Калькулятор сопротивление резистора: Калькулятор цветовой маркировки резисторов

Содержание

Виды и маркировка резисторов содержащие золото. Онлайн — калькулятор цветовой маркировки резисторов. Устройства с тремя полосками

Примечания

1. Общие положения. В соответствии с ГОСТ 28883-90 и международным стандартом, сопротивление резисторов маркируется в виде цветных полос. Маркировка с тремя полосками используется для резисторов с точностью 20%, с четырьмя полосками – с точностью 5% и 10%, с пятью – с точностью до 0.005%. Шестая полоска на резистора показывает температурный коэффициент сопротивления (ТКС).

2. Цветовая маркировка резисторов с 3 полосами . Цвет первых двух полос означает первые цифры сопротивления. Третья полоса означает множитель в виде степени десяти, на который надо умножить число, состоящее из первых двух цифр. Точность резисторов с 3-мя полосами - 20%.

Сопротивление резистора с тремя полосами можно найти по формуле:

R =(10 A + B )10 C ,

3. Цветовая маркировка резисторов с 4 полосами. Цвет первых двух полос означает первые цифры сопротивления. Третья полоса означает множитель в виде степени десяти, на который надо умножить число, состоящее из первых двух цифр. Четвертая полоса означает точность резистора в процентах. Она может быть серебристого или золотистого цвета, что значит допуск в 10% или 5% соответственно.

Сопротивление резистора с четырьмя полосами можно найти по формуле:

R =(10 A + B )10 C ,

где R – сопротивление резистора, Ом; A – номер цвета первой полосы; B – номер цвета второй полосы; C – номер цвета третьей полосы.

4. Цветовая маркировка резисторов с 5 полосами. Цвет первых трех полос означает цифры сопротивления. Четвертая полоса означает множитель в виде степени десяти, на который надо умножить число, состоящее из первых трех цифр. Пятая полоса означает точность резистора в процентах.

Сопротивление резистора с пятью полосами можно найти по формуле:

5. Цветовая маркировка резисторов с 6 полосами. Цвет первых трех полос означает цифры сопротивления. Четвертая полоса означает множитель в виде степени десяти, на который надо умножить число, состоящее из первых трех цифр. Пятая полоса означает точность резистора в процентах. Шестая полоса означает температурный коэффициент сопротивления.

Сопротивление резистора с шестью полосами можно найти по формуле:

R =(100 A +10 B + C )10 D ,

где R – сопротивление резистора, Ом; A – номер цвета первой полосы; B – номер цвета второй полосы; C – номер цвета третьей полосы; D – номер цвета четвертой полосы.

Для резисторов с точностью 20 % используют маркировку с тремя полосками, для резисторов с точностью 10 % и 5 % маркировку с четырьмя полосками, для более точных резисторов с пятью или шестью полосками. Первые две полоски всегда означают первые два знака номинала. Если полосок 3 или 4, третья полоска означает десятичный множитель, то есть степень десятки, которая умножается на число, состоящее из двух цифр, указанное первыми двумя полосками. Если полосок 4, последняя указывает точность резистора. Если полосок 5, третья означает третий знак сопротивления, четвёртая - десятичный множитель, пятая - точность. Шестая полоска, если она есть, указывает температурный коэффициент сопротивления (ТКС). Если эта полоска в 1,5 раза шире остальных, то она указывает надёжность резистора (% отказов на 1000 часов работы)

Следует отметить, что иногда встречаются резисторы с 5 полосами, но стандартной (5 или 10 %) точностью. В этом случае первые две полосы задают первые знаки номинала, третья - множитель, четвёртая - точность, а пятая - температурный коэффициент.

Маркировка в виде 4 колец


Маркировка в виде 5 колец


Калькулятор номиналов SMD-резисторов

Кодирование 3-я цифрами

Кодирование 4-я цифрами

  • Похожие статьи

Войти с помощью:

Случайные статьи
  • 08.10.2014

    Усилитель для наушников обладает следующими характеристиками: Выходная мощность на нагрузке 8 Ом 1Вт Коэффициент гармоник 0,01% Диапазон частот 10…30000Гц Напряжение питания +/-25В Ток потребления 35мА Каскад на VT1 VT2 включенный на выходе ОУ работает в линейном режиме А. Смещение на базах VT1 VT2 обеспечивает цепь VD1 R7 R8 VD2. Усилитель …

  • 21.09.2014

    При традиционном способе печатного монтажа много времени тратится на разработку монтажных схем. При изготовлении используют дефицитные и дорогие материалы и реактивы. Предлагаемый способ монтажа обладает небольшой трудоемкостью, не требует предварительной разработки монтажной схемы, обеспечивает установку любых элементов и их замену. Из электрокартона или плотного ватмана склеивают шасси высотой 4-10 мм …

Содержание:

Естественно, что без сопротивления не обходится ни одна электронная схема. Где-то необходимо ограничение протекающего напряжения по той или иной дорожке, а иногда нужен обратный процесс - вообще, возможности подобных элементов очень велики. И если рассматривать эти компоненты, произведенные в советское время, то никаких вопросов по их характеристикам не возникало - номинал был прописан в обозначении на корпусе, все было предельно понятно.

А вот с приходом на радиорынок таких современных элементов, как резисторы, маркировка которых обозначается при помощи полосок, многие радиолюбители (даже лучше сказать основная их часть), схватились за голову - как определить сопротивление по этим цветным линиям? Ведь для того, чтобы определить номинал подобного элемента по его цветовой маркировке, необходимо пересмотреть огромное количество таблиц и прочей литературы. И это при том, что некоторые производители пытались ввести дополнительно еще и свои обозначения.

Сейчас, когда система производства и обозначений сопротивлений стандартизирована, конечно, цветная маркировка резисторов помогает определять номинал элементов, но все же без некоторых таблиц при этом не обойтись.

Нужно попробовать понять, как же определить номинал резистора, будь то элемент на 10 кОм или на 25, который находится перед глазами, без применения дополнительных устройств, обращая внимание только лишь на цветовую маркировку.

Цветовая маркировка

Если разобраться, то определение сопротивления резистора не так уж и проблематично. Согласно введенным стандартам, на подобные элементы наносится разное количество цветовых полос в зависимости от номинала. Их число может быть от четырех до шести, и каждая из них несет свою информацию.

Однако, мало знать цвета и их последовательность. Чтение обозначений тоже имеет свои нюансы. К примеру, для правильного определения номинала резистора по полоскам необходимо расположить его так, чтобы полоса с оттенком металлика, находилась по правую сторону. А при отсутствии подобной - группа полос по левую.

  • Три кольца - минимальное количество. Погрешность такого обозначения сопротивлений может составить 20 %. Первые два кольца будут означать значение, а третье - это показатель множителя маркировки резисторов.
  • Четыре кольца - расчет производится подобным предыдущему способом, только 4-е обозначит отклонение. При подобном обозначении возрастает точность определения номинала, и погрешность составит уже всего 5-10%.
  • Пять колец - здесь показателем являются уже три первых цифры, а далее, 4-е - множитель, а 5-е - отклонение. Погрешность при подобном обозначении составляет не более 0.005%.
  • Последний вариант является самым точным и маркируется шестью кольцами. Цветная маркировка читается аналогично предыдущему варианту, при этом последнее, 6-е кольцо обозначает коэффициент температуры, до которой нагревается корпус элемента.

Сложность может заключаться и в том, что некоторые таблицы для расшифровки цветовых маркировок резисторов вообще не содержат обозначений шестого кольца.

Также часто на корпус наносится и буквенная маркировка, при условии, что позволяют размеры. Тогда она может выглядеть так: 10 - 1 Ом, или 1К0 - 1 кОм.

Универсальные цвета

Существует таблица, с указанием универсальных цветов, при помощи которой читается маркировка резисторов по полоскам. Выписав отдельно числовое обозначение каждой из полос сопротивления, можно определить номинал элемента достаточно точно. Обозначения цветов выглядят следующим образом:

  • Черный - 0;
  • Коричневый - 1;
  • Красный - 2;
  • Оранжевый - 3;
  • Желтый - 4;
  • Зеленый - 5;
  • Синий - 6;
  • Фиолетовый - 7;
  • Серый - 8;
  • Белый - 9;
  • Серебристый - «-1»;
  • Золотистый - «-2».

Для того чтобы было более понятно чтение по цветовой маркировке, имеет смысл привести несколько примеров.

Примеры чтения по цветной маркировке

На данном изображении видно наличие полос зеленого, коричневого, красного и золотистого цвета. Согласно таблице и правилам, согласно которым читается маркировка сопротивлений, зеленая и коричневая полоса составляют значение 51. Далее идет красная полоса множителя, который обозначает число 2. И крайняя левая золотистая - «-2». Из всего этого делается вывод, что номинал этого сопротивления будет равен 5.1 кОм с допуском в 5%.

Также можно рассмотреть более сложный вариант цветовой маркировки с пятью цветными полосками. Для примера возьмем последовательность полос - зеленый, красный, черный, белый, серебристый. Три первых цифры, которые являются значением, это 520. Далее идет множитель 9 и отклонение «-1». Произведя несложные расчеты по цветному обозначению, получаем номинал сопротивления элемента, равный 502000 МОм, с допуском в 10%.

Конечно, намного удобнее и проще узнать размер номинального сопротивления в омах, если под рукой есть компьютер или любой гаджет, на который установлена специальная программа - калькулятор цветовых обозначений. Подобное программное обеспечение осуществляет необходимый подбор и избавляет от необходимости производить расчеты. Все, что нужно - это ввести последовательность цветов и количество полос, нанесенных на сопротивление, после чего программа сама рассчитает и выдаст на экран информацию по номиналу этого элемента.

Отклонения от стандартов в маркировках

Конечно, практически все производители наносят цветовую маркировку в соответствии с введенными стандартами. Однако есть и исключения.

К примеру, компания Phillips, которая специализируется на электронике, как бытового, так и промышленного применения, ввела отдельные нормы нанесения маркировок сопротивления по цветам. Дело в том, что полосы у данной компании обозначают не только номинал резистора, но также несут информацию и о технологии изготовления того или иного элемента, а также о некоторых свойствах компонентов. В подобных обозначениях смысл имеет не только нестандартное расположение колец, но и даже цвет резистора, а именно его корпуса.

Еще один пример изменения стандартных маркеров, обозначающих номиналы резисторов по цветам - CGW и Panasonic. Эти фирмы также наносят цветовые кольца в своей последовательности, не подчиняясь общепринятым нормам.

Конечно, для потребителя подобные изменения в нанесении маркеров очень неудобны, но фирмы, их использующие, объясняют это тем, что делается это для предотвращения подделок и установки на их оборудование неоригинальных элементов при выходе их из строя. Может быть, по-своему, они и правы.

Дополнительная информация

Как уже упоминалось, возможно нанесение информации на корпус сопротивления и в более понятном, буквенно-числовом виде. Подобное обозначение может быть лишь при условии наличия такой возможности, то есть, если корпус резистора имеет более крупный размер. Ведь довольно проблематично нанести читаемые числа на элемент размером в 2 мм. Именно по этой причине и были приняты стандарты цветовой маркировки.

Как, наверное, уже стало ясно, прочесть информацию, которую несут полоски на сопротивлении по цветам (то есть понять, как определить номинал резистора), не так уж и сложно. Главное, чтобы под рукой были необходимые таблицы. Ну а если же имеется возможность воспользоваться программой, такой как калькулятор цветовых маркировок резисторов, то тогда вообще любые вопросы, связанные с расшифровкой, отпадают.

В заключение можно добавить, что подобное обозначение имеет свои преимущества - оно никогда не стирается с корпуса, как это было в случаях с советскими резисторами, а потому эти элементы всегда подлежат идентификации.

Одними из основных элементов построения электронных схем, несмотря на развитие микропроцессорных технологий по-прежнему остаются старые проверенные резисторы

Сопротивление или резисторы во многом за последние десятилетия претерпели ряд изменений, в том числе и существенное уменьшение габаритных размеров – нынешнее поколение вдвое меньше по размерам, чем приборы, выпускаемые 30-40 лет назад, но вместе с тем, потребность в них при создании электроники не стала меньше.

Причинами введения цветной маркировки электронных элементов было несколько:

  1. Ввиду уменьшения размеров пришлось отказаться от буквенно-цифровой маркировки приборов.
  2. Цветовая система обозначения позволяет закодировать намного больше информации об элементе, чем буквенно-цифровая.
  3. Повсеместное внедрение робототехники в сборочных линиях электронных компонентов требовало изменения подходов к маркировке составляющих деталей.
  4. В связи с развитием производства радиодеталей в странах Восточной Азии, основанной на передовых технологиях, существенно оттеснили выпуск отечественных компонентов, ввиду чего производителям пришлось перейти на западные стандарты маркировки.

Кроме того, значительное количество радиоэлементов сегодня монтируются в платы, ремонт которых нецелесообразен ввиду дороговизны самого ремонта, ведь намного дешевле купить новый радиоприемник чем отремонтировать, ввиду этого, многие фирмы практически отказались от сервисных центров и как результат, не требуют значительного количества запасных частей разного номинала.

Как определить сопротивление резистора по цвету?


В основном, сегодня, практически невозможно встретить резисторы старше 15-20 лет, хотя отдельные старые раритетные «Рекорды» и «Электроны» до сих пор радуют глаз в отдельных квартирах.

Наполненные советской электроникой старые телевизоры и радиоприемники в своем составе имели, как правило, стандартные сопротивления коричневого или зеленого цветов с буквенной маркировкой.

Понять номинальное значение элемента по его буквенно-цифровой кодировке имея под рукой раритетный макулатурный справочник особого труда не составляет, тем более что в большинстве своем это были металлопленочные, лакированные приборы, обладающие свойством теплоустойчивости – МЛТ.

В Советском Союзе бытовая электроника была побочным продуктом оборонных предприятий, но при этом собиралась из тех же деталей, что и военная техника. Такие резисторы отличались друг от друга по габаритам – чем больше элемент, тем большее сопротивление.

Нынешняя маркировка компонентов во многом отличается от того тем, что существует несколько разновидностей – простые, стандартные цилиндрические сопротивления с цветной маркировкой и SMD-элементы.

4 и 5 полосная маркировка

Четырехполосная:

Пятиполосная:

Для определения номинала элемента, кроме знания основ физических процессов, необходимо знать технологию цветового обозначения номиналов электронных компонентов.

Для начала необходимо знать правильность чтения или порядок цветового кода:

  1. На резисторах, как правило, наносятся 4 или 5 цветных колец.
  2. Испытуемый элемент нужно расположить таким образом, чтобы цветовые кольца начинались с золотистого или серебристого кольца слева.
  3. В отдельных случаях, когда отсутствуют серебристая или золотистая полоска (а такой вариант вполне возможен), элемент нужно расположить таким образом, чтобы цветовые кольца оказались слева (или справа оставалось больше места).

Количество цветов в кольцах строго ограничено количеством цветов радуги, плюс серый, белый и черный.

Каждый цвет соответствует определенному значению номинала и зависит от расположения в порядке колец.

Первое и следующее за ним второе кольцо кода обозначают номинальную величину сопротивления элемента в стандартных единицах Омах, следующее кольцо множитель, на который нужно умножать величину первых единиц, четвертое означает ту величину, на которую происходит отклонение заявленного номинала в процентах.

Для SMD резисторов маркировка несколько иная – это в основном цифровое обозначение. В основном встречаются сопротивления с 3 или 4 цифрами – первые две, из которых это номинал, а третья обозначает степень числа 10. То есть резистор 4432 имеет номинал: 443*10(2 степени) или 4400 Ом или 4,4 кОм.

Стандартная и нестандартная цветовые маркировки


Нестандартная маркировка

Кроме общепринятой, стандартной цветовой маркировки обозначений сопротивлений, существуют и нестандартные виды кодирования. Чаще всего, нестандартные маркировки встречаются в виде совмещенного кода цвета и цифр у некоторых крупных производителей электроники, имеющих свои подразделения по разработке и производству электронных компонентов.

Среди таких нестандартных цветовых кодов и буквенного обозначения, чаще всего встречаются Philips и Panasonic, эти производители маркируют радиодетали, выпущенные на внутренних предприятиях отличной от общепринятой маркировкой, для которой применяются специальные справочные издания и компьютерные программы.

Пояснение и таблица


Как уже было указано, цветовые маркерные кольца нанесены слева направо.

Первое кольцо и следующее за ним второе цветное кольцо обозначают стандартную величину сопротивления в Омах. Следующее, третье кольцо обозначает множитель, на который нужно умножать числовое значение первых двух единиц обозначения, четвертое кольцо кода указывает значение, на которое отклоняется заявленный номинал в процентах.

Для точного определения величины сопротивления каждого отдельного компонента не следует запоминать весь цветовой код, достаточно иметь под рукой таблицу определения сопротивления:

Цвет знака Номинальное сопротивление, Ом Допуск, % ТКС
Первая цифра Вторая цифра Третья цифра Множитель
Серебристый 10-2 ±10
Золотистый 10-1 ±5
Черный 0 0 1
Коричневый 1 1 1 10 ±1 100
Красный 2 2 2 102 ±2 50
Оранжевый 3 3 3 103 15
Желтый 4 4 4 104 25
Зеленый 5 5 5 105 0,5
Голубой 6 6 6 106 ±0,25 10
Фиолетовый 7 7 7 107 ±0,1 5
Серый 8 8 8 108 ±0,05
Белый 9 9 9 109 1

Кроме стандартной, общепринятой маркировки, в отдельных случаях указываются и дополнительные данные в обозначениях 4 или 5 полосного, когда более широкая полоса (она, как правило, шире в 1,5 раз от остальных) указывает на более надежный, специальный вариант элемента – как правило, срок ее службы рассчитан более чем на 1000 часов непрерывной работы.

Онлайн-калькулятор


Интерфейс программы “Резистор 2.2”

Современные технологии и сегодня во многом облегчают работу как профессионалам, так и радиолюбителям. Кроме доступной измерительной аппаратуры, сегодня в интернет-ресурсах, посвященных радиотехнике, в огромном количестве находятся онлайн-калькуляторы определения сопротивления резисторов по маркировке.

Простые, и в общем-то надежные программы, позволяют с высокой точностью определить номинал практически любой радиодетали, более продвинутые и мощные инженерные программы, используемые в пакетах для инженеров-конструкторов, позволяют не только узнать значение сопротивления, но и найти соответствующую замену и определить вариант работоспособности самой схемы.

Одной из таких программ является программа Резистор 2.2 , она проста, удобна и не требует глубоких знаний компьютерной техники. Простой интерфейс и удобные рабочие органы позволяют работать как в сети, так и без неё.

Как пользоваться?

Как и большинство прикладных инженерных программ, программа Резистор 2.2 является онлайн-калькулятором, позволяющим определять номинал сопротивления по различным наиболее распространенным видам кодировки:

  1. Стандартной 4 или 5 цветной маркировке.
  2. Фирменной маркировке Philips различных видов сопротивлений.
  3. Нестандартной цветовой кодировки фирм Panasonic, Corning Glass Work.
  4. Обычной кодовой маркировке.
  5. Обычной кодировке Panasonic, Philips, Bourns.

После распаковки архива, не требующая регистрации программа сразу готова к работе. В окне, из предложенных вариантов, выбирается нужный параметр и производится дальнейшая идентификация по имеющемуся коду на корпусе элемента.

Для удобства идентификации, в верхнем окне наглядно показывается изображение определяемой кодировки. На корпусе радиодетали наносятся цветные кольца в соответствии с теми значениями, которые указываются пользователем, таким образом, появляется возможность наглядно сравнить кодировку с реальным элементом.

Внизу сразу высвечивается числовое значение номинала элемента.

С появлением радиоэлектронной и микропроцессорной техники ни одна сложная схема не обходится без участия резисторов. Резистор позволяет не только преобразовывать напряжение в силу тока и обратно, но также ограничивать последнее или поглощать. В большинстве случаев они имеют крайне миниатюрный вид. Именно поэтому принято в качестве маркера наносить на них цветные полоски, расшифровать которые поможет калькулятор резисторов по цветовой маркировке.

Так как большинство резисторов имеет довольно маленькие размеры, наносить на них цифровое обозначение нецелесообразно, ведь пользователь банально не сможет его разглядеть. Куда проще помечать подобные мини-детали цветовыми полосками, которые и были приняты в качестве стандарта.

Однако крайне сложно запомнить все условные обозначения и вариации подобного маркирования. Именно поэтому существуют таблицы и калькуляторы сопротивлений резисторов, которые избавляют электронщика от нужды запоминать множество лишней информации. Да и человеческий фактор никто не отменял, что в результате может привести к неверной расшифровке, а как последствие - можно получить нерабочую или неправильно работающую схему.

Таким образом, было решено внести цветные полосы для обозначения маркировки резисторов в стандарты, подразумевающие нанесение от трёх до шести полосок определённого цвета, каждая из которых несёт в себе заранее заложенную информацию, благодаря чему несложно подобрать необходимую деталь с требуемыми параметрами.

Стандартные цветные обозначения

Полоски или цветовые кольца, наносимые на сопротивление, могут иметь не только различный цвет, но и отличаться толщиной и количеством. Принятая маркировка резисторов выглядит так:

Из этого можно сделать вывод, что чем на резисторе колец больше, тем больше можно узнать о его характеристиках. Но на сложность расшифровки количество цветовых обозначений никоим образом не отражается.

Общая универсальная таблица значений

Конечно, все обозначения и соотношения цветов держать в голове крайне сложно. Да и особой нужды в этом нет. Зато существует универсальная таблица цветовых значений, благодаря которой цветная маркировка резисторов расшифровывается без особого труда.

Подобные обозначения приняты большинством производителей в мире, что делает её универсальной для любой страны.

Для примера можно рассмотреть 6-полосный вариант с цветовыми кольцами: красный, оранжевый, жёлтый, зелёный, синий, коричневый.

  1. Красный - числовое значение «2».
  2. Оранжевый - числовое значение «3».
  3. Жёлтый - числовое значение «4».
  4. Зелёный - четвёртая полоска обозначает множитель, для зелёного (по данным таблицы) это значение 1*10⁵. Ориентируясь на таблицу, первые три цвета дают значение «234» Проведя расчёт 234*10⁵ получается 2,34 МОм.
  5. Синий - определяет точность, которая для этого цвета 0,25%, т. е. именно таково возможное отклонение от начального значения в любую из сторон при работе резистора.
  6. Коричневый - обозначает температурный коэффициент, в этом случае значение равно 100 ppm/°C.

Таким образом, из приведённого примера видно, что никаких особых сложностей при расшифровке не возникает, даже если имеется сопротивление с шестью цветными обозначениями.

Онлайн калькуляторы

Для определения и расшифровки резистора по цветовым полосам можно пойти и другим путём. Порой далеко не всегда удобно пользоваться таблицей. Тем более что придётся ещё и проводить (пусть и минимальные) расчёты, а это современный человек не очень любит. Вот здесь на помощь может прийти интернет. Ведь расшифровку цветовой маркировки резисторов цветной онлайн-калькулятор выполнит куда более точно и быстро. А учитывая, что почти у всех сейчас в наличии смартфоны, то реализовать подобное действие можно даже «в поле».

Онлайн-калькуляторы сегодня можно найти без труда через любую поисковую систему. Несмотря на то что все они могут отличаться внешне, принцип действия всегда будет одинаков. Ну и в функционале также возможны некоторые различия. Однако получить интересующую информацию по резисторам есть возможность на любом из таких сервисов.

Как правило, в основе программы заложены все те же данные, что можно найти в таблице. Но выполняются все расчёты автоматически. Для этого в зависимости от предлагаемого сервисами калькулятора необходимо ввести, обозначить, отметить или сообщить программе иным способом количество и цвет полосок. В результате чего калькулятор в считанные доли секунд выдаст всю имеющуюся по данному полупроводнику информацию - удобно, быстро и точно. Таким образом, цветовая маркировка резисторов онлайн вычисляется куда более эффективно.

Нестандартные маркеры

Несмотря на то что цветовая маркировка резисторов признана во всём мире, некоторые особо известные производители могут наносить иные обозначения согласно своим личным стандартам. Так, цветовое обозначение резисторов у Philips, помимо основных характеристик, может нести информацию о технологии производства и применяемых компонентах.

Хорошо известная компания Panasonic также предпочитает следовать личным стандартам. В своих обозначениях они вводят информацию и о каких-либо особенных свойствах резистора.

Тем же путём пошла и фирма CGW, которая также отображает на корпусе полупроводника информацию о его дополнительных особенностях.

Но несмотря на это, любую из таких деталей можно не только расшифровать и получить исчерпывающую информацию о ней, но и прибегнуть к замене на аналог, а это говорит о том, что сами свойства прибора остаются практически неизменными.

Калькулятор сопротивления резисторов

  МАРКИРОВКА В ВИДЕ 4 КОЛЕЦ
 

  Сопротивл., допуск: 
  первая полоса вторая полоса третья полоса четвертая полоса
серебрянный
золотой
черный
коричневый
красный
оранжевый
желтый
зеленый
синий
фиолетовый
серый
белый
  МАРКИРОВКА В ВИДЕ 5 КОЛЕЦ
 

  Сопротивл., допуск: 
  первая полоса вторая полоса третья полоса четвертая полоса пятая
полоса
серебрянный
золотой
черный
коричневый
красный
оранжевый
желтый
зеленый
синий
фиолетовый
серый
белый

Калькулятор светодиодов

Я уже прочитал статью, сразу перейти к калькулятору.

Для устойчивой работы светодиоду необходим источник постоянного напряжения и стабилизированный ток, который не будет превышать величины, допустимые спецификой конкретного светодиода. Если необходимо подключить светодиоды индикаторные, рабочий ток которых не превышает 50-100мА, можно ограничить ток посредством резисторов. Если речь идет о питании мощных светодиодов с рабочими токами от сотен миллиампер до единиц ампер, то не обойтись без специальных устройств – драйверов (подробнее об этих устройствах читайте в статье "Драйвера для светодиодов", готовые модели драйверов можно увидеть здесь.). Далее рассмотрим варианты, когда требуемый ток небольшой и обойтись резисторами все же можно.

Резисторы являются пассивными элементами – ток они просто ограничивают, но никак не стабилизируют. Сила тока будет меняться с изменением напряжения в соответствии с законом Ома. Ограничивается ток резистором банальным преобразованием «лишнего» электричества в тепло по формуле

P = I2R, где P - выделяемое тепло в ваттах, I - сила тока в цепи в амперах, R - сопротивление в омах.

Устройство при этом, естественно, греется. Способность резистора рассеивать тепло не безгранична и, при превышении допустимого тока, он сгорит. Допустимая рассеиваемая мощность определяется корпусом резистора. Это нужно учитывать при планировании подключения светодиодов и выбирать элементы с, как минимум, двойным запасом прочности.

Схема подключения одного светодиода

Если необходимо подключить один светодиод, то сопротивление резистора можно рассчитать, в соответствии с законом Ома, по простой формуле:

R = (U - UL) / I, где R - требуемое сопротивление в омах, U - напряжение источника питания, UL - падение напряжения на светодиоде в вольтах, I - нужный ток светодиода в амперах.

Очень часто нужно подключить не один, а несколько светодиодов. В этом случае возможно их последовательное или параллельное подключение.

Схема последовательного подключения светодиодов

Падение напряжения на последовательно соединенных светодиодах суммируется, через каждый из них протекает одинаковый ток. Напряжение источника питание должно быть больше, чем суммарное падение напряжения.

Рассчитывается сопротивление резистора по такому же принципу, как и в случае одного светодиода, только учитывается падение напряжения не на одном светляке, а суммарно для всей цепочки.

Последовательное подключение удобно тем, что требует минимум дополнительных деталей, кроме того, от источника питания не требуется большой ток. Но при большом количестве светодиодов может потребоваться существенное напряжение. Кроме того, если один из последовательной цепочки сгорит, то цепь оборвется и светить перестанут все светодиоды. Также при таком варианте подключения важно использовать совершенно одинаковые светодиоды, иначе их разные параметры будут служить источником дисбаланса. В итоге они могут либо светить неравномерно, либо значительно быстрее выходить из строя.

Схема параллельного подключения светодиодов

Параллельное подключение равносильно одновременному подключению отдельных светодиодов, которым совсем «не обязательно знать» о наличии других светодиодов. При этом напряжение источника питания должно превышать падение напряжения на одном светодиоде. Сила тока каждого светодиода может регулироваться индивидуально, выбором сопротивления подсоединенного к нему резистора. Важно, чтобы источник питания «знал», сколько светодиодов к нему подключено, поскольку общая сила тока, которую потребуется от него предоставить, равна сумме токов, протекающих через все светодиоды. Если один из светодиодов выйдет из строя, со свечением остальных ничего не произойдет, поскольку работают они индивидуально. Учтите, что это не относится к параллельным светодиодам, которые питаются от токоограничивающего драйвера! Драйвер стабилизирует ток, выход из строя одной из веток приведет к общему снижению тока. Это снижение драйвер немедленно компенсирует, что приведет к повышению тока на оставшихся ветках. А они могут это и не пережить. По аналогичной причине следует избегать подключения нескольких параллельных светодиодов через один токоограничивающий резистор.

Схема правильного и неправильного параллельного подключения светодиодов

Сопротивление каждого резистора при параллельном подключении светодиодов рассчитывается, повторюсь, так же, как и при подключении одного светодиода.

Параллельное подключение светодиодов не требует высокого напряжения питания, но при его использовании необходимо обеспечить достаточную силу тока. Требуется большее количество деталей, но можно одновременно подключить светодиоды с разными параметрами. Также большее количество токоограничивающих резисторов, которые будут выделять тепло, даст более низкий общий КПД схемы по сравнению с последовательным подключением.

Быстро рассчитать сопротивление резистора при подключении одного или нескольких одинаковых светодиодов поможет предложенная ниже форма онлайн-калькулятора светодиодов.

Расчет резистора для светодиода

Тип подключения:

Выбрано: Один светодиод

Общая потребляемая мощность:

Общий ток источника питания:

На резисторах рассеивается:

На светодиодах рассеивается:

КПД схемы:

Требуемая мощность резисторов - очень большая!!

Выбирайте резисторы с номиналом не меньше рассчитанного!

Цветная маркировка резисторов полосками - определение сопротивления, таблица и онлайн-калькулятор

Одними из основных элементов построения электронных схем, несмотря на развитие микропроцессорных технологий по-прежнему остаются старые проверенные резисторы

Сопротивление или резисторы во многом за последние десятилетия претерпели ряд изменений, в том числе и существенное уменьшение габаритных размеров – нынешнее поколение вдвое меньше по размерам, чем приборы, выпускаемые 30-40 лет назад, но вместе с тем, потребность в них при создании электроники не стала меньше.

Причинами введения цветной маркировки электронных элементов было несколько :

  1. Ввиду уменьшения размеров пришлось отказаться от буквенно-цифровой маркировки приборов.
  2. Цветовая система обозначения позволяет закодировать намного больше информации об элементе, чем буквенно-цифровая.
  3. Повсеместное внедрение робототехники в сборочных линиях электронных компонентов требовало изменения подходов к маркировке составляющих деталей.
  4. В связи с развитием производства радиодеталей в странах Восточной Азии, основанной на передовых технологиях, существенно оттеснили выпуск отечественных компонентов, ввиду чего производителям пришлось перейти на западные стандарты маркировки.

Кроме того, значительное количество радиоэлементов сегодня монтируются в платы, ремонт которых нецелесообразен ввиду дороговизны самого ремонта, ведь намного дешевле купить новый радиоприемник чем отремонтировать, ввиду этого, многие фирмы практически отказались от сервисных центров и как результат, не требуют значительного количества запасных частей разного номинала.

Как определить сопротивление резистора по цвету?

В основном, сегодня, практически невозможно встретить резисторы старше 15-20 лет, хотя отдельные старые раритетные «Рекорды» и «Электроны» до сих пор радуют глаз в отдельных квартирах.

Наполненные советской электроникой старые телевизоры и радиоприемники в своем составе имели, как правило, стандартные сопротивления коричневого или зеленого цветов с буквенной маркировкой.

Понять номинальное значение элемента по его буквенно-цифровой кодировке имея под рукой раритетный макулатурный справочник особого труда не составляет, тем более что в большинстве своем это были металлопленочные, лакированные приборы, обладающие свойством теплоустойчивости – МЛТ.

В Советском Союзе бытовая электроника была побочным продуктом оборонных предприятий, но при этом собиралась из тех же деталей, что и военная техника. Такие резисторы отличались друг от друга по габаритам – чем больше элемент, тем большее сопротивление.

Нынешняя маркировка компонентов во многом отличается от того тем, что существует несколько разновидностей – простые, стандартные цилиндрические сопротивления с цветной маркировкой и SMD-элементы.

4 и 5 полосная маркировка

Четырехполосная:

Пятиполосная:

Для определения номинала элемента, кроме знания основ физических процессов, необходимо знать технологию цветового обозначения номиналов электронных компонентов.

Для начала необходимо знать правильность чтения или порядок цветового кода:

  1. На резисторах, как правило, наносятся 4 или 5 цветных колец.
  2. Испытуемый элемент нужно расположить таким образом, чтобы цветовые кольца начинались с золотистого или серебристого кольца слева.
  3. В отдельных случаях, когда отсутствуют серебристая или золотистая полоска (а такой вариант вполне возможен), элемент нужно расположить таким образом, чтобы цветовые кольца оказались слева (или справа оставалось больше места).

Количество цветов в кольцах строго ограничено количеством цветов радуги, плюс серый, белый и черный.

Каждый цвет соответствует определенному значению номинала и зависит от расположения в порядке колец.

Первое и следующее за ним второе кольцо кода обозначают номинальную величину сопротивления элемента в стандартных единицах Омах, следующее кольцо множитель, на который нужно умножать величину первых единиц, четвертое означает ту величину, на которую происходит отклонение заявленного номинала в процентах.

Для SMD резисторов маркировка несколько иная – это в основном цифровое обозначение. В основном встречаются сопротивления с 3 или 4 цифрами – первые две, из которых это номинал, а третья обозначает степень числа 10. То есть резистор 4432 имеет номинал: 443*10(2 степени) или 4400 Ом или 4,4 кОм.

Стандартная и нестандартная цветовые маркировки

Нестандартная маркировка

Кроме общепринятой, стандартной цветовой маркировки обозначений сопротивлений, существуют и нестандартные виды кодирования. Чаще всего, нестандартные маркировки встречаются в виде совмещенного кода цвета и цифр у некоторых крупных производителей электроники, имеющих свои подразделения по разработке и производству электронных компонентов.

Среди таких нестандартных цветовых кодов и буквенного обозначения, чаще всего встречаются Philips и Panasonic, эти производители маркируют радиодетали, выпущенные на внутренних предприятиях отличной от общепринятой маркировкой, для которой применяются специальные справочные издания и компьютерные программы.

Пояснение и таблица

Как уже было указано, цветовые маркерные кольца нанесены слева направо.

Первое кольцо и следующее за ним второе цветное кольцо обозначают стандартную величину сопротивления в Омах. Следующее, третье кольцо обозначает множитель, на который нужно умножать числовое значение первых двух единиц обозначения, четвертое кольцо кода указывает значение, на которое отклоняется заявленный номинал в процентах.

Для точного определения величины сопротивления каждого отдельного компонента не следует запоминать весь цветовой код, достаточно иметь под рукой таблицу определения сопротивления:

Цвет знакаНоминальное сопротивление, ОмДопуск, %ТКС [ppm/°C]
Первая цифраВторая цифраТретья цифраМножитель
Серебристый10-2±10
Золотистый10-1±5
Черный001
Коричневый11110±1100
Красный222102±250
Оранжевый33310315
Желтый44410425
Зеленый5551050,5
Голубой666106±0,2510
Фиолетовый777107±0,15
Серый888108±0,05
Белый9991091

Кроме стандартной, общепринятой маркировки, в отдельных случаях указываются и дополнительные данные в обозначениях 4 или 5 полосного, когда более широкая полоса (она, как правило, шире в 1,5 раз от остальных) указывает на более надежный, специальный вариант элемента – как правило, срок ее службы рассчитан более чем на 1000 часов непрерывной работы.

Онлайн-калькулятор

Интерфейс программы “Резистор 2.2”

Современные технологии и сегодня во многом облегчают работу как профессионалам, так и радиолюбителям. Кроме доступной измерительной аппаратуры, сегодня в интернет-ресурсах, посвященных радиотехнике, в огромном количестве находятся онлайн-калькуляторы определения сопротивления резисторов по маркировке.

Простые, и в общем-то надежные программы, позволяют с высокой точностью определить номинал практически любой радиодетали, более продвинутые и мощные инженерные программы, используемые в пакетах для инженеров-конструкторов, позволяют не только узнать значение сопротивления, но и найти соответствующую замену и определить вариант работоспособности самой схемы.

Одной из таких программ является программа Резистор 2.2, она проста, удобна и не требует глубоких знаний компьютерной техники. Простой интерфейс и удобные рабочие органы позволяют работать как в сети, так и без неё.

Как пользоваться?

Как и большинство прикладных инженерных программ, программа Резистор 2.2 является онлайн-калькулятором, позволяющим определять номинал сопротивления по различным наиболее распространенным видам кодировки:

  1. Стандартной 4 или 5 цветной маркировке.
  2. Фирменной маркировке Philips различных видов сопротивлений.
  3. Нестандартной цветовой кодировки фирм Panasonic, Corning Glass Work.
  4. Обычной кодовой маркировке.
  5. Обычной кодировке Panasonic, Philips, Bourns.

После распаковки архива, не требующая регистрации программа сразу готова к работе. В окне, из предложенных вариантов, выбирается нужный параметр и производится дальнейшая идентификация по имеющемуся коду на корпусе элемента.

Для удобства идентификации, в верхнем окне наглядно показывается изображение определяемой кодировки. На корпусе радиодетали наносятся цветные кольца в соответствии с теми значениями, которые указываются пользователем, таким образом, появляется возможность наглядно сравнить кодировку с реальным элементом.

Внизу сразу высвечивается числовое значение номинала элемента.

Статья была полезна?

0,00 (оценок: 0)

Маркировка резисторов цветными полосками

Люди, которые занимаются ремонтом бытовой техники, помнят неудобные советские резисторы, определить емкость которых зачастую было очень сложно без выпаивания его с платы. Такая ситуация возникала потому, что емкость наносилась в виде цифр только с одной стороны устройства и увидеть их было не всегда возможно. Впоследствии в обиход вошла цветная маркировка резисторов — на корпус наносились цветные круговые полоски, которые видно при любом положении элемента. Разберем, как правильно определять номинал постоянных резисторов по полоскам.

Введение

Резистор — это электронный прибор, который имеет определенное сопротивление. Его основная задача — преобразование силы тока в напряжение и наоборот. Ввиду малых размеров не всегда удается нанести и считать маркировку с резистора — к примеру, устройство на 0,25 ватт, достаточно часто применяемое в системотехнике, имеет длину не более 3.2 мм при диаметре 1,8 мм. Именно поэтому и была разработана цветная схема маркировки. Она является международной, ее утвердила IEC (International Electrotechnical Commission) и требования ГОСТ 175-72.

Маркировка резисторов полосками

Читать полоски положено слева направо. Первое кольцо наносится ближе к проволочному выходу из устройства.

Таблица цветов

Для чтения маркировки резисторов цветными полосками можно использовать эту таблицу:

Цвет Цифровое значение
Черный 0
Коричневый 1
Красный 2
Оранжевый 3
Желтый 4
Зеленый 5
Синий 6
Фиолетовый 7
Серый 8
Белый 9
Золотой -1
Серебряный -2

Последние числа используются для десятичного множителя. Также следует помнить, что существует шесть рядов точности, предусмотренных ГОСТ. Для ряда Е6 допускается отклонение в 20%, для Е12 — в 10%, Е24 — 5%, Е48 — 2%, Е96 — 1%, Е 192 — 0,5%.

Чтение полос удобнее, чем маркировки

Правила маркировки

Классическая маркировка резисторов по цвету состоит из 3—6 полос/колец. Чем больше полос, тем больше точность измерения. Разберем наиболее популярные варианты.

Устройства с тремя полосками

Подобную маркировку применяют только для тех элементов, которые имеют “плановые” отклонения не более 20%. Цифры, относящиеся к цветам, можно взять из приведенной выше таблицы. Первый и второй круг показывает сопротивление устройства, третья — показатель множителя.

Если обозначить первую полоску D1, вторую D2, третью E, то формула расчета сопротивления будет выглядеть так:

R=(10D1+D2)*10E

К примеру, на искомом резисторе первая полоса красная, вторая зеленая, третья — желтая. Ищем сопротивление (10*2+5)*104=25*10 в 4 степени=250000 Ом или 250 кОм.

Устройства с 4 полосками

Используются для устройств с точностью до 5-10% (ряд E12 и E24 по маркировке ГОСТ). Схема маркировки сопротивлений по цветам остается прежней: первые два кольца — номинал сопротивления, третье — десятичный множитель, четвертое — допуск. Золотистый допуск — 5% (относится к ряду Е24), серебристый — 10% (ряд Е 12). В этом случае формула выглядит следующим образом: R=(10D1+D2)*10E±S, где первая полоса — D1, вторая — D2, третья — Е, четвертая — S.

Пример: если вы видите устройство с 4 полосами зеленого, оранжевого, красного и золотого цвета, то сопротивление будет равно R=(50+3)*10 второй степени=5300 Ома+-5% или 5.3 кОм ± 5%.

Резисторы с 4 полосками

Устройства с 5 полосками

Подобная маркировка резисторов по полоскам применяется для полос Е48 – 2%, Е96 – 1%, Е 192 – 0,5%. Техника подсчета первых трех полос остается прежней, четвертая обозначает десятичный множитель, пятая – уровень допуска. Формула выглядит следующим образом: R=(100D1+10D2+D3)*10E±S, где D1, D2 и D3 – первые три круга, Е-четвертый, S – пятый. Допуски обозначаются следующим образом:

  • E48 (2%) — красный;
  • E96 (1%) — коричневый;
  • E192 (0,5%) — зеленый;
  • 0,25% — синий;
  • 0,1% — фиолетовый;
  • 0,05% — серый.

Шестиполосные устройства

Профессиональные ремонтники знаю, что у некоторых резисторов имеется так называемый коэффициент температурного сопротивления или коротко — ТКС. Данный параметр показывает, на какую величину повышается/уменьшается сопротивление элемента при изменении температуры на 1 градус. Этот коэффициент измеряется в ppm/OC (parts per million или миллионная часть от имеющегося номинала, деленная на количество градусов). Разберем обозначение резисторов по цветам на шестом кольце:

  1. Коричневый цвет — 100 ppm/OC.
  2. Красный — 50 ppm/OC.
  3. Желтый — 25 ppm/OC.
  4. Оранжевый — 15 ppm/OC.
  5. Синий — 10 ppm/OC.
  6. Фиолетовый — 5 ppm/OC.
  7. Белый — 1 ppm/OC.

Разберем пример определение резистора по цветовой маркировке на 6 колец. К примеру, мы имеем резистор с красной, зеленой, фиолетовой, желтой, коричневой и оранжевой полосой. Сопротивление будет равно (100*2+10*5+7)*104  +-1% (15ppm/OC) или же 2570000±1% (15ppm/OC) или 2,57 ±1% (15ppm/OC) МОм.

Внимание: шестое кольцо часто используется для подсчета коэффициента надежности элемента. Если оно стандартной ширины, то определяет коэффициент ppm/OC, если оно шире в полтора раза, то показывает процент отказов элемента на одну тысячу часов работы.

Цветовые обозначения в этом случае следующие:

  1. Коричневый цвет — до 1 процента отказов.
  2. Красный цвет — не более 0,1% отказов.
  3. Оранжевый цвет — не более 0,01% отказов.
  4. Желтый — не более 0,001% отказов за 1000 часов работы.

В качестве рабочей таблицы для определения сопротивления можно использовать следующий вариант:

Таблица для чтения номинала резистора

Проволочные резисторы

Для проволочных резисторов приняты немного другая расшифровка резисторов по цвету. Первой полосой в любом случае будет широкая белая полоска, которая говорит о технологии изготовления (проволочный). На них не может быть более 4 полос, последнее кольцо говорит о свойствах микроэлемента. Изучите нашу таблицу — она позволит вам разобраться в том, как правильно читать номиналы проволочных устройств.

Схема для проволочных резисторов

Калькулятор маркировки резисторов по цветовым полоскам

С помощью онлайн-калькулятора маркировки резисторов вы без труда можете определить номинальное сопротивление и допуски по цветовым кольцам на корпусе радио элемента. Чтение кода обозначения необходимо начинать слева на право, с той стороны, с которой первая полоса ближе к торцу. Полоски золотого и серебряного цветов всегда располагаются в конце.

 

Также вы можете воспользоваться другими нашими калькуляторами по этой ссылке.

Как видите, ничего сложного в маркировке нет — используя две наших таблицы вы сможете легко определять емкость любых номиналов. Небольшая тренировка на практике – и вы запомните ключевые цвета, поскольку в основном резисторы из граничных значений применяются достаточно редко. Опытный мастер сразу читает маркировку и понимает, как работает устройство.

Какой формулой рассчитать мощность резисторов

Резисторы применяются практически во всех электросхемах. Это наиболее простой компонент, в основном, служащий для ограничения или регулирования тока, благодаря наличию сопротивления при его протекании.

Резисторы

Виды резисторов

Внутреннее устройство детали может быть различным, но преимущественно это изолятор цилиндрической формы, с нанесённым на его внешнюю поверхность слоем либо несколькими витками тонкой проволоки, проводящими ток и рассчитанными на заданное значение сопротивления, измеряемое в омах.

Существующие разновидности резисторов:

  1. Постоянные. Имеют неизменное сопротивление. Применяются, когда определенный участок электроцепи требует установки заданного уровня по току или напряжению. Такие компоненты необходимо рассчитывать и подбирать по параметрам;
  2. Переменные. Оснащены несколькими выводными контактами. Их сопротивление поддается регулировке, которая может быть плавной и ступенчатой. Пример использования – контроль громкости в аудиоаппаратуре;
  3. Подстроечные – представляют собой вариант переменных. Разница в том, что регулировка подстроечных резисторов производится очень редко;
  4. Есть еще резисторы с нелинейными характеристиками – варисторы, терморезисторы, фоторезисторы, сопротивление которых меняется под воздействием освещения, температурных колебаний, механического давления.

Важно! Материалом для изготовления практически всех нелинейных деталей, кроме угольных варисторов, применяемых в стабилизаторах напряжения, являются полупроводники.

Параметры резисторного элемента

  1. Для резисторов применяется понятие мощности. При прохождении через них электротока происходит выделение тепловой энергии, рассеиваемой в окружающее пространство. Мощность детали является параметром, который показывает, сколько энергии она может выделить в виде тепла, оставаясь работоспособной. Мощность зависит от габаритов детали, поэтому у маленьких зарубежных резисторов ее определяют на глаз, сравнивая с российскими, технические характеристики которых известны;

Важно! Импортные резисторные элементы идентичной мощности имеют несколько меньшие размеры, так как российские производятся с некоторым запасом по этому показателю.

На схеме мощность показана следующим образом.

Условное обозначение мощности

  1. Второй параметр – сопротивление элемента. На российских деталях типа МЛТ и крупных импортных образцах оба параметра указываются на корпусе (мощность – Вт, сопротивление – Ом, кОм, мОм). Для визуального определения сопротивления миниатюрных импортных элементов применяется система условных обозначений с помощью цветных полосок;

Цветовая маркировка резисторов

  1. Допуски. Невозможно изготовить деталь с номинальным сопротивлением, в точности соответствующим заявленному значению. Поэтому всегда указываются границы погрешности, называемые допуском. Его величина – 0,5-20%;
  2. ТКС – коэффициент температуры. Показывает, как варьируется сопротивление при изменении внешней температуры на 1°С. Желательно, но не обязательно подбирать элементы с близким или идентичным значением этого показателя для одной цепи.

Расчет резисторов

Для расчета сопротивления резистора формула применяемая в первую очередь – это закон Ома:

I = U/R.

Исходя из этой формулы, можно вывести выражение для сопротивления:

R = U/I,

где U – разность потенциалов на выводных контактах резистора.

Пример. Необходимо провести зарядку аккумулятора 2,4 В зарядным током 50 мА от автомобильной 12-вольтовой батареи. Прямое соединение сделать нельзя из-за слишком высоких показателей по току и напряжению. Но возможно поставить в схему сопротивление, которое обеспечит нужные параметры.

Предварительно нужно рассчитать резистор:

  • Расчет начинается с определения падения напряжения, которое должен обеспечить резисторный элемент:

U = 12-2,4 = 9,6 B

  • Протекающий по детали ток – 50 мА. Следовательно, R = 9,6/0,05 = 192 Ом

Теперь можно уже подобрать нужный резистор по одному показателю.

Если рассчитанной детали не нашлось, можно применить соединение из нескольких резисторных элементов, установив их последовательно или параллельно. Расчет сопротивлений при этом имеет свои особенности.

Последовательное соединение

Последовательно соединенные сопротивления складываются:

R = R1+ R2.

Если нужно получить общий результат 200 Ом, и имеется один резистор на 120 Ом, то расчет другого:

R2 = R-R1 = 200-120 = 80 Ом.

Последовательное соединение

Параллельное соединение

При параллельной схеме другая зависимость:

1/R = 1/R1 + 1/R2.

Или преобразованный вариант:

R = (R1 x R2)/ (R1 + R2).

Важно! Параллельное соединение можно использовать, когда в наличии детали с большим сопротивлением, чем требуется, последовательное наоборот.

Пример. Необходимо сопротивление 200 Ом. Имеется деталь R2 на 360 Ом. Какое сопротивление подобрать еще? R1 = R2/(R2/R-1) = 360/(360/200-1) = 450 Ом.

Параллельное соединение

Смешанное соединение

В смешанных схемах присутствуют последовательно-параллельные комбинации. Расчет таких схем сводится к их упрощению путем преобразований. На рисунке ниже представлено, как упростить схему, рассчитывая общий показатель для шести резисторов с учетом их соединения.

Расчет сопротивления в смешанной схеме

Мощность

Определив сопротивление, еще нельзя выбрать деталь. Чтобы обеспечить надежную работу схемы, необходимо найти и другой параметр – мощность. Для этого надо знать, как рассчитать мощность резисторного элемента.

Формулы, по которым можно рассчитать мощность резистора:

Пример. I = 50 мА; R = 200 Ом. Тогда P = I² x R = 0,05² x 200 = 0,5 Вт.

Если не учитывать значение тока, расчет мощности резистора ведется по другой формуле.

Пример. U = 9,6 В, R = 200 Ом. P = U²/R = 9,6²/200 = 0,46 Вт. Получился тот же результат.

Теперь, зная точные параметры рассчитываемого резисторного элемента, подберем радиодеталь.

Важно! При выборе деталей возможно их заменить на резисторы с мощностью, больше рассчитанной, но обратный вариант не подходит.

Это основные формулы для расчета резисторных деталей, на основании которых производится анализ узлов схемы, где главным является определение токов и напряжений, протекающих через конкретный элемент.

Видео

Оцените статью:

Расчет сопротивления резистора для блока питания. Калькулятор расчета сопротивления для светодиодов

Светодиод – это полупроводниковый элемент , который применяется для освещения. Применяется в фонарях, лампах, светильниках и других осветительных приборах. Принцип его работы заключается в том, что при протекании тока через светоизлучающий диод происходит высвобождение фотонов с поверхности материала полупроводника, и диод начинает светиться.

Надежная работа светодиода зависит от тока , протекающего через него. При заниженных значениях, он просто не будет светить, а при превышении значения тока – характеристики элемента ухудшатся, вплоть до его разрушения. При этом говорят – светодиод сгорел. Для того чтобы исключить возможность выхода из строя этого полупроводника необходимо подобрать в цепь с включенным в нее, резистором. Он будет ограничивать ток в цепи на оптимальных значениях.

Для работы радиоэлемента на него нужно подать питание. По закону Ома , чем больше сопротивление отрезка цепи, тем меньший ток по нему протекает. Опасная ситуация возникает, если в схеме течет больший ток, чем положено, так как каждый элемент не выдерживает большей токовой нагрузки.

Сопротивление светодиода является нелинейным. Это значит, что при изменении напряжения, подаваемого на этот элемент, ток, протекающий через него, будет меняться нелинейно. Убедиться в этом можно, если найти вольт - амперную характеристику любого диода, в том числе и светоизлучающего. При подаче питания ниже напряжения открытия p - n перехода, ток через светодиод низкий, и элемент не работает. Как только этот порог превышен, ток через элемент стремительно возрастает, и он начинает светиться.

Если источник питания соединять непосредственно со светодиодом, диод выйдет из строя, так как не рассчитан на такую нагрузку. Чтобы этого не произошло – нужно ограничить ток, протекающий через светодиод балластным сопротивлением, или произвести понижение напряжения на важном для нас полупроводнике.

Рассмотрим простейшую схему подключения (рисунок 1). Источник питания постоянного тока подключается последовательно через резистор к нужному светодиоду, характеристики которого нужно обязательно узнать. Сделать это можно в интернете, скачав описание (информационный лист) на конкретную модель, или найдя нужную модель в справочниках. Если найти описание не представляется возможным, можно приблизительно определить падение напряжения на светодиоде по его цвету:

  • Инфракрасный - до 1.9 В.
  • Красный – от 1.6 до 2.03 В.
  • Оранжевый – от 2.03 до 2.1 В.
  • Желтый – от 2.1 до 2.2 В.
  • Зеленый – от 2.2 до 3.5 В.
  • Синий – от 2.5 до 3.7 В.
  • Фиолетовый – 2.8 до 4 В.
  • Ультрафиолетовый – от 3.1 до 4.4 В.
  • Белый – от 3 до 3.7 В.

Рисунок 1 – схема подключения светодиода

Ток в схеме можно сравнить с движением жидкости по трубе. Если есть только один путь протекания, то сила тока (скорость течения) во всей цепи будет одинакова. Именно так происходит в схеме на рисунке 1. Согласно закону Кирхгоффа, сумма падений напряжения на всех элементах, включенных в цепь протекания одного тока, равно ЭДС этой цепи (на рисунке 1 обозначено буквой Е). Отсюда можно сделать вывод, что напряжение, падающее на токоограничивающем резисторе должно быть равным разности напряжения питания и падения его на светодиоде.

Так как ток в цепи должен быть одинаковым, то и через резистор, и через светодиод ток получается одним и тем же. Для стабильной работы полупроводникового элемента, увеличения его показателей надежности и долговечности, ток через него должен быть определенных значений, указанных в его описании. Если описание найти невозможно, можно принять приблизительное значение тока в цепи 10 миллиампер. После определения этих данных уже можно вычислить номинал сопротивления резистора для светодиода. Он определяется по закону Ома. Сопротивление резистора равно отношению падения напряжения на нем к току в цепи. Или в символьной форме:

R = U (R)/ I ,

где, U (R) - падение напряжения на резисторе

I – ток в цепи

Расчет U (R) на резисторе:

U (R) = E – U (Led)

где, U (Led) - падение напряжения на светодиодном элементе.

С помощью этих формул получится точное значение сопротивления резистора. Однако, промышленностью выпускаются только стандартные значения сопротивлений так называемые ряды номиналов. Поэтому после расчета придется сделать подбор существующего номинала сопротивления. Подобрать нужно чуть больший резистор, чем получилось в расчете, таким образом, получится защита от случайного превышения напряжения в сети. Если подобрать близкий по значению элемент сложно, можно попробовать соединить два резистора последовательно, или параллельно.

Если подобрать сопротивление меньшей мощности, чем нужно в схеме, оно просто выйдет из строя. Расчет мощности резистора довольно прост, нужно падение напряжения на нём умножить на ток, протекающий в этой цепи. После чего нужно выбрать сопротивление с мощностью, не меньшей рассчитанной.

Пример расчета

Имеем напряжение питания 12В, зеленый светодиод. Нужно рассчитать сопротивление и мощность токоограничивающего резистора. Падение напряжения на нужном нам зеленом светодиоде равно 2,4 В, номинальный ток 20 мА. Отсюда вычисляем напряжение, падающее на балластном резисторе.

U (R) = E – U (Led) = 12В – 2,4В = 9,6В.

Значение сопротивления:

R = U (R)/ I = 9,6В/0,02А = 480 Ом.

Значение мощности:

P = U (R) ⋅ I = 9,6В ⋅ 0,02А = 0,192 Вт

Из ряда стандартных сопротивлений выбираем 487 Ом (ряд Е96), а мощность можно выбрать 0,25 Вт. Такой резистор нужно заказать.

В том случае, если нужно подключить несколько светодиодов последовательно, подключать их к источнику питания можно также с помощью только одного резистора, который будет гасить избыточное напряжение. Его расчет производится по указанным выше формулам, однако, вместо одного прямого напряжения U (Led) нужно взять сумму прямых напряжений нужных светодиодов.

Если требуется подключить несколько светоизлучающих элементов параллельно, то для каждого из них требуется рассчитать свой резистор, так как у каждого из полупроводников может быть свое прямое напряжение. Вычисления для каждой цепи в таком случае аналогичны расчету одного резистора, так как все они подключаются параллельно к одному источнику питания, и его значение для расчета каждой цепи одно и то же.

Этапы вычисления

Чтобы сделать правильные вычисления, необходимо выполнить следующее:

  1. Выяснение прямого напряжения и тока светодиода.
  2. Расчет падения напряжения на нужном резисторе.
  3. Расчет сопротивления резистора.
  4. Подбор сопротивления из стандартного ряда.
  5. Вычисление и подбор мощности.

Этот несложный расчет можно сделать самому, но проще и эффективнее по времени воспользоваться калькулятором для расчета резистора для светодиода. Если ввести такой запрос в поисковик, найдется множество сайтов, предлагающих автоматизированный подсчет. Все необходимые формулы в этот инструмент уже встроены и работают мгновенно. Некоторые сервисы сразу предлагают также и подбор элементов. Нужно будет только выбрать наиболее подходящий калькулятор для расчета светодиодов, и, таким образом, сэкономить свое время.

Калькулятор светодиодов онлайн – не единственное средство для экономии времени в вычислениях. Расчет транзисторов, конденсаторов и других элементов для различных схем уже давно автоматизирован в интернете. Остается только грамотно воспользоваться поисковиком для решения этих задач.

Светодиоды – оптимальное решение для многих задач освещения дома, офиса и производства. Обратите внимание на светильники Ledz. Это лучшее соотношение цены и качества осветительной продукции, используя их, вам не придется самим делать расчеты и собирать светотехнику.

#s3gt_translate_tooltip_mini { display: none !important; }

В схемах со светодиодами обязательно используются для ограничения. Они защищают от перегорания и преждевременного выхода из строя светодиодных элементов. Основная проблема заключается в точном подборе необходимых параметров, поэтому у специалистов широкой популярностью пользуется калькулятор расчета сопротивления для светодиодов. Для получения максимально точных результатов потребуются данные о напряжении источника питания, о прямом напряжении самого светодиода и его расчетном токе, а также схема подключения и количество элементов.

Как рассчитать сопротивление токоограничивающих резисторов

В самом простом случае, когда отсутствуют необходимые исходные данные, величину прямого напряжения светодиодов можно с высокой точностью установить по цвету свечения. Типовые данные об этом физическом явлении сведены в таблицу.

Многие светодиоды имеют расчетный ток 20 мА. Существуют и другие виды элементов, у которых этот параметр может достигать значения 150 мА и выше. Поэтому для того чтобы точно определить номинальный ток, понадобятся данные о технических характеристиках светодиода. Если же нужная информация полностью отсутствует, номинальный ток элемента условно принимается за 10 мА, а прямое напряжение - 1,5-2 вольта.

Количество токоограничивающих резисторов напрямую зависит от схемы подключения полупроводниковых элементов. Например, если используется , можно вполне обойтись одним резистором, поскольку сила тока во всех точках будет одинаковой.

В случае параллельного соединения одного гасящего резистора будет уже недостаточно. Это связано с тем, что характеристики светодиодов не могут быть абсолютно одинаковыми. Все они обладают собственными сопротивлениями и такими же разными потребляемыми токами. То есть, элемент с минимальным сопротивлением потребляет большее количество тока и может преждевременно выйти из строя.

Следовательно, если выйдет из строя хотя-бы один светодиод из подключенных параллельно, это приведет к возникновению повышенного напряжения, на которое остальные элементы не рассчитаны. В результате, они тоже перестанут работать. Поэтому при параллельном соединении для каждого светодиода предусматривается собственный резистор.

Все эти особенности учтены в онлайн-калькуляторе. В основе расчетов лежит формула определения сопротивления: R = Uгасящее/Iсветодиода. В свою очередь Uгасящее = Uпитания - Uсветодиода.

При подключении светодиодов небольшой мощности чаще всего используется гасящий резистор. Это наиболее простая схема подключения, которая позволяет получить требуемую яркость без использования дорогостоящих . Однако, при всей ее простоте, для обеспечения оптимального режима работы необходимо провести расчет резистора для светодиода.

Светодиод как нелинейный элемент

Рассмотрим семейство вольт-амперных характеристик (ВАХ) для светодиодов различных цветов:

Эта характеристика показывает зависимость тока, проходящего через светоизлучающий диод, от напряжения, приложенного к нему.

Как видно на рисунке, характеристики имеют нелинейный характер. Это означает, что даже при небольшом изменении напряжения на несколько десятых долей вольта, ток может измениться в несколько раз.

Однако при работе со светодиодами обычно используют наиболее линейный участок (т.н. рабочую область) ВАХ, где ток изменяется не так резко. Чаще всего производители указывают в характеристиках светодиода положение рабочей точки, то есть значения напряжения и тока, при которых достигается заявленная яркость свечения.

На рисунке показаны типовые значения рабочих точек для красных, зеленых, белых и голубых светодиодов при токе 20 мА. Здесь можно заметить, что led разных цветов при одинаковом токе имеют разное падение напряжения в рабочей области. Эту особенность следует учитывать при проектировании схем.

Представленные выше характеристики были получены для светоизлучающих диодов, включенных в прямом направлении. То есть отрицательный полюс питания подключен к катоду, а положительный – к аноду, как показано на картинке справа:

Полная же ВАХ выглядит следующим образом:

Здесь видно, что обратное включение бессмысленно, поскольку светодиод не будет излучать, а при превышении некоторого порога обратного напряжения выйдет из строя в результате пробоя. Излучение же происходит только при включении в прямом направлении, причем интенсивность свечения зависит от тока, проходящего через led. Если этот ток ничем не ограничивать, то led перейдет в область пробоя и перегорит. Если нужно установить рабочий светодиод или нет, то Вам будет полезна статья подробно раскрывающая все способы .

Как подобрать резистор для одиночного светодиода

Для ограничения тока светоизлучающего диода можно использовать резистор, включенный таким образом:

Теперь определяем, какой резистор нужен. Для расчета сопротивления используется формула:

где U пит — напряжение питания,

U пад- падение напряжения на светодиоде,

I — требуемый ток светодиода.

При этом мощность, рассеиваемая на резисторе, будет пропорциональна квадрату тока:

Например, для красного светодиода Cree C503B-RAS типовое падение напряжения составляет 2.1 В при токе 20 мА. При напряжении питания 12 В сопротивление резистора будет составлять

Из стандартного ряда сопротивлений Е24 подбираем наиболее близкое значение номинала – 510 Ом. Тогда мощность, рассеиваемая на резисторе, составит

Таким образом, потребуется гасящий резистор номиналом 510 Ом и мощностью рассеивания 0.25 Вт.

Может сложиться впечатление, что при низких напряжениях питания можно подключать led без резистора. На этом видео наглядно показано, что произойдет со светоизлучающим диодом, включенного таким образом, при напряжении всего 5 В:

Светодиод сначала будет работать, но через несколько минут просто перегорит. Это вызвано нелинейным характером его ВАХ, о чем говорилось в начале статьи.

Никогда не подключайте светодиод без гасящего резистора даже при низком напряжении питания. Это ведет к его выгоранию и, в лучшем случае, к обрыву цепи, а в худшем – к короткому замыканию.

Расчет резистора при подключении нескольких светодиодов

При последовательном соединении используется один резистор, задающий одинаковый ток всей цепочке led. При этом следует учитывать, что источник питания должен обеспечивать напряжение, превышающее общее падение напряжения на диодах. То есть при соединении 4 светодиодов с падением 2.5 В потребуется источник напряжением более 10 В. Ток при этом для всех будет одинаковым. Сопротивление резистора в этом случае можно рассчитать по формуле:

где — напряжение питания,

— сумма падений напряжения на светодиодах,

— ток потребления.

Так, 4 зеленых светодиода Kingbright L-132XGD напряжением 2.5 В и током 10 мА при питании 12 В потребуют резистора сопротивлением

При этом он должен рассеивать мощность

При параллельном подключении каждому светоизлучающему диоду ток ограничивает свой резистор. В таком случае можно использовать низковольтный источник питания, но ток потребления всей цепи будет складываться из токов, потребляемых каждым светодиодом. Например, 4 желтых светодиода BL-L513UYD фирмы Betlux Electronics с потреблением 20 мА каждый, потребуют от источника ток не менее 80 мА при параллельном включении. Здесь сопротивление и мощность резисторов для каждой пары «резистор – led» рассчитываются так же, как при подключении одиночного светодиода.

Обратите внимание, что и при последовательном, и при параллельном соединении используются источники питания одинаковой мощности. Только в первом случае потребуется источник с большим напряжением, а во втором – с большим током.

Нельзя подключать параллельно несколько светодиодов к одному резистору, т.к. либо они все будут гореть очень тускло, либо один из них может открыться чуть раньше других, и через него пойдет очень большой ток, который выведет его из строя.

Программы для расчета сопротивления

При большом количестве подключаемых led, особенно если они включены и последовательно, и параллельно, рассчитывать сопротивление каждого резистора вручную может быть проблематичным.

Проще всего в таком случае воспользоваться одной из многочисленных программ расчета сопротивления. Очень удобным в этом плане является онлайн калькулятор на сайте cxem.net:

Он включает в себя небольшую базу данных самых распространенных светодиодов, поэтому необязательно вручную набирать значения падения напряжения и тока, достаточно указать напряжение питания и выбрать из списка нужный светоизлучающий диод. Программа рассчитает сопротивление и мощность резисторов, а также нарисует схему подключения или принципиальную схему.

Например, с помощью этого калькулятора был рассчитан резистор для трех XLamp MX3 при напряжении питания 12 В:

Также программа обладает очень полезной функцией: она подскажет цветовую маркировку требуемого резистора.

Еще одна простая программа для расчета сопротивления распространенная на просторах интернета разработана Сергеем Войтевичем с портала ledz.org.

Здесь уже вручную выбирается способ подключения светодиодов, напряжение и ток. Программа не требует установки, достаточно распаковать ее в любую директорию.

Заключение

Гасящий резистор – самый простой ограничитель тока для светодиодной цепи. От его подбора зависит ток, а значит, интенсивность свечения и долговечность led. Однако следует помнить, что при больших токах на резисторе будет выделяться значительная мощность, поэтому для питания мощных светодиодов лучше применять драйверы.

Основным параметром, влияющим на долговечность светодиода, является электрический ток, величина которого строго нормируется для каждого типа LED-элемента. Одним из распространенных способов ограничения максимального тока является использование ограничительного резистора. Резистор для светодиода можно рассчитать без применения сложных вычислений на основании закона Ома, используя технические значения параметров диода и напряжение в цепи включения.

Особенности включения светодиода

Работая по одинаковому принципу с выпрямительными диодами, светоизлучающие элементы, тем не менее, имеют отличительные особенности. Наиболее важные из них:

  1. Крайне отрицательная чувствительность к напряжению обратной полярности. Светодиод, включенный в цепь с нарушением правильной полярности, выходит из строя практически мгновенно.
  2. Узкий диапазон допустимого рабочего тока через p-n переход.
  3. Зависимость сопротивления перехода от температуры, что свойственно большинству полупроводниковых элементов.

На последнем пункте следует остановиться подробнее, поскольку он является основным для расчета гасящего резистора. В документации на излучающие элементы указывается допустимый диапазон номинального тока, при котором они сохраняют работоспособность и обеспечивают заданные характеристики излучения. Занижение величины не является фатальным, но приводит к некоторому снижению яркости. Начиная с некоторого предельного значения, прохождение тока через переход прекращается, и свечение будет отсутствовать.

Превышение тока сначала приводит к увеличению яркости свечения, но срок службы при этом резко сокращается. Дальнейшее повышение приводит к выходу элемента из строя. Таким образом, подбор резистора для светодиода преследует цель ограничить максимально допустимый ток в наихудших условиях.

Напряжение на полупроводниковом переходе ограничено физическими процессами на нем и находится в узком диапазоне около 1-2 В. Светоизлучающие диоды на 12 Вольт, часто устанавливаемые на автомобили, могут содержать цепочку последовательно соединенных элементов или ограничительную схему, включенную в конструкцию.

Зачем нужен резистор для светодиода

Использование ограничительных резисторов при включении светодиодов является пусть и не самым эффективным, зато самым простым и дешевым решением ограничить ток в допустимых пределах. Схемные решения, которые позволяют с высокой точностью стабилизировать ток в цепи излучателей достаточно сложны для повторения, а готовые имеют высокую стоимость.

Применение резисторов позволяет выполнять освещение и подсветку своими силами. Главное при этом – умение пользоваться измерительными приборами и минимальные навыки пайки. Грамотно рассчитанный ограничитель с учетом возможных допусков и колебаний температуры способен обеспечить нормальное функционирование светодиодов в течении всего заявленного срока службы при минимальных затратах.

Параллельное и последовательное включение светодиодов

С целью совмещения параметров цепей питания и характеристик светодиодов широко распространены последовательное и параллельное соединение нескольких элементов. У каждого типа соединений есть как достоинства, так и недостатки.

Параллельное включение

Достоинством такого соединения является использование всего одного ограничителя на всю цепь. Следует оговориться, что данное достоинство является единственным, поэтому параллельное соединение практически нигде не встречается, за исключением низкосортных промышленных изделий. Недостатки таковы:

  1. Мощность рассеивания на ограничительном элементе растет пропорционально количеству параллельно включенных светодиодов.
  2. Разброс параметров элементов приводит к неравномерности распределения токов.
  3. Перегорание одного из излучателей ведет к лавинообразному выходу из строя всех остальных ввиду увеличения падения напряжения на параллельно включенной группе.

Несколько увеличивает эксплуатационные свойства соединение, где ток через каждый излучающий элемент ограничивается отдельным резистором. Точнее, это является параллельным соединением отдельных цепей, состоящих из светодиодов с ограничительными резисторами. Основное достоинство – большая надежность, поскольку выход из строя одного или нескольких элементов никаким образом не отражается на работе остальных.

Недостатком является тот факт, что из-за разброса параметров светодиодов и технологического допуска на номинал сопротивлений яркость свечения отдельных элементов может сильно различаться. Такая схема содержит большое количество радиоэлементов.

Параллельное соединение с индивидуальными ограничителями находит применение в цепях с низким напряжением, начиная с минимального, ограниченного падением напряжения на p-n переходе.


Последовательное включение

Последовательное включение излучающих элементов получило самое широкое распространение, поскольку несомненным достоинством последовательной цепи является абсолютное равенство тока, проходящего через каждый элемент. Поскольку ток через единственный ограничительный резистор и через диод одинаков, то и рассеиваемая мощность будет минимальной.

Существенный недостаток – выход из строя хотя бы одного из элементов приведет к неработоспособности всей цепочки. Для последовательного соединения требуется повышенное напряжение, минимальное значение которого растет пропорционально количеству включенных элементов.


Смешанное включение

Использование большого количества излучателей возможно при выполнении смешанного соединения, когда используют несколько параллельно включенных цепочек, и последовательного соединения одного ограничительного резистора и нескольких светодиодов.

Перегорание одного из элементов приведет к неработоспособности только одной цепи, в которой установлен данный элемент. Остальные будут функционировать исправно.

Формулы расчета резистора

Расчет сопротивления резистора для светодиодов базируется на законе Ома. Исходными параметрами для того, как рассчитать резистор для светодиода, являются:

  • напряжение цепи;
  • рабочий ток светодиода;
  • падение напряжения на излучающем диоде (напряжение питания светодиода).

Величина сопротивления определяется из выражения:

где U – падение напряжения на резисторе, а I – прямой ток через светодиод.

Падение напряжения светодиода определяют из выражения:

U = Uпит – Uсв,

где Uпит – напряжение цепи, а Uсв – паспортное падение напряжения на излучающем диоде.

Расчет светодиода для резистора дает значение сопротивления, которое не будет находиться в стандартном ряду значений. Брать нужно резистор с сопротивлением, ближайшим к вычисленному значению с большей стороны. Таким образом учитывается возможное увеличение напряжения. Лучше взять значение, следующее в ряду сопротивлений. Это несколько уменьшит ток через диод и снизит яркость свечения, но при этом нивелируется любое изменение величины питающего напряжения и сопротивления диода (например, при изменении температуры).

Перед тем как выбрать значение сопротивления, следует оценить возможное снижение тока и яркости по сравнению с заданным по формуле:

(R – Rст)R 100%

Если полученное значение составляет менее 5%, то нужно взять большее сопротивление, если от 5 до 10%, то можно ограничиться меньшим.

Не менее важный параметр, сказывающийся на надежности работы – рассеиваемая мощность токоограничительного элемента. Ток, проходящий через участок с сопротивлением, вызывает его нагрев. Для определения мощности, которая будет рассеиваться, используют формулу:

Используют ограничивающий резистор, чья допустимая мощность рассеивания будет превосходить расчетную величину.

Имеется светодиод с падением напряжения на нем 1.7 В с номинальным током 20 мА. Необходимо включить его в цепь с напряжением 12 В.

Падение напряжения на ограничительном резисторе составляет:

U = 12 – 1.7 = 10.3 В

Сопротивление резистора:

R = 10.3/0.02 = 515 Ом.

Ближайшее большее значение в стандартном ряду составляет 560 Ом. При таком значении уменьшение тока по сравнению с заданным составляет чуть менее 10%, поэтому большее значение брать нет необходимости.

Рассеиваемая мощность в ваттах:

P = 10.3 10.3/560 = 0.19 Вт

Таким образом, для данной цепи можно использовать элемент с допустимой мощностью рассеивания 0.25 Вт.

Подключение светодиодной ленты

Светодиодные ленты выпускаются на различное напряжение питания. На ленте располагается цепь из последовательно включенных диодов. Количество диодов и сопротивление ограничительных резисторов зависят от напряжения питания ленты.

Наиболее распространенные типы светодиодных лент предназначены для подключения в цепь с напряжением 12 В. Использование для работы большего значения напряжения здесь также возможно. Для правильного расчета резисторов необходимо знать ток, идущий через единичный участок ленты.

Увеличение длины ленты вызывает пропорциональное увеличение тока, поскольку минимальные участки технологически соединены параллельно. Например, если минимальная длина отрезка составляет 50 см, то на ленту 5м из 10 таких отрезков придется возросший в 10 раз ток потребления.


Вот так светодиод выглядит в жизни:
А так обозначается на схеме:

Для чего служит светодиод?
Светодиоды излучают свет, когда через них проходит электрический ток.

Были изобретены в 70-е года прошлого века для смены электрических лампочек, которые часто перегорали и потребляли много энергии.

Подключение и пайка
Светодиоды должны быть подключены правильным образом, учитывая их полярность + для анода и к для катода Катод имеет короткий вывод, более короткую ножку. Если вы видите внутри светодиода его внутренности - катод имеет электрод большего размера (но это не официальные метод).


Светодиоды могут быть испорчены в результате воздействия тепла при пайке, но риск невелик, если вы паяете быстро. Никаких специальных мер предосторожности применять не надо для пайки большинства светодиодов, однако бывает полезно ухватиться за ножку светодиода пинцетом – для теплоотвода.

Проверка светодиодов
Никогда не подключайте светодиодов непосредственно батарее или источнику питания!
Светодиод перегорит практически моментально, поскольку слишком большой ток сожжет его. Светодиоды должны иметь ограничительный резистор.Для быстрого тестирования 1кОм резистор подходит большинству светодиодов если напряжение 12V или менее. Не забывайте подключать светодиоды правильно, соблюдая полярность!

Цвета светодиодов
Светодиоды бывают почти всех цветов: красный, оранжевый, желтый, желтый, зеленый, синий и белый. Синего и белого светодиода немного дороже, чем другие цвета.
Цвет светодиодов определяется типом полупроводникового материала, из которого он сделан, а не цветом пластика его корпуса. Светодиоды любых цветов бывают в бесцветном корпусе, в таком случае цвет можно узнать только включив его…

Многоцветные светодиоды
Устроен многоцветный светодиод просто, как правило это красный и зеленый объединенные в один корпус с тремя ножками. Путём изменения яркости или количества импульсов на каждом из кристаллов можно добиваться разных цветов свечения.

Расчет светодиодного резистора
Светодиод должен иметь резистор последовательно соединенный в его цепи, для ограничения тока, проходящего через светодиод, иначе он сгорит практически мгновенно...
Резистор R определяется по формуле:
R = (V S - V L ) / I

V S = напряжение питания
V L = прямое напряжение, расчётное для каждого типа диодов (как правилоот 2 до 4волт)
I = ток светодиода (например 20мA), это должно быть меньше максимально допустимого для Вашего диода
Если размер сопротивления не получается подобрать точно, тогда возьмите резистор большего номинала. На самом деле вы вряд-ли заметите разницу… совсем яркость свечения уменьшится совсем незначительно.
Например: Если напряжение питания V S = 9 В, и есть красный светодиод (V = 2V), требующие I = 20мA = 0.020A,
R = (- 9 В) / 0.02A = 350 Ом. При этом можно выбрать 390 Ом (ближайшее стандартное значение, которые больше).

Вычисление светодиодного резистора с использованием Закон Ома
Закон Ома гласит, что сопротивление резистора R = V / I, где:
V = напряжение через резистор (V = S - V L в данном случае)
I = ток через резистор
Итак R = (V S - V L ) / I

Последовательное подключение светодиодов.
Если вы хотите подключить несколько светодиодов сразу – это можно сделать последовательно. Это сокращает потребление энергии и позволяет подключать большое количество диодов одновременно, например в качестве какой-то гирлянды.
Все светодиоды, которые соединены последовательно, долдны быть одного типа. Блок питания должен иметь достаточную мощность и обеспечить соответствующее напряжение.


Пример расчета:
Красный, желтый и зеленый диоды - при последовательном соединении необходимо напряжение питания - не менее 8V, так 9-вольтовая батарея будет практически идеальным источником.
V L = 2V + 2V + 2V = 6V (три диода, их напряжения суммируются).
Если напряжение питания V S 9 В и ток диода = 0.015A,
Резистором R = (V S - V L ) / I = (9 - 6) /0,015 = 200 Ом
Берём резистор 220 Ом (ближайшего стандартного значения, которое больше).

Избегайте подключения светодиодов в параллели!
Подключение несколько светодиодов в параллели с помощью одного резистора не очень хорошая идея…


Как правило, светодиоды имеют разброс параметров, требуют несколько различные напряжения каждый.., что делает такое подключение практически нерабочим. Один из диодов будет светиться ярче и брать на себя тока больше, пока не выйдет из строя. Такое подключение многократно ускоряет естественную деградацию кристалла светодиода. Если светодиоды соединяются параллельно, каждый из них должен иметь свой собственный ограничительный резистор.

Мигающие светодиоды
Мигающие светодиоды выглядят как обычные светодиоды, они могут мигать самостоятельно потому, что содержат встроенную интегральную схему. Светодиод мигает на низких частотах, как правило 2-3 вспышки в секунду. Такие безделушки делают для автомобильных сигнализаций, разнообразных индикаторов или детских игрушек.

Цифробуквенные светодиодные индикаторы
Светодиодные цифробуквенные индикаторы сейчас применяются очень редко, они сложнее и дороже жидкокристаллических. Раньше, это было практически единственным и самым продвинутым средством индикации, их ставили даже на сотовые телефоны:)

Калькулятор цветового кода 5-полосного резистора



Резистор идентифицируется по цвету полос. Бывают 4-х, 5-ти и 6-ти полосные резисторы. Чтобы рассчитать сопротивление резистора, вы можете выбрать соответствующие цветовые полосы в приведенном выше калькуляторе цветового кода резистора .

Как рассчитать сопротивление?

Просто взгляните на таблицу цветового кода резистора ниже и посмотрите, как рассчитывается значение сопротивления в соответствии с этой таблицей.

Расчетное сопротивление для 5-ти полосного резистора

Где,

a’ представляет 1 -ю значащую цифру , которая является первым цветом полосы резистора.

b’ представляет 2 nd значащую цифру, которая является вторым цветом полосы резистора.

c’ представляет 3 -ю значащую цифру , которая является третьей полосой цвета резистора.

d’ представляет собой 4 -ю значащую цифру , которая является четвертым цветом полосы резистора, и это значение множителя, используемое в формуле.

e’ представляет собой 5 -ю значащую цифру , которая является пятой полосой цвета резистора, и это значение допуска резистора.

5-полосный

Имя

Описание

1 st Полоса

а

1 st значащая цифра

2 nd Группа

б

2 nd значащая цифра

3 ряд Лента

с

3 ряд значащая цифра

4 Диапазон

д

Множитель

5 Диапазон

e

Допуск

Давайте возьмем пример 5-полосного резистора с цветами, указанными на изображении выше (коричневый, зеленый, красный, черный и золотой).

Значит, по формуле сопротивление будет: 152 * 1 = 152 Ом с допуском 5%.

Калькулятор цветового кода резистора

• Калькуляторы электрических, радиочастотных и электронных устройств • Онлайн-преобразователи единиц

Определения и расчеты

Резистор и сопротивление

Резистор - это пассивный электрический компонент, который создает электрическое сопротивление в электронных схемах. Резисторы можно встретить практически во всех электрических цепях.Они используются для различных целей, например, для ограничения электрического тока, в качестве делителей напряжения, для обеспечения смещения активных элементов схемы, для завершения линий передачи, в цепях резистор-конденсатор в качестве компонента синхронизации ... Список бесконечен.

Блок прецизионных декадных резисторов

Электрическое сопротивление резистора или электрического проводника является мерой сопротивления потоку электрического тока. Единицей измерения сопротивления в системе СИ является ом. Любой материал показывает некоторое сопротивление, кроме сверхпроводников, у которых сопротивление нулевое.Дополнительная информация об сопротивлении, удельном сопротивлении и проводимости.

Допуск резистора

Конечно, можно сделать резистор с очень точным сопротивлением, но это будет безумно дорого. Кроме того, резисторы высокой точности используются относительно редко. Для измерений используются очень дорогие резисторы. Здесь мы поговорим о недорогих резисторах, используемых в электрических схемах, не требующих высокой точности. Во многих случаях достаточно точности ± 20%. Для резистора 1 кОм это означает, что приемлем любой резистор со значением в диапазоне от 800 Ом до 1200 Ом.Для некоторых критических компонентов допуск может быть указан как ± 1% или даже ± 0,05%. В то же время 20% резисторы сегодня найти сложно - они были обычным явлением в начале эры транзисторного радио. Резисторы 5% и 1% сегодня очень распространены. Раньше они были относительно дорогими, но сейчас это не так.

Сравнение резисторов SMD 0,1 Вт в корпусах 1608 (1,6 × 0,8 мм) с керамическим резистором 10 Вт 1 Ом

Рассеиваемая мощность

Когда электрический ток проходит через резистор, он нагревается, и электрическая энергия преобразуется в тепловая энергия, которую он рассеивает.Эта энергия должна рассеиваться резистором без чрезмерного повышения его температуры. И не только его температура, но и температура компонентов, окружающих этот резистор. Мощность, потребляемая резистором, рассчитывается как

, где В, в вольтах - это напряжение на резисторе с сопротивлением R в омах, а I - ток в амперах, протекающий через него. Мощность, которую резистор может безопасно рассеивать в течение неопределенного периода времени без ухудшения своих характеристик, называется номинальной мощностью резистора или номинальной мощностью резистора .Как правило, чем больше размер резистора, тем больше мощности он может рассеять. Выпускаются резисторы разной мощности, чаще всего от 0,01 Вт до сотен ватт. Угольные резисторы обычно производятся с номинальной мощностью от 0,125 до 2 Вт.

Резисторы с цветовой кодировкой 1/8 Вт, 1/4 Вт, 1/2 Вт и 1 Вт в блоке питания компьютера

Предпочтительные значения

Хотя можно производить резисторы любого номинала, более полезно делать ограниченное количество компонентов, особенно учитывая, что любой изготовленный резистор подлежит определенному допуску.Стоимость более точных резисторов намного выше, чем их менее точных аналогов. Общая логика требует выбора логарифмической шкалы значений, чтобы все значения были равномерно распределены по логарифмической шкале и соответствовали допуску диапазона. Например, для допуска ± 10% имеет смысл охватить декаду (интервал от 1 до 10, от 10 до 100 и т. Д.) В 12 шагов: 1,0, 1,2, 1,5, 1,8, 2,2, 2,7, 3,3. , 3.9, 4.7, 5.6, 6.8, 8.2, затем 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82. Эти значения называются предпочтительными и стандартизированы как E series предпочтительных чисел, которые используются не только для резисторов, но и для конденсаторов, катушек индуктивности и стабилитронов.Каждая серия E (E3, E6, E12, E24, E48, E96 и E192) делит декаду на 3, 6, 12, 24, 48, 96 и 192 шага. Обратите внимание, что серия E3 устарела и почти не используется.

Списки значений серии E

Современный керамический резистор 10 Вт 8,6 Ом (вверху) и резистор VZR 2 Вт 3,3 кОм, произведенный в Советском Союзе в 1969 году

Значения E6 (допуск 20%):

1,0 , 1,5, 2,2, 3,3, 4,7, 6,8.

E12 значения (допуск 10%):

1.0, 1,2, 1,5, 1,8, 2,2, 2,7, 3,3, 3,9, 4,7, 5,6, 6,8, 8,2.

E24 значения (допуск 5%):

1.0, 1.1, 1.2, 1.3, 1.5, 1.6, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.6, 3.9, 4.3, 4.7, 5.1, 5.6, 6.2, 6.8, 7.5, 8.2, 9.1.

E48 значения (допуск 2%):

1.00, 1.05, 1.10, 1.15, 1.21, 1.27, 1.33, 1.40, 1.47, 1.54, 1.62, 1.69, 1.78, 1.87, 1.96, 2.05, 2.15, 2.26, 2.37, 2.49, 2.61, 2.74, 2.87, 3.01, 3.16, 3.32, 3.48, 3.65, 3.83, 4.02, 4.22, 4.42, 4.64, 4.87, 5.11, 5.36, 5.62, 5.90, 6.19, 6.49, 6.81, 7.15, 7.50, 7.87, 8.25, 8.66, 9.09, 9.53.

E96 значения (допуск 1%):

1.00, 1.02, 1.05, 1.07, 1.10, 1.13, 1.15, 1.18, 1.21, 1.24, 1.27, 1.30, 1.33, 1.37, 1.40, 1.43, 1.47, 1.50, 1,54, 1,58, 1,62, 1,65, 1,69, 1,74, 1,78, 1,82, 1,87, 1,91, 1,96, 2,00, 2,05, 2,10, 2,15, 2,21, 2,26, 2,32, 2,37, 2,43, 2,49, 2,55, 2,61, 2,67, 2,74, 2,80, 2,87, 2,94, 3,01, 3,09, 3,16, 3,24, 3,32, 3,40, 3,48, 3,57, 3,65, 3,74, 3,83, 3.92, 4.02, 4.12, 4.22, 4.32, 4.42, 4.53, 4.64, 4.75, 4.87, 4.99, 5.11, 5.23, 5.36, 5.49, 5.62, 5.76, 5.90, 6.04, 6.19, 6.34, 6.49, 6.65, 6.81, 6.98, 7,15, 7,32, 7,50, 7,68, 7,87, 8,06, 8,25, 8,45, 8,66, 8,87, 9,09, 9,31, 9,53, 9,76.

E192 значения (0,5% и ниже допуск):

1.00, 1.01, 1.02, 1.04, 1.05, 1.06, 1.07, 1.09, 1.10, 1.11, 1.13, 1.14, 1.15, 1.17, 1.18, 1.20, 1.21, 1,23, 1,24, 1,26, 1,27, 1,29, 1,30, 1,32, 1,33, 1,35, 1,37, 1,38, 1,40, 1,42, 1,43, 1,45, 1.47, 1,49, 1,50, 1,52, 1,54, 1,56, 1,58, 1,60, 1,62, 1,64, 1,65, 1,67, 1,69, 1,72, 1,74, 1,76, 1,78, 1,80, 1,82, 1,84, 1,87, 1,89, 1,91, 1,93, 1,96, 1,98, 2,00, 2,03, 2,05, 2,08, 2,10, 2,13, 2,15, 2,18, 2,21, 2,23, 2,26, 2,29, 2,32, 2,34, 2,37, 2,40, 2,43, 2,46, 2,49, 2,52, 2,55, 2,58, 2,61, 2,64, 2,67, 2,71, 2,74, 2,77, 2,80, 2,84, 2,87, 2,91, 2,94, 2,98, 3,01, 3,05, 3,09, 3,12, 3,16, 3,20, 3,24, 3,28, 3,32, 3,36, 3,40, 3,44, 3,48, 3,52, 3,57, 3.61, 3.65, 3.70, 3.74, 3.79, 3.83, 3.88, 3.92, 3.97, 4.02, 4.07, 4.12, 4.17, 4.22, 4.27, 4.32, 4.37, 4.42, 4.48, 4.53, 4.59, 4.64, 4.70, 4.75, 4.81, 4.87, 4.93, 4.99, 5.05, 5.11, 5.17, 5.23, 5.30, 5.36, 5.42, 5.49, 5.56, 5.62, 5.69, 5.76, 5.83, 5.90, 5.97, 6.04, 6.12, 6.19, 6.26, 6.34, 6.42, 6.49, 6.57, 6.65, 6.73, 6.81, 6.90, 6.98, 7.06, 7.15, 7.23, 7,32, 7,41, 7,50, 7,59, 7,68, 7,77, 7,87, 7,96, 8,06, 8,16, 8,25, 8,35, 8,45, 8,56, 8,66, 8,76, 8,87, 8,98, 9,09, 9,20, 9,31, 9,42, 9,53, 9,65, 9,76, 9,88.

Цветовая кодировка резистора

Маркировка резистора

Большие резисторы, как показано на рисунке, обычно обозначаются цифрами и буквами, и их легко читать.Однако значение не может быть легко напечатано даже с использованием современной технологии печати на небольших резисторах (и других электронных компонентах), особенно если они имеют цилиндрическую форму. Поэтому в течение последних 100 лет для маркировки компонентов использовались цветные полосы. Электронный цветовой код для этой цели был введен в начале 1920 года. Цветовые коды используются не только для резисторов, но также для конденсаторов, диодов, катушек индуктивности и других электронных компонентов.

Цветовой код резистора

Для резисторов используется до шести цветных полос.Наиболее распространенным является четырехполосный цветовой код, в котором первая и вторая полосы представляют первую и вторую значащие цифры значения сопротивления, третья полоса представляет собой десятичный множитель, а четвертая полоса указывает допуск. Между третьей и четвертой полосой есть небольшой, иногда плохо различимый зазор, который помогает различать левую и правую стороны симметричного компонента. Резисторы 20% обычно маркируются всего тремя полосами - у них нет полосы допуска. Их полосы означают цифру, цифру, множитель.

Для резисторов с точностью 2% или более используются пять или более полос, а первые три полосы представляют значение сопротивления. Последняя полоса в 6-полосной маркировке представляет температурный коэффициент в ppm / K (частей на миллион на кельвин). На рисунке выше представлен принцип цветовой маркировки.

Полосы читаются слева направо. Обычно они сгруппированы ближе к левому краю. Если есть видимый зазор между последней цветной полосой и другими полосами, значит, это показывает правую сторону резистора.Кроме того, серебряные или золотые полосы (если есть) всегда на правой стороне. Когда вы определили значение по цветным полосам, сравните его с предпочтительными диаграммами значений. Если его там нет, то попробуйте читать с другого конца. Обратите внимание на , что в данном калькуляторе цветовая маркировка выполнена в соответствии с международным стандартом IEC 60062: 2016 .

Щелкните или коснитесь ссылок, чтобы просмотреть примеры цветовой маркировки:

10 кОм ± 20%, 12 Ом ± 20%, 15 МОм ± 1%, 18 МОм ± 2%, 22 кОм ± 10%, 27 Ом ± 5 %, 33 кОм ± 5%, 39 МОм ± 0.5%, 0,47 Ом ± 0,25%, 0,56 Ом ± 0,1%, 68 Ом ± 0,05%, 0,82 Ом ± 20%

Цифровая маркировка

Числовые значения напечатаны на резисторах для поверхностного монтажа (SMT - технология поверхностного монтажа или SMD - устройство поверхностного монтажа) больших размеров и на более крупных резисторах с осевыми выводами. Поскольку место для маркировки очень мало, иногда бывает непросто прочитать и понять номинал резистора. Маркировка в основном используется для обслуживания, потому что во время производства резисторы подаются в машины для поверхностного монтажа в лентах, которые имеют соответствующую маркировку.Многие, особенно малые резисторы SMD, вообще не имеют маркировки, и после того, как они сброшены с лент, единственный способ определить их сопротивление - это измерить.

39 × 10⁰ = 39 Ом 0,1 Вт SMD резисторы в 1608 (1,6 × 0,8 мм) корпусах

Для маркировки используется несколько систем: трех- или четырехзначное, двухзначное с буквой, трехзначное с буквой, код РКМ , и другие системы. Если вы видите только три цифры, они обозначают значащие цифры, а третья - множитель. Например, 103 на резисторе SMD представляет 10 × 10³ = 10 кОм.

Четырехзначная система используется для резисторов с высокими допусками, например, для резисторов серии E96 или E192. Например, 2743 = 274 × 10³ = 274 кОм.

Для резисторов меньшего размера можно использовать другую систему. Например, для серии E96 используются две цифры плюс одна буква. Эта система может сохранить один символ по сравнению с четырехзначной системой. Это потому, что E96 содержит менее 100 значений, которые могут быть представлены двумя числами, если они пронумерованы последовательно, то есть 01-100, 02-102, 03-105 и т. Д.Буква представляет множитель. Обратите внимание, что производители часто используют собственные системы. Поэтому лучший способ определить сопротивление - всегда измерить его мультиметром.

В коде RKM, также называемом «нотацией R», вместо десятичного разделителя помещается буква, обозначающая единицу сопротивления, которая не может быть надежно напечатана или просто исчезнет на компонентах или дублированных документах. К тому же этот метод позволяет использовать меньше символов. Например, R22 или E22 означает 0,22 Ом, 2K7 означает 2.7 кОм и 1М5 означает 1,5 МОм.

Измерение резистора 3,3 МОм 0,5 Вт с помощью осциллографа-мультиметра

Измерение сопротивления

Сопротивление можно измерить с помощью аналогового (с помощью иглы) или цифрового омметра или мультиметра с функцией измерения сопротивления. Чтобы измерить сопротивление, подключите щупы к выводам резистора и прочтите значение. Иногда можно измерить сопротивление, не удаляя резистор из цепи. Однако перед подключением мультиметра к измеряемой цепи необходимо отключить питание схемы и разрядить все конденсаторы.

Мультиметр может использоваться не только для измерения сопротивления резисторов, но и контактного сопротивления различных компонентов переключения, таких как реле или переключатели. Например, вы можете определить, нуждается ли кнопка мыши в замене, измерив ее сопротивление, предпочтительно с помощью аналогового мультиметра или цифрового измерителя с аналоговым полосковым дисплеем. Аналоговая гистограмма полезна при диагностике или настройке. Гистограмма действует как стрелка в аналоговом измерителе и может показывать колеблющееся сопротивление, когда цифровой дисплей с мигающими цифрами будет совершенно бесполезен.С помощью этого типа измерителя вы можете легко найти множество периодически возникающих проблем, например, дребезг контактов вибрирующего реле.

В заключение приведу несколько примеров:

Резистор 2,7 кОм ± 5%: красный, фиолетовый, красный, золотой

Резистор 100 кОм ± 5%: коричневый, черный, желтый, золотой.

Резистор 220 кОм ± 5%: красный, красный, желтый, золотой.

Резистор 330 кОм ± 5%: оранжевый, оранжевый, желтый, золотой.

Резистор 390 кОм ± 5%: оранжевый, белый, желтый, золотой.

Резистор 430 кОм ± 5%: желтый, оранжевый, желтый, золотой

Резистор 470 кОм ± 5%: желтый, фиолетовый, желтый, золотой

Резистор 510 кОм ± 5%: зеленый, коричневый, желтый, золотой

Резистор 560 кОм ± 5%: зеленый, синий, желтый, золотой

Резистор 750 кОм ± 5%: фиолетовый, зеленый, желтый, золотой

Резистор 910 кОм ± 5%: белый, коричневый, желтый, золотой

ЦВЕТ РЕЗИСТОРА КОД КАЛЬКУЛЯТОР

Как видно из приведенной выше диаграммы 4-х полосных цветовых кодов резистора , первые две цветовые полосы имеют значения коричневый = 1, красный = 2, оранжевый = 3 и т. Д.

Третья цветовая полоса является множителем первых двух полос. Здесь черный - 1, коричневый - 10, красный - 100 и так далее. Другими словами, значение третьей полосы (множителя) - это число 10, возведенное в степень цветового кода. Например, красный в третьей полосе равен 10² или 100.
Эта третья полоса также имеет 2 новых цвета, где золото = 0,1 и серебро = 0,01.

Четвертая полоса - это допуск резистора и показывает, насколько точно резистор был изготовлен.Золото = 5%, серебро = 10% и вообще никакого браслета = 20%.

Теперь, когда мы знаем значения каждого цвета, давайте попробуем вычислить несколько примеров значения сопротивления.

Глядя на резистор №1, мы видим красный красный зеленый золотой цвета.
Таблица цветовых кодов «переводит» это в 2 2 и 100 000
, что равно 2 2 × 100 000 или 2 200 000 Ом, и не забывайте о золотой 4-й полосе, которая указывает на допуск 5%.

Резистор №2 имеет цвет оранжевый оранжевый желтый серебристый что «переводится» в 3 3 × 10 000 или 330 000 Ом и допуск 10%.

Резистор № 3 имеет цвета , желтый, фиолетовый, серебристый, , что означает 4 7 × 0,01 или 0,47 Ом, и отсутствие четвертой полосы указывает на допуск 20%.

Пятиполосные резисторы
Используйте 5-полосную диаграмму, чтобы решить следующие проблемы.
Для резистора 4 мы видим первые 3 полосы - фиолетовую, зеленую и красную, которые «переходят» в 7, 5 и 2. Глядя на четвертая полоса (множитель), мы видим, она коричневая и имеет значение 10.
Итак, значение сопротивления составляет 7 5 2 × 10, что равно 7 520 Ом или 7.52 кОм.
Полоса 5 красного цвета, что указывает на допуск 2%, а коричневая шестая полоса означает, что температурный коэффициент составляет 100 частей на миллион (ppm).

Рассматривая резистор 5, первые 3 полосы - коричневые, черные и синие, а четвертая полоса (множитель) - зеленая. Итак, эти цвета преобразуются в 1 0 6 × 100 000, что соответствует 10 600 000 Ом или 10,6 Мега Ом.
Коричневая пятая полоса и красная 6-я полоса означают, что резистор имеет допуск 1% и температурный коэффициент 50 ppm.


Если вы читали эти инструкции, вы, вероятно, хорошо понимаете, как определять номинал резистора по его цветам. Опять же, всегда есть калькулятор, который значительно упрощает решение задач.

Соответствующий калькулятор резисторов можно найти здесь: Резисторы параллельно

_____________________ Вернуться на главную страницу

Авторские права © 1999 - 1728 Программные системы

Таблица цветов резистора и калькулятор сопротивления

Резисторы

имеют стандартные цвета для обозначения значения сопротивления.По порядку цвета: черный, коричневый, красный, оранжевый, желтый, зеленый, синий, фиолетовый, серый и белый. Считывание резисторов - очень простая процедура, если вы воспользуетесь приведенной ниже таблицей и формулой.

Удерживая резистор золотой или серебряной полосой вправо, считайте показания резистора слева направо.

ЦВЕТ 1-я ЦИФРА 2-я ЦИФРА МНОЖИТЕЛЬ ДОПУСК
Черный 0 0 1 Серебро +/- 10%; Золото +/- 5%
Коричневый 1 1 10 Серебро +/- 10%; Золото +/- 5%
Красный 2 2 100 Серебро +/- 10%; Золото +/- 5%
Оранжевый 3 3 1 000 Серебро +/- 10%; Золото +/- 5%
Желтый 4 4 10 000 Серебро +/- 10%; Золото +/- 5%
Зеленый 5 5 100 000 Серебро +/- 10%; Золото +/- 5%
Синий 6 6 1 000 000 Серебро +/- 10%; Золото +/- 5%
фиолетовый 7 7 10 000 000 Серебро +/- 10%; Золото +/- 5%
Серый 8 8 100 000 000 Серебро +/- 10%; Золото +/- 5%
Белый 9 9 1 000 000 000 Серебро +/- 10%; Золото +/- 5%

Сопротивление рассчитывается следующим образом:

Сопротивление = (1-я цифра x 10 + 2-я цифра) x множитель

Пример: Этот резистор, читаемый слева направо, имеет цветные полосы: КРАСНЫЙ, ФИОЛЕТОВЫЙ, ЖЕЛТЫЙ, СЕРЕБРЯНЫЙ.

Используя формулу и график выше, сопротивление будет:

R = 1-я цифра x 10 + 2-я цифра) x множитель
R = (КРАСНЫЙ X 10 + ФИОЛЕТОВЫЙ) x ЖЕЛТЫЙ
R = (2 х 10 + 7) х 10,000
R = 27 x 10,000
R = 270 000 Ом (270 кОм)

Поскольку последняя полоса сделана из серебра, допуск составляет 10%.

Калькулятор цветовой кодировки резистора

| Расчет 3-4-5- и 6-полосных резисторов

3-, 4-, 5- и 6-полосные калькуляторы цветовых кодов резисторов

Цветовые коды резисторов используются для обозначения значения сопротивления, определенного ассоциацией производителей радиооборудования в 1920 году в соответствии с Международным стандартом. Стандарты IEC 60062.

Ниже приведены калькуляторы для различных типов резисторов, таких как 3-полосные, 4-полосные, 5-полосные и 6-полосные резисторы. Пояснения, формулы и диаграммы добавлены под каждым калькулятором цветового кода резистора.

Примечание. Если вы пользуетесь мобильными телефонами, щелкните точки «…» рядом с 3-полосным резистором, чтобы выбрать другие диапазоны, например, 4-полосный, 5-полосный и 6-полосный калькулятор резисторов. Для удобства работы с мобильными телефонами используйте калькулятор в альбомной ориентации.

Калькулятор цветового кода трехполосного резистора

Калькулятор цветового кода трехполосного резистора

В настоящее время он редко используется.Чтобы прочитать полоски трех цветов на резисторе, первая полоска показывает первую значащую цифру. Вторая полоса показывает вторую значащую цифру, а третья полоса показывает множитель. Допуск для трехполосного резистора обычно составляет ± 20% (т.е. без полосы допусков = допуск ± 20%).

Как рассчитать цветовой код трехполосного резистора

Формула для калькулятора трехполосного резистора

1-я цифра. 2-я цифра x множитель

Например, значение сопротивления для показанного трехполосного цветового кода резистора ( коричневый , черный и красный ) в соответствии с таблицей будет:

1.0 x (100) = 1000 Ом с допуском ± 20%.


4-полосный резистор

Калькулятор цветового кода четырехполосного резистора

Это типичные резисторы для использования в электронных схемах. Чтобы прочитать коды четырех цветов полосок на резисторе, первая полоска показывает первую значащую цифру. Вторая полоса показывает вторую значащую цифру. Третья полоска показывает множитель. Четвертая полоса показывает ± допуск в% для четырех полос.

Как рассчитать цветовой код четырехполосного резистора

Формула для калькулятора четырехполосного резистора

1 st Digit. 2 nd цифр x множитель; ± Допуск в%

Например, значение сопротивления для показанного цветового кода 4-полосного резистора ( Коричневый , Черный , Красный и Золотой ) в соответствии с таблицей будет:

1. 0 x (100) = 1000 Ом с допуском ± 5%.


5-полосный резистор

Калькулятор цветового кода пятиполосного резистора

Для высокой точности имеется дополнительная цветная полоса в качестве третьей значащей цифры в цветовом коде 5-полосного резистора. Для считывания пяти цветовых кодов полос на резисторе первый, второй и третий цветовые коды полос показывают соответственно первую значащую, вторую значащую и четвертую значащие цифры. Четвертая полоса показывает множитель. Пятая полоса показывает ± допуск в% для пяти полос.

Как рассчитать цветовой код пятиполосного резистора

Формула для калькулятора 5-полосного резистора

1 st Digit. 2 nd цифр. 3 rd Digit x Multiplier; ± Допуск в%

Например, значение сопротивления для показанного цветового кода 5-полосного резистора ( Коричневый , Черный , Оранжевый , Красный и Желтый ) в соответствии с таблицей будет:

1.0. 3 x (100) = 10,3 кОм с допуском ± 5%.

Полезно знать:

Существует особый сценарий в случае резистора с цветовым кодом 5-полосного резистора, где четвертая полоса - Gold или Silver . В этом случае первые две полосы показывают первые две значащие цифры, третья - для множителя, четвертая - для допуска, а 5-я - для температурного коэффициента, то же самое в резисторе с цветовым кодом шестиполосного резистора. Единица измерения температурного коэффициента - ppm / K, а более подробную информацию о ppm / K можно найти в 6-полосном цветовом коде резистора.

6-полосный резистор

Калькулятор цветового кода шестиполосного резистора

Для высокой точности и точности предусмотрена дополнительная цветовая полоса в качестве температурного коэффициента в цветовом коде 6-полосного резистора. Чтобы прочитать шесть цветовых кодов полос на резисторе, первый, второй и третий цветовые коды полос показывают первую значащую, вторую значащую и третью значащие цифры соответственно. Четвертая полоса показывает множитель. Пятая полоса показывает ± допуск в%.Шесть полос показывают температурный коэффициент.

Как рассчитать пятиполосный резистор Цветовой код

Формула для калькулятора пятиполосного резистора

1 st Digit. 2 nd цифра. 3 rd Цифра x множитель; ± Допуск в%, Температура Коэффициент

Например, значение сопротивления для показанного цветового кода 5-полосного резистора ( Коричневый , Черный , Оранжевый , Красный , Желтый , Коричневый ) согласно таблице будет:

1.0. 3 x (100) = 10,3 кОм с допуском ± 5% 100 ppm / ° C.

Полезная информация

Шестая полоса, используемая для температурного коэффициента в 6-полосном цветовом коде резистора. PPM / K означает «Часть на миллион в Кельвина ».

Для вышеуказанного цветового кода для температурного коэффициента коричневый , это означает, что сопротивление изменится на 100 частей на миллион на 1 градус Кельвина.

Например,

Вышеупомянутый резистор номиналом 10.3 кОм с допуском ± 5% и 100 ppm / ° C ( Коричневый Цвет как 6-я полоса для температурного коэффициента. И мы хотим знать, насколько изменится значение сопротивления, если произойдет изменение температуры на 10 ° C.

(100 x 10 ° C / 10 6 ) x 10,3 кОм = отклонение ± 1,03 Ом при температуре выше 10 ° C.

Цветовые коды резисторов

Этот удобный инструмент предназначен для расчета значений трех диапазонов, 4 полос, 5 диапазонов и 6-полосный резистор в соответствии с их цветовой кодировкой.

тем временем, чтобы узнать, как работает калькулятор цветового кода резистора и как читать напечатанные цветовые коды на конкретном резисторе, чтобы найти их значение, см. Следующие таблицы и диаграмму. Также под каждым калькулятором приведены формулы и таблицы с решенным примером.

В приведенной ниже таблице показаны различные значения для разных цветовых кодов резисторов.

Количество диапазонов 3-диапазонный 4-диапазонный 5-диапазонный 6-диапазонный
1 st Band 1 st Digit 1 st Digit 1 st Digit 1 st Digit
2 nd Band 2 nd Digit 2 nd Digit 2 nd цифра 2 nd цифра
3 rd Band множитель множитель 3 rd цифра 3 rd значащая цифра
4t h Лента Н / Д Допуск Множитель Множитель
5 th Лента Н / Д НЕТ Допуск Допуск
6 th Band N / A N / A N / A Температурный коэффициент

Значения цвета для значимых цифр

Цветовые коды резистора , каждый цвет показывает определенное значение.В случае 3-полосных и 4-полосных резисторов первые две цветные полосы показывают значащие цифры и их значения, в то время как для 5-полосных и 6-полосных резисторов цветные полосы 1 st , 2 nd и 3 rd являются с указанием значащих цифр и связанных с ними значений.

0

0

Цвет ремешка Значение
Черный (2 nd и 3 rd Только ремешки) 0
8 Коричневый 1
Красный 2
Оранжевый 3
Желтый 4

074

Синий 6
Фиолетовый 7
Серый 8
8 Белый

Следующую простую мнемонику можно запомнить, чтобы запомните последовательность цветовых кодов для цветовых кодов резисторов.

  • B etter B e R ight O r Y наш Gre at B ig V acation g oes W rong.
  • B B ROY из G reat B ritain имел V ery G или W ife, который носил G старый и S .

Второй - для дополнительных цветов в множителе.

Значения цвета для умножителя

Цвет третьей полосы для 3-полосного резистора и 4-полосного резистора или четвертой полосы для 5-полосного и 6-полосного резистора известен как Multiplier . В следующей таблице показаны цвета и соответствующие значения множителя.

0

ЦВЕТ MULTIPLIER
ЧЕРНЫЙ 1 Ом
КОРИЧНЕВЫЙ 10Ω

07

07

07

07

ОРАНЖЕВЫЙ 1 кОм
ЖЕЛТЫЙ 10 кОм
ЗЕЛЕНЫЙ ФИОЛЕТОВЫЙ 10 МОм
СЕРЫЙ 100 МОм
БЕЛЫЙ 1ГОм ЗОЛОТО 1 Ом
СЕРЕБРЯНЫЙ 0,01 Ом

Допустимые значения цвета

В трехполосных цветовых кодах резисторов нет диапазона допуска, поэтому обычно предполагается 20%. Четвертая полоса в цвете 4-полосного резистора используется для значения допуска. В случае 5-полосных и 6-полосных резисторов для допуска используется код полосы 5 .

ЦВЕТ Допуск
ЧЕРНЫЙ НЕТ
КОРИЧНЕВЫЙ ± 1% (F) ± 2% (G)
ОРАНЖЕВЫЙ ± 3%
ЖЕЛТЫЙ ± 4%
ЗЕЛЕНЫЙ 000 0.5% (D)
СИНИЙ ± 0,25% (C)
ФИОЛЕТОВЫЙ ± 0,10% (B)
СЕРЫЙ ± 0,05% (А)
БЕЛЫЙ НЕТ
ЗОЛОТО ± 5% (Дж)
СЕРЕБРО ± % (К)

Буквенные коды допусков для резисторов

  • A = 0.05%
  • B = 0,1%
  • C = 0,25%
  • D = 0,5%
  • F = 1%
  • G = 2%
  • J = 5%
  • K = 10%
  • M = 20 % (Общие)

Значения температурного коэффициента

Шестая полоса шестиполосных резисторов показывает температурный коэффициент в ppm / ºC, который показывает, насколько значение резистора изменяется при изменении температуры. Более подробную информацию о температурном коэффициенте и ppm / ºC и ppm / K можно найти под калькулятором резисторов для 6-полосного диапазона.В шортах PPM / K означает «Часть на миллион в Кельвина ».

Например,

Указанный выше 6-полосный резистор номиналом 10,3 кОм с допуском ± 5% и 100 ppm / ° C ( Коричневый Цвет как 6-я полоса для температурного коэффициента. И мы хотим знать, насколько значение сопротивление изменится, если произойдет изменение температуры на 10ºC.

(100 x 10ºC / 10 6 ) x 10,3 кОм = изменение ± 1,03 Ом на 10ºC.

0

0

0

ЦВЕТ Температура Коэффициент (ppm / ºC)
ЧЕРНЫЙ НЕТ
КОРИЧНЕВЫЙ 100

07

КРАСНЫЙ ОРАНЖЕВЫЙ 15
ЖЕЛТЫЙ 25
ЗЕЛЕНЫЙ НЕТ
СИНИЙ 10
ФИОЛЕТОВЫЙ 5
СЕРЫЙ Н / Д N / A
N БЕЛЫЙ

Полезно знать:

  • В случае резистора с цветовым кодом 5 полос, где четвертая полоса - Gold или Silver .В этом случае первые две полосы показывают первые две значащие цифры, третья - для множителя, четвертая - для допуска, а 5-я - для температурного коэффициента, то же самое в резисторе с цветовым кодом шестиполосного резистора. Единица измерения температурного коэффициента - ppm / K, а более подробную информацию о ppm / K можно найти в 6-полосном цветовом коде резистора.
  • Цвета полос Gold и Silver заменены на цвета Yellow и Gray в случае высоковольтного резистора, чтобы предотвратить попадание частиц, таких как металлы, на покрытие резистора.
  • Резистор с нулевым сопротивлением (полоса одного черного цвета) используется в качестве перемычки на печатной плате для соединения дорожек.
  • Для высокочувствительных устройств (например, для военных целей) существует диапазон надежности, который показывает частоту отказов в% на 1000 часов работы. Эта полоса недоступна в коммерческих резисторах.

Цветовые коды резисторов SMD

Мы уже обсуждали очень подробный пост о том, как найти значение резисторов SMD с решенными примерами.

Цветовой код резистора Таблицы

Цветовой код резистора


Расчет значения сопротивления 3-х полосного, 4-х полосного, 5-ти и 6-ти полосного цветового кода резистора. Таблица цветов 3-, 4-, 5- и 6-полосного резистора
.

Значимые цифры Цвет Значения для цветовой кодировки резистора.

Значения цвета множителя для цветовой кодировки резистора.

Допустимые значения цвета для цветовых кодов резисторов.

Значения цветов температурного коэффициента для цветовых кодов резисторов.

Похожие сообщения:

Цветовые коды резисторов и таблица для 3, 4, 5 и 6 полосных резисторов

Вы купили упаковку из 500 резисторов только для того, чтобы быть огорченными, обнаружив, насколько вы невежественны в отношении этих разноцветных колец на ваших новых резисторах? Вы задаетесь вопросом, почему они не могли просто напечатать значение сопротивления на резисторе и облегчить жизнь всем? Если считывание цветовых кодов резисторов кажется вам чуждым, читайте дальше!

Вы можете сказать, какой из них 4.Резистор 7 кОм?

Поскольку резисторы имеют небольшие размеры, довольно сложно напечатать числа или значение сопротивления на небольшой площади резистора. Таким образом, вместо прямой печати чисел на резисторе используются цветовые коды резисторов. Резисторы могут иметь 3 полосы, 4 полосы, 5 полос или 6 полос. Цветные полосы используются для обозначения сопротивления, допуска и температурного коэффициента.

Мы составили простое руководство, объясняющее расчеты цветовых кодов резисторов.Считывание цветовых кодов резисторов станет проще, если вы разберетесь с математикой, стоящей за каждой цветной полосой.

Начало работы: Таблица цветовых кодов резисторов

Прежде чем перейти к математике, вы должны знать о важном инструменте, известном как Таблица цветовых кодов резисторов. Подобно тому, как таблица Менделеева незаменима для химика, таблица цветовых кодов резисторов - ваш лучший друг, когда дело доходит до расшифровки кода резистора. Вы обнаружите, что часто обращаетесь к этому графику, поскольку значения, необходимые для расчета значения сопротивления, собраны на нем.Подробнее о том, как его использовать, мы рассмотрим в примерах в следующем разделе!

Есть ли простой способ запомнить эти цвета?

Совершенно верно. Если вам сложно вспомнить, какие цвета есть в цветовых кодах резисторов, попробуйте эту мнемонику.

Сокращение: BBROYGBVGW

Фраза: Плохое пиво портит наши молодые кишки, но водка идет хорошо

У Б. Б. Роя из Великобритании очень хорошая жена

Плохие парни соревнуются с нашими молодыми девушками, но Вайолет обычно побеждает

Начало работы: определение первой цветной полосы

Это вопрос, который обычно возникает в первую очередь, потому что мы не можем начать вычисление сопротивления по цветовой кодировке резистора, если мы не можем определить правильное направление считывания.К счастью, цветовой код резистора содержит некоторые визуальные подсказки, которые дают ответ!

  • Самый очевидный трюк заключается в том, что перед полосой допуска возникает увеличенное пространство. Полосы не равномерно разнесены друг от друга, и их можно рассматривать как сгруппированные надвое. Поместите большую группу слева и прочитайте резистор слева направо.

  • Первая полоса обычно всегда ближе всего к концу. Но это может быть не всегда.
  • Если вы обнаружите полосу золотого или серебряного цвета на своем резисторе, это определенно полоса допуска и последняя полоса на резисторе. Итак, они принадлежат правой стороне резистора, и снова считайте резистор слева направо.

Кроме того, не забудьте проверить документацию производителя, чтобы убедиться в используемых цветовых кодах резисторов. Если ни один из вышеперечисленных способов не помогает, вы всегда можете положиться на мультиметр для измерения сопротивления. Иногда это может быть единственный способ определить сопротивление, особенно когда цветные полосы поцарапаны или выгорели.

Расчетный цветовой код резистора

3-полосный резистор Цветовой код

Для трехполосной цветовой кодировки резистора первые две полосы всегда обозначают первые две цифры значения сопротивления, а третья полоса представляет множитель.

AB × C ± 20%

10 × 10 1 ± 20% = 100 Ом ± 20%

Полосы:

A: 1 st band - 1 st значащая цифра

B: 2 nd диапазон - 2 nd значащая цифра

C: 3 rd band - множитель

В нашем примере полосы коричневые, черные и коричневые.Первая полоса - это коричневая полоса, ближайшая к краю. Мы просматриваем нашу таблицу цветовых кодов резисторов и обнаруживаем, что коричневый имеет первое значащее значение 1, а черный имеет второе значащее значение 0. Третья полоса коричневая, что означает, что множитель равен 1. Используя формулу, сопротивление таким образом рассчитывается как:

Поскольку трехполосный резистор не имеет четвертой полосы допуска, допуск по умолчанию принимается равным 20%.

4-полосный резистор Цветовой код

Цветовой код 4-полосного резистора является наиболее часто используемым резистором.Как и в случае с трехполосным резистором, первые две полосы всегда дают первые две цифры значения сопротивления. Третья полоса представляет собой множитель, а четвертая полоса представляет собой допуск.

AB × C ± D%

12 × 10 5 ± 5% = 1200 кОм ± 5%

Полосы:

A: 1 st band - 1 st значащая цифра

B: 2 nd диапазон - 2 nd значащая цифра

C: 3 rd band - множитель

D: полоса 4 th - допуск

Для цветового кода 4-полосного резистора мы можем начать с определения диапазона допуска, поскольку он обычно бывает золотым или серебряным.Диапазон допуска также легко определить из-за увеличенного зазора между диапазоном допуска и диапазоном множителя. В этом примере это золото, поэтому при поиске в таблице цветового кода резистора он дает погрешность ± 5%. Таким образом, начиная с другого конца, первая полоса идентифицируется как коричневая, имеющая 1 значащую цифру 1 st , равную 1. Вторая полоса красная и имеет вторую значащую цифру 2. Полоса 3 rd является зеленой, которая означает, что множитель 10 5 .Используя формулу. Полученное сопротивление составляет 12 × 10 5 = 1200 кОм. Наконец, полоса допуска, которую мы определили как золото, дает значение допуска ± 5%.

Иногда для цветового кода 4-полосного резистора полоса допуска может быть оставлена ​​пустой, в результате получается 3-полосный резистор. В этом случае значение сопротивления останется прежним, за исключением того, что допуск будет составлять ± 20%, как если бы это был 3-полосный резистор.

5-полосный резистор Цветовой код Пятиполосные резисторы

- это резисторы с более высокой точностью, и у них есть дополнительная полоса для значащей цифры 3 rd .Таким образом, первые три полосы обозначают значащие цифры сопротивления, а все остальное смещается вправо, делая четвертую полосу множителем, а пятую полосу допуском.

ABC × D ± E%

475 × 10 0 ± 1% = 475 Ом ± 1%

Полосы:

A: 1 st band - 1 st значащая цифра

B: 2 nd диапазон - 2 nd значащая цифра

C: 3 ряд - 3 ряд значащая цифра

D: 4 -й диапазон - множитель

E: 5 th band - допуск

В этом примере полоса допуска коричневого цвета и определяется увеличенным промежутком между ней и полосой множителя.Из таблицы цветовых кодов сопротивления мы получаем значение допуска ± 1% для коричневого. Начиная с другого конца, первая полоса и вторая полоса желтого и фиолетового цвета, что дает 1 st и 2 nd значащую цифру 4 и 7 соответственно. Дополнительная третья полоса синего цвета, поэтому значащая цифра 3 rd равна 5. Четвертая полоса черная и дает значение множителя 10 0 . Используя формулу, получаем значение сопротивления 475 × 10 0 = 475 Ом.

6-полосный резистор Цветовой код

6-полосный резистор - это, по сути, 5-полосный резистор с дополнительным кольцом, которое обозначает температурный коэффициент или, иногда, интенсивность отказов. Наиболее распространенный цвет шестой полосы - коричневый (100 ppm / K), что означает, что на каждые 10 ℃ изменение температуры значение сопротивления изменяется на 0,1%.

ABC × D ± E%, F

274 × 10 0 ± 2%, 250 частей на миллион / K = 274 Ом ± 2%, 250 частей на миллион / K

Полосы:

A: 1 st band - 1 st значащая цифра

B: 2 nd диапазон - 2 nd значащая цифра

C: 3 ряд - 3 ряд значащая цифра

D: 4 -й диапазон - множитель

E: 5 th band - допуск

F: 6 th band - температурный коэффициент

В этом примере полосы цветового кода резистора можно сгруппировать в 2 группы в соответствии с промежутком между полосой множителя и полосой допуска.Поместите большую группу слева, а меньшую группу справа и прочитайте резистор слева направо. Опять же, мы проверяем таблицу цветового кода резистора на наличие красного, фиолетового и желтого цветов, а первая, вторая и третья полосы дают значащие цифры 2,7 и 4 соответственно. Четвертая полоса черного цвета, что дает значение множителя 10 0 . Следовательно, мы получим значение сопротивления 274 × 10 0 = 274 Ом. Пятая полоса допуска дает значение допуска ± 2%. Шестая полоса черного цвета и дает значение температурного коэффициента 250 ppm / K.

Исключения цветовой полосы резистора

Нулевые резисторы

Нулевые резисторы - это резисторы, которые можно легко распознать по единственной черной полосе. По сути, это проводная связь с единственной функцией соединения дорожек на печатной плате. Но почему бы не использовать для этого обычную перемычку?

Нулевые резисторы идентифицируются по одной черной полосе
(Источник: ES Mobile)

Причина, по которой они выглядят как резисторы, заключается в том, что компоненты в большинстве печатных плат размещаются с помощью автоматических установочных машин, а не вручную.Будучи похожим на резистор, производители могут использовать тот же автомат для размещения компонентов на печатной плате. Это устраняет необходимость в отдельной машине для установки перемычек.

Кроме того, резисторы с нулевым сопротивлением снимаются легче, чем перемычки. Это позволяет при необходимости легко вносить любые изменения в конструкцию. Резистор нулевого сопротивления легко снимается и заменяется новыми компонентами.

Теперь, когда вы готовы расшифровать любой цветовой код резистора, который попадется на вашем пути, вы можете взять пакет из 500 резисторов из Seeed Bazaar !

Сборка этих крошечных резисторов на печатной плате слишком хлопотна? Вы когда-нибудь хотели, чтобы кто-то другой сделал это за вас? В таком случае сервис Seeed Fusion PCB Assembly Service может быть именно тем, что вы ищете.Независимо от сложности или количества ваших дизайнов, ваши доски будут производиться с той же тщательностью и контролем качества, которые Seeed использует для своей продукции. Просто загрузите свой дизайн печатной платы на онлайн-платформу Seeed Fusion, и конкурентное ценовое предложение будет создано для вас в течение нескольких секунд. Проверьте здесь .

А теперь попробуйте услугу абсолютно без затрат на сборку на 5 плат , сэкономив до 80% от обычной цены.Воспользуйтесь предложением сегодня.

Вот и все, что вам нужно для нашего руководства по цветовым кодам резисторов! Если у вас есть дополнительные вопросы или советы о том, как использовать цветовую кодировку резисторов для расчета сопротивления, не стесняйтесь писать нам сообщение в разделе комментариев ниже.


Следите за нами и ставьте лайки:

Продолжить чтение

Руководство по цветовым кодам резисторов

и калькулятор

В этом руководстве по цветовым кодам резисторов мы покажем вам, как интерпретировать значение резистора на основе цвета полос.

Умение быстро распознать номинал резистора - чрезвычайно удобный навык в электронике, так как он сэкономит вам много времени.

Мы включили калькулятор цветовой кодировки резистора, чтобы вы могли быстро рассчитать номинал резистора. Это также удобно для проверки того, что вы покупаете правильные резисторы для своего следующего проекта.

Это руководство должно пригодиться вам, если вы новичок в электронике и занимаетесь некоторыми из наших проектов Arduino или проектов Pi, которые связаны со схемами.

Какой цветовой код у резисторов?

Цветовой код резистора - это способ определения номиналов резистора. Почти все резисторы с выводами, которые имеют номинальную мощность 1 Вт или меньше, будут иметь цветной код, напечатанный на них.

Резистор может иметь до 6 различных цветовых полос. Вместе эти цветные полосы определяют атрибуты этого резистора. Эти атрибуты включают базовое значение сопротивления, множитель сопротивления, допуск, а также температурный коэффициент.

Как минимум, для цветовой шкалы резистора требуется две полосы. Одна полоса указывает значение сопротивления, а другая - множитель. Однако, как правило, вы обнаружите, что в большинстве резисторов используется 4-полосная или 6-полосная система цветового кода.

Этот цветовой код резистора определен как международный стандарт Международной электротехнической комиссией в публикации IEC 60062.

Стандарт определяет всю маркировку резисторов и конденсаторов.В дополнение к системе цветовой кодировки существует также числовая система, которая в основном используется для резисторов SMD.

Помимо обозначений, фактические значения сопротивления резисторов стандартизированы. Эти стандартизованные значения называются «предпочтительными значениями» или «резисторами серии E».

Калькулятор цветового кода резистора

Наш калькулятор цветового кода резистора - это быстрый и простой способ определить номинал любого резистора. Непосредственно под ним есть несколько инструкций по использованию калькулятора.

Первая цифра Коричневый2 Красный3 Оранжевый4 Желтый5 Зеленый6 Синий7 Фиолетовый8 Серый9 Белый Цифра 2 0 Черный1 Коричневый2 Красный3 Оранжевый4 Желтый5 Зеленый6 Синий7 Фиолетовый8 Серый9 Белый Цифра 3 0 Черный1 Коричневый2 Красный3 Оранжевый4 Желтый5 Зеленый6 Синий7 Фиолетовый8 Серый9 Белый Множитель x1 Ом Черныйx10 Ом Коричневыйx100 Ом Красный x1K Ω Желтый x100K Ω Зеленый x1M Ω Синийx10M Ω Фиолетовый x100M Ω Серый x1G Ω Белый ÷ 10 Ω Серебристый ÷ 100 Ω Допуск на золото ± 1% Коричневый ± 2% Красный ± 3% Оранжевый ± 4% Желтый ± 0,5% Зеленый ± 0,25% Синий ± 0,10% Фиолетовый ± 0,05% Серый ± 5% Серебро ± 10% Золото Температурный коэффициент 100 ppm / ° C Коричневый 50 ppm / ° C Красный 15 ppm / ° C Оранжевый 25 ppm / ° C Желтый 10 ppm / ° C Синий5 ppm / ° C Фиолетовый

Для использования нашего простого Калькулятор цветового кода резистора, все, что вам нужно сделать, это использовать раскрывающиеся списки, чтобы выбрать цвет каждой полосы на резисторе.

Калькулятор автоматически вычислит все значения вашего резистора на лету.

Цветовой код резистора

Ниже мы включили таблицу, чтобы показать разницу между 4-полосным, 5-полосным и 6-полосным резисторами.

Вы заметите, что единственная большая разница между 4-полосными и 5-полосными резисторами. У 5-полосного резистора есть еще одна полоса, которая помогает обозначить число.

Эта дополнительная полоса цифр помогает при декларировании резисторов большего размера и получения более точных значений по сравнению с 4-полосным резистором.

6-полосный резистор аналогичен 5-полосному резистору, но имеет дополнительную полосу, которая используется для отображения температурного коэффициента.

Полосы резистора

Цифра
Полосы 4-полосный резистор 5-полосный резистор 6-полосный резистор
1-я цифра 1-я цифра 1-я цифра 1-я цифра
2-я 2-я цифра 2-я цифра
3-я Множитель 3-я цифра 3-я цифра
4-я Допуск Множитель Множитель
5-й Не применимо Допуск Допуск
6-й Неприменимо Неприменимо Температурный коэффициент

Полосы цифр

Полосы цифр - это первые три цветные полосы на 5-полосном резисторе и первые две полосы на 4-полосном резисторе.

Эти полосы используются для обозначения значения сопротивления этого резистора. Каждый цвет представляет собой число от 0 до 9 .

Используя нашу таблицу ниже, вы можете увидеть, какой цвет представляет определенное число. Под графиком мы показываем вам пример того, как использовать его для расчета сопротивления резистора.

Цвет Цифра
Черный (только для 2-го и 3-го диапазонов) 0
Коричневый 1
Красный 2
Оранжевый 3
Желтый 4
Зеленый 5
Синий 6
Фиолетовый 7
Серый 8
Белый 9

Например, используя таблицы на этой странице с 5-полосным резистором, мы можем определить значение первых трех цифр.

Используя резистор Red Brown Black Brown Brown , мы можем вычислить, что значение базового сопротивления до применения умножителя составляет 210 Ом .

1-я цифра 2-я цифра 3-я цифра Множитель Допуск
Красный Коричневый Черный Коричневый Коричневый 2 1 x 10 ± 1%

Полоса умножителя

Полоса умножителя - это третья полоса на трехцветной полосе и четвертая полоса на 5- и 6-полосном резисторе.

Эта полоса используется для получения реального значения сопротивления резистора.

Значение , полученное из полос цифр на резисторе, умножается на полосу умножителя для вычисления фактического значения сопротивления резистора.

На основе нашего примера, использованного в разделе «Цифровые диапазоны», мы умножаем наше базовое значение 210 Ом на наш множитель, который составил x 10 .

Значение множителя означает, что фактическое значение сопротивления резистора в нашем примере составляет 2.10 кОм .

Цвет Значение
Черный x 1
Коричневый x 10
Красный x 100
Оранжевый x 1000
Желтый x 10 000
Зеленый x 100 000
Синий x 1000000
Фиолетовый x 10 000 000
Серый x 100 000 000
Белый x 100 000 000 000
Серебро ÷ 10
Золото ÷ 100

Полоса допуска

Полоса допуска - четвертая полоса на 4-полосном резисторе и пятая полоса на 5-полосном и 6-полосном -полосный резистор.

Допуск на резисторе показывает, насколько больше или меньше можно ожидать от заявленного сопротивления.

Например, резистор 2,10 кОм с допуском ± 1% будет иметь минимальное сопротивление 2,079 кОм и максимальное сопротивление 2,121 кОм .

Цвет Значение
Коричневый ± 1%
Красный ± 2%
Оранжевый ± 3%
Желтый ± 4%
Зеленый ± 0.5%
Синий ± 0,25%
Фиолетовый ± 0,10%
Серый ± 0,05%
Серебро ± 5%
Золото ± 10%

Вы можете рассчитать максимальное и минимальное сопротивление для любого резистора с диапазоном допуска, используя простую математику.

Во-первых, предположим, что допуск_процент равен значению допуска на резисторе.В случае резистора в нашем примере ( Красный Коричневый Черный Коричневый Коричневый ) это 1%.

  допустимость_процента = 1  

Затем нам нужно преобразовать значение допуска из процента в десятичную систему, разделив значение на 100. Мы назовем это значение допуском .

  допуск = допуск_процент / 100
допуск = 1/100
Допуск = 0,01  

Далее мы говорим, что сопротивление равно сопротивлению резистора, которое в нашем примере равно 2.10к . Мы можем опустить букву «К» в математических вычислениях.

  сопротивление = 2,10  

Теперь, когда у нас есть допуск в виде десятичной дроби и значение сопротивления уменьшено до , сопротивление , нам нужно умножить их вместе, чтобы вычислить процентное соотношение, которое оно составляет от значения сопротивления.

Мы назовем это значение устойчивостью_толерантности .

  сопротивление_толерантность = сопротивление / допуск
сопротивление_толерантности = 2,10 х 0.01
сопротивление_толерантности = 0,021
  

Теперь, когда у нас есть процент допуска сопротивления как значение, мы можем легко вычислить максимальное и минимальное значения сопротивления, используя простое сложение и вычитание.

  minimum_resistance = сопротивление - сопротивление_tolerance
минимальное_сопротивление = 2,10 - 0,021
minimum_resistance = 2,079

maximum_resistance = сопротивление + сопротивление_толерантность
максимальное_сопротивление = 2,10 + 0,021
maximum_resistance = 2,121
  

Температурный коэффициент

Температурный коэффициент (иногда называемый «Tempco») - это 6-я полоса на 6-полосном резисторе.

Этот диапазон определяет изменение сопротивления при изменении температуры окружающей среды.

Цвет Значение
Коричневый 100 ppm / ° C
Красный 50 ppm / ° C
Оранжевый 15 ppm / ° C
Желтый 25 ppm / ° C
Синий 10 ppm / ° C
Фиолетовый 5 ppm / ° C

Примеры цветового кода резистора

В этом разделе мы собираемся пройти через три образца резистора.Есть образец для 4-полосного резистора, 5-полосного резистора и 6-полосного резистора.

Мы расшифруем цветовой код каждого образца резистора и покажем, как мы рассчитали каждое значение.

4-полосный резистор

Первый резистор, в который мы собираемся углубиться, - это 4-полосный резистор. Этот резистор проще всего декодировать, поскольку у него наименьшее количество полос.

Для начала сопоставим каждую цветовую полосу с ее значением. Используя простую таблицу ниже, мы можем заполнить данные из наших таблиц выше.

1-я цифра 2-я цифра Множитель Допуск
Зеленый Зеленый Коричневый Серебристый
5 5 x 10 ± 5% x 10 ± 5%
Расчет сопротивления 4-полосных резисторов

По цветным полосам резисторов и множителю мы можем рассчитать фактическое сопротивление 4-полосного резистора в нашем примере.

Базовое сопротивление, полученное из двузначных полос, Green и Green , составляет 55 .

  base_resistance = 55  

Чтобы получить фактическое значение нашего резистора, нам нужно умножить значение, полученное из диапазонов цифр, на нашу полосу множителя.

Из диапазона множителя Brown мы знаем, что нам нужно умножить наше базовое значение сопротивления на 10 .

  множитель = 10  

Используя эти два значения, мы можем вычислить, что наш образец резистора имеет сопротивление 550 Ом .

  сопротивление = базовое_сопротивление * множитель
сопротивление = 55 * 10
сопротивление = 550  
Расчет допуска для 4-полосных резисторов

Расчет допуска для резистора прост.Все, что вам нужно, это окончательное значение сопротивления из предыдущего шага и значение из диапазона допуска резистора. Запишем это значение как , сопротивление .

  сопротивление = 550  

Теперь нам нужно преобразовать наш допуск из процента в десятичный. Мы можем сделать это, просто разделив его на 100. По «серебряной» цветной полосе на резисторе мы знаем, что допуск этого резистора составляет «5%».

  допуск = допуск_процент / 100
допуск = 5/100
допуск = 0.05  

Теперь, когда наш допуск преобразован в десятичную дробь, нам нужно вычислить процентное значение этого допуска для нашего резистора. Мы назовем это сопротивление_толерантности и можем вычислить его, разделив наше сопротивление на наше десятичное значение допуска.

  сопротивление_толерантность = сопротивление х допуск
сопротивление_толерантность = 550 х 0,05
Resist_tolerance = 27,5  

Теперь, когда мы рассчитали величину отклонения для допуска резисторов, мы можем вычислить, каковы максимальные и минимальные допуски для нашего резистора.

Эта математика проста: нужно вычесть и прибавить наш расчет istance_tolerance к нашему базовому значению сопротивления.

  minimum_resistance = сопротивление - сопротивление_tolerance
minimum_resistance = 550 - 27,5
minimum_resistance = 522,5

maximum_resistance = сопротивление + сопротивление_толерантность
максимальное_сопротивление = 550 + 27,5
maximum_resistance = 577,5  

Завершив наши вычисления, мы теперь знаем, что с допуском 5% наш резистор 550 Ом имеет минимальное сопротивление 522.5 Ом и максимально возможное сопротивление 577,5 Ом .

5-полосный резистор

Наш второй пример резистора демонстрирует 5-полосный цветной резистор. Основное отличие этого резистора от 4-х полосного - добавление 3-й цифры.

Опять же, используя приведенные выше таблицы или калькулятор цветового кода резистора, вы можете быстро вычислить значение для каждой цветовой полосы резистора.

1-я цифра 2-я цифра 3-я цифра Множитель Допуск
Коричневый Черный Черный Коричневый Золото 1 0 x 10 ± 10%
Расчет сопротивления 5-полосного резистора

Расчет сопротивления 5-полосного резистора не сложнее, чем иметь дело с 4-полосным.Единственное отличие состоит в том, что добавлена ​​еще одна цифра, которая будет составлять наше базовое значение сопротивления.

По цветным полосам Коричневый Черный Черный на нашем резисторе мы можем определить, что сопротивление базы нашего резистора составляет 100 .

  base_resistance = 100  

Затем мы можем прочитать нашу цветовую полосу множителя на резисторе. Эта полоса говорит нам, что нам нужно умножить сопротивление нашей базы на 10 , чтобы получить фактическое сопротивление резистора.

  сопротивление = базовое_сопротивление x множитель
сопротивление = 100 х 10
сопротивление = 1000
  

Из наших расчетов мы можем выяснить, что этот образец резистора имеет сопротивление 1 кОм .

Расчет допуска 5-полосного резистора

Расчет допуска 5-полосного резистора не отличается от допуска 4-полосного резистора. Математика остается той же, что и в нашем примере с 4-полосным резистором.

6-полосный резистор

Наконец, у нас есть 6-полосный резистор.Единственная разница между 5-полосным резистором и 6-полосным резистором - это включение диапазона температурных коэффициентов.

Поскольку диапазон температурных коэффициентов не влияет на расчет допуска резисторов или значения сопротивления, мы не будем углубляться в математику для этого типа резистора.

Просто следуйте нашему предыдущему разделу, чтобы узнать больше о том, как рассчитать сопротивление и допуск 6-полосного резистора.

Чтобы облегчить себе жизнь, воспользуйтесь приведенной ниже небольшой таблицей, чтобы быстро записать значение каждой цветовой полосы резистора.

1-я цифра 2-я цифра 3-я цифра Множитель Допуск Температурный коэффициент
Оранжевый Черный Красный Оранжевый Серебристый 0 2 x 1000 ± 5% 100 ppm / ° C

Используя нашу таблицу и некоторые простые математические вычисления, мы можем вычислить, что сопротивление базы нашего резистора составляет 302 Ом .Теперь, используя значение множителя 1,000 , мы можем вычислить, что фактическое значение сопротивления резистора выборки составляет 302 кОм .

  base_resistance = 302
множитель = 10000
сопротивление = base_resistance x множитель
сопротивление = 302 x 1000
сопротивление = 302,000
  

Надеюсь, это руководство по цветовому кодированию резистора помогло вам понять, как считывать значения с резистора, а калькулятор цветового кода резистора оказался полезным инструментом.

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *