пользоваться онлайн калькулятором для расчета трансформатора пошагово
Подготовка исходных данных за 6 простых шагов
Шаг №1. Указание формы сердечника и его поперечного сечения
Лучшим распределением магнитного потока обладают сердечники, набранные из Ш-образных пластин. Кольцевая форма из П-образных составляющих деталей обладает большим сопротивлением.
Для проведения расчета надо указать форму сердечника по виду пластины (кликом по точке) и его измеренные линейные размеры:
- Ширину пластины под катушкой с обмоткой.
- Толщину набранного пакета.
Вставьте эти данные в соответствующие ячейки таблицы.
Шаг №2. Выбор напряжений
Трансформатор создается как повышающей, понижающей (что в принципе обратимо) или разделительной конструкцией. В любом случае вам необходимо указать, какие напряжения вам нужны на его первичной и вторичной обмотке в вольтах.
Заполните указанные ячейки.
Шаг №3. Частота сигнала переменного тока
По умолчанию выставлена стандартная величина бытовой сети 50 герц. При необходимости ее нужно изменить на требуемую по другому расчету. Но, для высокочастотных трансформаторов, используемых в импульсных блоках питания, эта методика не предназначена.
Их создают из других материалов сердечника и рассчитывают иными способами.
Шаг №4. Коэффициент полезного действия
У обычных моделей сухих трансформаторов КПД зависит от приложенной электрической мощности и вычисляется усредненным значением.
Но, вы можете откорректировать его значение вручную.
Шаг №5. Магнитная индуктивность
Параметр определяет зависимость магнитного потока от геометрических размеров и формы проводника, по которому протекает ток.
По умолчанию для расчета трансформаторов принят усредненный параметр в 1,3 тесла. Его можно корректировать.
Шаг №6. Плотность тока
Термин используется для выбора провода обмотки по условиям эксплуатации. Среднее значение для меди принято 3,5 ампера на квадратный миллиметр поперечного сечения.
Для работы трансформатора в условиях повышенного нагрева его следует уменьшить. При принудительном охлаждении или пониженных нагрузках допустимо увеличить. Однако 3,5 А/мм кв вполне подходит для бытовых устройств.
Выполнение онлайн расчета трансформатора
После заполнения ячеек с исходными данными нажимаете на кнопку «Рассчитать». Программа автоматически обрабатывает введенные данные и показывает результаты расчета таблицей.
Как рассчитать силовой трансформатор по формулам за 5 этапов
Привожу упрощенную методику, которой пользуюсь уже несколько десятков лет для создания и проверки самодельных трансформаторных устройств из железа неизвестной марки по мощности нагрузки.
По ней мне практически всегда получалось намотать схему с первой попытки. Очень редко приходилось добавлять или уменьшать некоторое количество витков.
Этап №1. Как мощность сухого трансформатора влияет на форму и поперечное сечение магнитопровода
В основу расчета положено среднее соотношение коэффициента полезного действия ŋ, как отношение электрической мощности S2, преобразованной во вторичной обмотке к приложенной полной S1 в первичной.
ŋ = S1 / S2
Потери мощности во вторичной обмотке оценивают по статистической таблице.
Мощность трансформатора, ватты | Коэффициент полезного действия ŋ |
15÷50 | 0,50÷0,80 |
50÷150 | 0,80÷0,90 |
150÷300 | 0,90÷0,93 |
300÷1000 | 0,93÷0,95 |
>1000 | 0.95÷0,98 |
Электрическая мощность устройства определяется произведением номинального тока, протекающего по первичной обмотке в амперах, на напряжение бытовой проводки в вольтах.
Она преобразуется в магнитную энергию, протекающую по сердечнику, полноценно распределяясь в нем в зависимости от формы распределения потоков:
- для кольцевой фигуры из П-образных пластин площадь поперечного сечения под катушкой магнитопровода рассчитывается как Qc=√S1;
- у сердечника из Ш-образных пластин Qc=0,7√S1.
Таким образом, первый этап расчета позволяет: зная необходимую величину первичной или вторичной мощности подобрать магнитопровод по форме и поперечному сечению сердечника;или по габаритам имеющегося магнитопровода оценить электрические мощности, которые сможет пропускать проектируемый трансформатор.
Этап №2. Особенности вычисления коэффициента трансформации и токов внутри обмоток
Силовой трансформатор создается для преобразования электрической энергии одной величины напряжения в другое, например, U1=220 вольт на входе и U2=24 V — на выходе.
Коэффициент трансформации в приведенном примере записывается как выражение 220/24 или дробь с первичной величиной напряжения в числителе, а вторичной — знаменателе. Он же позволяет определить соотношение числа витков между обмотками.
n = W1 / W2
На первом этапе мы уже определили электрические мощности каждой обмотки. По ним и величине напряжения необходимо рассчитать силу электрического тока I=S/U внутри любой катушки.
Этап №3. Как вычислить диаметры медного провода для каждой обмотки
При определении поперечного сечения проводника катушки используется эмпирическое выражение, учитывающее, что плотность тока лежит в пределах 1,8÷3 ампера на квадратный миллиметр.
Величину тока в амперах для каждой обмотки мы определили на предыдущем шаге.
Теперь просто извлекаем из нее квадратный корень и умножаем на коэффициент 0,8. Полученное число записываем в миллиметрах. Это расчетный диаметр провода для катушки.
Он подобран с учетом выделения допустимого тепла из-за протекающего по нему тока. Если место в окне сердечника позволяет, то диаметр можно немного увеличить. Тогда эти обмотки будут лучше приспособлены к тепловым нагрузкам.
Когда даже при плотной намотке все витки провода не вмещаются в окне магнитопровода, то его поперечное сечение допустимо чуть уменьшить. Но, такой трансформатор следует использовать для кратковременной работы и последующего охлаждения.
При выборе диаметра провода добиваются оптимального соотношения между его нагревом при эксплуатации и габаритами свободного пространства внутри сердечника, позволяющими разместить все обмотки.
Этап №4. Определение числа витков обмоток по характеристикам электротехнической стали: важные моменты
Вычисление основано на использовании магнитных свойств железа сердечника. Промышленные трансформаторы собираются из разных сортов электротехнической стали, подбираемые под конкретные условия работы. Они рассчитываются по сложным, индивидуальным алгоритмам.
Домашнему мастеру достаются магнитопроводы неизвестной марки, определить электротехнические характеристики которой ему практически не реально. Поэтому формулы учитывают усредненные параметры, которые не сложно откорректировать при наладке.
Для расчета вводится эмпирический коэффициент ω’. Он учитывает величину напряжения в вольтах, которое наводится в одном витке катушки и связан с поперечным сечением магнитопровода Qc (см кв).
ω’=45/Qc (виток/вольт)
В первичной обмотке число витков вычислим, как W1= ω’∙U1, а во вторичной — W2= ω’∙U2.
Этап №5. Учет свободного места внутри окна магнитопровода
На этом шаге требуется прикинуть: войдут ли все обмотки в свободное пространство окна сердечника с учетом габаритов катушки.
Для этого допускаем, что провод имеет сечение не круглое, а квадрата со стороной одного диаметра. Тогда при совершенно идеальной плотной укладке он займет площадь, равную произведению единичного сечения на количество витков.
Увеличиваем эту площадь процентов на 30, ибо так идеально намотать витки не получится. Это будет место внутри полостей катушки, а она еще займет определенное пространство.
Далее сравниваем полученные площади для катушек каждой обмотки с окном магнитопровода и делаем выводы.
Второй способ оценки — мотать витки «на удачу». Им можно пользоваться, если новая конструкция перематывается проводом со старых рабочих катушек на том же сердечнике.
4 практических совета по наладке и сборке трансформатора: личный опыт
Сборка магнитопровода
Степень сжатия пластин влияет на шумы, издаваемые железом сердечника при вибрациях от протекающего по нему магнитного потока.
Одновременно не плотное прилегание железа с воздушными зазорами увеличивает магнитное сопротивление, вызывает дополнительные потери энергии.
Если для стягивания пластин используются металлические шпильки, то их надо изолировать от железа сердечника бумажными вставками и картонными шайбами.
Иначе по этому креплению возникнет искусственно созданный короткозамкнутый виток. В нем станет наводиться дополнительная ЭДС, значительно снижающая коэффициент полезного действия.
Состояние изоляции крепежных болтов относительно железа сердечника проверяют мегаомметром с напряжением от 1000 вольт. Показание должно быть не менее 0,5 Мом.
Расчет провода по плотности тока
Оптимальные размеры трансформатора играют важную роль для устройств, работающих при экстремальных нагрузках.
Для питающей обмотки, подключенной к бытовой проводке лучше выбирать плотность тока из расчета 2 А/мм кв, а для остальных — 2,5.
Способы намотки витков
Быстрая навивка на станке «внавал» занимает повышенный объем и нормально работает при относительно небольших диаметрах провода.
Качественную укладку обеспечивает намотка плотными витками один возле другого с расположением их рядами и прокладкой ровными слоями изоляции из конденсаторной бумаги, лакоткани, других материалов.
Хорошо подходят для создания диэлектрического слоя целлофановые (не из полиэтилена) ленты. Можно резать их от упаковок сигарет. Отлично справляется с задачами слоя изоляции кулинарная пленка для запекания мясных продуктов и выпечек.
Она же придает красивый вид внешнему покрытию катушки, одновременно обеспечивая ее защиту от механических повреждений.
Обмотки сварочных и пускозарядных устройств, работающие в экстремальных условиях с высокими нагрузками, желательно дополнительно пропитывать между рядами слоями силикатного клея (жидкое стекло).
Ему требуется дать время, чтобы засох. После этого наматывают очередной слой, что значительно удлиняет сроки сборки. Зато созданный по такой технологии трансформатор хорошо выдерживает высокие температурные нагрузки без создания межвитковых замыканий.
Как вариант такой защиты работает пропитка рядов провода разогретым воском, но, жидкое стекло обладает лучшей изоляцией.
Когда длины провода не хватает для всей обмотки, то его соединяют. Подключение следует делать не внутри катушки, а снаружи. Это позволит регулировать выходное напряжение и силу тока.
Замер тока на холостом ходу трансформатора
Мощные сварочные аппараты требуют точного подбора объема пластин и количества витков под рабочее напряжение, что взаимосвязано.
Выполнить качественную наладку позволяет замер тока холостого хода при оптимальной величине напряжения на входной обмотке питания.
Его значение должно укладываться в предел 100÷150 миллиампер из расчета на каждые 100 ватт приложенной мощности для трансформаторных изделий длительного включения. Когда используется режим кратковременной работы с частыми остановками, то его можно увеличить до 400÷500 мА.
Выполняя расчет трансформатора онлайн калькулятором или проверку его вычислений дедовскими формулами, вам придется собирать всю конструкцию в железе и проводах. При первых сборках своими руками можно наделать много досадных ошибок.
Чтобы их избежать рекомендую посмотреть видеоролик Виктора Егель. Он очень подробно и понятно объясняет технологию сборки и расчета. Под видео расположено много полезных комментариев, с которыми тоже следует ознакомиться.
Если заметите в ролике некоторые моменты, которые немного отличаются от моих рекомендаций, то можете задавать вопросы в комментариях. Обязательно обсудим.
правила расчета для разных типов
При необходимости самостоятельно изготовить устройство питания электронной аппаратуры вопрос, как самостоятельно рассчитать количество витков трансформатора и как определить данные для проводов первичной и вторичных обмоток, стоит наиболее часто.
Правильный расчет возможен при наличии исходных данных по характеристикам мощности потребителей, напряжений входа и выхода. показатели массы и габаритов устройства, также могут накладывать ограничения.
На что влияет количество витков в трансформаторе
Если говорить о вторичных обмотках трансформатора, то значение числа витков в них в основном влияет на выходное напряжение. Сложнее все обстоит с первичной обмоткой, поскольку напряжение на ней задано питающей сетью. Параметры первичная обмотка оказывают влияние на ток холостого хода, а, следовательно, на коэффициент полезного действия. При изменении параметров первичной обмотки потребуется перерасчет всех вторичных обмоток.
И стоит заметить, что лучше не размыкать вторичную обмотку ТТ.
Методика расчета
Полный расчет трансформатора довольно сложен и учитывает такие параметры:
- напряжение и частоту питающей сети;
- число вторичных обмоток;
- ток потребления каждой вторичной обмотки;
- тип материала сердечника;
- массогабаритные показатели.
На бытовом уровне для изготовления устройств с питанием от стандартной сети 220В 50Гц, проектирование можно значительно упростить.
Методика не требует особенных знаний сложности, и при наличии опыта занимает немного времени.
Для расчета требуются следующие данные:
- Количество выходов.
- Напряжение и потребляемый ток каждой обмотки.
В основе конструирования любого трансформатора лежит суммарная мощность всех вторичных нагрузок:
Pс=I1∙U1+ I2∙U2+… In∙Un
Для учета потерь введено понятие габаритной мощности, для вычисления которой применяется несложная формула:
P=1.25∙ Pс
Зная мощность, можно определить сечение сердечника:
S=√P
Полученное значение сечения будет выражено в квадратных сантиметрах!
Дальнейшие расчеты зависят от типа и материала выбранного сердечника. Магнитопроводы бывают следующих типов:
- броневые;
- стержневые;
- О-образные.
Также различаются и способы изготовления магнитопроводов:
- наборные – из отдельных пластин;
- витые, разрезные или сплошные.
Разрезными обычно бывают броневые или стержневые магнитопроводы, а О-образные конструктивно выполняются исключительно цельные. В этом отношении они ничем не отличаются от не разрезных стержневых сердечников.
Для определения числа витков используют следующее соотношение, показывающее, сколько необходимо витков на 1 вольт напряжения:
W=K/S,
где К – коэффициент, который зависит от материала и типа сердечника.
Для упрощения вычислений приняты следующие значения коэффициента:
- Для наборных магнитопроводов из Ш-или П-образных пластин К=60.
- Для разрезных магнитопроводов К=50.
- Для О-образных сердечников К=40.
Как видно, наименьшая длина обмоточного провода, а следовательно, и наилучшие массогабаритные показатели будут у О-образных сердечников. Кроме этого, конструкции с такими сердечниками имеют малое поле паразитного магнитного рассеивания и максимальный КПД. Их редко применяют только потому, что намотать обмотку на замкнутый сердечник трудно технически.
Зная параметр W, легко определить количество витков для каждой из обмоток:
n=U∙W
Для учета падения напряжения на первичной обмотке, намотанной большим количеством тонкого провода, следует увеличить количество витков в ней на 5%. Особенно это касается малогабаритных конструкций малой мощности.
Можно снизить ток холостого хода, увеличив значение W для каждой из обмоток, но следует знать, что чрезмерное увеличение может привести к насыщению магнитопровода, что приведет к резкому увеличению тока холостого хода и снижению напряжения на выходе.
На заключительном этапе определяют диаметр проводников каждой обмотки. Формула расчета имеет следующий вид:
d=0.7√I
Определение диаметра обмоточного провода выполняют для всех без исключения обмоток.
Полученные значения округляют до ближайшего большего значения из стандартных диаметров проводов.
Альтернативный метод по габаритам
Ориентировочные параметры трансформатора, исходя из имеющегося в наличии сердечника, допускается определить иным путем., а затем сделать выводы о возможности дальнейшего использования.
Зная площадь сечения магнитопровода в квадратных сантиметрах, можно оценить максимальную мощность, которую способен обеспечить данный преобразователь:
PГ=S2
Следует иметь в виду, что данная мощность является габаритной, а реальная будет иметь меньшее значение:
P=0.8 PГ
Обычно, при условии соответствия расчетной мощности и требуемой, первичную обмотку, подключаемую в сеть 220 В, можно оставить нетронутой, заново рассчитав только параметры на выходах.
Использование мультиметра
Используя мультиметр, можно найти данные для пересчета обмоток имеющегося трансформатора. Для этого необходимо выполнить дополнительную катушку из любого имеющегося в наличии провода. После подключения устройства в сеть необходимо измерить напряжение на дополнительной катушке. Теперь можно легко подсчитать необходимое число витков на вольт и выполнить перерасчет трансформатора под нужные требования.
Таблица количества вольт на виток
Для того, чтобы постоянно не выполнять расчеты, можно воспользоваться таблицей, в которой приведены усредненные данные обмоток в зависимости от мощности:
Мощность, P | Сечение в см2, S | Количество вит. /В, W | Мощность, P | Сечение в см2, S | Количество вит. /В, W |
1 | 1.4 | 32 | 50 | 9.0 | 5.0 |
2 | 2.1 | 21 | 60 | 9.8 | 4.6 |
5 | 3.6 | 13 | 70 | 10.3 | 4.3 |
10 | 4.6 | 9.8 | 80 | 11.0 | 4.1 |
15 | 5.5 | 8.4 | 90 | 11.7 | 3.9 |
20 | 6.2 | 7.3 | 100 | 12.3 | 3.7 |
25 | 6.6 | 6.7 | 120 | 13.4 | 3.4 |
30 | 7.3 | 6.2 | 150 | 15.0 | 3.0 |
40 | 8.3 | 5.4 | 200 | 17.3 | 2.6 |
Примеры реальных расчетов
В качестве примера рассчитаем трансформатор питания для зарядного устройства. Исходные данные:
- напряжение сети – 220В;
- выходное напряжение – 14В;
- ток вторичной обмотки – 10А;
Используя выходные параметры, определяем мощность вторичной обмотки: P=14∙10=140 Вт
Габаритная мощность: P=1.25∙ 140=175 Вт.
Площадь сечения магнитопровода сердечника составит: S=√175=13.3 см2
Наилучшими параметрами обладают конструкции, у которых сечение сердечника приближается к квадратному. Таким образом выбираем ленточный бронепровод с размерами сердечника 3.5х4 см. Его площадь равняется 14 см2.
Для данного сердечника К=50. Таким образом: W=50/14=3.6 вит/вольт
Для обмоток общее количество витков равняется:
- первичная обмотка n1=220∙3.6= 792 витка;
- вторичная обмотка n2=14∙3.6=50 витков.
Поскольку трансформатор мощный, то падение напряжения на первичной обмотке можно не учитывать.
Определяем диаметр обмоточных проводов: d2=0.7√10=2.2 мм.
Ближайшее стандартное значение – 2.4 мм.
Для нахождения диаметра провода первичной обмотки найдем ток через нее: I=P/U=175/220=0.8А.
Данному току соответствует диаметр: d1=0.7√0.8=0.63 мм.
Ближайшее стандартное значение имеет как раз такое значение.
Более углубленный расчет предполагает оценку коэффициента заполнения свободного окна магнитопровода. Большое значение числа вторичных обмоток может не поместиться в свободном окне, тогда необходимо будет выбрать более мощный сердечник. При слишком свободном размещении обмоток ухудшается КПД устройства, увеличивается магнитное поле рассеивания. Однако, как показывает практика, при правильном выборе сечения сердечника подобные расчеты становятся излишними.
Программа для расчёта импульсного трансформатора
Добавил: Chip,Дата: 05 Авг 2013Бесплатная программа для расчёта импульсного трансформатора двухтактного преобразователя на ферритовых кольцах
Приведены образцы схем преобразования и выпрямления. На некоторых полях ввода программы и на некоторых результатах расчета, которые нуждаются в комментариях, размещены всплывающие подсказки.
Подробнее о программе
1. Основная работа в программе происходит в группе «Оптимизация».
Автоматический расчет применяется при выборе другого сердечника или при изменении любых исходных данных (за пределами группы «Оптимизация») для получения отправной точки при оптимизации намоточных данных трансформатора.
2. В группе «Оптимизация» при изменении значений с помощью стрелок старт оптимизации запускается автоматически.
Но если новое значение введено «вручную», то следует запускать оптимизацию этой кнопкой.
3. Для ШИМ-контроллеров задается частота, равная половине частоты задающего генератора микросхемы. Импульсы задающего генератора подаются на выходы по очереди, поэтому частота на каждом выходе (и на трансформаторе) в 2 раза ниже частоты задающего генератора.
Микросхемы IR2153, и подобные ей этого семейства микросхем, не являются ШИМ-контроллерами, и частота на их выходах равна частоте задающего генератора.
Не стоит гнаться за большой частотой. При высокой частоте увеличиваются коммутационные потери в транзисторах и диодах. Также при большой частоте из-за малого числа витков ток намагничивания получается слишком велик, что приводит к большому току холостого хода и, соответственно, низкому КПД.
4. Коэффициент заполнения окна характеризует, какую часть окна сердечника займет медь всех обмоток.
5. Плотность тока зависит от условий охлаждения и от размеров сердечника.
При естественном охлаждении следует выбирать 4 — 6 А/мм2.
При вентиляции плотность тока можно выбрать больше, до 8 — 10 А/мм2.
Большие значения плотности тока соответствуют маленьким сердечникам.
При принудительном охлаждении допустимая плотность тока зависит от интенсивности охлаждения.
6. Если выбрана стабилизация выходных напряжений, то первый выход является ведущим. И на него надо назначать выход с наибольшим потреблением.
Остальные выходы считаются по первому.
Для реальной стабилизации всех выходов следует применять дроссель групповой стабилизации.
7. При однополярном выпрямлении, несмотря на больший расход меди, имеет преимущество схема выпрямления со средней точкой, так как потери на двух диодах будут в 2 раза меньше, чем на четырех диодах в мостовой схеме.
8. Для правильной работы дросселя в выпрямителе после диодов перед дросселем не должно быть никаких конденсаторов! Даже маленького номинала.
9. На числах витков обмоток в результатах расчета помещены всплывающие подсказки с числом слоев, занимаемых обмотой.
10. На числах проводов в обмотках в результатах расчета помещены всплывающие подсказки с плотностью тока в обмотке.
Автор: Денисенко Владимир, г. Псков
СКАЧАТЬ RingFerriteExtraSoft БЕСПЛАТНО (270kb)
****************************************************************************************
ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ
П О П У Л Я Р Н О Е:
- Программа управления компьютером мышью gMote.
- 3D программа для работы с электрическими схемами
- Программа для обновления драйверов компьютера
Описание: Программа, позволяющая управлять компьютером с помощью жестов мыши. Просто рисуете мышкой символы на экране, и компьютер сам запускает нужные Вам программы, выполняет системные команды и т.д. Подробнее…
ElectroM 3D — Бесплатная программа для рисования, расчета и отображения в 3D электрических схем.
ElectroM 3D — простая бесплатная программа для начинающих радиолюбителей. Ранее мы рассматривали похожую программу — Начала Электроники. ElectroM 3D более простая программа. В ней можно создавать простейшие электрические схемы и наглядно посмотреть как они будут работать. В схеме можно использовать батарейку, выключатель, лампочки, реостаты, диоды и т.д. Все Ваши эксперименты можно наблюдать в красиво сделанным трехмерном режиме!
Подробнее…
Бесплатная программа для автоматического обновления драйверов компьютера — DriverMax.
Обновлять драйвера вручную — это довольно утомительное дело, но программа DriverMax, на этой странице ниже берёт эту задачу на себя. Она умеет автоматически обновлять установленные драйвера на Ваш компьютер. Подробнее…
Популярность: 22 396 просм.
Доброго времени суток, продолжаю цикл статей о правильной намотке трансформаторов. Будут рассмотрены исключительно практические вопросы, а кому необходима теоретическая часть с расчётами — просто скачайте этот документ и почитайте. Сегодня речь пойдет о намотке трансформатора для сварочного инвертора, который был недавно заказан одним знакомым. Сам инвертор должен легко тянуть тройку электрод, потому долго думал над выбором сердечника, было несколько вариантов — Е65, Е70 и R63, первые два состоят из двух половинок, третий трансформатор — кольцо с наружным диаметром 63 мм, было выбрано именно оно, так как почти вся обмотка на нём снаружи и охлаждение таким образом будет оптимальное, да и вторичную обмотку можно сделать потолще, площадь окна это позволяет, что только на руку. Форум по инверторам Обсудить статью ТРАНСФОРМАТОР ДЛЯ СВАРОЧНОГО ИНВЕРТОРА |