Плавный розжиг галогенных ламп: Плавный розжиг ламп на реле и термисторе.Как продлить срок службы ламп накаливания | Электронные схемы

Содержание

Плавный розжиг ламп на реле и термисторе.Как продлить срок службы ламп накаливания | Электронные схемы

плавный поджиг галогенных ламп на реле и термисторе

плавный поджиг галогенных ламп на реле и термисторе

Известна такая проблема ламп, у которых есть нить накаливания: при включении они могут резко выйти из строя,особенно этот эффект наблюдается при пониженной,минусовой температуре.Вся причина в том,что нить накаливания имеет различное сопротивление при различной ее температуре.Когда лампа светит,ее нить накалена до высокой температуры и ее сопротивление току высокое.Когда лампа не светит,ее нить холодная и имеет низкое сопротивление,меньше 1 Ом.При включении,через такое сопротивление проходит очень большой ток, который не всегда может выдержать нить и она сгорает-обрывается.Чтобы этого не происходило,ток на лампу надо подавать постепенно,в течении нескольких секунд,тогда нить успеет набрать максимальное сопротивление питающему току.

плавный поджиг,розжиг лампы накаливания на термисторе NTC и реле Схема плавного пуска

плавный поджиг,розжиг лампы накаливания на термисторе NTC и реле Схема плавного пуска

Для постепенной подачи тока на лампу,можно применить термистор NTC. Такой термистор имеет отрицательный температурный коэффициент сопротивления,а это значит,что его сопротивление будет уменьшаться от нагрева от проходящего через термистор тока.Если последовательно такому термистору подключить галогенную лампу,то она будет постепенно набирать яркость,при этом термистор будет нагреваться,и если дальше оставить термистор в цепи и его не выключить,то он от нагрева выйдет из строя.Для шунтирования термистора,в схеме служит реле.Схема работает так:при подаче питания,термистор нагревается и его сопротивление току уменьшается,при этом лампа начнет плавно набирать яркость.На катушке реле в это время будет увеличиваться напряжение и когда оно дойдет до 12В,реле сработает и своими контактами зашунтирует нагретый термистор и он уже не будет участвовать в дальнейшей работе.

термистор NTC в схеме для плавного пуска ламп и различной нагрузки

термистор NTC в схеме для плавного пуска ламп и различной нагрузки

Термистор применил дисковой,сопротивлением 10 Ом,на корпусе надпись NTC и его диаметр 21мм. Может пропускать ток приблизительно 16А(такой ток указан в даташите на термистор 1 Ом такой-же марки и диаметра).Реле на срабатывание 12В,постоянный ток,коммутируемый контактами в моем реле на 15А при 24В постоянного напряжения.

реле для плавного пуска на термисторе

реле для плавного пуска на термисторе

Такую схему можно применить и для плавного пуска другой нагрузки.Чтобы замедлить угасание яркости лампы накаливания при выключении,параллельно ей надо поставить конденсаторы большой емкости.

Светореле цифровое ФБ-1М (бесконтактное 10А/IP56)

ОБЩИЕ СВЕДЕНИЯ

  • Светочувствительное реле предназначено для автоматического включения и отключения ламп накаливания или галогенных ламп (активной нагрузки) в сумеречное время.
  • Бесконтактное включение нагрузки.
  • Разогрев ламп накаливания начинается после захода солнца. В течение сумеречного времени, при изменении освещенности напряжение на выходе прибора увеличивается и в окончании сумерек составляет 210 вольт. С наступлением рассвета напряжение на выходе падает, прибор входит в режим ожидания сумеречного времени. Продлевается срок службы осветительных установок за счет исключения их холодного старта с большим потребляемым током.
  • Нулевой гистерезис.  
  • Индикатор нагрузки.
  • Переменный резистор номиналом 1 мОм установленный вместо сенсора выполняет диммирование лампы накаливания или светодиодной, либо регулировку мощности нагревательных элементов.
  • Простой способ установки прибора между источником и потребителем электроэнергии.
  • Прибор используется для наружной установки (Возможна внутренняя установка прибора при подключении выносного сенсора).

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

  1. Напряжение сети — от 30 до 265 В.
  2. Номинальная частота — 50 Гц.
  3. Максимальная мощность активной нагрузки — 2000 Вт (10 А).
  4. Предохранитель — 10 А.
  5. Диапазон срабатывания — от захода солнца до окончания сумерек.
  6. Мощность потребляемая от сети — 5 Вт.
  7. Габаритные размеры — 115 х 157 х 60 мм.
  8. Степень защиты реле — IP 56.
  9. Климатическое исполнение — УХЛ — 1.
  10. Масса — 0.22 кг., в упаковке — 0.24 кг.
  11. Условия эксплуатации при температуре окружающей среды от -30 до +40 С.

КОНСТРУКЦИЯ И НАСТРОЙКИ

  • Светочувствительное реле выпускается в герметичном корпусе с присоединением проводов питания и коммутируемых электрических цепей через гермовводы.
  • Не требует регулировки освещенности (автоматическая).
  • На плате прибора внутри корпуса установлен индикатор нагрузки.


 
ПОДКЛЮЧЕНИЕ ПРИБОРА

— Разрезать провод идущий к осветительным приборам вне зоны действия освещения, включаемого при помощи сенсора.
— Снять пластиковую крышку прибора.
— Прикрутить прибор на плоскость между разрезанными проводами.
— Диаметр провода должен быть не больше размера гермоввода.
— Зачистить провод и подключить согласно схеме в паспорте изделия.

— При подключении проводов сечением более 2,5 кв.мм использовать наконечники.
— Закрыть пластиковую крышку.
— Не допускать прямого попадания управляемого освещения и прочих источников света.
— Для включения освещения в более раннее время повернуть сенсор внутрь прибора.
— Установка съёмного сенсора отдельно от прибора возможна на расстоянии до 100 м.  

 

                         

рис.1

 

рис.2

 

КОМПЛЕКТ ПОСТАВКИ

  1. Реле — 1 шт.
  2. Гермоввод — 2 шт.
  3. Предохранитель — 1 шт.
  4. Паспорт — 1 шт.
  5. Упаковка — 1 шт. 

УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

   Монтаж, подключение и эксплуатация должны производиться в строгом соответствии с «Правилами эксплуатации электроустановок».


   Силовой щит должен быть оборудован устройством принудительного отключения напряжения с защитой от КЗ и перегрузок.
   Кабели и провода должны быть надежно заземлены и защищены от попадания воды. При подключении ламп — мощность не должна превышать 2000 Вт.
   Категорически не допускается установка перемычки вместо предохранителя.

ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

1. Срок гарантийного обслуживания — 5 лет с момента приобретения.
2. В случае невозможного устранения возникшей неисправности, предприятие произведет замену на аналогичное изделие.
3. Настоящая гарантия не распространяется на изделия, получившие повреждения:
— По причинам, возникшим в процессе установки, освоения или использования изделия неправильным образом;
— При подключении нагрузки превышающей допустимую;
— В случае если изделие было вскрыто или ремонтировалось лицом, не уполномоченным на то предприятием-изготовителем.

НЕИСПРАВНОСТИ И МЕТОДЫ ИХ УСТРАНЕНИЯ

Как сделать плавное включение ламп накаливания 220 Вольт: 4 особенности


Лампы накаливания электрические: виды

Не смотря на то, что в настоящее время достаточно популярно стало использование в различных осветительных приборах галогенных, люминесцентных и светодиодных ламп (светодиодов), огромная часть устройств работает на основе ламп накаливания. Данные источники света, подразделяют на виды по различным параметрам.

Основные параметры:

  • Предназначение;
  • Технические характеристики (устройство).

По назначению, лампы накаливания, можно разделить на два вида. Для работы в различных бытовых осветительных приборах, и в автомобиле. Как правило, в бытовых приборах освещения (в квартире)применяют лампы накаливания 220 В, 24 В и 12 Вольт. В авто (для фар), применяют только низковольтные источники света.

Обратите внимание! В настоящее время, лампы накаливания, являются самыми дешевыми источниками света.

К техническим характеристикам ламп, относят различные показатели. Например, Лампы подразделяют по форме колбы. Существуют Шарообразные, цилиндрические и трубчатые колбы. Колбы бывают матовыми, прозрачными и зеркальными.

Стоит отметить, что к основным техническим характеристикам ламп, относят ее мощность, которая варьируется в пределах 25 – 150 Ватт.

Рабочее напряжение лам составляет (в зависимости от вида лампы) от 12 до 230 Вольт. Лампы накаливания отличаются и видом цоколя. Например, цоколь может быть с резьбой или в виде штифта, одним или двумя контактами.

Резьбовые цоколи различают по диаметру и маркируют следующим образом: (Е 14) – диаметр цоколя 14 мм, (Е 27) и (Е40).

Медленное (плавное) включение ламп накаливания

Плавный пуск или розжиг ламп накаливания, легко сделать своими руками. Для этого существует не одна схема. В некоторых случаях, после отключения подачи напряжения, делают и плавное выключение ламп.

Основные схемы:

  • Тиристорная;
  • На симисторе;
  • С использованием микросхем.

Тиристорная схема подключения, состоит из нескольких основных элементов. Диод, в количестве четырех штук. Диоды в данной схеме образуют диодный мост. Для обеспечения нагрузки, используют лампочки накаливания.

К плечам выпрямителя, подключается тиристор и цепочка сдвигающая. В этом случае, используют диодный мост, так как это обусловлено работой тиристора.

После того, произведен запуск, и на блок подано напряжение, электричество, проходит через нить накаливания лампы и подается на диодный мост. Далее, при помощи тиристора, емкость электролита заряжается.

После того, как достигнута необходимая величина напряжения, тиристор открывается и через него начинает проходить ток от лампы. Таким образом, происходит плавный запуск лампы накаливания.

Обратите внимание! В качестве составных элементов в различных схемах, могут использоваться отличные друг от друга детали. Такие как: mac 97 a 6, m 51957 b, av 2025 p, mc908 qy 4 pce,ba 8206 ba 4, ba 3126 n, 20 wz 51, 4n 37.

Схема с использованием симистора простая, так как симисторы является силовым ключом в схеме. Для регулировки тока управляющего электрода, используют резистор. Время срабатывания, задается при помощи нескольких элементов схемы, резистора и емкости, питающиеся от диода.

Для работы нескольких мощных ламп накаливания, используют различные микросхемы. Это достигается путем добавления в схему дополнительного силового симистора. Стоит отметить, что данные схемы работают не только с обычными лампами, но и с галогенными.

Схема плавного розжига светодиодов на полевиках

Существует огромное количество схем для плавного розжига светодиодов. Некоторые являются сложными и могут состоять из дорогостоящих деталей. Но можно собрать и простую схему, которая обеспечит корректную и долгую работу данного источника света.

Для сборки потребуется:

  • Полевой транзистор – IRF 540;
  • R1 – сопротивление с номиналом 10 кОм;
  • R2 – сопротивление от 30 кОм до 68 кОм;
  • R3 – сопротивление от 20 до 51 кОм;
  • Конденсатор с емкостью 220 мкФ.

Так как сопротивление R1 (регулятор), задает ток затвора, то для данного транзистора, достаточно сопротивления в 10 кОм. За плавный пуск светодиодов, отвечает сопротивление R2, то его номинальное сопротивление необходимо подобрать в пределах от 30 до 68 кОм. Данный параметр зависит от предпочтений.

Медленное затухание светодиодов обеспечивает сопротивление R3, поэтому его номинал должен составлять от 20 до 51 кОм. Емкостные параметры конденсатора варьируются в пределах от 220 до 470 мкФ.

Обратите внимание! Предельное напряжение конденсатора должно быть не менее 16 Вольт.

К мощностным параметрам полевого транзистора относят напряжение и силу тока. Напряжение на контактах достигает 100 Вольт, а мощность до 23 Ампер.

После того, как через выключатель подано напряжение на схему, протекающий через резистор R2 ток, начинает заряжать конденсатор. Так как зарядка занимает некоторое количество времени, то в данном случае, производится плавное открытие транзистора.

Далее, ток проходя через конденсатор R1, приводит к тому, что положительный потенциал на стоке транзистора увеличивается, после этого нагрузка из светодиодов включается плавно.

При отключении подачи питания, конденсатор, плавно отдает заряд сопротивлениям, что позволяет выключать светодиоды плавно.

Плавный розжиг галогенных ламп в автомобиле

В различных авто, перегрузкам подвергаются не только механические детали, их испытывают и элементы, составляющие электрические схемы. Поэтому, для увеличения продолжительности работы оборудования, в схемы включают различные устройства, обеспечивающие плавный запуск ламп.

Основные параметры для установки блоков плавного розжига:

  • Вибрация;
  • Температурные и электрические перепады.

Лампы с повышенной светоотдачей, согласно устройству, очень чувствительны к незначительным перепадам напряжения в электрической схеме. Данные перепады варьируются от 10 до 13 Вольт.

Обратите внимание! Большинство галогеновых ламп выходят из строя во время запуска. Так как перепад напряжения составляет от 0 до 13 Вольт.

Лучшим решением, будет установка блока плавного розжига. Установка возможна на фары ближнего и дальнего света, Стоит отметить, что данное реле, играет роль защиты источника света.

Важно понимать, что установка одного блока на лампы, отвечающие за головной свет, не рекомендуется, так как при выходе из строя блока, работать перестанут обе лампы. Установка одного блока, возможна толк на дополнительное освещение.

Блок, выполнен в виде реле, оснащенного пятью контактами для подключения. Основными элементами блока, являются контакты реле (силовая часть) и блок управления.

Работа данного блока, осуществляется следующим образом. После того, как на тридцатый контакт подано напряжение, блок осуществляющий управление схемой, параллельно подключает ключ. Далее ключ, используя импульсы по нарастающей, начинает замыкать между собой 30 и 87 контакты.

После двух секунд работы, данные контакты полностью замыкаются, после чего управляющий блок, подает напряжение на реле. Далее, 30 и 87 контакты размыкаются, и 30 и 88 замыкаются. Если подать напряжение на дополнительный 86 контакт, то при выключении фар, галогеновые лампы будут медленно затухать.

Схема плавного включения ламп накаливания на 220 В (видео)

Теперь вы понимаете, что встраивание в различные электрические схемы дополнительных элементов не только может обеспечить их плавный запуск, но и выступить в качестве защитного механизма, который обеспечит длительную работу ламп.

Реле защиты ламп универсальное

Реле защиты ламп универсальное

Реле защиты ламп универсальное

Реле предназначено для плавного розжига и гашения галогенных ламп, применяемых в противотуманных фарах и фарах ближнего света автомобилей.
Плавный розжиг спирали позволяет продлить срок службы лампы и уменьшить пусковые токовые нагрузки на контакты переключателей и реле.

ВНИМАНИЕ! Реле не предназначено для плавного включения электродвигателей.

Перед заказом реле, обязательно убедитесь, что сигналы на контактах монтажного блока соответствуют назначению контактов реле.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ПараметрЗначение
Напряжение питания, В8…16
Макс. суммарная мощность ламп, Вт150
Время розжига и гашения, с2.0…2.2
Габаритные размеры, мм30*27*23

Реле защиты ламп универсальное

Реле предназначено для плавного розжига и гашения галогенных ламп, применяемых в противотуманных фарах и фарах ближнего света автомобилей.
Плавный розжиг спирали позволяет продлить срок службы лампы и уменьшить пусковые токовые нагрузки на контакты переключателей и реле.

ВНИМАНИЕ! Реле не предназначено для плавного включения электродвигателей.

Перед заказом реле, обязательно убедитесь, что сигналы на контактах монтажного блока соответствуют назначению контактов реле.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ПараметрЗначение
Напряжение питания, В8…16
Макс. суммарная мощность ламп, Вт150
Время розжига и гашения, с2. 0…2.2
Габаритные размеры, мм30*27*23

Если у Вас возникли вопросы по данному товару, задавайте их через форму ниже.

 


АвтоСвет | ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ

« Назад


Плавный пуск галогенных ламп и ламп накаливания. — В домашнюю мастерскую — Практика

 

Прогресс не стоит на месте и на смену лампам накаливания приходят энергосберегайки и светодиодные лампы. Но полностью отказываться от ламп накаливания и галогенок ещё не стоит, так как их спектр в световом диапазоне гораздо шире и более приятен для глаз, чем у энергосберегаек и светодиодных ламп, и их ещё довольно много используется и в частном секторе и в организациях для освещения рабочих мест, каких либо объектов, площадей, охраняемых территорий.

Предыстория.

Светодиодные лампы, которые сейчас появляются почти в каждом доме и учреждении, обещают нам экологичность и очень долгий срок службы, как бы большую экономию.
То есть, если старые добрые лампы накаливания служили нам, или должны были служить 1000 часов, то светодиодные должны работать не менее 20 тысяч часов – в 20 раз больше (отсюда и вытекает их высокая стоимость).

Но человечество напрасно разочаровалось в лампах накаливания. В их недолгом сроке службы виновата не технология, а заговор их же производителей.
Как известно из истории, первый сговор между производителями ламп накаливания состоялся в 1924 году. Они решили, что слишком хорошие лампы – это плохо. Лампа будет долго гореть, и новые будут реже покупать.
Поэтому было решено искусственно занизить срок их службы ещё в процессе изготовления. Уменьшили длину спирали, уменьшили диаметр подводящих медных проводников внутри колбы лампы, которые идут от держателей спирали до контактов патрона.
Всё, лампы стали работать с перекалом, часто перегорать от небольшого перепада напряжения, особенно в момент их включения. Очень часто даже перегорал тоненький медный проводник внутри лампы, а сама спираль умудрялась оставаться целой.
Этот заговор, в свою очередь, не только позволил бизнесменам продавать худший продукт, чтобы больше заработать, но и стал основой всей современной экономики потребления.
Поэтому я очень сильно сомневаюсь в том, что светодиодные лампы, как им положено, отработают свои 20 000 часов. Они так же «летят» ничуть не реже своих накальных собратьев, и если с экологией ещё понятно, то какой либо экономией тут и не пахнет.
Но вернёмся к лампам накаливания и к галогенным лампам.

Хорошо известно, что галогенные лампы и лампы накаливания в основном перегорают в момент их включения, когда нихромовая спираль находится в холодном состоянии и имеет наименьшее активное сопротивление. В этот момент через неё будет протекать максимальный ток, особенно тогда, когда включение лампы происходит на пике синусоидальной волны переменного напряжения.
Но можно намного продлить срок службы такой лампы, если нить накаливания разогревать постепенно, в течении нескольких секунд.

Схема.

Предлагаемая схема пуска подает напряжение на лампу с плавным нарастанием в течении 2-3 секунд. Это намного уменьшает вероятность перегорания лампы из-за броска тока через холодную нить. Срок службы галогенных ламп и обычных ламп накаливания, благодаря этой схеме запуска, увеличивается в несколько раз.
В эту схему так же введена задержка выключения нагрузки, обеспечивающая плавное уменьшение яркости свечения до полного погасания в течении 8-12 секунд. То есть при выключении схемы выключателем SA1, яркость свечения ламп начинает плавно убывать до нуля за 8-12 секунд.
Достоинством схемы является ещё и то, что она подсоединяется вместо штатного выключателя или пакетника, нет дефицитных деталей, и для управления лампой (лампами), можно использовать низкоточные малогабаритные выключатели.
Идея собрать такую схему пуска возникла у меня тогда, когда мне надоело довольно часто менять перегоревшие галогенные лампы в люстре. Люстра была рассчитана на шесть маленьких галогенных ламп по 50 Вт каждая.
Копаясь в литературе, наткнулся на статью в ВРЛ про сенсорный выключатель на тиратронах МТХ-90.
Схему решил упростить, в результате чего получилась простая схема, которую Вам и предлагаю.

По прошествии времени, я уже и не помню, когда последний раз менял лампу в люстре. Ещё после выключения света, яркость в люстре убывает постепенно в течении 10-12 сек. Свет выключается плавно, как в театре, что тоже довольно приятно.

Принцип работы.

Схема пуска, каких либо особенностей не имеет. Силовые элементы управляющие пуском ламп — это тиристор и диодный мост.
Тиристор включен в диагональ диодного моста. Импульсное управление тиристором реализовано на генераторе коротких импульсов, который собран на транзисторах VT2, VT3 — аналоге однопереходного (двухбазового) транзистора. Время включения схемы (запуска лампы) зависит от емкости конденсатора С1 и величины резистора R1. После размыкания контактов выключателя S1, заряженный конденсатор С1 разряжается по цепи — резистор R4, переход база-эмиттер VТ1, и резистор R6. Время разряда конденсатора С1 (погасание лампы) составляет 10-12 секунд, уменьшить это время при желании можно, уменьшив сопротивление резистора R4, но я думаю, что в этом нет особой необходимости.

Конструкция и детали.

В первом варианте исполнения схемы запуска, она была собрана на круглой плате, диаметром 50 мм. Плата эта устанавливалась в круглую нишу самого выключателя под ним. Подсоединялась схема на место выключателя, а сам выключатель (его контакты) подсоединялись по схеме на место SA1. То есть сам выключатель исполнял свою же и роль — включал и выключал люстру. Двухамперный диодный мост от компьютерного БП (KBP206), и тиристор Т10-20-У2 установленные на плате без каких либо радиаторов, вот уже несколько лет исправно пашут на люстру, общей мощностью 300 Вт.
Вначале у меня стояли вместо моста просто четыре одноамперных диода, работали на пределе, два из которых потом пробились, ну и видно от них немного поджарилась плата.

Схема не имеет каких либо особо дефицитных деталей. Тиристоры здесь можно ставить любые, соответствующие только необходимой мощности (току) и напряжению, например ВТ-152, Т106-10-4 и др. Стабилитрон можно применить любой на 10-14 Вольт. Транзисторы так же можно ставить абсолютно любые, лишь бы соответствовали необходимой структуре. Я ставил КТ315 и КТ361, благо ещё имеется их запас.

 

Мощность схемы, ну и соответственно мощность коммутируемых галогенных ламп, зависит только от примененных в схеме диодного моста и тиристора.
Например, если применить диодный мост на 10 Ампер и тиристор ВТ-152 поставить на небольшой радиатор, то такой схемой запуска можно будет запускать нагрузку до 2-х кВатт, то есть четыре галогенных прожектора по 500 ватт, в несколько раз увеличив ресурс работы их галогенных ламп.
Падение напряжения на самой схеме запуска при выходе её на рабочий режим не превышает единиц Вольт, что абсолютно никак не отражается на яркости ламп, и мощность рассеиваемая на силовых элементах схемы, диодном мосту и тиристоре, будет минимальной.
В следующем варианте схема запуска собрана на плате, размером 40 на 40 мм. Эту плату так же свободно можно устанавливать в нишу обычного выключателя в квартире.


До мощности запускаемых ламп 300-500 Вт, ни тиристор, ни мост нет необходимости ставить на радиатор, так как мощность на них рассеивается только в момент запуска ламп и в момент их выключения. Для запуска нескольких галогенных прожекторов, или галогенного прожектора с лампой мощностью 1000 Вт и более, тиристор и диодный мост нужно выбирать соответствующей мощности, и может быть потребуется установить на небольшой радиатор.
Схема запуска в этом случае подключается, как и было сказано выше, параллельно контактам пакетника, а в качестве выключателя прожекторов можно использовать любой малогабаритный выключатель, устанавливаемый в любое удобное место.

Рисунок печатной платы в формате Sprint-Layout прилагается.

Печатная плата.

Используемая литература;
Д. Приймак. Сенсорный выключатель освещения // В помощь радиолюбителю выпуск 88, с.63.

 

Плавное включение ламп накаливания. Схема плавного включения ламп накаливания

Все сталкивались с ситуацией, при которой в самый неожиданный момент выходит из строя лампа накаливания или так называемая галогенная лампа.

Как увеличить продолжительность жизни лампы накаливания? Все зависит от ее режимов работы и условий эксплуатации.

Перегорание нити лампы накаливания чаще всего происходит в момент ее включения. Дело в том, что холодная нить лампы накаливания обладает меньшим сопротивлением, чем раскаленная.

Это значит, что в момент включения значение тока, проходящего через нить, в несколько раз превышает номинальное.

Хотя это происходит на протяжении десятых долей секунды, часто бывает, за это время лампа успевает перегореть. Применение ламп пониженного напряжения (12 В), включаемых в сеть с помощью понижающего трансформатора, не предотвращает быстрое перегорание нитей накала ламп.

Конечно, процесс замены перегоревшей лампы ни у кого не вызывает трудностей, да и стоит она (если это не энергосберегающая лампа) недорого. Куда более неприятно, когда после нажатия на выключатель лампочка с громким хлопком разлетается по комнате в виде множества мелких осколков. Эти осколки очень опасны, о них можно очень сильно порезаться, а собрать их полностью достаточно трудно.

Для того, чтобы решить эту проблему, применяется плавное включение ламп накаливания. Такое включение обеспечивается устройством, которое осуществляет медленный розжиг спирали на протяжении 2-3 секунд.

Таким образом исключается возможность перегорания лампы в момент ее включения.

Схема плавного включения ламп накаливания

Устройство плавного включения ламп имеет достаточно простую схему. Оно подключается последовательно с лампой.

После включения нить накаляется постепенно, выходя на полную мощность через две-пять секунд. Использования устройства плавного включения позволяет в несколько раз продлить продолжительность «жизни» лампы накаливания.

Устройство плавного пуска используется как с лампами для сети 220В, так и лампами низкого напряжения, для подключения которых используется понижающий трансформатор.

При использовании устройства плавного пуска для ламп, включенных через понижающий трансформатор, оно должно быть установлено до трансформатора.

При выборе устройства плавного включения необходимо руководствоваться величиной нагрузки, подключаемой через это устройство.

Сделать это не трудно – для этого необходимо всего лишь подсчитать количество и мощность всех ламп в цепи. Чтобы повысить срок службы самого этого устройства, необходимо предусмотреть небольшой запас мощности. Скажем, если суммарная мощность всех ламп равна 850 ватт, то нужно приобретать устройство на 1000 Вт.

Место установки УПВЛ

Благодаря небольшим габаритам устройство можно монтировать практически в любом месте. Обычно оно устанавливается в соединительной коробке, под колпаком люстры, в пространстве над натяжным или гипсокартонным потолком, в подрозетнике выключателя.

Не желательно устройство плавного пуска монтировать в помещениях, где преобладает повышенная влажность. Каждое устройство необходимо подбирать в соответствии с подключаемой к нему нагрузкой.

Запрещается подключать к устройству плавного включения ламп нагрузку, превышающую его номинал.

Понравилась статья — поделись с друзьями!

 

✅ Плавный розжиг светодиодов — mir-rukodelnici.ru


Схема и принцип ее работы

Рассмотрим один из наиболее простых вариантов схемы плавного включения и выключения светодиодов с управлением по плюсовому проводу. Помимо простоты исполнения, данная простейшая схема имеет высокую надежность и невысокую себестоимость.


В начальный момент времени при подаче напряжения питания через резистор R2 начинает протекать ток, и заряжается конденсатор С1. Напряжение на конденсаторе не может измениться мгновенно, что способствует плавному открытию транзистора VT1. Нарастающий ток затвора (вывод 1) проходит через R1 и приводит к росту положительного потенциала на стоке полевого транзистора (вывод 2). В результате происходит плавное включение нагрузки из светодиодов.

В момент отключения питания происходит разрыв электрической цепи по «управляющему плюсу». Конденсатор начинает разряжаться, отдавая энергию резисторам R3 и R1. Скорость разряда определяется номиналом резистора R3. Чем больше его сопротивление, тем больше накопленной энергии уйдет в транзистор, а значит, дольше будет длиться процесс затухания.

Для возможности настройки времени полного включения и выключения нагрузки, в схему можно добавить подстроечные резисторы R4 и R5. При этом, для корректности работы, схему рекомендуется использовать с резисторами R2 и R3 небольшого номинала.


Любую из схем можно самостоятельно собрать на плате небольшого размера.

По какому принципу работает схема

Для неопытного мастера схема плавного розжига и затухания светодиодов может показаться сложной, но это не так. Помимо простоты, она отличается надёжностью и невысокими затратами на реализацию.


Рис. 1 – схема плавного возгорания диодов.

Сначала ток подаётся на второй резистор для зарядки конденсатора C1. На конденсаторе показатели не изменяются мгновенно, за счет чего происходит плавное открытие транзистора VT1. К затвору ток подаётся через первый резистор. Это провоцирует рост потенциала (положительного) на полевом транзисторе (его стоке), за счет чего светодиод включается плавно.

Когда произойдет отключение, конденсатор постепенно разрядится через резисторы R1 и R3. Скорость разрядки определяют по номиналу третьего резистора.

Советуем посмотреть видео: КАК СДЕЛАТЬ ПЛАВНОЕ ВКЛЮЧЕНИЕ И ВЫКЛЮЧЕНИЕ НАГРУЗКИ

Можно ли сделать своими руками

Если знать все тонкости, на работу уйдёт не более 1 часа. Следует подобрать необходимые элементы и оборудование, чтобы качественно выполнить соединения.

Что понадобится

  • припой и паяльник;
  • светодиоды;
  • резисторы;
  • конденсатор;
  • транзисторы;
  • корпус для размещения необходимых элементов;
  • кусок текстолита для платы.

Ёмкость конденсатора – 220 mF. Напряжение не более 16 V. Номиналы резисторов:

  • R1 – 12 kOm;
  • R2 – 22 kOm;
  • R3 – 40 kOm.

При сборке желательно использовать полевой транзистор IRF540.

Пошаговая инструкция изготовления

Первый этап – изготовление платы. На текстолите необходимо обозначить границы и вырезать лист по контурам. Далее заготовку зашкурить наждачной бумагой (зернистость P 800-1000).

Далее распечатать схему (слой с дорожками). Для этого используют лазерный принтер. Схему можно найти в интернете. Лист А4 малярным скотчем приклеивается к глянцевой бумаге (например, с журнала). Затем распечатывается изображение.

На лист схему приклеивают, прогревая утюгом. Чтобы плата остыла, её нужно поместить в холодную воду на несколько минут, и после этого снять бумагу. Если сразу она не отслаивается, необходимо очистить постепенно.

Двусторонним скотчем приклеить плату к пенопласту такого же размера и поместить в раствор хлорного железа на 5-7 минут. Чтобы не передержать плату, её нужно периодически доставать и смотреть состояние. Для ускорения процесса вытравливания можно покачивать емкость с жидкостью. Когда лишняя медь стравится, плату необходимо промыть в воде.

Следующий этап – зачистка дорожек наждачной бумагой и можно приступать к просверливанию дырочек для установки элементов платы. Далее плату нужно залудить. Для этого её смазывают флюсом, после чего лудят паяльником. Чтобы не спровоцировать перегрев или разрыв цепи, паяльник постоянно должен находиться в движении.

Следующий этап – установка элементов по схеме. Чтобы было понятнее, на бумаге можно распечатать ту же схему, но со всеми необходимыми обозначениями. После пайки необходимо полностью избавиться от флюса. Для этого плату можно протереть растворителем 646, затем прочистить зубной щеткой. Когда блок хорошо просохнет, его нужно проверить. Для этого постоянный плюс и минус необходимо подключить к питанию. При этом управляющей плюс трогать не стоит.

Вместо светодиодов для проверки лучше использовать мультиметр. Если возникнет напряжение, это значит, что плата коротит. Такое возможно из-за остатков флюса. Чтобы избавиться от проблемы, достаточно прочистить плату ещё раз. Если напряжения нет, блок готов к использованию.

Управление по «минусу»

Выше переведенные схемы отлично подходят для применения в автомобиле. Однако сложность некоторых электрических схем состоит в том, что часть контактов замыкается по плюсу, а часть – по минусу (общему проводу или корпусу). Чтобы управлять приведенной схемой по минусу питания, её нужно немного доработать. Транзистор нужно заменить на p-канальный, например IRF9540N. Минусовой вывод конденсатора соединить с общей точкой трёх резисторов, а плюсовой вывод замкнуть на исток VT1. Доработанная схема будет иметь питание с обратной полярностью, а управляющий плюсовой контакт сменится на минусовой.

Сборник принципиальных схем

Вначале идут общеизвестные схемы из Интернета, а далее несколько собранных лично и прекрасно работающих. Первая схема простейшая – при подаче питания диод постепенно увеличивает яркость (открывается транзистор по мере заряда конденсатора):

Делал вот такую схему плавного включения и выключения светодиодов, резистором R7 подбирается нужный ток через диод. А если вместо кнопки подключить вот этот прерыватель, то схемка сама будет разжигаться и затухать, только резистором R3 нужно установить нужный интервал времени.

Вот ещё две схемы плавного розжига и затухания, которые также лично паял:

Все эти конструкции относятся не к сетевым (от 220 В), а обычным низковольтным светодиодным индикаторам. Промышленные LED лампы с их неизвестными драйверами, чаще всего в разных плавных контроллерах работают непредсказуемо (или мигают, или включаются всё-таки резко). Так что управлять нужно не драйверами, а непосредственно светодиодами. Схемы предоставил senya70.

Обсудить статью ПЛАВНОЕ ВКЛЮЧЕНИЕ / ВЫКЛЮЧЕНИЕ СВЕТОДИОДОВ

Плавное включение и затухание светодиодов своими руками

Что такое плавное включение, или иначе розжиг светодиодов думаю представляют все.

Разберем подробно плавное включение светодиодов своими руками.

Светодиоды должны не сразу разжигается, а через 3-4 секунды, но изначально не мигать и не светиться вообще.

■ Транзистор IRF9540N ■ Транзистор KT503 ■ Выпрямительный диод 1N4148 ■ Конденсатор 25V100µF ■ Резисторы: — R1: 4.7 кОм 0.25 Вт — R2: 68 кОм 0.25 Вт — R3: 51 кОм 0.25 Вт — R4: 10 кОм 0.25 Вт ■ Односторонний стеклотекстолит и хлорное железо ■ Клеммники винтовые, 2-х и 3-х контактные, 5 мм

Изменить время розжига и затухания светодиодов можно подбором номинала сопротивления R2, а также подбором ёмкости конденсатора.

Существует много способов резки текстолита: ножовкой по металлу, ножницами по металлу, с помощью гравера и так далее.

Я с помощью канцелярского ножа сделал бороздки по намеченным линиям, далее выпилил ножовкой и обточил края напильником. Также пробовал использовать ножницы по металлу – оказалось гораздо проще, удобнее и без пыли.

Далее прошкуриваем заготовку под водой наждачной бумагой с зернистостью P800-1000. Затем сушим и обезжириваем поверхность платы 646 растворителем с помощью безворсовой салфетки. После этого нежелательно руками прикасаться к поверхности платы.

Далее с помощью программы SprintLayot открываем и печатаем на лазерном принтере схему. Печатать необходимо только слой с дорожками без обозначений.

Для этого в программе при печати слева вверху в разделе “слои” снимаем ненужные галочки. Также при печати в настройках принтера выставляем высокую четкость и максимальное качество изображения. С помощью малярного скотча приклеиваем на обычный лист А4 страницу глянцевого журнала/глянцевую фотобумагу (если их размеры меньше А4) и печатаем на ней нашу схему. Я пробовал использовать кальку, страницы глянцевого журнала и фотобумагу. Удобнее всего, конечно, работать с фотобумагой, но в отсутствии последней и страницы журнала вполне сгодятся. Калькой же пользоваться не советую – рисунок на плате очень плохо пропечатался и получится нечётким.

Теперь прогреваем текстолит и прикладываем нашу распечатку. Затем утюгом с хорошим прижимом проутюживаем плату в течение нескольких минут.

Теперь даем плате полностью остыть, после чего опускаем в ёмкость с холодной водой на несколько минут и аккуратно избавляемся от бумаги на плате. Если целиком не отдирается, то скатываем потихоньку пальцами.

Затем проверяем качество пропечатанных дорожек, и плохие места подкрашиваем тонким перманентным маркером.

С помощью двустороннего скотча приклеиваем плату на кусочек пенопласта и помещаем в раствор хлорного железа на несколько минут. Время вытравливания зависит от многих параметров, поэтому периодически достаем и проверяем нашу плату. Хлорное железо используем безводное, разводим в теплой воде согласно пропорциям, указанным на упаковке. Чтобы ускорить процесс травления можно периодически покачивать ёмкость с раствором.

После того, как ненужная медь стравилась – отмываем плату в воде. Затем с помощью растворителя или наждачки счищаем тонер с дорожек.

Затем необходимо просверлить дырочки для монтажа элементов платы. Для этого я использовал бормашинку (гравер) и сверла диаметром 0.6 мм и 0.8 мм (из-за разной толщины ножек элементов).

Далее нужно облудить плату. Есть множество различных способов, я решил воспользоваться одним из самых простых и доступных. С помощью кисточки смазываем плату флюсом (например ЛТИ-120) и паяльником лудим дорожки. Главное не держать жало паяльника на одном месте, иначе возможен отрыв дорожек при перегреве. Берем на жало больше припоя и ведем им вдоль дорожки.

Теперь напаиваем необходимые элементы согласно схеме. Для удобства в SprintLayot распечатал на простой бумаге схему с обозначениями и при пайке сверял правильность расположения элементов.

После пайки очень важно полностью смыть флюс, в противном случае могут быть коротыши между проводниками (зависит от применяемого флюса). Сначала рекомендую тщательно протереть плату 646 растворителем, а потом хорошо промыть щеткой с мылом и высушить.

После сушки подключаем «постоянный плюс» и «минус» платы к питанию («управляющий плюс» не трогаем), затем вместо светодиодной ленты подсоединяем мультиметр и проверяем, нет ли напряжения. Если хоть какое-то напряжение все-таки присутствует, значит где-то коротит, возможно плохо смыли флюс.

Схемы плавного включения и выключения светодиодов

Существует два популярных и доступных для самостоятельного изготовления варианта схем плавного розжига для светодиодов:

  1. Простейшая.
  2. С функцией установки периода пуска.

Рассмотрим, из каких элементов они состоят, каков алгоритм их работы и главные особенности.

Простая схема плавного включения выключения светодиодов

Только на первый взгляд схема плавного розжига, представленная ниже, может показаться упрощенной. В действительности она весьма надежна, недорога и отличается множеством преимуществ.

В ее основе лежат следующие комплектующие:

  1. IRF540 – транзистор полевого типа (VT1).
  2. Емкостный конденсатор на 220 мФ, номиналом на 16 вольт (C1).
  3. Цепочка резисторов на 12, 22 и 40 килоОм (R1, R2, R3).
  4. Led-кристалл.

Устройство работает от источника питания постоянного тока на 12 В по следующему принципу:

  1. При запитывании цепи через блок R2 начинает течь ток.
  2. Благодаря этому элемент C1 постепенно заряжается (повышается номинал емкости), что в свою очередь способствует медленному открыванию модуля VT.
  3. Увеличивающийся потенциал на выводе 1 (затворе полевика) провоцирует похождение тока через R1, что способствует постепенному открыванию вывода 2 (стока VT).
  4. Как результат, ток переходит на исток полевого блока и на нагрузку и обеспечивает плавный розжиг светодиода.

Процесс угасания лед-элемента идет по обратному принципу – после снятия питания (размыкания «управляющего плюса»). При этом конденсаторный модуль, постепенно разряжаясь, передает потенциал емкости на блоки R1 и R2. Скорость процесса регламентируется номиналом элемента R3.

Основным элементом в системе плавного розжига для светодиодов является транзистор MOSFET IRF540 полевого n-канального типа (как вариант можно использовать российскую модель КП540).

Остальные компоненты относятся к обвязке и имеют второстепенное значение. Поэтому нелишним будет привести здесь его основные параметры:

  1. Сила тока стока – в пределах 23А.
  2. Значение полярности – n.
  3. Номинал напряжения сток-исток – 100В.

Важно! Ввиду того, что быстрота розжига и затухания светодиода полностью зависит от величины сопротивления R3, можно подобрать необходимое его значение для задания определенного времени плавного пуска и выключения лед-лампочки. При этом правило выбора простое – чем выше сопротивление, тем дольше зажигание, и наоборот.

Доработанный вариант с возможностью настройки времени

Нередко возникает необходимость изменения периода плавного розжига светодиодов. Рассмотренная выше схема не дает такой возможности. Поэтому в нее нужно внедрить еще два полупроводниковых компонента — R4 и R5. С их помощью можно задавать параметры сопротивления и тем самым контролировать скорость зажигания диодов.

Приведенные выше версии схем предполагают управление по плюсу, однако в некоторых ситуациях требуется контроль по минусу. В таком случае система будет иметь обратную полярность. Поэтому в ней нужно поставить конденсатор наоборот – чтобы плюсовой заряд шел на транзисторный исток. Кроме того, необходимо заменить и сам транзистор, теперь он должен быть p–канального типа, к примеру, IRF9540N.

Схемы

Так как устройство плавного включения ламп накаливания и галогенных ламп не представляет особой сложности с точки зрения схемотехники, его можно собрать своими руками. Процесс сборки может быть осуществлен:

  • навесным монтажом;
  • на макетной плате;
  • на печатной плате.

И зависит от ваших навыков и возможностей самым надежным будет вариант на печатной плате, от навесного монтажа в этом случае лучше держаться подальше, если вы не владеете особенностями такого монтажа в цепях 220 В.

Плавное включение ламп 220 В: схема на тиристоре

Схема первая представлена на рисунке ниже. Основным ее функциональным элементом является тиристор, включенный в плечах диодного моста. Номиналы всех элементов подписаны. Если использовать ее в качестве плавного розжига для торшера, настольной лампы или другого переносного светильника – удобно заключить ее в корпус, подойдет распредкоробка для наружного монтажа. На выходе установить розетку для подключения светильника. По сути – это обычный диммер, и плавного пуска как такового здесь нет. Вы просто поворачиваете ручку потенциометра, плавно увеличивая напряжение на лампе. Кстати, такая приставка подойдет и для регулировки мощности паяльника или других электроприборов (плиты, коллекторного двигателя и т. д.).

Плавное включение ламп 220 В: схема на симисторе

Можно уменьшить количество деталей и собрать такую же схему, которая установлена в фирменные блоки защиты. Она изображена на рисунке ниже.

Чем больше постоянная времени R2С1 цепочки, тем дольше происходит розжиг

Для увеличения времени нужно увеличить емкость C1, обратите внимание – это полярный или электролитический конденсатор. Конденсатор C2 должен выдерживать напряжение не менее 400 В – это неполярный конденсатор

Чтобы увеличить мощность подключенных ламп – измените симистор VS1 на любой подходящий по току к вашей нагрузке.

Дроссель L1 – это фильтрующий элемент, он нужен для уменьшения помех в сети от включения симистора. Его использовать необязательно, на работу схемы не влияет.

Когда включается SA1 (выключатель), ток начинает течь через лампу, дроссель и конденсатор С2. За счет реактивного сопротивления конденсатора, ток через лампу течет маленький. Когда напряжение до которого зарядится С1 достигнет порога открытия симистора – ток потечет через него, лампа включится в полный накал.

Популярные статьи Солнечная батарея

Плавное включение ламп 220 В: схема на ИМС КР1182ПМ1

Есть вариант и плавного включения с помощью микросхемы КР1182ПМ1, она обеспечивает плавный пуск ламп и другой нагрузки мощностью до 150 Вт. Подробное описание этой микросхемы вы найдете здесь:

а ниже изображена схема устройства, она предельно проста:

Или вот ее модернизированный вариант для включения мощной нагрузки:

Дополнительно установлен тиристор BTA 16–600, он рассчитан на ток до 16 А и напряжение до 600 В, это видно из маркировки, но можно взять и любой другой. Таким образом, вы можете включать нагрузку мощностью до 3,5 кВт.

Преимущества светодиодов на основе тиристоров

По сети гуляет анекдот, связанный с тем, что в ответ на вопрос, мигает ли лампочка на модеме, пользователь ответил, что свет мигающий, но это не лампочка, а тиристорный светодиод, чем и сбил с толку работников техподдержки провайдера, поскольку таких светодиодов просто не бывает.

Тиристор может выполнять только роль своеобразного ключа, управляющего мощной нагрузкой, а также переключателя. Определение тиристорный светодиод появилось после того, как производители светильников заменили дорогостоящий диодный мост, применявшийся для того, чтобы запустить LED. Создав прибор, состоящий из 2-х тиристоров, подключенных параллельно-встречным путем, удалось избавиться от диодного моста. Благодаря тому, что был использован такой своеобразный тиристорный светодиод — цена LED-светильников значительно снизилась и стала приемлемой для покупателя.

Свойства электронного ключа позволяют создать не только плавное включение светодиодов – тиристора применяются и в схемах, обеспечивающих постепенное включение/выключение даже простых ламп накаливания (специальные выключатели). Учитывая приемлемую цену LED-светильников без диодного моста, плавное включение и выключение светодиодов на тиристоре значительно расширяет область применения этого современного и эффективного средства подсветки и освещения.

Способы реализации плавного включения

Прежде чем определиться со способами реализации плавного запуска, необходимо выяснить, как работают УВПЛ. Принцип действия приборов этого типа основывается на способности сначала понижать, а затем постепенно повышать напряжение до оптимальной величины. Устройство подключается в разрыв провода между лампой (светильником) и выключателем.

При подаче напряжения его величина повышается за счет схем плавного запуска. Они могут быть собраны на транзисторах, симисторах или тиристорах по схемам ФИР (фазоимпульсный регулятор). Скорость повышения напряжения может варьироваться в пределах нескольких секунд: многое зависит от того, по какой схеме был собран прибор. Мощность нагрузки чаще всего не превышает 1400 Вт.

Блок питания

Блок защиты выступает в роли устройства, обеспечивающего плавное включение. Применение приспособления одновременно с лампой позволяет постепенно понизить напряжение, поступающее к осветительному прибору. Вольфрамовая нить в этом случае не испытывает большой нагрузки, что позволяет продлить ее срок эксплуатации.

По мере того, как электрический ток проходит сквозь блок, напряжение падает (с 220 В до 170 В). Скорость варьируется в пределах 2-4 секунд. Использование блока защиты по назначению приводит к снижению потока света на 50-60%. Устройства Uniel Upb-200W-BL выдерживают до 220 В, поэтому необходимо подключать к ним лампочки такой же мощности.

Устройство можно устанавливать рядом с выключателями или приборами освещения.

Устройство плавного включения

Механизм действия устройства плавного включения ламп накаливания (УПВЛ) такой же, как и у защитных блоков. Прибор имеет весомое преимущество – небольшой размер, поэтому его можно устанавливать в подрозетник (за выключатель), внутри распределительной коробки и потолочной лампы (под колпак). Подключение УПВЛ должно осуществляться последовательно, начиная с соединения прибора к фазному проводнику.

Диммирование

Диммеры обладают способностью регулировать электрический ток, поэтому эти приборы часто устанавливают в жилых помещениях. Устройства меняют яркость света, который дают галогеновые, светодиодные или лампы накаливания.

Реостат или переменный резистор считают простейшим диммером. Прибор был изобретен в 1847 году Кристианом Поггендорфом. С его помощью можно регулировать силу электрического тока и напряжение. Устройство состоит из нескольких деталей:

  • проводник;
  • регулятор сопротивления.

Сопротивление меняется плавно. Чтобы уменьшить яркость света, напряжение снижают. В этом случае величины, обозначающие силу тока и сопротивление, будут высокими, что спровоцирует перегрев осветительного прибора.

Популярные статьи Гирлянды в виде сердечек

К диммерам относят также автотрансформаторы. У этих приборов коэффициент полезного действия достаточно высок. Напряжение подается неискаженным, частота оптимальная – не более 50 Гц. Существенный минус автотрансформатора – большой вес. Чтобы управлять ими, человек должен приложить максимум усилий.

Электронный вариант – наиболее простой и доступный прибор, с помощью которого можно контролировать силу тока. Основная деталь компактного устройства – переключатель (ключ), которым управляют тиристорными, симисторными и транзисторными полупроводниками.

Выделяют несколько способов регулирования диммера:

  • по переднему фронту;
  • по заднему фронту.

Подающееся на лампы накаливания напряжение можно регулировать обоими способами.

Схемы плавного включения и выключения светодиодов

Разбирать громоздкие схемы не имеет смысла, т.к. для решения большинства задач справляются простые устройства, работающие на элементарных схемах. Рассмотрим одну из таких схем плавного включения и выключения светодиодов. Несмотря на простоту, она имеет ряд плюсов, высокую надежность и низкую себестоимость.

Состоит из следующих деталей:

  • VT1 – полевой транзистор IRF540;
  • C1 – конденсатор емкостью 220 mF и напряжением 16V;
  • R1, R2, R3 – резисторы номиналом 10, 22, 40 kOm соответственно;
  • LED – светодиод.

Как сделать плавное включение ламп накаливания и для чего оно нужно

Ночью глазам не очень комфортен такой режим. Подскажите идеи, как реализовать плавный розжиг и затухание светодиодной ленты без постоянно включенного в блока питания? Плавный розжиг и затухание светодиодной ленты, как и любого другого осветителя реализуется электронными диммерами. Но задача чуть более сложна — ночью яркость подсветки, на которую включается лента или другой осветитель должна быть заметно ниже, чем днем. А еще, если светодиодная лента с изменяемой световой температурой, вечером и ночью лучше смотрятся более желтые оттенки, а днем — более голубые.

Плавный розжиг панели приборов двухканальный v , цена грн., купить Курахово Работает со светодиодами (платы пересвета, светодиодные ленты и т. п.) Плавного затухания нет. Схема подключения устройства.

Схемы плавного включения и выключения светодиодов

Разбирать громоздкие схемы не имеет смысла, т.к. для решения большинства задач справляются простые устройства, работающие на элементарных схемах. Рассмотрим одну из таких схем плавного включения и выключения светодиодов. Несмотря на простоту, она имеет ряд плюсов, высокую надежность и низкую себестоимость.

Состоит из следующих деталей:

  • VT1 – полевой транзистор IRF540;
  • C1 – конденсатор емкостью 220 mF и напряжением 16V;
  • R1, R2, R3 – резисторы номиналом 10, 22, 40 kOm соответственно;
  • LED – светодиод.

Работает от напряжения 12 Вольт по следующему алгоритму:

  1. При включении схемы в цепь питания через R2 протекает ток.
  2. В это время C1 набирает емкость (заряжается), что обеспечивает постепенное открытие полевика VT
  3. Возрастающий ток на затворе (вывод 1) протекает через R1, и заставляет постепенно открываться сток полевика VT
  4. Ток уходит на исток все того же полевика VT1 и далее на LED.
  5. Светодиод постепенно усиливает излучение света.

Затухание светодиода происходит при снятии питания. Принцип обратный. После отключения питания, конденсатор C1 начинает постепенно отдавать свою емкость на сопротивления R1 и R2.

Скорость разряда, а тем самым и скорость плавного затухания светодиода, может регулироваться номиналом сопротивления R3. Поэкспериментируйте, чтобы понять, как номинал влияет на быстроту розжига и затухания LED. Принцип следующий – выше сопротивление, медленнее затухание, и наоборот.

Главный элемент – это полевой n-канальный MOSFET транзистор IRF540, все остальные полупроводниковые приборы играют вспомогательную роль (обвязка). Стоит отметить его важные характеристики:

  • ток стока: до 23 Ампер;
  • полярность: n;
  • напряжение сток – исток: 100 Вольт.

Более детальную информацию, в том числе и ВАХ, можно найти на сайте производителя в datasheet.

Доработанный вариант с возможностью настройки времени

Рассмотренный выше вариант предполагает использование устройства без возможности регулировки времени розжига и затухания LED. А иногда это необходимо. Для реализации всего лишь нужно дополнить схему несколькими элементами, а именно R4, R5 – регулируемые сопротивления. Они предназначены для реализации функции подстройки времени полного включения и выключения нагрузки.

Рассмотренные схемы плавного розжига и затухания отлично подойдут для реализации дизайнерской подсветки в автомобиле (багажник, двери, область ног передних пассажиров).

Еще одна популярная схема

Вторая самая популярная схема плавного включения и выключения светодиодов очень похожа на две рассмотренные, но сильно отличаются по принципу работы. Управление включением происходит по минусу.

Широкое применение схемы нашли в тех местах, где одна часть контактов замыкается по минусу, а другая по плюсу.

Отличия схемы от рассмотренных ранее. Главное отличие – это другой транзистор. Полевик обязательно нужно заменить на p – канальный (маркировка указана на схеме ниже). Нужно «перевернуть» конденсатор, теперь плюс кондера пойдет на исток транзистора. Не забывайте, доработанный вариант имеет питание с обратной полярностью.

Способы реализации плавного включения

Прежде чем определиться со способами реализации плавного запуска, необходимо выяснить, как работают УВПЛ. Принцип действия приборов этого типа основывается на способности сначала понижать, а затем постепенно повышать напряжение до оптимальной величины. Устройство подключается в разрыв провода между лампой (светильником) и выключателем.

При подаче напряжения его величина повышается за счет схем плавного запуска. Они могут быть собраны на транзисторах, симисторах или тиристорах по схемам ФИР (фазоимпульсный регулятор). Скорость повышения напряжения может варьироваться в пределах нескольких секунд: многое зависит от того, по какой схеме был собран прибор. Мощность нагрузки чаще всего не превышает 1400 Вт.

Блок питания

Блок защиты выступает в роли устройства, обеспечивающего плавное включение. Применение приспособления одновременно с лампой позволяет постепенно понизить напряжение, поступающее к осветительному прибору. Вольфрамовая нить в этом случае не испытывает большой нагрузки, что позволяет продлить ее срок эксплуатации.

По мере того, как электрический ток проходит сквозь блок, напряжение падает (с 220 В до 170 В). Скорость варьируется в пределах 2-4 секунд. Использование блока защиты по назначению приводит к снижению потока света на 50-60%. Устройства Uniel Upb-200W-BL выдерживают до 220 В, поэтому необходимо подключать к ним лампочки такой же мощности.

Устройство можно устанавливать рядом с выключателями или приборами освещения.

Устройство плавного включения

Механизм действия устройства плавного включения ламп накаливания (УПВЛ) такой же, как и у защитных блоков. Прибор имеет весомое преимущество – небольшой размер, поэтому его можно устанавливать в подрозетник (за выключатель), внутри распределительной коробки и потолочной лампы (под колпак). Подключение УПВЛ должно осуществляться последовательно, начиная с соединения прибора к фазному проводнику.

Диммирование

Диммеры обладают способностью регулировать электрический ток, поэтому эти приборы часто устанавливают в жилых помещениях. Устройства меняют яркость света, который дают галогеновые, светодиодные или лампы накаливания.

Реостат или переменный резистор считают простейшим диммером. Прибор был изобретен в 1847 году Кристианом Поггендорфом. С его помощью можно регулировать силу электрического тока и напряжение. Устройство состоит из нескольких деталей:

  • проводник;
  • регулятор сопротивления.

Сопротивление меняется плавно. Чтобы уменьшить яркость света, напряжение снижают. В этом случае величины, обозначающие силу тока и сопротивление, будут высокими, что спровоцирует перегрев осветительного прибора.

К диммерам относят также автотрансформаторы. У этих приборов коэффициент полезного действия достаточно высок. Напряжение подается неискаженным, частота оптимальная – не более 50 Гц. Существенный минус автотрансформатора – большой вес. Чтобы управлять ими, человек должен приложить максимум усилий.

Электронный вариант – наиболее простой и доступный прибор, с помощью которого можно контролировать силу тока. Основная деталь компактного устройства – переключатель (ключ), которым управляют тиристорными, симисторными и транзисторными полупроводниками.

Выделяют несколько способов регулирования диммера:

  • по переднему фронту;
  • по заднему фронту.

Подающееся на лампы накаливания напряжение можно регулировать обоими способами.

Галогенные лампы — Как они работают и история

The Галогенная лампа

Яркий и Compact
История
(с 1953 г. по настоящее время)

Введение:
Галогенная лампа также известна как галогенная кварцевая и вольфрамовая галогенная лампа. фонарь.Это усовершенствованная форма лампы накаливания. фонарь. Нить накала состоит из пластичного вольфрама и расположена в газовая колба, как и стандартная вольфрамовая колба, однако газовая в галогенной лампочке находится при более высоком давлении (7-8 атм). Стеклянная колба изготавливается из плавленого кварца, высококремнеземного стекла или алюмосиликата. Этот Колба прочнее стандартного стекла, чтобы выдерживать высокое давление. Эта лампа является отраслевым стандартом для рабочего освещения и кино / телевидения. освещение за счет компактных размеров и большого светового потока.Галогенная лампа медленно заменяется белой светодиодной лампой, миниатюрной HID и люминесцентные лампы. Галогены повышенной эффективности с яркостью 30+ люмен за ватт может изменить снижение продаж в будущем.

Все кредиты и источники расположены внизу каждой страницы освещения

Преимущества / недостатки:

Преимущества:
-Галоген Лампы маленькие, легкие
-Низкая стоимость производства
-Не используются ртутные люминесцентные лампы (люминесцентные) или ртутные лампы.
-Лучшая цветовая температура, чем у стандартного вольфрама (2800-3400 Кельвинов), он ближе к солнечному свету, чем более «оранжевый» стандартный вольфрам.
— Более длительный срок службы, чем у обычных ламп накаливания
— Мгновенное включение на полную яркость, отсутствие времени на прогрев и регулировку яркости

Недостатки:
— Чрезвычайно горячий (легко может вызвать сильные ожоги. при прикосновении к лампе).
— Лампа чувствительна к маслам, оставленным на коже человека при прикосновении колба голыми руками оставшееся масло нагреется один раз лампа активирована, это масло может вызвать дисбаланс и привести к разрыв луковицы.
-Взрыв, колба способна выдувать и посылать горячие осколки стекла наружу. Экран или слой стекла на внешней стороне лампы могут защитить пользователей.
-Не такая эффективная, как лампы HID (металлогалогенные и лампы HPS)

Видео . 6 мин. (YouTube не должен быть заблокирован на вашем сервере и требуются плагины для прошивки)

Статистика
* Люмен на ватт: 10-35
* Срок службы лампы: 1700-2500 часов
* CRI 100 (наилучшее возможное)
* Цветовая температура: 2800 — 3400 K
* Время нагрева: мгновенно

Обычный использует: 8 мм проекторы (первое использование в 1960 г.)
Переносные рабочие фары
Освещение для кино и телевидения
Домашнее внутреннее освещение (меньшая мощность)
Домашнее и коммерческое внешнее освещение (большая мощность)
Автоматические фары


1. Как это работает

Галогенная лампа имеет вольфрам нить накаливания аналогична стандартной лампе накаливания, однако лампа намного меньше при той же мощности и содержит галоген в лампочка. Галоген важен тем, что останавливает почернение и замедляет истончение вольфрамовой нити. Это продлевает жизнь лампы и позволяет вольфраму безопасно нагреваться до более высоких температур (поэтому делает больше света).Лампа должна стоять выше температуры, поэтому плавленый кварц часто используется вместо обычного кремнезема стекло.

А галоген — одновалентный элемент который легко образует отрицательные ионы. Есть 5 галогенов: фтор, хлор, бром, йод и астат. В галогенных вольфрамовых лампах используются только йод и бром.

A.) Лампа включается, и нить накала начинает светиться красным по мере того, как через него проходит ток. Температура быстро повышается. Галогены закипать до газа при относительно низких температурах: йод (184 ° C) или бром (59 С).

Б.) Обычно атомы вольфрама испаряются с нити накала и осаждаются внутри лампы, это затемняет обычные лампы накаливания. Когда атомы уходят нить накала становится тоньше. В конце концов нить рвется (обычно на концах нити).В галогенной вольфрамовой лампе атомы вольфрама химически объединяются с молекулами газа галогена и когда галоген остывает, вольфрам снова осаждается на нити накала. Этот процесс называется галогенным циклом.

2. Варианты и способы применения


Двойной галогенная лампа с цоколем (400 Вт)

Галогенная лампа поставляется в двух основных конфигурациях: односторонний и двусторонний.Чаще всего используются галогенные лампы с двумя цоколями. лампы большей мощности и используются для рабочего освещения, двора светильники и лампы для кинопроизводства. Галогенная лампа имеет мгновенный возможность включения в отличие от паров ртути или натрия высокого давления, поэтому они хорошо работают с охранными лампами, которые активируются при движении датчики. Срок службы галогенной лампы сокращается из-за частого циклы включения и выключения.

Нити в двойном галогены на концах могут быть прямыми или сдвоенными. Все филаменты свернуты в спираль для увеличения яркости, это была разработка Ирвинг Ленгмюр в стандартной лампе накаливания.

А экран используется для защиты актеров от насильственных неудач на конец срока службы лампы (лампа может лопнуть из-за высокого давления)

галоген лампы, используемые для теле- и кинопроизводства, варьируются от 125-750 + Ватт.Высокое потребление ограничивает количество ламп, которые можно подключить к стандартная схема на 15 ампер. Каждый год светодиоды, человеко-машинные интерфейсы и люминесцентные лампы дневного света замените галогенную лампу из-за меньшей опасности возгорания (меньше тепла) и потребляемая мощность.

Другой использование галогенных ламп, которое выросло с середины 1990-х гг., было бытовое и торговое освещение.Галогенный трековый светильник популярный способ обеспечить качественным светом определенные области для приготовление пищи, картины / гобелены и общее настроение освещение. Галогенная лампа полностью регулируемая, в отличие от компактной. флюоресцентные лампы. Галоген потребляет очень мало энергии и имеет более длительный срок службы в затемненном состоянии. Фредерик Мосби рано развился галогенные светильники со стандартными винтами Эдисона в основаниях для использования в доме еще в середине 1960-х гг.

Лампа MR16 (слева) используется во многих современных трековых светильниках xtures.


Лампа выше — это более новый галоген, используемый в автомобильных фарах. У Сильвании продукт под названием «Blue Star», в котором используется галогенная лампа и фильтрует его, чтобы создать синий цвет. Это ухудшает цветопередачу. чем стандартный вольфрам.Дерегуляция фар в автомобилях привела к к большему разнообразию доступных ламп.

3. Изобретатели и разработки

Элмер Фридрих и Emmet Wiley разработали галогенную лампу в General Электроэнергетика в Нела-Парк, штат Огайо, в 1955 году. Другие пытались построить галогенные лампы. лампы, однако они не могли придумать, как остановить почернение лампы. Фридрих понял, что нужно использовать небольшое количество йода, окружающего вольфрамовую нить, что позволило бы ей гореть при повышенной температуре.Первые лампы использовались и проектировались «запекать» краску на металле за счет высокой теплоотдачи галоген.


В Двухцокольная галогенная лампа была запатентована в 1959 году в Нела Парк (Кливленд, США). ОН)

Патенты были выпущены в 1959 году, а к 1960 году галоген был улучшен другими инженеров, чтобы было дешевле производить и продавать. С 1980-х гг. светильники стали легче.

Ранний работа, выполненная до 1950-х годов, включает Уильяма Работа Д. Кулиджа по разработке пластичного вольфрама в 1911 г. Этот материал используется во многих типах ламп, включая галогенные лампы. Ирвинг Ленгмюр изучал заполнение газом и легирование вольфрама для увеличения его длины. жизнь лампочки с 1905 по 1940 годы.

1953/1959 Элмер Фридрих разработал первый галогеновый вольфрам прототипы ламп с Эммиттом Уайли.Первое тестовое использование В 1955 году лампы стояли на освещении законцовок крыла самолетов. разработал двухцокольную галогеновую лампу в 1959 году. Фридрих также первый электролюминесцентный ламповая техника того же периода. Фридрих продолжал разрабатывать улучшения в лампе до самой смерти в 2010 году. Общие Электрический. Нела Парк. Кливленд, Огайо

Фото: Музей Скенектади

1953/1959 Emmett Wiley работал с Фридрихом на первом галогенные лампы.В качестве галогена они использовали йод. Общие Электрический. Нела Парк. Кливленд, Огайо

1955 г. Фредерик А. Мосби также работал в General Electric. в исследовательском центре в парке Нела. Он разработал более эффективный галогенную лампу и приспособили лампу для использования в обычных патронах. General Electric. Нела Парк. Кливленд, Огайо

1955 г. Неизвестно — Разработано инженерами Philips из Philips лампа, в которой использовался галоген бром. Эта лампа была эффективнее чем йод в то время и стал стандартом. Philips имеет политика не разглашать имена своих инженеров, так что правда о том, какие люди заслуживают похвалы, может никогда не быть известно. Philips Gloeilampenfabrieken, Nederlands

Фото: Philips

Лампы представлены в порядке хронологического развития

The Электрический свет

КОММЕНТАРИИ?
Помогите нам редактировать и дополнять эту страницу, став волонтером ETC!
Оставьте отзыв на этой и других страницах с помощью нашего Facebook Стр. Решебника

Назад на дом

Письменный автор: М.Уилан с дополнительным исследованием Рика ДеЛэра
Свяжитесь с нами, если вы историк и хотите исправить или улучшить этот документ.

Источники:
«В 88 лет изобретатель галогенных ламп Элмер Фридрих все еще придумывает яркие идеи »Роджера Мезгара, Cleveland.com
Как работает галоген. www.sylvania.com
Подразделение света неизвестным
« A История электрического света и энергии »Б. Бауэрса

Фотографии:
Технический центр Эдисона
Уилан Коммуникации
Музей Скенектади

Фото / видео использование:
Коммерческие организации должны платить за использование фотографий / графики / видео в своих веб-страницы / видео / публикации
Ни один коммерческий или публичный объект не имеет права изменять фотографии / графику / видео Технического центра Edison.
Использование в образовательных целях: Учащиеся и учителя могут использовать фото и видео в школе. Графика и фотографии должны содержать водяной знак или подписи Edison Tech Center. и остаются без манипуляций, за исключением калибровки.

Разрешения — Видео: Мы не отправляем никому по электронной почте, FTP и не отправляем видео / графику. кроме DVD. За эту услугу требуется оплата. Смотрите наш пожертвование страницу с ценами, и наш каталог для списка видео на DVD.
Профессиональные компании по производству видео могут получать видео в виде данных с подписанные лицензионные соглашения и оплата по коммерческим ставкам.


Авторские права 2013 Технический центр Эдисона

Интернет-кампус ZEISS Microscopy | Лампы вольфрамово-галогенные

Введение

Источники света накаливания, в том числе более старые версии с вольфрамовой и углеродной нитью, а также новые, более совершенные вольфрамово-галогенные лампы, успешно используются в качестве высоконадежных источников света в оптической микроскопии на протяжении многих десятилетий и продолжают оставаться одними из них. выбранные механизмы освещения для различных методов визуализации.Старые лампы, оснащенные вольфрамовой проволочной нитью и заполненные инертным газом аргоном, часто используются в студенческих микроскопах для получения светлопольных и фазово-контрастных изображений, и эти источники могут быть достаточно яркими для некоторых приложений, требующих поляризованного света. Вольфрамовые лампы относительно недороги (по сравнению со многими другими источниками света), их легко заменить, и они обеспечивают адекватное освещение в сочетании с диффузионным фильтром из матового стекла. Эти особенности в первую очередь ответственны за широкую популярность источников света накаливания во всех формах оптической микроскопии.Вольфрамово-галогенные лампы, наиболее совершенная конструкция в этом классе, генерируют непрерывное распределение света в видимом спектре, хотя большая часть энергии, излучаемой этими лампами, рассеивается в виде тепла в инфракрасных длинах волн (см. Рисунок 1). Из-за относительно слабого излучения в ультрафиолетовой части спектра вольфрамово-галогенные лампы не так полезны, как дуговые лампы и лазеры, для исследования образцов, которые необходимо освещать с длинами волн менее 400 нанометров.

Несколько разновидностей вольфрамово-галогенных ламп в настоящее время являются источником освещения по умолчанию (и предоставляются производителем) для большинства микроскопов учебного и исследовательского уровня, продаваемых по всему миру.Они отлично подходят для исследования в светлом поле, микрофотографии и цифровой визуализации окрашенных клеток и срезов тканей, а также для многочисленных применений отраженного света для промышленного производства и разработки. В поляризованных световых микроскопах, используемых для идентификации частиц, анализа волокон и измерения двойного лучепреломления, а также в рутинных петрографических геологических приложениях, обычно используются вольфрамово-галогенные лампы высокой мощности для обеспечения необходимой интенсивности света через скрещенные поляризаторы.Стереомикроскопы также используют преимущества этого повсеместного источника света как в моделях начального, так и в продвинутых моделях. Для визуализации живых клеток с помощью методов усиления контраста (в основном дифференциального интерференционного контраста ( DIC ) и фазового контраста) в составных микроскопах проходящего света наиболее распространенным в настоящее время источником света является вольфрамово-галогенная лампа мощностью 100 Вт. . В долгосрочных экспериментах (обычно требующих от сотен до тысяч снимков) эта лампа особенно стабильна и при нормальных условиях эксплуатации подвержена лишь незначительным уровням временных и пространственных колебаний выходной мощности.

Первые коммерческие лампы накаливания с вольфрамовой нитью были представлены в начале 1900-х годов. Эти передовые нити, которые можно было наматывать, скручивать и эксплуатировать при очень высоких температурах, оказались гораздо более универсальными, чем их предшественники на основе углерода и осмия. Углеродные лампы страдают от быстрого испарения нити накала при температурах выше 2500 ° C и, следовательно, должны работать при более низких напряжениях, чтобы производить свет, имеющий относительно низкую цветовую температуру (желтоватый).Напротив, вольфрам имеет температуру плавления приблизительно 3380 ° C и может быть нагрет почти до этой температуры в стеклянной оболочке для получения света, имеющего более высокую цветовую температуру и срок службы, чем любой из предыдущих материалов, используемых для нити ламп. Основная проблема с вольфрамовыми лампами заключается в том, что во время нормальной работы нить накала постоянно испаряется, образуя газообразный вольфрам, который медленно уменьшает диаметр нити накала и в конечном итоге затвердевает на внутренней стороне стеклянной колбы в виде почерневшего, покрытого сажей отложений.Со временем мощность лампы уменьшается, поскольку остатки осажденного вольфрама на стенках внутренней оболочки становятся толще и поглощают все большее количество более коротких видимых длин волн. Точно так же потеря вольфрама из нити накала уменьшает диаметр, делая ее настолько тонкой, что в конечном итоге она выходит из строя.

Вольфрамово-галогенные лампы были впервые разработаны в начале 1960-х годов путем замены традиционной стеклянной колбы на кварцевую колбу с более высокими характеристиками, которая была больше не сферической, а трубчатой.Кроме того, внутри оболочки были запечатаны незначительные количества паров йода. Замена стекла с более низкой температурой плавления на кварцевое была необходима, потому что цикл регенерации галогена лампы (подробно описанный ниже) требует, чтобы оболочка поддерживалась при высокой температуре (превышающей допустимую для обычного стекла) для предотвращения образования галогеновых соединений вольфрама. от затвердевания на внутренней поверхности. Из-за новых компонентов эти усовершенствованные лампы первоначально назывались термином: кварц-йодид .Хотя лампы, содержащие галогены, представляли собой значительное улучшение по сравнению с обычными вольфрамовыми лампами, которые они заменили, новые лампы имели легкий розоватый оттенок, характерный для паров йода. Кроме того, кварц легко подвергается воздействию слабых щелочей, образующихся во время работы, что приводит к преждевременному выходу из строя самой оболочки. В последующие годы соединения брома заменили йод, и оболочка была изготовлена ​​из более новых сплавов боросиликатного стекла для производства вольфрамово-галогенных ламп с еще более длительным сроком службы и более высокой мощностью излучения.

Как обсуждалось ранее, в традиционных лампах накаливания испаренный газообразный вольфрам из нити накала переносится через паровую фазу и непрерывно осаждается на внутренних стенках стеклянной колбы. Этот артефакт затемняет внутренние стенки лампы и постепенно снижает светоотдачу. Чтобы поддерживать потери света на минимально возможном уровне, обычные вольфрамовые лампы накаливания помещают в большие колбы, имеющие достаточную площадь поверхности, чтобы минимизировать толщину осажденного вольфрама, который накапливается в течение срока службы лампы.Напротив, трубчатая оболочка в вольфрамово-галогенных лампах заполнена инертным газом (азотом, аргоном, криптоном или ксеноном), который во время сборки смешивается с небольшим количеством галогенового соединения (обычно бромистого водорода; HBr ). и следовые уровни молекулярного кислорода. Соединение галогена служит для инициирования обратимой химической реакции с вольфрамом, испаренным из нити, с образованием газообразных молекул оксигалогенида вольфрама в паровой фазе. Температурные градиенты, образующиеся в результате разницы температур между горячей нитью накала и более холодной оболочкой, способствуют перехвату и рециркуляции вольфрама в нить накала лампы за счет явления, известного как цикл регенерации галогена (проиллюстрирован на рисунке 2).Таким образом, испаренный вольфрам реагирует с бромистым водородом с образованием газообразных галогенидов, которые впоследствии повторно осаждаются на более холодных участках нити, а не накапливаются медленно на внутренних стенках оболочки.

Цикл регенерации галогена можно разделить на три критических этапа, которые показаны на рисунке 2. В начале работы оболочка лампы, наполняющий газ, парообразный галоген и нить накала изначально находятся в равновесии при комнатной температуре. Когда к лампе подается питание, температура нити накала быстро повышается до ее рабочей температуры (в районе 2500–3000 ° C), в результате чего также нагревается наполняющий газ и оболочка.В конце концов, оболочка достигает стабильной рабочей температуры, которая колеблется от 400 до 1000 C, в зависимости от параметров лампы. Разница температур между нитью накала и оболочкой создает температурные градиенты и конвекционные токи в заполняющем газе. Когда температура оболочки достигает примерно 200–250 ° C (в зависимости от природы и количества паров галогена), начинается цикл регенерации галогена. Атомы вольфрама, испаренные из нити накала (см. Рис. 2 (а)), вступают в реакцию с парами газообразного галогена и следовыми количествами молекулярного кислорода с образованием оксигалогенидов вольфрама (рис. 2 (б)).Вместо того, чтобы конденсироваться на горячих внутренних стенках оболочки, оксигалогенидные соединения циркулируют конвекционными токами обратно в область, окружающую нить, где они разлагаются, в результате чего элементарный вольфрам повторно осаждается на более холодных участках нити (рис. 2 (c)). ). После освобождения от связанного вольфрама соединения кислорода и галогенидов диффундируют обратно в пар, чтобы повторить цикл регенерации. Непрерывная рециркуляция металлического вольфрама вперед и назад между паровой фазой и нитью обеспечивает более равномерную толщину проволоки, чем это было бы возможно в противном случае.

Преимущества цикла регенерации галогенов включают возможность использования меньших по размеру конвертов, которые поддерживаются в чистом состоянии без отложений в течение всего срока службы лампы. Поскольку колба меньше, чем у обычных вольфрамовых ламп, дорогой кварц и родственные стеклянные сплавы могут быть более экономичными при производстве. Более прочные кварцевые оболочки позволяют использовать более высокое внутреннее давление газа, чтобы помочь в подавлении испарения нити накала, тем самым позволяя повышать температуру нити, которая дает более световой выход, и смещает профили излучения, чтобы обеспечить большую долю более желательных длин волн видимого диапазона.В результате вольфрамово-галогенные лампы сохраняют свою первоначальную яркость на протяжении всего срока службы, а также преобразуют электрический ток в свет более эффективно, чем их предшественники. С другой стороны, вольфрам, испаренный и повторно осаждаемый в цикле регенерации галогена, не возвращается на свое первоначальное место, а скорее скатывается на самые холодные участки нити, что приводит к неравномерной толщине. В конечном итоге лампы выходят из строя из-за уменьшения толщины нити накала в самых жарких регионах. В противном случае вольфрамово-галогенные лампы могут иметь практически бесконечный срок службы.

Ранние исследования показали, что добавление фторидных солей к парам, запечатанным внутри вольфрамово-галогенных ламп, дает на выходе самый высокий уровень видимых длин волн, а также осаждает переработанный вольфрам на участках нити накала с более высокими температурами. Это открытие вселило надежду на то, что вольфрамовые нити могут иметь более однородную толщину в течение значительного увеличения срока службы этих ламп. Кроме того, смещение выходного профиля излучения лампы для включения большего количества видимых длин волн было весьма желательно по сравнению с более низкими цветовыми температурами, обеспечиваемыми аналогичными лампами, имеющими альтернативные галогенные соединения (йодид, хлорид и бромид).К сожалению, было обнаружено, что фторидные соединения агрессивно воздействуют на стекло (обратите внимание, что плавиковая кислота обычно используется для травления стекла), что приводит к преждевременному разрушению оболочки. Таким образом, фторидные соединения неприменимы для коммерческих ламп. Как следствие, обсуждаемые выше бромидные соединения по-прежнему являются предпочтительным реагентом для производства вольфрамово-галогенных ламп, но производители ламп продолжают исследовать применение новых смесей заполняющего газа и галогенов для этих очень полезных источников света.

Вольфрамово-галогенные лампы накаливания работают как тепловые излучатели, что означает, что свет генерируется путем нагрева твердого тела (нити накала) до очень высокой температуры. Таким образом, чем выше рабочая температура, тем ярче будет свет. Все лампы на основе вольфрама демонстрируют спектральные профили излучения, напоминающие профили излучения излучателя с черным телом, а спектральный выходной профиль вольфрамово-галогенных ламп качественно аналогичен профилям ламп накаливания с вольфрамовой и углеродной нитью накаливания.Большая часть излучаемой энергии (до 85 процентов) находится в инфракрасной и ближней инфракрасной областях спектра, при этом 15-20 процентов попадают в видимую область (от 400 до 700 нанометров) и менее 1 процента — в ультрафиолетовых длинах волн. (ниже 400 нм). Мягкая стеклянная оболочка обычных ламп накаливания поглощает большую часть ультрафиолетового излучения, генерируемого вольфрамовой нитью, но оболочка из плавленого кварца в вольфрамово-галогенных лампах поглощает очень мало излучаемого ультрафиолетового света выше 200 нанометров.

Значительная часть электроэнергии, потребляемой накаленными вольфрамовыми проволочными волокнами, выводится в виде электромагнитного излучения, охватывающего диапазон длин волн от 200 до 3000 нанометров. Математически полное излучение увеличивается как четвертая степень температуры проволоки, что смещает спектральное распределение в сторону все более коротких (видимых) длин волн в колоколообразном профиле по мере увеличения температуры (см. Рисунки 1 и 3). Несмотря на то, что пиковые длины волн имеют тенденцию перераспределяться из ближнего инфракрасного диапазона ближе к видимой области с более высокими температурами нити накала, точка плавления вольфрама не позволяет большей части выходного излучения смещаться в видимую область спектра.При самых высоких практических рабочих температурах пиковое излучение составляет примерно 850 нанометров, при этом около 20 процентов общего выходного излучения приходится на видимый свет. Инфракрасные волны, составляющие большую часть выходного сигнала, должны рассеиваться как нежелательное тепло. В результате, по сравнению со спектром дневного света (5000+ K), излучаемого ртутными, ксеноновыми и металлогалогенными дуговыми лампами, в галогенидных лампах всегда преобладают красные участки спектра.

В случае идеального радиатора blackbody воспринимаемая цветовая температура равна истинной (измеренной) температуре материала радиатора.Однако на практике общее излучение обычных источников излучения (таких как лампы накаливания) меньше, чем можно было бы ожидать от черного тела. Цветовая температура выражается в градусах Кельвина ( K ), в то время как фактическая измеренная температура более практично выражается в градусах Цельсия ( C ). Эти два числа различаются на 273,15 линейных единиц градусов, при этом значение Кельвина равно Цельсию плюс 273,15. Более высокие цветовые температуры соответствуют более белому свету , который больше похож на солнечный свет, тогда как более низкие цветовые температуры имеют тенденцию смещать цвета в сторону желтых и красноватых оттенков.Вольфрам не является истинным черным телом в том смысле, что полное испускаемое излучение меньше, чем могло бы наблюдаться в идеальном случае, однако вольфрам является лучшим излучателем (и более точно приближается к истинному черному телу) в более короткой видимой области длин волн, чем в более длинные волны. Для значительной части видимого диапазона длин волн цветовая температура вольфрама выше, чем эквивалентная истинная температура в градусах Цельсия. Таким образом, для измеренной температуры нити накала 3000 C цветовая температура составляет примерно 3080 K.Предел цветовой температуры вольфрама определяется температурой плавления, которая составляет чуть более 3350 ° C или приблизительно 3550 K.

Таким образом, в качестве излучателей накаливания вольфрамово-галогенные лампы генерируют непрерывный спектр света, который простирается от центрального ультрафиолета до видимого и инфракрасного диапазонов длин волн (см. Рисунки 1 и 3). По сравнению со спектром излучения солнечного света и теоретическим излучателем черного тела 5800 K (как показано на рис. 3 (а)), в вольфрамово-галогенных лампах всегда преобладают более длинноволновые области.Однако по мере увеличения температуры нити в вольфрамово-галогенной лампе профиль излучения света смещается в сторону более коротких длин волн, так что по мере приближения температуры к предельной точке плавления вольфрама доля видимых длин волн, излучаемых лампой, существенно увеличивается. Этот эффект проиллюстрирован на рисунке 3 (b) путем нормализации выходного распределения излучения лампы при цветовых температурах 2800 K и 3300 K на тот же световой поток. В дополнение к значительно меньшей доле излучения в инфракрасном диапазоне, кривая 3300 K показывает гораздо больший выход в видимом диапазоне длин волн.

Фотометрические характеристики для оценки характеристик источников света несколько необычны в том смысле, что две системы единиц существуют параллельно для определения важных переменных, связанных с яркостью и спектральным выходом. Физическая фотометрическая система рассматривает свет исключительно как электромагнитное излучение с точки зрения яркости (яркости), связанной с единицами длины и угла и измеряемой в ваттах. Физиологическая фотометрическая система учитывает способ, которым гипотетический человеческий глаз оценивает источник света.Поскольку каждый человеческий глаз несколько по-разному реагирует на видимый спектр света, стандартный глаз определен международным соглашением. Основной характеристикой этого стандарта является чувствительность к разным цветам света, основанная на максимальном отклике на 550-нанометровый (зелено-желтый) свет, измеряемом в единицах люмен или , а не ваттах. Физиологическая система является адекватной, если датчик света представляет собой человеческий глаз, цифровую камеру, фотопленку или какое-либо другое устройство, которое реагирует аналогичным образом.Однако эта система выйдет из строя, если анализируемый свет попадет в ультрафиолетовую или инфракрасную область, невидимую для человеческого глаза. В этом случае для измерений и анализа необходимо использовать физическую фотометрическую систему.

Технические характеристики вольфрамово-галогенной лампы для микроскопии

Номинальная
Мощность
(Вт)
Номинальное
Напряжение
(В)
Световой
Поток
(лм)
Нить накала
Размер
Ш x В (мм)
Средний
Срок службы
(часы)
10 6 150 1.5 х 0,7 300
20 6 480 2,3 х 0,8 100
30 6 765 1,5 х 1,5 100
30 12 750 2.6 х 1,3 50
50 12 1000 3,0 x 3,0 1100
100 12 3600 4,2 х 2,3 2000
Таблица 1

В таблице 1 представлены электрические характеристики, размеры нити накала, типичный срок службы и фотометрическая мощность некоторых из самых популярных вольфрамово-галогенных ламп, используемых в настоящее время в оптической микроскопии.Среди наиболее важных терминов, используемых для сравнения этих ламп, — световой поток , который представляет собой общий излучаемый свет, измеренный в люменах . Световой поток увеличивается пропорционально его физическому фотометрическому эквиваленту в ваттах. Другая важная величина, известная как сила света , — это часть светового потока, которая измеряется телесным углом в одном направлении. Сила света, равная канделя , используется для оценки характеристик лампы в оптической системе.Лампы также оцениваются с точки зрения световой отдачи при использовании люмен на ватт электроэнергии (относящейся к физическим и физиологическим системам) для определения эффективности преобразования электроэнергии в видимое излучение. Теоретический максимум световой отдачи составляет 683 люмен на ватт, но на практике вольфрамово-галогенные лампы обычно достигают предела в 37 люмен на ватт. Чтобы более четко понять электрические характеристики вольфрамово-галогенных ламп, обычно можно применять следующие обобщения: на каждые 5 процентов изменения напряжения, подаваемого на лампу, срок службы либо удваивается, либо сокращается вдвое, в зависимости от того, составляет ли напряжение. уменьшилось или увеличилось.Кроме того, каждые 5 процентов изменения напряжения сопровождаются 15-процентным изменением светового потока, 8-процентным изменением мощности, 3-процентным изменением тока и 2-процентным изменением цветовой температуры.

Широкий спектр конструкций вольфрамово-галогенных ламп включает встроенные отражатели, которые служат для эффективного сбора фронтов световых волн, излучаемых лампой, и их упорядоченного направления в систему освещения. Эти предварительно собранные блоки, получившие название рефлекторных ламп (см. Рисунок 4), нашли широкое применение в качестве внешних осветителей для приложений стереомикроскопии.Свет от осветителя может быть направлен в любую область образца с помощью гибкого оптоволоконного световода. Рефлекторные лампы сильно различаются по конструкции в зависимости от характеристик и геометрии рефлектора, а также от положения лампы внутри рефлектора. Тем не менее, все лампы с отражателем содержат одноцокольные лампы, которые устанавливаются в центре оптической оси отражателя с цоколем, вклеенным в вершину отражателя. Конфигурация нити накала обычно определяется характеристиками луча, необходимыми для конкретной оптической системы, для которой предназначена лампа.В рефлекторных лампах используются все конструкции нити накала, включая поперечную, осевую и плоскую.

Рефлекторные лампы обычно подключаются к патронам с молибденовыми штырями, выступающими наружу из задней части рефлектора и устанавливаемыми с керамическими крышками. В некоторых случаях используются специальные кабельные соединения, чтобы пространственно отделить электрический контакт от источника тепла (лампы). Поскольку рефлекторные лампы обычно встраиваются как часть точно выровненной оптической системы, электрическое соединение только изредка используется как часть крепления.Существует несколько методов установки отражателей, в том числе установка держателя на переднем крае отражателя, использование давления на заднюю часть крышки отражателя, центрирование края отражателя в конусе и регулировку края отражателя на угловом упоре. В большинстве случаев конструкция основания рефлектора и механизм крепления используются для обозначения конкретного класса рефлекторной лампы. Внешний диаметр переднего отверстия рефлектора является определяющим критерием для рефлекторных ламп, и производители установили два основных размера.Они обозначаются MR 11 и MR 16 , причем буквы представляют собой аббревиатуру металлического отражателя , а цифры обозначают диаметр отражателя в восьмых долях дюйма. Таким образом, рефлекторная лампа MR 16 имеет диаметр приблизительно 50 миллиметров, тогда как лампы MR 11 имеют диаметр почти 35 миллиметров.

Вольфрамово-галогенные отражатели предназначены для фокусировки или коллимирования света, излучаемого лампой, как показано на рисунке 4.Фокусирующие отражатели концентрируют свет в небольшом пятне (фокусной точке) в центральной оптической оси на определенном расстоянии от отражателя (см. Рисунок 4 (b)). Отражатель этого типа имеет эллиптическую геометрию, что требует, чтобы нить накала лампы располагалась в первой фокусной точке эллипсоида, чтобы проецируемое световое пятно концентрировалось во второй фокусной точке. При проектировании светильников для фокусирующих отражателей важнейшим критерием является установка лампы на надлежащем расстоянии от входной апертуры оптической системы.Коллимирующие отражатели имеют параболическую геометрию, чтобы генерировать параллельный луч света, характеристики луча которого определяются параметрами лампы и размером отражателя (см. Рисунок 4 (c)). Угол выхода луча в первую очередь определяется размером нити накала лампы и свободным отверстием отражателя. В большинстве случаев осевая нить накала с круглым сердечником обеспечивает осесимметричный луч.

Отражатели обычно изготавливаются из стекла, но некоторые из них также изготавливаются из алюминия.Их внутренние стенки могут быть гладкими или иметь фасетки для контроля распределения света. Внутренняя структура варьируется от мелких, едва заметных зерен до крупных, выложенных плиткой граней (см. Рис. 4 (а)). В стеклянных отражателях внутренняя поверхность куполообразного отражателя покрывается (обычно осаждением из паровой фазы) для получения требуемых отражающих свойств. Стабильность размеров стеклянных отражателей превосходит стабильность металлических отражателей, а возможность выбора конкретных материалов покрытия, в том числе тех, которые могут изменять спектральный характер отраженного света, делает эти отражатели гораздо более универсальными.Металлические отражатели намного проще и дешевле изготавливать, но они ограничены в управлении спектральным выходом и более подвержены колебаниям геометрических допусков во время работы.

Если требуется весь спектр излучения, излучаемого лампой, или в случаях, когда полезен инфракрасный свет, оптимальным выбором будут металлические или стеклянные отражатели с тонким золотым покрытием. Однако там, где необходимо использовать определенные отражательные свойства для выбора длин волн посредством интерференции, оптимальными являются дихроичные тонкопленочные покрытия на стеклянных отражателях.Эти покрытия состоят приблизительно из 40-60 очень тонких слоев, каждый из которых составляет всего четверть длины волны света и состоит из чередующихся материалов, имеющих высокий и низкий показатель преломления. Точная настройка толщины и количества слоев позволяет разработчикам генерировать широкий спектр выходных спектральных характеристик. Среди ламп с дихроичным отражателем наиболее полезной для микроскопии является отражатель холодного света , потому что только видимый свет в диапазоне длин волн от 400 до 700 нанометров направляется в оптическую систему (рис. 4 (d)).Инфракрасные волны излучаются через заднюю часть отражателя и отводятся от фонаря с помощью электрического вентилятора. Применение подходящих отражателей холодного света снижает общую тепловую нагрузку на систему освещения и дает свет, который можно записывать с помощью пленочных и цифровых фотоаппаратов.

Базовая анатомия одноцокольной вольфрамово-галогенной лампы, обычно используемой для освещения в оптической микроскопии, показана на рисунке 5. Общая длина измеряется от конца стержня основания до точки герметичной выхлопной трубы.Важным критерием для размещения лампы по отношению к системе коллекторных линз является длина светового центра (рис. 5 (а)), при которой центр нити накала соответствует определенной плоскости отсчета в цоколе лампы. Другими важными параметрами являются диаметр колбы (самая толстая часть оболочки), ширина основания (обычно немного больше диаметра колбы) и размеры поля нити накала (высота и ширина). Эффективный размер источника освещения, используемого при проектировании выходной оптической системы, определяется высотой и шириной нити накала (поле нити накала).Допуски и положение поля накала имеют решающее значение и не должны отклоняться более чем на 1 миллиметр от оси симметрии лампы (определяемой плоскостью штифтов основания и центральной линией лампы). Допуски поля накала разработаны для конкретной архитектуры волокна и должны измеряться, когда нить накала горячая.

Чрезмерно высокие рабочие температуры вольфрамово-галогенных ламп требуют существенно более прочных и толстых прозрачных колб по сравнению с обычными вольфрамовыми и угольными лампами.Стекло из кварцевого стекла из кварцевого стекла является стандартным материалом, используемым при производстве вольфрамово-галогенных ламп, поскольку этот материал может выдерживать температуру оболочки до 900 C и рабочее давление до 50 атмосфер. В целом, оптическое качество кожухов кварцевых ламп значительно ниже, чем у ламп из дутого стекла, используемых для производства обычных ламп накаливания. Этот артефакт связан с тем, что кварц труднее обрабатывать (в первую очередь из-за более высокой температуры плавления).Кварц, предназначенный для огибающих ламп, начинается с цилиндрической трубки, которую сначала обрезают до нужной длины, а затем присоединяют меньшую выхлопную трубу. Позже в процессе производства, после того, как нить накала и выводные штыри вставлены и зажаты, оболочка заполняется соответствующим газом и галогеновым соединением, прежде чем выхлопная труба будет удалена и запломбирована в процессе, называемом наконечник , который оставляет видимый дефект на конверте. Вольфрамово-галогенные лампы, используемые в микроскопии, обычно имеют выступающее пятно, расположенное в верхней части оболочки в области, которая не влияет на оптическое качество света, излучаемого лампой (рис. 5 (а)).Предварительно изготовленные внутренние конструктивные элементы лампы (нить накала, соединитель из фольги и штыри) вставляются в трубчатую кварцевую трубку до того, как свинцовые штыри герметично запечатываются в оболочке путем защемления. Форма внешней поверхности зажима обеспечивает максимальную механическую прочность.

После защемления выводов штыря (этот процесс проводится, пока оболочка промывается инертным газом, чтобы избежать окисления), колба заполняется через выхлопную трубу соответствующим газом, содержащим 0.От 1 до 1,0 процента галогенового соединения. Инертный наполняющий газ может быть ксеноном, криптоном, аргоном или азотом, а также смесью этих газов, имеющей наивысший средний атомный вес, совместимый с желаемым сопротивлением дуге. Галоген, используемый для вольфрамово-галогенных ламп, используемых в микроскопии, обычно представляет собой HBr, CH 3 Br или CH 2 Br 2 . Высокое внутреннее давление в лампе достигается за счет заполнения оболочки до желаемого давления и погружения лампы в жидкий азот для конденсации заполняющего газа.После герметизации выхлопной трубы на выходе наполняющий газ расширяется по мере того, как он нагревается до температуры окружающей среды. В высокоэффективных вольфрамово-галогенных лампах, производимых Osram (Сильвания, США), используется технология Xenophot , в которой газовый криптон заменяется ксеноном, который имеет более высокую атомную массу, чем криптон и другие наполняющие газы. Ксенон обеспечивает лучшее подавление испарения вольфрама, обеспечивает более высокую температуру нити накала и увеличивает световую отдачу примерно на 10 процентов (что соответствует увеличению цветовой температуры примерно на 100 K).Лампы Xenophot продаются с использованием аббревиатуры HLX , которая образована от терминов H алоген, L напряжение тока и X энон. Большинство вольфрамово-галогенных ламп, используемых в исследовательских микроскопах, оснащены лампами Osram / Sylvania HLX или их эквивалентами.

Вольфрам всегда используется для изготовления проволочной нити в современных лампах накаливания. Чтобы быть пригодной для вольфрамово-галогенных ламп, необработанная вольфрамовая проволока должна пройти сложный процесс легирования и термообработки, чтобы придать пластичность, необходимую для обработки, и гарантировать, что нить накала не деформируется в течение длительных периодов высокой температуры во время работы лампы.Провод также необходимо тщательно очистить, чтобы предотвратить выброс вредных газов после герметизации лампы. Длина нити накала определяется рабочим напряжением, при более высоком напряжении требуется большая длина. Диаметр определяется уровнями мощности лампы и желаемым сроком службы. Для высоких уровней мощности требуются более толстые волокна, которые к тому же механически прочнее. Геометрия накала во многом определяет фотометрические свойства вольфрамово-галогенных ламп. Лампы, используемые в микроскопии, обычно имеют геометрию нити с плоским сердечником, при которой проволока сначала наматывается в форме прямоугольного стержня, а затем зажимается поперек длинной оси.Вместо диаметра и длины нити с плоским сердечником измеряются по длине и ширине плоской стороны нити и по толщине прямоугольной формы. Характеристики светового излучения ламп накаливания с плоским сердечником значительно отличаются от характеристик излучения ламп других геометрических форм. Наиболее значительная часть излучаемого света излучается перпендикулярно плоской поверхности нити накала, которая совмещена с собирающей оптикой для максимальной пропускной способности. В некоторых конструкциях ламп используется специальная нить накала с плоским сердечником, у которой светоизлучающая поверхность имеет квадратную форму.Эти лампы являются предпочтительными источниками освещения в микроскопии проходящего света.

Одним из важнейших факторов при производстве вольфрамово-галогенных ламп является герметизация внутренних элементов для их изоляции от внешней атмосферы. Подводящие провода (молибденовые штыри; рис. 5 (b)) выходят из цоколя лампы через уплотнение, чтобы установить и закрепить лампу в гнезде, подключенном к источнику питания. Наиболее важным аспектом создания уплотнения является разница в коэффициентах теплового расширения кварцевых и вольфрамовых нитей накала.Кварц имеет очень низкий коэффициент расширения, тогда как у вольфрама намного выше. Без надлежащего уплотнения подводящие провода быстро расширились бы, когда лампа стала горячей, и разбили бы окружающее стекло. В современных вольфрамово-галогенных лампах очень тонкая молибденовая фольга (шириной от 2 до 4 миллиметров и толщиной от 10 до 20 микрометров; рис. 5 (b)) заделана в кварц, и каждый конец фольги приварен к коротким соединительным проводам из молибдена, которые в свою очередь приварены к нити накала и подводящему штифту.Молибден используется в уплотнении, потому что острые кромки позволяют безопасно врезать его в кварц во время операции зажима. Лампы, используемые для микроскопии, имеют односторонние основания, имеющие либо молибденовые штыри, выступающие из зажима, либо вольфрамовые штыри, которые изнутри связаны с молибденовой фольгой, как описано выше. Расстояние между штифтами стандартизовано и составляет от 4 до 6,35 миллиметра (обозначено как G4 и G6.35; G для стекла). Диаметр штифта колеблется от 0.От 7 до 1 миллиметра.

Поскольку на данный момент технология производства вольфрамово-галогенных ламп настолько развита, срок службы обычной лампы внезапно заканчивается, обычно при включении холодной лампы накаливания. В течение среднего срока службы современные вольфрамово-галогенные лампы не чернеют и претерпевают лишь незначительные изменения в фотометрических выходных характеристиках. Как и в случае с другими лампами накаливания, срок службы вольфрамово-галогенной лампы определяется скоростью испарения вольфрама из нити накала.Если нить накала не имеет постоянной температуры по всей длине провода, а вместо этого имеет области с гораздо более высокой температурой, вызванные неравномерной толщиной или внутренними структурными изменениями, то нить накала обычно выходит из строя из-за преждевременного обрыва в этих областях. Даже несмотря на то, что испаренный вольфрам возвращается в нить за счет цикла регенерации галогена (обсужденного выше), материал, к сожалению, откладывается на более холодных участках нити, а не в тех критических горячих точках, где обычно происходит утонение.В результате практически невозможно предсказать, когда какая-либо конкретная нить накала выйдет из строя в лампах, которые работают непрерывно. В тех лампах, которые часто включаются и выключаются, можно с уверенностью предположить, что они выйдут из строя в какой-то момент при включении.

Вольфрамово-галогенные лампы

могут работать от источников питания постоянного или переменного тока, но в большинстве исследовательских приложений микроскопии используются источники питания постоянного тока ( DC ). Самые современные источники питания для вольфрамово-галогенных ламп имеют специализированную схему, обеспечивающую стабилизацию тока и подавление пульсаций.Критическая фаза для вольфрамово-галогенной лампы — это когда напряжение впервые подается на холодную нить накала, период, когда сопротивление нити примерно в 20 раз ниже, чем при полной рабочей температуре. Таким образом, когда напряжение питания мгновенно подается на лампу путем ее включения, течет очень высокий начальный ток (до 10 раз выше, чем в установившемся режиме; называемый пусковой ток ), который медленно падает по мере того, как температура нити накала и электрическое сопротивление увеличивать. Пиковый уровень тока достигается в течение нескольких миллисекунд после запуска, но обычно заканчивается примерно за полсекунды.К сожалению, высокий пусковой ток, возникающий при холодном пуске, отрицательно сказывается на ожидаемом сроке службы лампы. Специальная схема источника питания (часто называемая схемой плавного пуска ) используется для компенсации высоких пусковых токов в самых передовых приложениях (включая микроскопию), в которых вольфрамово-галогенные лампы используются для проведения логометрических измерений.

На рисунке 6 показана типичная вольфрамово-галогенная лампа мощностью 100 Вт, используемая в микроскопии проходящего света.Лампа оснащена охлаждающими отверстиями, которые позволяют конвекционным потокам омывать лампу более прохладным воздухом во время работы. Металлический отражатель, покрывающий внутреннюю часть светильника, помогает сферическому отражателю направлять максимально возможный уровень светового потока в систему коллекторных линз для подачи на оптическую цепь микроскопа. Этот усовершенствованный фонарик содержит запасной патрон и сменный пластиковый инструмент, который оператор может использовать для захвата корпуса лампы во время переключения лампы.Регулировка положения лампы по отношению к оптической оси сферического отражателя и коллектора может быть выполнена с помощью винтов с внутренним шестигранником, которые перемещают основание. Лампа прикрепляется к осветительному устройству микроскопа с помощью запатентованного монтажного фланца, который соединяет лампу с вертикальным или инвертированным микроскопом (хотя большинство ламп не взаимозаменяемы с микроскопа одной марки на другой). Инфракрасный (тепловой) фильтр перед системой коллекторных линз поглощает значительное количество нежелательного излучения, и дополнительные фильтры обычно могут быть вставлены в световой тракт (используя прорези держателя фильтра в осветителе микроскопа) для поглощения выбранных диапазонов видимых длин волн, регулировки цветовой температуры или добавить нейтральную плотность (уменьшение амплитуды света).Большинство ламп для микроскопии не оснащены диффузионными фильтрами, но они часто требуются для достижения равномерного освещения по всему полю обзора и обычно помещаются производителем в осветительный прибор микроскопа.

Лампа накаливания — обзор

1.

«21 октября 1879 года знаменитая лампа Томаса Эдисона (с вольфрамовой нитью) проработала невероятный срок службы — 40 часов. Вся электротехническая промышленность основана на этом единственном изобретении … лампе накаливания.”J.W. Гийон, GEC (1979).

а.

Подтвердите обоснованность второго предложения.

б.

Сколько различных материалов вы можете определить в общей лампочке, которые создают проблемы с надежностью?

2.

Приведите примеры сочетания продуктов

a.

электрические и механические технологии.

б.

электрические и электронные технологии.

г.

электронные и оптические технологии.

3.

Закон масштабирования систем персональных компьютеров предполагает, что логарифм суммы длины ( L ) плюс ширина ( W ) плюс высота ( H ) изменяется линейно со временем. . Если L + W + H уменьшается вдвое каждые 6 лет, нарисуйте изменение для следующих компьютеров: настольный компьютер, ноутбук, карманный компьютер, кредитная карта, наручные часы и кольцо для пальца.Когда можно ожидать компьютеров с пальцевым кольцом?

4.

Количество транзисторов, используемых на человека в Соединенных Штатах, выросло примерно с 5 до 4 × 10 7 в течение 1955–1997 годов. Изобразите этот рост использования на графике, используя соответствующие оси. Если тенденция сохранится, оцените количество транзисторов, которые каждый человек будет использовать в 2010 году.

5.

Рост числа устройств на чип ( N ), по-видимому, подчиняется закону формы d N / d t ≈ k N (k = постоянный), т.е.е., рост пропорционален количеству устройств, присутствующих мгновенно. Химические реакции и радиоактивный распад также предполагают аналогичные тенденции. Обсудите физические причины экспоненциального роста или экспоненциального убывания.

6.

Напишите уравнение, которое приблизительно соответствует уменьшению размера мобильных телефонов. В каком году мы можем ожидать, что комиксы о Дике Трейси станут реальностью, если включить телефоны в наручные часы? Предположим, что размеры часов 3,5 × 2 × 1 см.

7.

Последствия ненадежности для медицинской профессии, по крайней мере, столь же серьезны, как и для аэрокосмической техники. Прокомментируйте возможные различия и сходства в вопросах надежности, с которыми сталкивается каждый из них.

8.

С учетом рисунков 1.2 и 1.3 вычислите плотность (количество на единицу площади) устройств как функцию времени. Скорость роста плотности устройств выше, чем у микропроцессоров или микросхем памяти?

9.

Комментарий к термодинамической стабильности кремния, алюминия и диоксида кремния, которые часто либо находятся в контакте, либо расположены в пределах нескольких нанометров друг от друга на микросхемах IC.

10.

Сравните форму кривой ванны для показателей смертности людей с возрастом в 1900 году и в конце двадцатого века. В чем причины разницы?

11.

Энергетический барьер, который необходимо преодолеть, чтобы преобразовать «надежные» состояния в «неудачные», расположенный на расстоянии a друг от друга, составляет E r − f .Кроме того, энергии надежного и неисправного состояний равны E r и E f соответственно.

а.

Изобразите эти состояния и энергию, которая их разделяет, графически.

б.

Напишите выражение для скорости возникновения неисправных состояний как функции температуры.

г.

Предположим, что движущая сила вызывает неисправные состояния. Напишите выражение для чистой нормы производства в неудовлетворительном состоянии.Графически изобразите действие движущей силы.

12.

Для конкретного механизма отказа были предложены два выражения для MTTF, а именно:

MTTF = AF − nexp [ERT] и MTTF = Bexp [E − αFRT], где Fisthe

движущая сила . Если A , B , E , n и α являются положительными константами, не зависящими от температуры и силы,
a.

Напишите выражения для AF для каждого случая, когда температура повышается с T 1 до T 2 при постоянной F .

б.

Напишите выражения для AF для каждого случая, когда сила увеличивается с F 1 до F 2 при постоянной T .

г.

Какая из двух формул для MTTF дает более высокое значение AF для температурного ускорения?

г.

Какая формула дает более высокое значение AF для ускорения поля?

13.

Было заявлено, что AF, равный двум, регулирует скорость химической реакции при повышении температуры на 10 ° C.Какая энергия активации требуется для того, чтобы это произошло при комнатной температуре?

14.

Сравните применимость законов Ньютона и уравнения Нернста – Эйнштейна к движению атомов в твердых телах. 10 (S − S0) 2S02]. Приложенная нагрузка ( L ) или распределение напряжений аналогично определяется выражением exp− [8 (L-L0) 2L02], где L 0 — средняя нагрузка.Отказ произойдет, если прочность и нагрузка перекрываются таким образом, что в каждом распределении достигается общее значение 0,04.

а.

Какие значения L и S могут вызвать сбой?

б.

Рассчитайте коэффициент L 0 / S 0 при отказе.

16.

Первоначально степень перекрытия прочности и нагрузки в материале возникает при значении распределения 0.001. Во время эксплуатации приложенная нагрузка остается постоянной, но средняя прочность материала экспоненциально снижается как S0 (t) = S0exp [−kt], где k — постоянная величина. Если распределения нагрузки и прочности описываются гауссианами, как в упражнении 1–15, и отказ происходит, когда значение каждого из них составляет 0,04, вычислите время отказа в терминах L 0 , S 0 и к .

Да будет свет — четыре распространенных типа пленочных светильников

Помимо камеры и объектива, самый важный технический и творческий навык, который вы можете приобрести, — это научиться использовать и формировать свет.Хорошее место для начала — это знать, какие инструменты есть в вашем распоряжении.

Знайте свои светильники

Прежде чем мы перейдем к типам пленочных светильников, давайте кратко рассмотрим два наиболее распространенных типа светильников.

Open Faced

Открытый светильник используется для создания жесткого света, отбрасывающего резкие тени. Это не более чем кожух и отражатель для лампы, и в ней нет ничего промежуточного между лампой и объектом.

Широко известные «Redhead» мощностью 800 Вт и «Blonde» мощностью 2000 Вт являются примерами видеоламп с открытым экраном.

Френель

Линза Френеля — это особый тип линзы, который разделен на концентрические круги, в результате чего линза намного тоньше, чем обычная линза той же оптической силы. Эта линза выравнивает свет и позволяет изменять луч от потока к точке, изменяя расстояние между блоком лампы / отражателя и линзой.

Практика

Практическим светом считается любой источник света, который появляется в сцене, например, настольная лампа, любые видимые внутренние источники света, даже ручной фонарик.Часто существующие лампы заменяются на лампы другой мощности или цветовой температуры в зависимости от необходимого эффекта и желаемых коэффициентов контрастности в сцене.

Факторы производительности

CRI

CRI означает индекс цветопередачи. Это относится к способности источника света правильно и достоверно отображать цвет объекта по сравнению с идеальным или естественным источником света. Максимально возможный индекс цветопередачи составляет 100 и соответствует идеальному черному телу (вольфрамовый источник света — это идеальное черное тело, как и солнце).

Цветовая температура

Цветовая температура относится к «цвету» белого света, излучаемого источником света, на основе цвета, излучаемого идеальным черным телом при заданной температуре, измеряемой в градусах Кельвина.

Белый свет может быть теплым (желтый / оранжевый) или холодным (синий), и наши глаза автоматически адаптируются. Однако цветовая температура источников света и особенно смешение разных цветовых температур становится очень важным при проектировании пленочного освещения.

Источник температуры

1700 K: пламя спички
1850 K: пламя свечи, закат / восход солнца
2700–3300 K: лампы накаливания
4100–4150 K: лунный свет
5000 K: дневной свет Horizon
5 500–6000 K: Вертикальный дневной свет
6500 K: дневной свет, пасмурная погода
15000–27000 K Ясное голубое небо с полюсом

Знайте свои источники света

Вольфрам (кварцевый галоген / вольфрам галоген)

Вольфрамовые источники света в основном относятся к одному типу ламп накаливания, которые до недавнего времени были повсеместно распространены в домах и офисах.

Ключевое отличие состоит в том, что в этих лампах используются преимущества так называемого галогенного цикла. Сжатый газ галогена внутри колбы помогает повторно нанести испаренный металлический вольфрам обратно на нить накала. Стеклянная колба сделана из более прочного кварцевого или алюмосиликатного стекла. Лампы работают при более высокой температуре, чем обычные вольфрамовые лампы накаливания, поэтому они могут достичь более высокой цветовой температуры и более высокой светоотдачи. Они, естественно, излучают теплый свет, но синие гели для коррекции цвета могут использоваться для имитации дневного света.

Вольфрамовые светильники могут быть открытыми или френелевыми, мощностью до 20 кВт и регулируемыми. Они излучают непрерывный спектр света от ближнего ультрафиолета до инфракрасного, обеспечивая почти идеальную цветопередачу.

При затемнении вольфрамовые лампы становятся более теплыми по цвету, поэтому для корректировки цветовой температуры необходимы гели.

Использует

Вольфрамовое освещение обычно используется для освещения интерьеров, поскольку оно соответствует теплому свету, связанному с домашним освещением лампами накаливания.

Преимущества

Почти идеальная цветопередача
Низкая стоимость
Не использует ртутные КЛЛ (флуоресцентные) или ртутные лампы
Лучшая цветовая температура, чем у стандартной лампы накаливания
Более длительный срок службы, чем у обычной лампы накаливания
Мгновенное включение на полную яркость, нет время прогрева и регулировка яркости.Экран или слой стекла на внешней стороне лампы могут защитить пользователей.

HMI

HMI — это металлогалогенная газоразрядная газоразрядная лампа средней длины дуги.

Колба HMI содержит пары ртути, смешанные с галогенидами металлов. Электрическая дуга между двумя электродами возбуждает пары ртути и галогениды металлов, что обеспечивает очень высокий световой поток и светоотдачу. Лампы HMI имеют мощность от 85 до 108 люмен на ватт, что в четыре раза больше, чем у обычных ламп накаливания.

Специальная смесь газов в лампе HMI предназначена для излучения света с цветовой температурой 6000K, близкого к естественному солнечному свету. Электронные балласты производят немерцающий свет из-за их работы на очень высокой частоте. Для приглушенного света HMI можно использовать широтно-импульсную модуляцию.

Использует

HMI часто используются, когда требуется высокая производительность и при воссоздании или увеличении солнечного света, попадающего в интерьер, или для внешнего освещения. Мощные HMI можно использовать для освещения больших площадей.

Преимущества

Очень высокая светоотдача
Более высокая эффективность, чем у ламп накаливания
Высокая цветовая температура

Недостатки

Относительно высокая стоимость, но это компенсируется увеличенной мощностью
Высокое энергопотребление
Требуется внешний балласт для зажигание дуги (до 70000 вольт)
Затемнение возможно только до 50%, а цветовая температура увеличивается вместе с затемнением, таким образом создавая более голубой свет
При падении во время горения лампа HMI может взорваться с выделением сверхгорячого кварцевого стекла и паров ртути

Флуоресцентный

Флуоресцентная лампа использует возбуждение паров ртути низкого давления для получения ультрафиолетового света, в свою очередь, заставляя люминофорное покрытие на внутренней стороне стеклянной трубки светиться, выделяя свет в видимой области спектра. спектр.

Флуоресцентный свет намного более эффективен, чем лампа накаливания, и способен генерировать до 100 люмен на ватт, аналогично выходной мощности HMI.

Спектр излучаемого света отличается от спектра источника накаливания и зависит от используемого набора люминофоров. Однако может быть достигнут CRI до 99. Цветовая температура люминесцентного светильника также может варьироваться от 2700K до 6500K в зависимости от смеси люминофора.

Использует

Флуоресцентное пленочное освещение чаще всего используется в светильниках, содержащих группы трубок.Эти лампы обычно либо вольфрамовые, либо с балансировкой цвета дневного света, либо трубки могут быть смешаны в приспособлении для изменения общего цветового сочетания света. Они производят мягкий и ровный свет и могут использоваться в относительной близости к объекту. Люминесцентное освещение часто используется для освещения интерьеров и имеет то преимущество, что оно более компактно и холоднее в эксплуатации, чем вольфрамовое или HMI-освещение.

Преимущества

Высокая эффективность
Низкое энергопотребление
Низкая стоимость
Длительный срок службы лампы
Cool
Возможность мягкого равномерного освещения на большой площади
Легкий

Недостатки

Мерцание может быть проблемой при использовании домашних люминесцентных ламп не предназначен для использования в фотографиях.Те, которые предназначены для использования с пленкой, имеют электронные балласты и излучают немерцающий свет.

Люминесцентные лампы для пленочного использования имеют высокий индекс цветопередачи, однако использование домашних ламп может иметь гораздо более низкий индекс цветопередачи и плохую цветопередачу.

LED

LED обозначает светоизлучающий диод и представляет собой твердотельное полупроводниковое устройство. Только недавно стали доступны светодиоды достаточной мощности, чтобы сделать возможным практическое светодиодное пленочное освещение. Светодиоды чрезвычайно эффективны, но по-прежнему имеют ограниченную светоотдачу по сравнению с любыми другими источниками света.

Светодиоды

по своей природе являются монохроматическими, излучающими только одну длину волны света. Таким образом, задача светодиодного освещения заключалась в создании белого света полного спектра. Это можно сделать двумя способами: либо путем комбинирования света красных, зеленых и синих излучающих светодиодов, либо с помощью белых светодиодов, при этом видимый белый свет фактически создается люминофорами, которые возбуждаются светодиодом, излучающим ультрафиолетовое излучение.

Светодиодные лампы могут быть дневными или вольфрамовыми, иногда переключаемыми или иметь переменную цветовую температуру.Некоторые из них имеют переменный цвет по всему спектру RGB, что невозможно с другими технологиями освещения. Рейтинг CRI светодиодного освещения может быть более 90.

Использование

светодиодов становятся все более и более распространенными на съемочных площадках. Они могут легко питаться от батареи, что делает их очень портативными и не требующими отдельных балластов или тяжелых кабелей. Панели из светодиодных фонарей могут быть маленькими и компактными или большими для различных ситуаций.

Светодиоды

также используются в более традиционных ламповых головках типа Френеля, таких как серия L от Arri.Общая выходная мощность растет, что не может не радовать.

Преимущества

Мягкое, равномерное освещение
Чистый свет без УФ-артефактов
Высокая эффективность
Низкое энергопотребление, может работать от батареи
Отличное затемнение с помощью управления широтно-импульсной модуляцией
Длительный срок службы
Экологичность
Нечувствительность к ударам
Нет опасности взрыва

Недостатки

Высокая стоимость. Светодиоды в настоящее время по-прежнему дороги из-за их общей светоотдачи.

Сравнение световой отдачи

Вольфрам Кварц Галоген: до +/- 35 лм / Вт
HMI: до +/- 115 лм / Вт
Флуоресцентный: до +/- 100 лм / Вт
Светодиод: до + / — 150 лм / Вт

Победителя нет

В общем, все эти огни имеют определенное назначение, и вы, вероятно, увидите их все на любой съемочной площадке. Ни один из этих источников света не может использоваться для всех целей, и любой список комплектов освещения был бы серьезно скомпрометирован, если бы какой-либо из них отсутствовал.

Большие HMI никуда не денутся. Когда вам нужно производить солнечный свет, единственный способ сделать это — использовать высокопроизводительные высокопроизводительные HMI. Другого способа получить такое количество света просто нет. Да, это означает грузовики с генераторами и дополнительную команду, но когда дело доходит до освещения больших фасадов, ничего из этого не изменится. Даже на консервативной работе я бы посоветовал иметь в наличии HMI 2K и 5K.

Лампы накаливания дешевы и по-прежнему являются «рабочей лошадкой» внутреннего освещения.Светодиодная технология Френеля может в какой-то момент достичь практического эквивалента, но даже с самой мощной L-серией Arri она не собирается в ближайшее время заменять вольфрамовые лампы со средней и высокой выходной мощностью.

Светодиоды также являются постоянным дополнением к отделу освещения. Эти фонари стали незаменимы в условиях ограниченного пространства и абсолютной портативности, которую обеспечивает аккумуляторная батарея.

Флуоресцентные лампы обеспечивают прекрасный мягкий ровный свет. Они предлагают более высокую мощность, чем светодиодные панели, и могут быть больше по размеру, хотя светодиодные панели, конечно, могут быть облицованы плиткой.Флуоресцентные лампы также очень рентабельны.

Это касается наиболее распространенных типов пленочного освещения, но это только начало истории. Создание света — это одно, но формирование и управление им — самый важный навык, которому нужно научиться.

Галоген | Типы лампочек

Какие они?

Галогенная лампа или лампа представляет собой тип лампы накаливания, в которой используется галоген для увеличения светоотдачи и номинального срока службы.Они известны умеренно высокой эффективностью, качеством света и длительным сроком службы по сравнению с обычными лампами накаливания.

Откуда они взялись?

Ранняя история галогенных ламп параллельна истории ламп накаливания. Использование хлора для предотвращения почернения лампы было запатентовано в 1882 году. В 1959 году General Electric запатентовала коммерчески жизнеспособную галогенную лампу, в которой в качестве газообразного галогена использовался йод.

Как они работают?

Галогенная лампа работает так же, как лампа накаливания, за одним заметным исключением: галогенный цикл.В обычной лампе накаливания вольфрам медленно испаряется из горящей нити. Это вызывает почернение лампы, что снижает светоотдачу и сокращает срок службы.

Галогенные лампы

в значительной степени могут решить эту проблему, поскольку газообразный галоген химически реагирует с испаренным вольфрамом, предотвращая его прилипание к стеклу. Некоторое количество вольфрама возвращается в нить накала, что также способствует увеличению номинального срока службы лампы. Поскольку температура, необходимая для этой реакции, выше, чем у обычной лампы накаливания, галогенные лампы обычно должны производиться с использованием кварца.

Где они используются?

Галогенные лампы используются в различных областях, как коммерческих, так и жилых. Галогенные лампы используются в автомобильных фарах, освещении под шкафом и рабочем освещении. Кроме того, галогенные отражатели, такие как лампы MR и PAR, часто предпочтительны для направленного освещения, такого как прожекторы и прожекторы. Они также все чаще используются как более эффективная альтернатива лампам накаливания. Существует не так много ситуаций, в которых нельзя использовать галогенные лампы, но одним из потенциальных недостатков является тепло, выделяемое галогенными лампами, особенно в тех областях, где затраты на ОВК являются проблемой.

Другие полезные ресурсы

Наука о варочных поверхностях — статья

Навыки играют важную роль в приготовлении пищи, но это не единственное, что делает хорошего повара. Выбранные вами ингредиенты, рецепты, которым вы следуете, а также кастрюли и сковороды, которые вы используете, также влияют на вашу готовку, и они всегда могут отличаться. Но как насчет одной постоянной составляющей на вашей кухне — варочной панели? Давайте рассмотрим три наиболее распространенных технологии варочных панелей — газовую, электрическую и индукционную, — чтобы увидеть, как они работают, а также плюсы и минусы каждой из них.

Под капотом: Просмотрите нашу инфографику, чтобы увидеть, как работают двухтопливные плиты, конвекционные печи и индукционные варочные панели.

Как работают газовые варочные панели?

Горелка газовой плиты состоит из узла горелки, прикрепленного к небольшому газовому клапану, который подключен к основной газовой линии. Когда вы поворачиваете ручку, впускной клапан открывается, и газ проходит через трубку Вентури, широкую трубку, сужающуюся посередине. Газ поступает через один из широких концов, и по мере прохождения в суженную часть его давление увеличивается.В секции, где труба снова расширяется, есть небольшое отверстие для воздуха, и когда газ движется в эту секцию, давление сбрасывается, всасывая кислород в отверстие для воздуха. Кислород смешивается с газом, делая его горючим. Затем кислородно-газовая смесь поступает в горелку.

Горелка — это просто полый металлический диск с пробитыми по периметру отверстиями. Газовая пилотная лампа или электрическая пилотная лампа находится сбоку от горелки и посылает небольшое пламя или искру для воспламенения кислородно-газовой смеси, когда она течет через отверстия в горелке.Поворачивая ручку на более высокую ступень нагрева, вы увеличиваете поток газа и воздуха, и пламя становится больше.

Газовые горелки могут работать как на природном газе, так и на пропане. Оба являются углеводородным топливом, и из-за содержания в них водорода газовое пламя кажется голубым. Желтое или оранжевое пламя указывает на избыток кислорода и немного более низкую температуру. Оранжевый цвет получается из-за несгоревшего углерода. Естественно, что концы пламени на газовой горелке выглядят желто-оранжевыми там, где пламя более холодное, но если все пламя выглядит желтым, соотношение газа и кислорода слишком низкое, и газовая горелка или впускной клапан могут быть забиты и нуждаются в чистке.Красное пламя еще холоднее и обычно вызывает образование сажи (несгоревшего углерода) на дне кастрюль.

Pros Газовые горелки могут мгновенно изменять температуру, переходя от высокой к низкой температуре с поворотом ручки. Газ также является единственной технологией для варочных панелей, которая обеспечивает легко контролируемое открытое пламя для жарки перца, подрумянивания лепешек или жарки с перемешиванием в традиционном воке с закругленным дном.

Cons Газ — наименее эффективный источник топлива при передаче тепла; до 60 процентов тепла, выделяемого газовой горелкой, может уходить в воздух, а не в сковороду.Кроме того, не все коммунальные предприятия поставляют природный газ, хотя вы можете регулярно доставлять пропан в резервуар на вашем участке. По объему пропан содержит примерно в 2-1 / 2 раза больше полезной энергии, чем природный газ, поэтому для производства того же количества тепла, что и природного газа, требуется меньше пропана. Но поскольку пропан течет под другим давлением, вы не можете использовать его с варочной панелью, работающей на природном газе, если вы не переоборудовали варочную панель для использования пропана. Преобразование варочной панели снизит ее выходную мощность в БТЕ (единица измерения энергосодержания газа), а плохое преобразование или установка также могут снизить ее.

Как работают электрические варочные панели?

Электрические горелки

обычно имеют катушечный тип: сплющенная спираль из электрического провода в металлической оболочке, которая нагревается при включении ручки управления, заставляя электричество течь в провод. Вы можете увидеть интенсивность электрического потока в свечении горелки. (Электрические конфорки европейского типа построены аналогично, за исключением того, что провод встроен в твердый металлический диск.) В электрической варочной панели с гладким верхом змеевики размещены под одним листом закаленного стеклокерамического материала, который покрывает варочную панель.Электрические катушки нагреваются таким же образом, излучая тепло в стекло, которое излучает его в кастрюли и сковороды. Галогенные электрические варочные панели похожи, за исключением того, что нагревательные элементы представляют собой кольца галогенных ламп под стеклом, а не электрические катушки.

Pros Электрические конфорки плоские, поэтому тепло от конфорки — будь то змеевик или гладкий верх — контактирует с дном сковороды. Следовательно, он проводит большую часть своей энергии (около 75 процентов) непосредственно в кастрюлю, а не излучает ее в воздух, как это могло бы сделать газовое пламя.Гладкие верхние части и герметичные горелки европейского типа также имеют то преимущество, что их легко чистить. Еще один плюс гладких стеклокерамических варочных панелей: они не так сильно нагреваются, как кастрюли и сковороды, поэтому меньше риск получить ожог о плиту, а пролитая жидкость с меньшей вероятностью пригорит на поверхности варочной панели.

Минусы Плохой контроль нагрева — самый большой удар по электрическим варочным панелям; просто нагревательные элементы реагируют медленнее, чем на газовых или индукционных плитах (подробнее об этом через минуту).Чтобы преодолеть этот недостаток, вы можете настроить две конфорки на разную температуру, если знаете, что вам понадобится мгновенное управление. Например, доведите рис до кипения на сильном огне на одной конфорке, а когда вы хотите сразу уменьшить огонь до кипения, просто переместите сковороду на вторую конфорку на более низком огне.

Есть еще пара недостатков, присущих гладкой вершине. Стеклокерамическая поверхность плохо проводит тепло, поэтому она передает тепло к сковороде медленнее, чем электрические плиты с металлическим верхом.Кроме того, стеклокерамические варочные панели легко царапаются, поэтому, если вы имеете привычку сдвигать и трясти сковороды на конфорках, вам придется изменить свой подход при работе с гладкой поверхностью, если вы хотите, чтобы она выглядела хорошо. .

Как работают индукционные варочные панели?

При использовании индукционной технологии тепло выделяется в самой посуде, а не в нагревательном элементе. Индукционные варочные панели питаются от электричества, но «элемент», который находится под керамической или стеклянной поверхностью, действует как мощный магнит, который генерирует магнитное поле.Когда вы помещаете в это поле большой кусок магнитного металла, например чугунную сковороду, электроны в сковороде пытаются выровняться с магнитом на варочной панели. Но магнит на варочной панели меняет свои полюса, заставляя электроны сковороды двигаться с такой скоростью, что электрический ток заставляет сковороду генерировать тепло, что происходит очень быстро. Вы контролируете количество тепла, выделяемого на сковороде, с помощью ручки на варочной панели, которая увеличивает или уменьшает силу магнитного поля.

Pros Индукционные варочные панели обеспечивают мгновенный и точный контроль нагрева даже при очень низких температурах.И, в отличие от газа, индукция чрезвычайно эффективна. Поскольку тепло генерируется в самой сковороде, большая часть его (около 85 процентов) остается в сковороде, готовя пищу немного быстрее, чем газовые горелки, и намного быстрее, чем электрические. Если вы новичок в индукции, вы можете обнаружить, что кастрюли закипают раньше, так что внимательно следите. Относительно мало тепла теряется в воздухе, а это означает, что индукционные варочные панели не нагревают вашу кухню, как газовые или электрические, что является преимуществом в летнее время или в многолюдной кухне.Кроме того, сама варочная панель остается прохладной, что является приятным бонусом к безопасности. Если вы положите магнитную посуду на половину индукционного элемента, другая половина останется холодной на ощупь.

Минусы И это подводит нас к самому большому недостатку индукции: вы должны использовать посуду с высоким содержанием железа. Сюда входят чугун, будь то эмалированный или нет, и нержавеющая сталь с высоким содержанием железа. Чистая медь, алюминий, стекло, фаянс, керамика и посуда из нержавеющей стали с низким содержанием железа не подойдут.(Чтобы проверить свою посуду, поднесите магнит ко дну. Если магнит прилипнет, посуда будет работать на индукционной плите.) Кроме того, сковорода должна непосредственно контактировать с варочной панелью на индукционном блоке, поэтому сотейники с плоским дном и вок, но не вок с закругленным дном или старая покоробленная посуда.

Еще один потенциальный недостаток индукционной варочной панели заключается в том, что ее нельзя использовать для жарки перца или тостов из лепешек. Кроме того, варочная панель может поцарапаться от сильного встряхивания сковороды. А некоторая посуда низкого качества с неплотно прилегающими ручками, легкими крышками, неровным дном или плохо облицованными слоями металла может так сильно вибрировать в высокочастотных колебаниях магнитного поля варочной панели, что фактически создает шум.

Запчасти и аксессуары Системы зажигания Провода зажигания Комплект проводов для свечей зажигания Оригинальное оборудование ACDelco GM 708S

Запчасти и аксессуары Системы зажигания Провода зажигания Комплект проводов для свечей зажигания Оригинальное оборудование ACDelco GM 708S

Набор проводов для свечей зажигания ACDelco GM Оригинальное оборудование 708S, Оригинальное оборудование GM 708S Набор проводов для свечей зажигания ACDelco, Бесплатная доставка для многих продуктов, Найдите много отличных новых и бывших в употреблении опций и получите лучшие предложения на Набор проводов для свечей зажигания ACDelco GM Original Equipment 708S на лучшие онлайн-цены, отличные цены и быстрая доставка, самый продаваемый продукт, современная мода высокого класса, только подлинные магазины, лучшее качество по самой низкой цене., Комплект проводов вилки ACDelco GM Original Equipment 708S Spark.

  1. Home
  2. MOTORS
  3. Automotive
  4. Запчасти и аксессуары
  5. Запчасти для легковых и грузовых автомобилей
  6. Системы зажигания
  7. Провода зажигания
  8. Набор проводов для свечей зажигания Оригинальное оборудование ACDelco GM 708S







коробка без надписи или полиэтиленовый пакет. См. Список продавца для получения полной информации. См. Все определения условий : Гарантия: : Другое , Требуется программирование: : НЕТ : Количество: : 1 , Цвет крышки конца свечи зажигания: : Коричневый : Артикул: : A: 708S , Внешний диаметр: : 7.0 мм : Бренд: : Оригинальное оборудование Aelco GM , В комплект входит: : 8 проводов : Номер детали производителя: : 708S , Включенные разделители проводов: НЕТ : Тип загрузки: : ТВЕРДЫЙ , Тип клеммы на конце катушки распределителя: : Защелкивающийся замок : Тип установки : : Производительность / нестандартный , Материал кожуха свечи зажигания: : Силикон для высоких температур : Внешний диаметр изоляции: : 7 мм , Другой номер детали: : 12073969 : Материал сердечника: : Латексный графит, армированный стекловолокном , Изоляционный материал: : Силикон : Наконечник свечи зажигания Количество под углом: 5 , Цвет изоляции: : Черный : Длина: : 36.3 IN , Цвет ботинка на конце змеевика: : Черный : Тип шумоподавления: : ДА , Номер сменной детали: : 118016, неоткрытый, 19154579, 27850, 2907, неиспользованный, неповрежденный элемент в оригинальной упаковке (если применима упаковка). Упаковка должна быть такой же, как в розничном магазине. 2X1107 : UPC: : Не применяется ,, если товар не был упакован производителем в нерызничную упаковку. 26054073, Найдите много отличных новых и подержанных опций и получите лучшие предложения на Комплект проводов для свечей зажигания ACDelco GM Original Equipment 708S по лучшим онлайн-ценам на! Бесплатная доставка для многих товаров !.Состояние: Новое: Абсолютно новое.

перейти к содержанию

Комплект проводов свечи зажигания ACDelco GM оригинальное оборудование 708S

Комплект адаптера для рулевого Ritchie Black. Датчик износа дисковых тормозных колодок. Сделано в Европе. Датчик износа спереди, сзади Hella-PAGID, комплект поршней 12,5: 1, сжатие ~ 2004 Yamaha WR450F, стандартное отверстие 95,00 мм. Комплект из 4 катушек зажигания для 2007-17 Dodge Caliber Avenger Journey 2.0L 2.4L UF557, 11A1255 Клиновой ремень Gates. Верхняя направляющая цепи привода ГРМ Все двигатели GY6 объемом 150 куб. См.Воздушный фильтр двигателя для Toyota Mazada Isuzu или Geo 17801-35020 A1232C 708. Комплект проводов для свечей зажигания ACDelco GM Original Equipment 708S . ACL 6B8100HX-STD Подшипники гоночной тяги Toyota 2JZ-GTE 2JZ JZA80 Supra Aristo SC300. VW VOLKSWAGEN BEETLE 1998-2010 Люк Подъемная опора Амортизатор ЗАДНИЙ НАБОР НОВЫЙ, ABS Хромированная накладка на кнопку переключателя на заднем сиденье для BMW X3 2018 2019 Аксессуары. Куртка RJS Racing 200010104 ;, T304 Нержавеющая сварка на угловом насадке для выхлопной трубы 2,5 дюйма, вход 3,5 дюйма, длина 18 дюймов, внутренняя задняя накладка крышки кнопки переключателя багажника для Range Rover Evoque 2020.Балластный резистор подходит для Plymouth Fury Belvedere Valiant WVE BY NTK 1953-1978 годов. Комплект проводов для свечей зажигания Оригинальное оборудование ACDelco GM 708S . 2 * для Nissan Teana Altima 2016 2017 передняя центральная и нижняя решетка решетки решетки,


Комплект провода свечи зажигания АКДелко ГМ оригинальное оборудование 708С

Товар добавлен в корзину.

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *