Как работают форсунки инжектора – Инжектор: описание,виды,устройство,неисправности,плюсы и минусы,фото | НЕМЕЦКИЕ АВТОМАШИНЫ

Содержание

Принцип работы инжектора: как работает, устройство

Инжектор — это революция в автомобилестроении. Сам по себе механизм сложный и для максимальной производительности его работа должна быть хорошо отлажена. Инжекторная система подачи топлива в двигатель работает по средствам ЭБУ (электронный блок управления), который высчитывает параметры топливной смеси перед ее подачей в цилиндры и управляет подачей напряжения на катушку зажигания для создания искры. Инжекторные агрегаты сместили с производства карбюраторные моторы.

В карбюраторных устройствах задачу подачи исполняет механический эмулятор, что не совсем удобно, потому что его система не способна сформировывать оптимальную смесь при низких температурах, оборотах и старте двигателя. Использование компьютерного блока дало возможность максимально точно осуществлять расчет параметров, и беспрепятственно на любых оборотах и температуре подавать топливо, соблюдая при этом экологические стандарты. Минус наличия ЭБУ в том, что если возникнут проблемы, например, слет прошивки, то мотор начнет работать либо с перебоями, либо вовсе откажется функционировать.

Инжекторный двигатель

Вообще, инжекторный двигатель работает по тому же принципу, что и дизельный. Отличие только в устройстве зажигания, которое придает ему мощности на 10% больше чем у карбюраторного мотора, что не так уж и много. О плюсах и минусах системы пусть спорят профессионалы, но знать устройство инжектора или хотя бы иметь представление о его строении обязан каждый водитель, планирующий ремонтировать двигатель собственноручно. Также со знаниями инжекторного узла, вас не смогут обмануть на СТО недобросовестные работники.

История возникновения инжекторной системы впрыска

Инжектор по сути, форсунка, выступающая распрыскивателем горючего в двигателях. Изготовлен первый инжекторный мотор был в 1916 году российскими конструкторами Стечкиным и Микулиным. Однако воплощена система впрыска топлива в автомобилестроении, была только в 1951 году западногерманской компанией Bosch, которая наделила двухконтактный мотор незамысловатой механической конструкцией впрыска. Примерил на себя новинку микролитражный купе «700 Sport» компании Goliath из Бремена.

По прошествии трех лет задумку подхватил четырехконтактный мотор Mercedes-Benz 300 SL — легендарное купе «Крыло Чайки». Но, так как жестких экологических требований не было, то идея инжекторного впрыска была не востребована, а состав элементов сгорания двигателей не вызывал интереса. Главной задачей на тот момент было повысить мощность, поэтому состав смеси составлялся с расчетом избыточного содержания бензина. Таким образом, в продуктах сгорания, вообще, не было кислорода, а оставшееся несгоревшее горючие образовывало вредоносные газы посредством неполного сгорания.

Установлен инжекторный двигатель

Стремясь увеличить мощность, разработчики ставили на карбюраторы ускорительные насосы, заливавшие горючие в коллектор с каждым нажатием на педаль акселератора. Только в конце 60 х-годов 20 века

проблема загрязнения окружающей среды промышленными отходами стала ребром. Транспортные средства заняли лидирующую строчку среди загрязнителей. Было решено для нормальной жизнедеятельности кардинально перестроить конструкцию топливного аппарата. Тут-то и вспомнили за инжекторную систему, которая гораздо эффективнее обычных карбюраторов.
Так, в конце 70-го произошло массовое вытеснение карбюраторов инжекторными аналогами, превосходящими во много раз эксплуатационными характеристиками. Испытательной моделью выступил седан Rambler Rebel («Бунтарь») 1957 модельного года. После инжектор был включен в серийное производство всеми мировыми автопроизводителями.

Как работает инжектор?

Обычно он имеет в своей конструкции следующие составляющие:

  1. ЭБУ.
  2. Форсунки.
  3. Датчики.
  4. Бензонасос.
  5. Распределитель.
  6. Регуляторы давления
    .

Если описывать коротко принцип работы инжектора заключается в следующем:

  • на датчики поступают сигналы о работе системы;
  • после блок сопоставляет параметры и осуществляет управление системой;
  • затем идет подача электрического разряда на форсунки, под его натиском они открываются, впуская смесь из топливной магистрали во впускной коллектор.

    Схема инжекторного мотора

Электронный блок управления

Его задача беспрерывно анализировать поступающие параметры от датчиков и давать команды системами. Компьютер учитывает факторы внешней среды и особенности различных режимов работы двигателя, при которых происходит эксплуатация. В случае выявления несовпадений, центр подает команды исполнительным элементам для коррекции. ЭБУ также имеет систему диагностики. Когда случается сбой, она распознает возникшие неполадки, оповещая водителя индикатором «CHECK ENGINE». Вся информация о диагностических кодах и ошибках хранится в центральном блоке.

Различают 3 вида памяти:

  1. Однократное программируемое постоянное запоминающее устройство (ППЗУ). Хранит общую установку с последовательностью действий для управления системой. Располагается запоминающий чип в панели на плате блока, он легко сниматься и заменятся на новый. Информация здесь не меняется и при сбоях сети не стирается.
  2. Оперативное запоминающее устройство (ОЗУ). Выступает как временное хранилище «блокнот», где рассчитываются параметры и куда компьютер может вносить изменения. Микросхема располагается на печатной плате блока. Для ее работы постоянно нужна электрическая сеть, если питание не поступает, то все данные находящиеся во временном хранилище стираются.
  3. Электрически программируемое запоминающее устройство (ЭПЗУ). Временное хранилище данных и кодов-паролей противоугонной системы транспортного средства. Память не зависит от сети. Хранящиеся в ней коды нужны для сравнения с кодами иммобилайзера, если совпадения не произошло, то мотор не заведется.

    Первый тойотовский инжекторный двигатель M-E 1972 года

Расположение, классификация и маркировка форсунок

После разбора вопроса как работает инжектор, просмотрим поверхностно всю инжекторную систему. Инжекторная система, производит впрыск горючего во впускной коллектор и цилиндр мотора посредством форсунки, которая способна за секунду открываться и закрываться много раз. Система делится на два типа. Классификация зависит от расположения крепления форсунки, устройства ее работы и количества:

  1. Моновпрыск, иначе как центральный впрыск топлива Throttle body injection (TBI), работает посредством одной форсунки, подающей горючие в цилиндры мотора. Подача струи не синхронизирована ко времени открытия впускного клапана мотора. Одноточечный впрыск простой и мало содержит управляющей электроникой. Вся система TBI находится внутри впускного коллектора. Технология сегодня не популярна и почти не задействуется при производстве авто, так как не удовлетворяет нынешним требованиям.
  2. Распределительный впрыск топлива Multiport Fuel Injection (MFI) на сегодня востребован, потому что гораздо совершенен. Его суть в том, что каждая форсунка подает горючее индивидуально к каждому цилиндру. Крепится конструкция снаружи впускного коллектора. Сигналы синхронизированы с последовательностью зажигания двигателя. Этот тип впрыска сложнее по конструкции, однако, мощнее НА 7–10% и экономичнее предшественников.

    Сравнение карбюратора и инжектора

Есть несколько классификаций распределительного впрыска:

  • одновременный – работа всех форсунок синхронна, то есть впрыск идет сразу во все цилиндры;
  • попарно-параллельный – когда одна открывается перед впуском, а другая перед выпуском;
  • фазированный или двухстадийный режим – инжектор открывается только перед впуском. Дает возможность на малых оборотах, при резком нажатии на педаль акселератора увеличить момент двигателя. Впрыск проходит в два этапа.
  • непосредственный (впрыск на такте впуска) GDI (Gasoline Direct Injection) – струя идет сразу в камеру сгорания. Для моторов с таким впрыском требуется и более качественное топливо, где незначительное количество серы и других химических элементов. Мотор GDI способен исправно служить в режиме сгорания сверхобедненной топливовоздушной смеси. Меньшее содержание воздуха делает состав менее воспламеняемым. Горючее внутри цилиндра прибывает как облако, пребывающее рядом со свечей зажигания. Смесь схожа с стехиометрическим составом, который легко воспламеняется.

Инжекторные форсунки имеют разный способ подачи струи:

  1. Электрогидравлический. Работает посредством разницы давления дизеля на поршень и форсунку. Когда клапан обесточен, иглу форсунки жидкостью придавливает к седлу. А если клапан открывается, то открывается и дроссель, после чего осуществляется заполнение дизелем топливной магистрали. Во время этого давление на поршень снижается, а на игле ничего не происходит, что ее и поднимает в момент впрыска.

    Устройство инжектора

  2. Электромагнитный. На обмотку клапана поступает электрический разряд, контролируемый ЭБУ. В итоге возникает электромагнитное поле наравне со сдавливанием пружины. Поле притягивает иглу и освобождает сопло для подачи струи. Пружина возвращается в прежнее положение после рассеивания электромагнитного поля, отправляя иглу на свое место.
  3. Пьезоэлектрический. Самый продвинутый тип, применяется в дизельных агрегатах. Скорость его действий превышает предыдущие типы в четыре раза, помимо этого, количество впрыскиваемого топливо максимально выверено. Действия инжектора основаны на принципе гидравлики, работа осуществляется из-за разницы давления. Сначала игла находится на седле, потом ток растягивает пьезоэлемент, который начинает воздействовать на толкатель, чем открывает клапан для движения топлива в магистраль. Затем давление спадает, и игла подымается, вверх осуществляя впрыск.

Нейтрализатор/катализатор

Для сокращения выброса окисей углерода и азота, в инжектор был добавлен каталитический нейтрализатор. Он преобразует выделенные из газов углеводороды. Применяется на инжекторах лишь с обратной связью. Перед катализатором имеется датчик содержания кислорода в выхлопных газах, по-другому его называют как лямбда-зонд. Контроллер, получая информацию от датчика, вытягивает подачу топливной смеси до нормы. В нейтрализаторе есть керамические составляющие с микроканалами, где содержатся катализаторы:

  • два окислительных из платины и палладия;
  • один восстановительный из родия.

    Инжекторная топливная система

Нельзя чтобы мотор с нейтрализатором работал на этилированном бензине. Это выведет из строя не только нейтрализаторы, но и датчики концентрации кислорода.

Так как простых каталитических нейтрализаторов недостаточно, то используется рециркуляция отработавших газов. Она существенно убирает образовавшиеся оксиды азота. Помимо этого, для этих целей устанавливается дополнительный NO-катализатор, так как система EGR не способна создать полное удаление NOx. Есть два типа катализаторов для понижения выбросов NOx:

  1. Селективные. Не привередливы к качеству топлива.
  2. Накопительного типа. Гораздо эффективнее, но очень чувствительны к высокосернистым горючим, что нельзя сказать о селективных. Поэтому они обширно применяются на авто для стран с малым количеством серы в топливе.

Основные датчики

  1. Датчик положения коленчатого вала (Датчик Холла). Дает блоку знать, расположение поршней в цилиндрах. Суть работы в том, что находящееся на валу мотора зубчатое колесо двигается около магнита. Его зубья искажают магнитное поле, создавая импульсы в катушке. ЭБУ считывает эти импульсы и определяет положение коленвала. Если этот датчик вышел из строя, то до СТО доехать на своей машине не получится.
  2. Датчик расхода воздуха (ДРВ). Существует два вида таких датчиков, один измеряет массу другой объем вбираемого воздуха. ДМРВ производит замер и посылает в ЭБУ. В потоке есть нагревательный элемент, температура которого автоматически держится на нужном показателе. Чем тяжелее воздух, тем больший ток должен проходить через него, для поддержания оптимальной температуры. Потому ЭБУ по силе тока определяет массу всасываемого воздуха. Что касается датчика объёма (ДОРВ), то он устроен так. В потоке, где проходит забор воздуха, установлена перегородка, открывающаяся под натиском воздуха. ЭБУ определяет положение заслонки при помощи потенциометра. Во время неполадки параметры датчика не учитываются, а расчет происходит по показателям аварийной таблицы.

    ЭБУ инжектора

  3. Датчик положения дроссельной заслонки. Контролирует положение дроссельной заслонки, из-за чего ЭБУ может правильно сокращать или увеличивать расход горючего.
  4. Датчики кислорода (лямбда-зонд). Вычисляет количество кислорода в выхлопных газах. На его показаниях ЭБУ выявляет бедную смесь и вносит поправки.
  5. Датчик температуры охлаждающей жидкости. Дает понять компьютеру, когда мотор достиг нужной рабочей температуры. В момент аварии, параметры датчика игнорируеются, температура, берется из таблицы опираясь на время работы двигателя.
  6. Коллекторный датчик абсолютного давления (ДАД) Анализирует воздух и его количество во впускном коллекторе, этот показатель нужен для устанавливания количества проводимой энергии.
  7. Датчик напряжения. Смотрит за напряжением бортовой сети машины. По его показаниям контроллер может набавлять или, наоборот, уменьшать холостые обороты мотора.
  8. Датчик детонации. Представляет собой высокочастотный микрофон, улавливающий недопустимые звуковые вибрации в моторе. Получая аномальные звуки, контроллер производит автоматическое корректирование угла опережения.

Система подачи топлива

Узел включает в себя:

  • топливный насос;
  • топливный фильтр;
  • топливопроводы;
  • рампу;
  • форсунки;
  • регулятор давления топлива.

    Система подачи топлива

Рассмотрим, как работает бензонасос на инжекторе. Насос находится в топливном баке и подает бензин на рампу под давлением 3,3–3,5 Мпа, что обеспечивает качественный распыл горючего по цилиндрам. Если обороты мотора увеличиваются, заметно возрастает и аппетит, то есть для сохранения давления, в рампу нужно поставлять больше бензина. Поэтому бензонасос по оповещению контроллера начинает ускорять вращения. Вовремя, прохода бензина к топливной рампе, лишнее убирается регулятором давления и спускается назад в бензобак, поддерживая тем самым постоянное давление в рампе.

Топливный фильтр находится под капотом кузова за топливным баком, он вмонтирован между электробензонасосом и топливной рампой в подающую магистраль. Его конструкция не разбирается, она являет собой металлический корпус с бумажной фильтрующей установкой.
Есть прямой и обратный топливопровод. Первый нужен для топлива, идущего из модуля насоса в рампу. Второй возвращает излишки горючего после регулятора назад в бензобак. Рампа – полая планка, соединённая с форсунками, регулятором давления и штуцером контроля давления в системе. Установленный на ней регулятор контролирует давление внутри ее и во впускной трубе. Его конструкция содержит мембранный клапан с диафрагмой и пружину, поджатую к седлу.

Интересное по теме:

загрузка…

Facebook

Twitter

Вконтакте

Одноклассники

Google+

Устройство форсунки инжектора — как попадает бензин в двигатель?

Форсунка инжектора Как правило, на сегодня, большое количество автомобилей оборудуются специальными системами впрыска горючего. Интересно будет узнать, о том что идея о внедрении такой системы в автомобильный мир появилась уже в далеких 50-х годах. Так, 1951 год стал годом рождения первой системы впрыска топлива, именно в этом году компания Bosch укомплектовала ею 2-х тактный двигатель купе Goliath 700 Sport.

Последователем Bosch стал Mercedes-Benz 300 SL, который подхватил эстафету в 1954 году. И вот, уже в конце 70-х годов началось массовое, серийное введение инжекторных систем впрыска топлива. Как оказалось на практике, впрыск топлива имеет множество достоинств и отличных характеристик, по которым такая система превосходит карбюраторную подачу топлива. От карбюраторного принципа смесеобразования система впрыска топлива отличается более безошибочной дозировкой топлива, а следовательно, и большей экономичностью и приемистостью автомобильного транспорта. Также система впрыска топлива славится меньшей токсичностью выхлопных газов. Можно сделать такой вывод, что переоценить работу системы впрыска топлива практически невозможно.

Форсунка является одной из аниболее важных частей системы впрыска топлива, поэтому она во многом и определяет эффективность и надежность работы движка. Однако, именно она работает в наиболее тяжелых условиях. Каждому автолюбителю важно знать что это за деталь и как она работает, дабы в случае какой-либо неисправности системы впрыска топлива произвести правильную диагностику поломки, ведь именно от состоянии форсунки зависит хорошая работоспособность самой системы. В данной статье мы акцентируем внимание именно на строении форсунки, ее видах и принципе работы. Итак, начнем.

1. Типы инжекторных форсунок

Форсунки инжектора

Для начала давайте разберемся, что такое форсунка и какое ее предназначение. Деталь форсунки (по-другому можно назвать инжектором) представляет собой конструктивный элемент системы впрыска горючего. Главными тремя функциями, которые выполняет форсунка являются дозированная подача топлива, распыление данной топливной жидкости в камере сгорания (другими словами – впускной коллектор), а также возникновение топливно-воздушной смеси.

Как правило, форсунка приводится в эксплуатацию в системах впрыска топлива как дизельных, так и двигателей, работающих на бензине. Если говорить о современных двигателях, установленные в них форсунки руководствуются электронным управлением впрыска. Данную деталь принято разделять на три типа, в зависимости от способа произведения впрыска.

Итак, существуют такие три вида форсунки:

1. Электрогидравлическая

2. Электромагнитная

3. Пьезоэлектрическая

Теперь о каждом виде поподробнее.

Форсунка электромагнитная

Форсунки инжектора Данную форсунку, как правило, принято устанавливать именно на бензиновых движках, в том числе укомплектованных системой непосредственного впрыска. Сама по себе электромагнитная форсунка имеет довольно обычное строение и состоит непосредственно из электромагнитного клапана с иглой и сопла. Работает такая форсунка по своеобразному принципу. В соотношении с заложенным алгоритмом, установленный электронный блок управления способен обеспечить в нужный момент передачу напряжения прямиком на обмотку возбуждения клапана. В этот момент создается своеобразное электромагнитное поле, которое может преодолевать усилие пружины, втянуть якорь с иглой и отпустить сопло. После проделанной операции осуществляется впрыск топлива. После того момента, как напряжение исчезнет, пружина возвращает иглу форсунки обратно на седло.

Форсунка электрогидравлическая

Как правило, электрогидравлическую форсунку принято приводить в действие на двигателях использующих дизель, в том числе и таких, которые укомплектованы системой впрыска Common Rail. Сама по себе электрогидравлическая форсунка состоит из впускной и сливной дроссели, камеры управления, а также электромагнитного клапана. Такая форсунка приводится в эксплуатацию по принципу применения в процессе работы давления топлива, как при произведении впрыска, так и при его окончании.

Как правило, на начальной позиции электромагнитный клапан обесточен и находится в закрытом состоянии, игла форсунки прислоняется к седлу благодаря мощности давления топлива на поршень, которое имеет место в камере управления. В этом случае впрыск топлива не производится. В этот момент давление топлива на иглу ввиду несоответствии площадей контакта порядка меньше чем давление на поршень.

Форсунки инжектора Электронный блок управления посылает сигнал и по его команде в работу включается электромагнитный клапан, который осуществляет открытие сливной дроссели. В свою очередь, топливо, которое выходит из камеры управления, начинает проходить через дроссель прямиком в сливную магистраль. В таком случае, дроссель способна воспрепятствовать скорой стабилизации давлений в камере управления и впускной магистрали. Таким образом, происходит снижение давления на поршень, но давление топлива на иглу остается на прежнем уровне. Под воздействием давления игла двигается вверх и происходит впрыск топлива.

Форсунка пьезоэлектрическая

Пьезоэлектрическая форсунка является самым совершенным и надежным устройством, которое способно обеспечить впрыск горючего. Такую форсунку, как правило, устанавливают на двигателях, использующих дизель, которые укомплектованы системой впрыска Common Rail. Такой вид форсунки имеет много достоинств, среди которых имеет место быстрота срабатывания Данная форсунка превосходит всех своих оппоненток и является самым надежным устройством, обеспечивающим впрыск горючего.

Преимуществом пьезофорсунки является быстрота срабатывания, которая в четыре раза превышает быстроту электромагнитного клапана. Из этого следует осуществимость многократного впрыска горючего в период одного цикла, а также безошибочная дозировка впрыскиваемого горючего.

Форсунки Вся операция происходит благодаря использованию пьезоэффекта в руководстве форсункой, который был основан на изменении показателей длины пьезокристалла под воздействием напряжения. Вся конструкция пьезоэлектрической форсунки состоит из пьезоэлемента, переключающего клапана, толкателя, а также иглы, которые умещаются в корпусе. Пьезофорсунка приводится в работу по такому же принципу как и электрогидравлическая, а именно по гидравлическому. В связи с высоким давлением горючего, игла, находящаяся на исходной позиции, посажена на седло.

Во время подачи электрического сигнала на пьезоэлемент, производится увеличение его длины, при этом это позволяет пьезоэлементу толкать усилие непосредственно на поршень толкателя. В этот момент, переключающий клапан приходит в открытое состояние и топливо проходит в сливную магистраль. При этом падает давление, которое находится выше иглы. При этом, за счет давления в нижней части игла идет вверх и происходит впрыск горючего. Как правило, количество впрыскиваемого топлива может определяться длительностью воздействия на пьезоэлемент, а также уровнем давления горючего в топливной рампе.

2. Принцип работы форсунки инжектора

Для того, чтобы разобраться в принципе работы форсунки, нужно в общем понять работу всей системы впрыска топлива. Итак, данная система производит подачу горючего в цилиндр двигателя либо во впускной коллектор по принципу прямого впрыска благодаря форсунке, или как принято называть еще, инжектора. Исходя из этого, все автомобили, которые комплектуются такой системой, получают название инжекторных.

Классифицирование инжекторного впрыска проводится в зависимости от того, какой принцип работы инжектора, а также по месту его установки и суммарному количеству инжекторов. Как правило, центральный впрыск топлива осуществляется по такому принципу: во всеобщий впускной трубопровод, с помощью форсунки впрыскивается топливо на все цилиндры двигателя.

Форсунка Форсунку, как мы уже упоминали, принято устанавливать именно перед дроссельной заслонкой, в том месте, где должен находиться карбюратор. Она показывает низкое сопротивление обмотки электромагнита (до 4-5 Ом). Как же распределяется впрыск? С помощью отдельных форсунок происходит впрыск топлива во впускные трубопроводы каждого имеющегося цилиндра. Они занимают место у основания впускных трубопроводов (как правило, у корпуса головки блока цилиндров) и отличаются довольно-таки высоким сопротивлением обмоток электромагнитов (до 12-16 Ом). Он может быть и меньшим, но при условии наличия дополнительного блока сопротивлений.

Как известно, большинство современных автомобилей снабжаются системой именно распределенного впрыска топлива. Как мы уже говорили, она работает по принципу, что отдельная форсунка отвечает за свой цилиндр. Важно знать, что каждая система распределенного впрыска топлива делится на четыре разных типа:

1. Одновременный

2. Попарно-параллельный

3. Фазированный

4. Прямой

Форсунка Теперь о каждом поподробнее. Одновременный тип характеризируется подачей горючего от всех форсунок системы одновременно во все цилиндры. Что ж, название говорит само за себя. Попарно-параллельный тип впрыска подразумевает парное открытие форсунок, при котором, одна открывается непосредственно пред циклом впуска, а вторая — перед циклом впуска. Главной отличительностью этого типа является применение попарно-параллельный принцип открытия форсунок в момент запуска двигателя, или же в период аварийного режима неисправности датчика положения распредвала. В период эксплуатации автомобиля, то есть во время движения, в работу включается фазированный впрыск топлива. Это тип впрыска. При котором каждый инжектор открывается перед тактом впуска. Наконец, прямой тип впрыска происходит непосредственно в камеру сгорания.

Некоторые автомобили новейшего поколения могут похвастаться подачей топлива непосредственно в камеру сгорания (это и есть непосредственный впрыск). Отличительной чертой форсунок таких двигателей является наличие высокого рабочего напряжения электромагнита, которое достигает до 100 В. Маркировки форсунок отражают фабричную, или торговую, марку либо название, а также каталожный номер, или наименование и номер серии.

Как правило, горючее подается к форсунке под определенным давлением, которое зависит от режима работы движка. Принцип действия инжектора предполагает использование сигналов микроконтроллера, который в свое время получает данные от датчиков. Поступившие на электромагнит электрические импульсы, которые исходят от блока управления, заставляют работать игольчатый клапан, который открывает и закрывает канал форсунки. Все количество топлива которое распыляется зависит от длительности импульса, которая задается непосредственно блоком управления. Если говорить о форме и направлении распыляемого факела очень важны при смесеобразовании и определяются количеством и расположением распылительных отверстий.

Форсунки Как правило, если топливо впрыскивается во всеобщий трубопровод с помощью одной форсунки, то это называется системой моновпрыска. Такая система на сегодня не пользуется особым спросом среди автомобилестроителей. Большинство автопроизводств предпочитают использовать сразу две форсунки в системе впрыска.

Как ни крути, но как и любая другая система, инжекторная ситсема имеет и свои недостатки, среди которых достаточно высокая цена на узлы инжектора, низкая уровень ремонтопригодности, высокие запросы по поводу состава и качества горючего, крайняя необходимость использования специального оборудования для диагностики каких-либо поломок, и, конечно же, довольно высокие ценовые показатели стоимости ремонта.

3. Как устроена форсунка инжектора

А теперь давайте рассмотрим конструкцию форсунки, из чего же она состоит. Каждому автолюбителю известно, что подача топлива в форсунках происходит преимущественно сверху вниз. Если говорить в общих чертах, можно сказать, что форсунка состоит из одного, реже двух каналов. Как правило, по первому к выходу подходит распыляемая жидкость, а по второму проходят жидкость, пар, газ, который служит для распыления первой жидкости. Как показывает практика, чистая и качественная форсунка способна дать конусообразный распыл, а факел получается непрерывный и ровный.

Форсунка Если детализировать построение форсунки, можно сказать, что она, в первую очередь состоит из корпуса. В верхней части корпуса можно отыскать так называемый гидравлический разъем, который, в свою очередь, закрепляется к топливной рампе. Благодаря наличию насоса и обратного клапана в рампе непрерывно поддерживается установленное давление горючего. Известно, что форсунка прикрепляется к топливной рампе посредством специального зажимного устройства.

Нижнюю часть форсунки занимает распылительная пластина с отверстиями для впрыскивания топлива. Для того, чтобы обеспечить герметичность соединения сверху и снизу находятся специальные уплотнительные кольца. С одной стороны форсунки находится электрический разъем, который используется для управления соленоидом форсунки. Весь основной механизм находится внутри форсунки и состоит из фильтрующей сетки, электромагнитной обмотки, седлом клапана, пружины, игольчатого клапана с якорем соленоида и запорным сферическим элементом, а также распылительной пластины. Сопло принято считать самым важным элементом форсунки.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Что такое инжектор, зачем он нужен и как устроен?

Первые инжекторы появились в автомобильной индустрии в далеком 1951 году, благодаря компании Bosch, а затем и Mercedes. Тем не менее, широкое распространение инжекторы получили несколько десятков лет спустя, вытеснив карбюраторы. Многие автомобилисты (особенно начинающие) задавались вопросом, что такое инжектор и зачем он нужен. В данной статье подробно рассмотрен принцип работы устройства и назначение.

Инжектор: что это, как работает, для чего нужен?

Инжектор (форсунок) – часть системы подачи топлива, если говорить грубо. Основной принцип работы заключается в принудительной подаче топлива (жидкого или газообразного) в цилиндр.

 

двигатель с инжектором

Существует два вида в зависимости от места установки и основного принципа работы:

  • Моновпрыск (центральный впрыск) – состоит из одной форсунки, которая подает топливо во все цилиндры.
  • Распределённый впрыск – состоит из множества форсунок, каждая из которых подает топливо только в один из цилиндров. Распределенный впрыск может быть:
  1. Одновременным, при этом происходит синхронная подача топлива во все цилиндры.
  2. Прямым, то есть непосредственно в камеру. Для двигателей с таким типом подачи особо важным является качество применяемого топлива.
  3. Попарно-параллельным, при котором одна из форсунок открывается перед началом подачи топлива, а вторая после.
  4. Фазированным – каждая форсунка открывается непосредственно перед началом впрыска топлива.

Преимущества и недостатки инжектора

Множество автолюбителей задумывается, особенно при выборе автомобиля, в чем заключаются преимущества инжектора:

Первое – подача топлива в камеру сгорания, где происходит смешивание с воздухом, происходит с помощью форсунки. Это позволяет дозировать порцию бензина на одно впрыскивание. За счет этого у транспортного средства значительно увеличивается мощность (на 7–10%), а главное снижается расход топлива.

Система впрыска очень чувствительна к изменениям нагрузки, и поэтому быстро реагирует на ее изменения количеством подачи бензина. Немаловажным преимуществом является то, что в холодное время года транспортное средство практически не нужно «прогревать». Также инжектор незначительно повышает экологичность выхлопных газов.

Теперь перейдем к недостаткам. Во-первых, автоматизированость инжекторной системы не всегда является преимуществом. При внезапном выходе из строя, привести систему в работу самостоятельно без помощи специалиста невозможно.

Кроме того, инжектор очень требователен к выбору топлива, особенно если вы хотите, чтобы транспортное средство прослужило как можно дольше. При поломках большинство деталей являются неремонтопригодными и требуют полной замены.

В случае ДТП риск воспламенения более высок, из-за подачи топлива под определённым давлением (в случае повреждения контроллера впрыска).

Внутреннее устройство инжектора и принцип его работы

Чтобы разобраться в принципе работы инжекторного двигателя, сперва нужно понять его строение.

  1. ЭБУ (электронный блок питания) – управляет работой всей системы инжекторного двигателя на основании полученных данных (из внешней среды и непосредственно от параметров работы двигателя). Содержит систему диагностики неисправности инжектора, передавая сигнал датчику «Check engine» на панели приборов.
  2. Регулятор давления. В норме давление в форсунках должно быть постоянным, этот регулятор отвечает за постоянство этой величины.
  3. Форсунки – непосредственно подают топливо в цилиндры (электромагнитные, электрогидравлические и пьезоэлектрические).
  4. Бензонасос – под давлением подает топливо в форсунки, что снижает риск образования воздушных пробок.
  5. Датчики – необходимы для слаженной работы всей системы. В инжекторе установлено несколько видов:
  • Датчик детонации – расположен в самих цилиндрах, при детонации по нему проходят вибрации. В виде свободного тока передает информацию на ЭБУ.
  • ДПДЗ – реагирует увеличением датчика или его падением, при смене поворотного угла заслонки дросселя.
  • Датчик фаз сообщается с блоком управления и с цилиндром. Благодаря этому, блок управления подает необходимое напряжение в цилиндр при зажигании, и совершает управление тактами.
  • Датчик массового расхода воздуха состоит из двух платиновых нитей (первая свободно обдувается потоками воздуха, а вторая герметично изолирована). Блок управления подсчитывает температуру и массу воздуха, за счет разницы температуры и сопротивления на двух нитях.
  • ДПКВ (положения коленчатого вала), или датчик Холла, позволяет определять положение коленчатого вала. Основной принцип работы в том, что зубчатое колесо, расположенное на валу двигателя, вращается вокруг магнита. При искажении магнитного поля датчик создает импульсы внутри катушки и передает их в блок управления. В соответствии с полученными импульсами ЭБУ определяет положение коленвала.

 

принцип работы инжекторной системы

Все форсунки соединены в единую систему, которая называется топливной рампой. С помощью бензонасоса за счет излишнего давления внутри системы топливо подается в систему. После чего открывается клапан, и топливо из форсунки поступает в цилиндр (чем дольше открыт клапан, тем больше топлива подается и, соответственно, обороты будут выше). Количество поступающего топлива непосредственно зависит от количества воздуха, поступающего в цилиндр.

принцип работы форсунки

Благодаря ресурсам интернет-сети можно наглядно увидеть принцип работы инжекторного двигателя:

Режимы работы

Инжекторный двигатель способен работать в 2 режимах.

  1. Холодного пуска. Во время запуска топливо оседает на стенках впускных труб и значительно меньше испаряется. Вследствие этого, топливная смесь незначительно утрачивает свои способности. Для устранения негативного эффекта необходима дополнительная подача топлива при запуске, до достижения топливом необходимой температуры, благодаря чему достигаются нужные обороты холостого хода.
  2. Частичной или полной нагрузки. Максимальной мощности двигатель достигает в момент полного открытия дроссельной заслонки. При повышении оборотов (при быстром открытии заслонки) способность топлива к испарению снижается. Во избежание этого и достижения нужных оборотов происходит дополнительная подача топлива.

Частые поломки и ремонт инжектора

Первой из возможных поломок могут быть проблемы с подачей топлива в инжектор. Первым делом нужно проверить датчик уровня бензина, если датчик исправен – значит проблема в бензонасосе. При засорении входного отверстия подачи топлива его необходимо просто прочистить. В случае если чистка не увенчалась успехом – поломан бензонасос, и его необходимо заменить.

Для замены лучше обратиться на СТО, так как при неправильной установке бензонасоса вместе с топливом он начнет всасывать воздух.

Увеличение расхода топлива чаще всего происходит при засорении форсунок. При этом они не смогут подавать необходимый объем топлива, и система начнет это компенсировать увеличением частоты или объема впрыска топлива. Кроме того, длительность разгона транспортного средства увеличится, а мощность значительно снизится.

Временное исчезновение холостого хода в основном происходит при нарушении герметичности внутри системы, вследствие чего в нее поступает воздух.

Двигатель начинает троить при остановке работы одного из цилиндров. С данной проблемой можно столкнуться при полном засорении форсунки, когда она не способна подавать топливо в цилиндр. Чаще всего это происходит при использовании некачественного топлива.

При поломке датчика фаз, форсунки начинают работать асинхронно, при этом топливо в цилиндры поступает абсолютно бесконтрольно. Будут наблюдаться перебои в работе двигателя и значительная утрата мощности.

Поломка датчика положения дроссельной заслонки проявляется в изменении оборотов при фиксированной педали газа, или в снижении оборотов при выжатой педали. При этом в двигатель поступает чрезмерно большое количество топлива.

Для того, чтобы избежать значительных поломок следует выбирать качественное топливо (во избежание чрезмерного загрязнения) и следить за исправностью работы инжектора.

Индикатор «Check engine» не всегда будет загораться, свидетельствуя о поломках, или вовсе может давать ложные показания. Поэтому нельзя всегда полагаться на датчик, а если вы заметили «странное поведение» транспортного средства – лучше сразу обратиться на СТО.

Вконтакте

Facebook

Twitter

Google+

Одноклассники

Мой мир

Устройство инжектора и принцип работы инжектора на автомобилях

На сегодняшний день инжекторный (или, говоря по-научному, впрысковый) двигатель практически полностью заменил устаревшие карбюраторные двигатели. Инжекторный двигатель существенно улучшает эксплуатационные и мощностные показатели автомобиля (динамика разгона, экологические характеристики, расход топлива).

Содержание статьи:

Инжекторные системы подачи топлива имеют перед карбюраторными следующие основные преимущества:

  • Точное дозирование топлива и, следовательно, более экономный его расход;
  • Снижение токсичности выхлопных газов. Достигается за счет оптимальности топливно-воздушной смеси и применения датчиков параметров выхлопных газов;
  • Увеличение мощности двигателя примерно на 7-10% за счет улучшения наполнения цилиндров, оптимальной установки угла опережения зажигания, соответствующего рабочему режиму двигателя;
  • Улучшение динамических свойств автомобиля. Система впрыска незамедлительно реагирует на любые изменения нагрузки, корректируя параметры топливно-воздушной смеси;
  • Легкость пуска независимо от погодных условий.

Виды инжекторных систем

Первые инжекторы, которые массово начали использовать на бензиновых моторах все еще были механическими, но у них уже начал появляться некоторые электрические элементы, способствовавшие лучшей работе мотора.

Современная же инжекторная система включает в себя большое количество электронных элементов, а вся работа системы контролируется контроллером, он же электронный блок управления.

Всего существует 3 типа инжекторных систем, различающихся по типу подачи топлива:

  1. Центральная;
  2. Распределенная;
  3. Непосредственная.

Центральная (моновпрыск) инжекторная система

Центральная инжекторная система сейчас уже является устаревшей. Суть ее в том, что топливо впрыскивается в одном месте – на входе во впускной коллектор, где оно смешивается с воздухом и распределяется по цилиндрам. В данном случае, ее работа очень схожа с карбюратором, с единственной лишь разницей, что топливо подается под давлением. Это обеспечивает его распыление и более лучшее смешивание с воздухом. Но ряд факторов мог повлиять на равномерную наполняемость цилиндров.

Центральная система отличалась простотой конструкции и быстрым реагированием на изменение рабочих параметров силовой установки. Но полноценно выполнять свои функции она не могла Из-за разности наполнения цилиндров не удавалось добиться нужного сгорания топлива в цилиндрах.

Распределенная (мультивпрыск) инжекторная система

Распределенная система – на данный момент самая оптимальная и используется на множестве автомобилей. У этого инжектора топливо подается отдельно для каждого цилиндра, хоть и впрыскивается оно тоже во впускной коллектор. Чтобы обеспечить раздельную подачу, элементы, которыми подается топливо, установлены рядом с головкой блока, и бензин подается в зону работы клапанов.

Благодаря такой конструкции, удается добиться соблюдения пропорций топливовоздушной смеси для обеспечения нужного горения. Автомобили с такой системой являются более экономичными, но при этом выход мощности – больше, да и окружающую среду они загрязняют меньше.

К недостаткам распределенной системы относится более сложная конструкция и чувствительность к качеству топлива.

Система непосредственного впрыска

Система непосредственного впрыска – разновидность распределенной и на данный момент самая совершенная. Она отличается тем, что топливо впрыскивается непосредственно в цилиндры, где уже и происходит смешивание его с воздухом. Эта система по принципу работы очень схожа с дизельной. Она позволяет еще больше снизить потребление бензина и обеспечивает больший выход мощности, но она очень сложная по конструкции и очень требовательна к качеству бензина.

Виды электронных форсунок

Существует классификация электронных форсунок, основывающихся на способе впрыска топлива. Выделяют такие три разновидности:

  • Электромагнитная. Зачастую характерна для бензиновых ДВС (и с прямым впрыском тоже). Конструкцию нельзя назвать очень сложной, а основными составляющими её частями выступают клапан с иголкой (электромагнитный), сопло. Контроль за работой указанной форсунки выполняется с помощью ЭБУ, обеспечивающего на обмотке клапана напряжение в наиболее подходящий для этого момент.
  • Электрогидравлическая. По большей части используют на дизельных движках. Являет собой электромагнитный клапан, дополненный камерой управления, а также сливным и впускным дросселями. Рабочий принцип этой разновидности форсунок основывается на участии давления самой топливной смеси в любой момент работы. За деятельностью электрогидравлической форсунки следит ЭБУ, именно он отправляет рабочие сигналы электромагнитному клапану.
  • Пьезоэлектрическая. Считается наиболее удачным устройством среди всех представленных, но может работать только на дизельных агрегатах с системой впрыска Common Rail. Основное преимущество этого типа — быстрота реакции, что гарантирует многократную подачу топлива за один полный цикл. В основе работы пьезоэлемента — гидравлический принцип действия (как и в предыдущем варианте), предусматривающий срабатывание поршня толкателя за счёт увеличения длины пъезоэлемента под воздействием электрического сигнала ЭБУ. Количество подаваемого за один раз топлива определяется продолжительностью такого воздействия и давлением топливной смеси в топливной рампе.

Принцип работы инжектора

Принцип работы инжектора на автомобилях можно условно поделить на 2 части — механическую составляющую и электронную.

К механической части инжектора относится:
  • топливный бак;
  • электрический бензонасос;
  • фильтр очистки бензина;
  • топливопроводы высокого давления;
  • топливная рампа;
  • форсунки;
  • дроссельный узел;
  • воздушный фильтр.

Конечно, это не полный список составных частей. В систему могут быть включены дополнительные элементы, выполняющие те или иные функции, все зависит от конструктивного исполнения силового агрегата и системы питания. Но указанные элементы являются основными для любого двигателя с инжектором распределенного впрыска.

Бак является емкостью для бензина, где он хранится и подается в систему. Электробензонасос располагается в баке, то есть забор топлива производится непосредственно им, причем этот элемент обеспечивает подачу топлива под давлением.

Далее в систему установлен топливный фильтр, обеспечивающий очистку бензина от сторонних примесей. Поскольку бензин находится под давлением, то передвигается он по топливопроводу высокого давления.

Для предотвращения превышения давления, в систему входит регулятор давления. От фильтра, через него по топливопроводам бензин движется в топливную рампу, соединенную со всеми форсунками. Сами же форсунки устанавливаются во впускном коллекторе, недалеко от клапанных узлов цилиндров.

Современная форсунка – электромагнитная, в ее основе лежит соленоид. При подаче электрического импульса, который поступает от ЭБУ, в обмотке образуется магнитное поле, воздействующее на сердечник, заставляя его переместиться, преодолев усилие пружины, и открыть канал подачи. А поскольку бензин подается в форсунку под давлением, то через открывшийся канал и распылитель бензин поступает в коллектор.

С другой стороны через воздушный фильтр в систему засасывается воздух. В патрубке, по котором движется воздух, установлен дроссельный узел с заслонкой. Именно на эту заслонку и воздействует водитель, нажимая на педаль акселератора. При этом он просто регулирует количество воздуха, подаваемого в цилиндры, а вот на дозировку топлива водитель вообще никакого воздействия не имеет.

Основным элементом электронной части является электронный блок, состоящий из контроллера и блока памяти. В конструкцию также входит большое количество датчиков, на основе показаний которых ЭБУ выполняет управление системой.

Для своей работы ЭБУ использует показания датчиков:

  • Лямбда-зонд, устанавливается в выпускной системе авто, определяет остатки несгоревшего воздуха в выхлопных газах;
  • Датчик массового расхода воздуха (ДМРВ), расположен в корпусе воздушного фильтрующего элемента, определяет количество проходящего через дроссельный узел воздуха при всасывании его цилиндрами;
  • Датчик положения дроссельной заслонки (ДПДЗ), установлен в дроссельном узле, подает сигнал о положении педали акселератора;
  • Датчик температуры силовой установки, располагается возле термостата, регулирует состав смеси в зависимости от температуры мотора;
  • Датчик положения коленчатого вала (ДПКВ), установлен возле шкива коленчатого вала;
  • Датчик детонации, расположен на блоке цилиндров;
  • Датчик скорости, установлен на коробке передач;
  • Датчик фаз,предназначен для определения углового положения распредвала, установлен в головке блока.

Элекробензонасос заполняет всю систему топливом. Контролер получает показания от всех датчиков, сравнивает их с данными, занесенными в блок памяти. При несовпадении показаний, он корректирует работу системы питания двигателя так, чтобы добиться максимального совпадения получаемых данных с занесенными в блок памяти.

На основе данных от датчиков, контролером высчитывается время открытия форсунок, чтобы обеспечить оптимальное количество подаваемого бензина для создания топливовоздушной смеси в необходимой пропорции.

При поломке какого-то из датчиков, контролер переходит в аварийный режим. То есть, он берет усредненное значение показаний неисправного датчика и использует их для работы. При этом возможно изменение функционирование мотора – увеличивается расход, падает мощность, появляются перебои в работы. Но это не касается ДПКВ, при его поломке, двигатель функционировать не может.

Преимущества инжектора и его недостатки

Если бы в этой системе не было преимуществ, инжекторы не получили бы столь широкое распространение. Надежность инжектора многие могут оспорить, ведь автомобилисты нередко сталкиваются с проблемами и неизлечимыми болезнями системы. Тем не менее, в технологии намного больше плюсов, которые привлекают покупателей и дарят определенные выгоды в поездке.

+ Преимущества— Недостатки
реальное понижение расхода топлива — инжектор может экономить, благодаря интеллектуальному управлению подачей топлива;чистка форсунок — если вы заливаете не слишком качественный бензин или не меняете вовремя фильтры топлива, форсунки будут забиваться и перестанут распылять бензин;
полное сгорание бензина — при правильных настройках инжектор обеспечивает полное сгорание топлива и определенную интенсивность поездки;прошивка «мозгов» в нужных режимах — на старых машинах иногда получается достичь невероятных результатов от перепрошивки, ведь технологии движутся вперед;
более выразительная динамика двигателя — водителю не приходится долгое время ожидать реакции при нажатии педали газа;замена бортового компьютера на более функциональный вариант ЭБУ для вашей модели автомобиля с подходящими настройками;
возможность смены прошивки — с помощью простой процедуры чип-тюнинга можно полностью изменить параметры авто;регулярная смена фильтров, как воздушного, так и топливного, с целью обеспечения нормальной работы инжектора;
технологичность и современность — машина с инжектором зачастую выбрасывает в атмосферу значительно меньше вредных веществ;использование качественного топлива в соответствии с предписанными производителем нормами и подходящим октановым числом;
устойчивая работа в любых условиях — для хорошей работы инжектора не требуется ручное управление заслонкой воздуха, двигатель хорошо заводится в мороз.регулярный сервис, своевременное обращение внимания на определенные недостатки работы автомобиля.

Несмотря на то, что инжектор дороже в обслуживании и более прихотлив к качеству бензина, его надежность и возможность широкой настройки параметров опережает на сотни шагов вперед карбюратор. В конце концов, за определенный пробег два типа мотора могут выйти одинаково в цене, только карбюратору нужно будет чаще уделять внимание, а инжектор сделать один раз и надолго.

И напоследок представляем вашему вниманию видео для более полного понимания принципа работы инжектора.

устройство, неисправности, чистка и проверка

Топливная форсунка (ТФ), или инжектор, относится к деталям топливной системы впрыска. Она управляет дозированием и подачей ГСМ с его последующим разбрызгиванием в камере сгорания и соединением с воздухом в единую смесь.

ТФ выступают в роли главных исполнительных деталей, относящихся к системе впрыска. Благодаря им происходит разделение топлива на мельчайшие частицы путем разбрызгивания и его поступление в двигатель. Форсунки для любого типа моторов выполняют одинаковое назначение, однако различаются конструкционно и по принципу действия.

Топливные форсункиТопливные форсунки

Данный вид изделий отличается индивидуальным изготовлением под конкретный тип силового агрегата. Иначе говоря, универсальной модели этого устройства не существует, поэтому переставлять их с бензинового мотора на дизельный нельзя. В качестве исключения можно привести пример гидромеханических моделей от BOSCH, устанавливаемых на механические системы, работающие на непрерывном впрыске. Они находят широкое применение для различных силовых агрегатов в качестве составного элемента системы «K-Jetronic», хотя и имеют несколько модификаций, не связанных между собой.

Расположение и принцип работы

Схематично форсунка – это электромагнитный клапан, управляемый программно. Она обеспечивает подачу топлива в цилиндры в установленных дозах, причем установленная система впрыска определяет вид используемых изделий.

Как устроена форсункаКак устроена форсунка

Топливо в форсунку подается под давлением. При этом блок управления мотором посылает электроимпульсы на электромагнит инжектора, которые активируют работу игольчатого клапана, отвечающего за состояние канала (открыто/закрыто). Количество поступающего топлива определяется длительностью поступающего импульса, влияющего на промежуток нахождения игольчатого клапана в открытом состоянии.

Расположение форсунок зависит от конкретного типа системы впрыска:

• Центральный – размещаются перед дроссельной заслонкой во впускном трубопроводе.

• Распределенный –всем цилиндрам соответствует отдельная форсунка, размещаемая у основания впускного трубопровода и осуществляющая впрыск ГСМ.

• Непосредственный –форсунки находятся вверху стенок цилиндра, что обеспечивает впрыск напрямую в камеру сгорания.

Форсунки для бензиновых моторов

Бензиновые моторы комплектуются следующими типами инжекторов:

• Одноточечные – подают топливо, расположены до дроссельной заслонки.

• Многоточечные – за подачу ГСМ на цилиндры отвечают несколько форсунок, располагаемых перед трубопроводами.

ТФ обеспечивают подачу бензина в камеру сгорания силовой установки, при этом конструкция таких деталей неразборная и не предусматривает ремонт. По стоимости они дешевле тех, что устанавливаются на дизельных моторах.

грязные форсункигрязные форсунки

Как деталь, обеспечивающая нормальную работу топливной системы автомобиля, форсунки часто выходят из строя по причине загрязнения расположенных на них фильтрующих элементов продуктами сгорания. Подобные отложения перекрывают распылительные каналы, что нарушает работу ключевого элемента – игольчатого клапана и прерывает поступление топлива в камеру сгорания.

Форсунки для дизельных моторов

Правильную работу топливной системы дизельных двигателей обеспечивают два типа устанавливаемых на них форсунок:

• Электромагнитные, за работу которых отвечает специальный клапан, регулирующий поднятие и опускание иглы.

• Пьезоэлектрические, работающие за счет гидравлики.

Правильная настройка форсунок, а также степень их износа влияет на работу дизельного мотора, выдаваемую им мощность и объем расходуемого горючего.

Поломку или неисправность работы дизельной форсунки автовладелец может заметить по ряду признаков:

• Увеличился расход топлива при нормальной тяге.

• Машина не хочет двигаться с места и дымит.

• У авто вибрирует двигатель.

Проблемы и неисправности форсунок двигателя

Для поддержания нормальной работы топливной системы необходимо проводить периодическую чистку форсунок. По мнению специалистов, процедура должна выполняться каждые 20-30 тыс. км пробега, но на практике необходимость в таких работах возникает уже после 10-15 тыс. км. пробега. Это связано с некачественным топливом, плохим состоянием дорог и не всегда правильным уходом за машиной.

К самым актуальным проблемам, преследующими форсунки любого типа, относится появление на стенках деталей отложений, являющихся следствием использования низкокачественного топлива. Результатом является появление загрязнений в системе подачи горючей жидкости и возникновение перебоев в работе, потеря мощности мотором, чрезмерный расход ГСМ.

Причинами, влияющими на работу форсунок, могут быть:

• Чрезмерное содержание серы в ГСМ.

• Коррозия металлических элементов.

• Износ.

• Засорение фильтров.

• Неверная установка.

• Воздействие высоких температур.

• Проникновение влаги и воды.

Надвигающиеся неполадки можно определить по ряду признаков:

• Появление незапланированных сбоев при старте двигателя.

• Существенное увеличение расхода топлива в сравнении с номинальными значениями.

• Появление выхлопов черного цвета.

• Появление сбоев, нарушающих ритмичность работы мотора на холостом ходу.

Способы чистки форсунок

Для решения вышеназванных проблем требуется периодическая промывка топливных форсунок. Для устранения загрязнений применяют ультразвуковую очистку, используют особую жидкость, выполняя процедуру вручную, либо добавляют специальные присадки, позволяющие очистить форсунки без разбора мотора.

Заливка промывки в бензобак

Наиболее простой и щадящий способ очистки загрязненных форсунок. Принцип действия добавляемого состава заключается в постоянном растворении с его помощью имеющихся отложений в системе впрыска, а также частичное предотвращение их появления в будущем.

промывка форсунки с помощью присадокпромывка форсунки с помощью присадок

Такая методика хороша для новых машин либо автомобилей с небольшим пробегом. В этом случае добавление промывки в бак с топливом выступает профилактикой, позволяющей поддерживать силовую установку и топливную систему машины в чистоте. Для машин с серьезными загрязнениями топливной системы данный способ не подходит, а в ряде случаев может нанести вред, усугубив имеющиеся проблемы. При большом количестве загрязнений смытые отложения попадают в форсунки и забивают их еще больше.

Чистка без снятия с двигателя

Промывка ТФ без разбора двигателя выполняется путем подключения промывочной установки непосредственно к мотору. Такой подход позволяет отмыть скопившуюся грязь на форсунках и топливной рампе. Двигатель на полчаса запускается на холостом ходу, подача смеси происходит под давлением.

промывка форсунок с помощью аппарата промывка форсунок с помощью аппарата

Данный способ не используется на сильно изношенных двигателях, а также не подходит для автомобилей с установленной системой КЕ-Jetronik.

Чистка со снятием форсунок

При сильных загрязнениях двигатель разбирают на специальном стенде, снимают форсунки и выполняют их индивидуальную очистку. Подобные манипуляции дополнительно позволяют определить наличие неисправностей в работе форсунок с их последующей заменой.

снятие и промывка снятие и промывка

Чистка ультразвуком

Очистка форсунок выполняется в ультразвуковой ванне для предварительно снятых деталей. Вариант подходит при сильных загрязнениях, не убирающихся очистителем.
Операции по очистке форсунок без снятия с двигателя в среднем обходятся владельцу автомобиля в 15-20 у.е. Стоимость диагностики с последующей чистой для одной форсунки в ультразвуке либо на стенде составляет около 4-6 у.е. Комплексные работы по промывке и замене отдельных деталей позволяют обеспечить бесперебойную работу топливной системе еще на полгода, добавив 10-15 тыс. км. пробега.

устразвуковая чистка топливных форсунокустразвуковая чистка топливных форсунок

Форсунка как работает — на работающем двигателе, на дизеле, на инжекторе

 

Форсунка в автомобиле — это специальное устройство, которое отвечает за непосредственное распыление горючего вещества внутри системы сгорания. В настоящее время есть некоторое количество модифицированных устройств такого механизма.

Типы форсунок

На сегодняшний день форсунки различают по трем видам: электромагнитные, электрогидравлические и пьезоэлектрические.

Электромагнитные форсунки

Этот вид форсунок обычно ставят на бензиновый двигатель. Тем самым такой вид обладает самой простой и понятным механизмом работы, состоящей из клапанов электромагнита, а еще обладает системой распылителя, со входящими в нее другими деталями.

Электромагнитные форсунки

Механизм работы такого типа использования форсунок весьма простой. Напряжение подается в систему обмотки, который тем самым возбуждает клапан, которое происходит в определенное время, обычно для этого идет установка программы, благодаря которой происходит принцип работы.

Напряжение создается в нужном поле, затягивающимся с помощью грузика иголки из клапана, в этом случае высвобождается сопло. В результате таких действий происходит впрыск определенного количества горючего вещества. По мере того как снижается напряжение, то иголка начинает возвращаться в первоначальное состояние.

Тип гидравлических электронных

Механизм типовых деталей пролегает в применении большого количества давления в системе подачи горючего вещества. В первом варианте клапана электромагнита закрыты, а иголка по большей степени прижимается к седлу того места, где находится система управления камерой.

 

гидравлические электронные форсунки

В итоге сигнал, который подается от этой системы в механизм, начинает запускать клапан и открывается дроссель слива. А действует это за счет того, что горючее вытекает из системы камеры в магистральный механизм слива. Дроссельная система впускового механизма начинает мешать ему, чтобы температуру давления смогла выгорать и в системе впуска магистрали смогло быстро ровнять свое давление.

В результате этого процесса снижается давление в поршне и ослабевает усилие прижимной системы, а так как давление на игле не изменяется, то в такой момент начинает происходить тот самый впрыск или как, можно сказать, подача автомобиля.

Электрический тип

Такой тип использования форсунок работает за счет механизированной системы гидравлики. Вначале иголка помещается в седло за счет воздействия на него большого давления. Когда начинает поступать сигнал типа электрического на элемент пьезоэлектрического механизма, за счет толчков на поршневую систему толкателя, который тем самым начинает давить на поршневой механизм клапана переключения. Это тем самым приводит к тому, что клапан переключения начинает открываться и благодаря этому горючее переходит в магистральную систему слива, давление наверху иголки начинает понижаться. Благодаря тому, что температура внизу не меняется игла приподнимается, в процессе этого обычно происходит подача горючего в систему.

электромеханические форсунки

Принцип работы

Процесс впрыска топлива в топливную систему берет на себя ответветственность подачи горючего вещества в цилиндр или коллектор впуска двигателя. Чтобы разобрать весь процесс работы форсунки, то для начала следует рассмотреть механизм системы подачи топлива. Таким образом, процесс управления подачи горючего вещества немаловажная часть, тем самым обеспечивая работу двигательной системы. Инжекторная система форсунок устанавливается перед тем как расположить заслонку дросселя, именно на том месте старой модели установлен карбюратор.

Распределительный процесс системы впрыска топлива присущ большому количеству новеньких автомобилей.

Существуют несколько типов форсунок, принцип работы которых имеет свои особенности:

  • Одновременные — подается горючее за счет осуществления на все цилиндры, что характерно равными показателями расходного количества топлива на все инжекторы.
  • Попарно-параллельные — открывается канал, который выполняет работу парно, тем самым одна форсунка осуществляет систему подачи топлива перед впуском, а другая наоборот.
  • Фазированные — инжекторы по автоматической системе открываются, обеспечивают таким образом, лучшую четкость впрыска.
  • Прямые — топливо подается напрямую за счет камеры сгорания, что является наилучшим вариантом продуктивность.

 

Форсунка — Википедия

Типичная топливная электромеханическая форсунка в виде электромагнитного клапана с тянущим приводом

Форсу́нка (от англ. force-pump — нагнетательный насос) — устройство с одним или несколькими калиброванными отверстиями[1] для распыления (пульверизации) каких-либо жидкостей (реже порошка) под давлением, главным образом, жидкого топлива при подаче его в топки паровых котлов, цилиндры двигателей внутреннего сгорания[2] с целью достичь более совершенного его сгорания[3]. Форсунки обеспечивают равномерность подачи топлива и более полное его сгорание[1]. Управляется электромагнитным клапаном или механически.

Используется для распыления топлива (мазута, дизельного топлива, бензина), например в инжекторных системах подачи топлива, осуществляют распыление за счёт высокого давления топлива (несколько атмосфер для подачи бензина или газа при распределённом впрыске в коллектор и сотни — тысячи атмосфер для непосредственного впрыска бензина или дизтоплива)[4].

В форсунках для мойки автомобилей используется давление 10—20 МПа (100—200 бар)[5].

Первая работоспособная форсунка была предложена Александром Ильичом Шпаковским в 1864 году. Затем большую роль сыграла форсунка, созданная в 1880 году инженером Владимиром Григорьевичем Шуховым[6]. Форсунка Шухова благодаря технологичности, простоте конструкции и легкости изготовления получила широкое распространение[7].

Применение форсунок[8][9][10]:

  • сжигание жидкого топлива[1]
  • увлажнение воздуха в вентиляционных устройствах[1]
  • борьба с пылью
  • покрытие материалов
  • очистка и охлаждение газов
  • противопожарная защита
  • очистка и мойка
  • проведение тестов на герметичность

Виды форсунок[11][1]:

  • механические;
  • электромагнитные
  • пьезоэлектрические
  • гидравлические

По принципу распыливания жидкости форсунки делятся на механические (жидкость с высокой скоростью вытекает в газовую среду), пневматические или паровые (жидкость с малой скоростью подаётся в движущийся поток газа), а также комбинированного типа, так называемые воздушно-механические или паро-механические и с предварительной газификацией[7]/ Различают такие форсунки: струйные, вихревые и центробежные[1].

Принцип действия и область применения[править | править код]

Механические форсунки условно делятся на прямого действия и центробежные. Форсунки прямого действия применяются, главным образом, в двигателях внутреннего сгорания. Топливо в них подается со значительно бо́льшим давлением (иногда свыше 100 МПа), чем в центробежных. В центробежных форсунках топливо под давлением (в основном 0,6—6 МПа) закручивается в каналах или вихревой камере и выбрасывается через сопло. Форсунки центробежного типа различаются конструкцией, существуют форсунки с обратным сливом жидкого топлива, с регулируемой площадью закручивающих отверстий, многосопельные, ротационные и другие. Для лучшего диспергирования обычно создаются высокие скорости движения жидкости, что ведёт к уменьшению диаметра выходных отверстий сопел и тангенциальных отверстий вихревых камер, поэтому механические форсунки требовательны к чистоте топлива[7].

В пневматических (паровых) форсунках диспергирование в основном производится газовой струей. Имеют более громоздкие коммуникации, сложное хозяйство, но менее требовательны к обработке деталей и чистоте топлива[7].

Пневматические форсунки высокого напора бывают прямоструйными и центробежными. Давление газа составляет как правило 0,3—0,7 МПа, иногда и более. Часто используется пар давлением 0,3—1,2 МПа, иногда до 2,5 МПа. Среди прямоструйных форсунок выделяют так называемые эжекционные форсунки, широко применяемые в энергетике и промышленных печах. Форсунки центробежного типа применяются в камерах сгорания газовых турбин[7].

Форсунки имеют разнообразные конструкции. Конструкция форсунок зависит от целей, для которых они предназначены[1].

Наиболее важным элементом форсунки является сопло. Как правило, форсунка состоит из одного, реже двух каналов. По первому на выход подаётся распыляемая жидкость, по второму жидкость, пар, газ, который служит для распыления первой жидкости. Чистая, качественная форсунка даёт конусообразный распыл, а факел получается ровный и непрерывный[12].

Основные характеристики[13][14][15]:

  • давление начала впрыска (регулируется, для механических форсунок)
  • динамический диапазон работы и минимальная цикловая подача топлива
  • время открытия и закрытия (задержка) форсунки
  • угол конуса распыливания и дальнобойность факела топлива
  • величина распыляемых частиц и распределения топлива в факеле

Устройство форсунки автомобиля «КрАЗ-255»[16]:

  • Корпус.
  • Гайка распылителя.
  • Распылитель.
  • Игла.
  • Уплотнительные шайбы.
  • Штифт.
  • Шток.
  • Тарелка.
  • Пружина.
  • Регулировочный винт.
  • Гайка.
  • Контргайка.
  • Колпачок.
  • Штуцер.
  • Втулка.
  • Фильтр.
  • Уплотнитель штуцера.

Принцип действия форсунки автомобиля «КрАЗ-255»:

Топливо поступает под давлением в кольцевую камеру, образованную между корпусом распылителя и иглой. За счёт давления топлива игла поднимается и сжимает пружину, при этом открываются сопла распылителя, и через них топливо впрыскивается в цилиндр. При снижении давления игла опускается за счёт пружины и собственной массы, закрывает сопла, прекращая впрыск топлива (его давление зависит от сжатия пружины регулировочным винтом).

Число Воббе

  1. 1 2 3 4 5 6 7 Форсунка // Большая политехническая энциклопедия : более 7000 словарных статей / [авт.-сост. Рязанцев В. Д.]. — М.: Мир и образование, 2011. — 700 с. — ISBN 978-5-94666-621-3.
  2. ↑ форсунка // Большой толковый словарь русского языка / Российская академия наук, Институт лингвистических исследований ; [гл. ред. С.А. Кузнецов]. — СПб.: Норинт, 1998.
  3. ↑ форсунка // Толковый словарь русского языка : в 4 т. / гл. ред. Б. М. Волин, Д. Н. Ушаков (т. 2—4) ; сост. Г. О. Винокур, Б. А. Ларин, С. И. Ожегов, Б. В. Томашевский, Д. Н. Ушаков ; под ред. Д. Н. Ушакова. — М. : Государственное издательство иностранных и национальных словарей, 1940. — Т. 4 : С — Ящурный. — Стб. 1105.
  4. ↑ Форсунка двигателя внутреннего сгорания (неопр.). www.auto-infosite.ru. Дата обращения 8 декабря 2017.
  5. ↑ Форсунки для АВД моек высокого давления (рус.). ХимПрофи. Дата обращения 8 декабря 2017.
  6. ↑ Распыливание жидкостей / В. А. Бородин, Ю. Ф. Дитякин, Л. А. Клячко, В. И. Ягодкин. — М.: Машиностроение, 1967. — 263 с.
  7. 1 2 3 4 5 Распыливание жидкости форсунками / Л. А. Витман, Б. Д. Кацнельсон, И. И. Палеев ; Под ред. С. С. Кутателадзе. — М.: Госэнергоиздат, 1962. — С. 9—12. — 264 с.
  8. Spraying Systems Co. Системы распыления для охлаждения и кондиционирования газов от компании Spraying Systems Co. (неопр.). www.sprayrus.ru. Дата обращения 8 декабря 2017.
  9. ↑ Системы и способы охлаждения заготовки (неопр.). steeltimes.ru. Дата обращения 8 декабря 2017.
  10. ↑ Форсунки и распылительные системы Lechler (рус.). kraftlog.ru. Дата обращения 8 декабря 2017.
  11. ↑ Что такое форсунка и какие они бывают? (рус.). Дата обращения 8 декабря 2017.
  12. ↑ Виды и конструкция форсунок систем впрыска (неопр.). avtodisel.ru. Дата обращения 8 декабря 2017.
  13. ↑ Характеристики форсунок системы Common Rail — Denso (рус.). www.denso-am.ru. Дата обращения 8 декабря 2017.
  14. ↑ Как выбрать газовые форсунки? Какие газовые форсунки лучше купить? | ГБОшник (рус.)  (неопр.) ?. gboshnik.ru. Дата обращения 8 декабря 2017.
  15. Ilya Serb — www.insar.me. Топливные форсунки: типы, теория, чистка (рус.). www.ej9.ru. Дата обращения 8 декабря 2017.
  16. (авто-эксперт), Евгений. Устройство форсунки дизельного двигателя (рус.) (4 февраля 2016). Дата обращения 8 декабря 2017.

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *