Как работает акпп на акпп: Устройство и принцип работы автоматической коробки передач

Устройство и принцип работы автоматической коробки передач

 

В 21 веке. люди стремятся не напрягаться лишний раз. Поэтому все больше водителей переходят на коробки-автомат и выбирают машины, которые требуют от них минимум участия. Да и производители авто медленно, но уверенно роботизируют автомобили, так что, чистая механика скоро будет только для ценителей.

Несмотря на все прелести, у АКПП есть один большой недостаток (собственно, как и у “механики”) — они сложно устроены. Мало кто из автолюбителей отважится самостоятельно перебирать коробку. Еще меньше тех, кто решится самостоятельно ремонтировать коробку-автомат.

Из чего же, из чего же сделаны коробки-автомат

Итак, классическая АКПП состоит из:

  • гидротрансформатора. Состоит из насосного и турбинного колес, реактора;
  • масляного насоса;
  • планетарного редуктора. В конструкции шестерни, наборы муфт и фрикционы;
  • электронной системы управления — датчики, гидроблок (соленоиды + золотники-распределители), рычаг селектора.

Устройство АКПП

Это основные элементы и они всегда одинаковые.

Гидротрансформатор — в АКПП выполняет функцию сцепления: передает и увеличивает крутящий момент от двигателя к планетарному редуктору и кратковременно отсоединяет трансмиссию от двигателя, чтобы переключилась передача.

Гидротрансформатор, схема

Насосное колесо соединено с коленвалом двигателя, а турбинное колесо — с планетарным редуктором через вал. Между колесами расположен реактор. Колеса и реактор оснащены лопастями определенной формы  Все элементы гидротрансформатора собраны в одном корпусе, который заполнен жидкостью ATF.

 

Гидротрансформатор

Планетарный редуктор. Состоит из нескольких планетарных передач.

Каждая планетарная передача состоит из солнечной шестерни, водила с шестернями-сателлитами и коронной шестерни.

Планетарная передача

Любой элемент планетарной передачи может вращаться или блокироваться (как мы писали выше, вращение передается от гидротрансформатора).

Схема работы планетарной передачи

Чтобы переключить определенную передачу (первую, вторую, заднюю и т.д.), нужно заблокировать один или несколько элементов планетарки. Для этого используются фрикционные муфты и тормоза. Подвижность муфт и тормозов регулируется через поршни давлением рабочей жидкости ATF.

 

Фрикционные диски (муфта)

Расположение фрикционов в АКПП

Электронная система управления. Точнее, электрогидравлическая, т.к. для непосредственного переключения передач (включения/выключения муфт и тормозных лент) и блокировки ГДТ используется гидравлика, а для регулировки потоков рабочей жидкости — электроника.

Система состоит из:

  • гидроблока. Представляет собой металлическую плиту с множеством каналов, в которых установлены электромагнитные клапаны (соленоиды) и датчики. По сути, гидроблок управляет работой АКПП на основании данных, полученных от ЭБУ. Пропускает жидкость по каналам к механическим элементам коробки — муфтам и тормозам;

 

Гидроблок

  • датчиков — частоты вращения на входе и выходе коробки, температуры жидкости, положения рычага селектора, положения педали газа. Также блок управления АКПП использует данные с блока управления двигателем;
  • рычага селектора;
  • ЭБУ — считывает данные датчиков и определяет логику переключения передач в соответствии с программой.

Принцип работы АКПП

Когда водитель заводит авто, вращается коленвал двигателя. От коленвала приводится масляный насос, который создает и поддерживает давление масла в гидравлической системе коробки. Насос подает жидкость на насосное колесо гидротрансформатора, оно начинает вращаться.

Лопасти насосного колеса перебрасывают жидкость на турбинное колесо, тоже заставляя его вращаться. Чтобы масло не попадала обратно, между колесами установлен неподвижный реактор с лопастями особой конфигурации — он корректирует направление и плотность потока масла, синхронизируя оба колеса. Когда скорости вращения турбинного и насосного колес выравниваются, реактор начинает вращаться вместе с ними. Этот момент называется точкой сцепления.

 

Как работает ГДТ

Дальше в работу включается ЭБУ, гидроблок и планетарный редуктор.

Водитель переводит рычаг селектора в определенное положение. Информацию считывает соответствующий датчик, передает в ЭБУ и она запускает программу, соответствующую выбранному режиму. В этот момент определенные элементы планетарного редуктора вращаются, а другие зафиксированы. За фиксацию элементов планетарного редуктора отвечает гидроблок: ATF под давлением подается по определенным каналам и прижимает поршни фрикционов.

 

Как работает поршень фрикционов

Как же АКПП переключает скорости?

Как мы уже писали выше, для включения/выключения муфт и тормозных лент в АКПП используется гидравлика.

Электронная система управления определяет момент переключения передач по скорости и нагрузке на двигатель.

Каждому диапазону скорости (уровню давления масла) в гидроблоке соответствует определенный канал.

Когда водитель давит на газ, датчики считывают скорость и нагрузку на двигатель и передают данные в ЭБУ. На основании полученных данных ЭБУ запускает программу, которая соответствует выбранному режиму: определяет положение шестерен и направление их вращения, рассчитывает давление жидкости, отдает сигнал на определенный соленоид (клапан) и в гидроблоке открывается канал, соответствующий скорости.

По каналу жидкость поступает к поршням муфт и тормозных лент, которые блокируют шестерни планетарного редуктора в нужной конфигурации. Так включается/выключается нужная передача.

 

Как работает АКПП

Переключение передач зависит и от характера набора скорости: при плавном ускорении передачи повышаются последовательно, при резком разгоне сначала включится пониженная передача. Это также связано с давлением: при плавном нажатии на педаль газа давление растет постепенно и клапан открывается постепенно. При резком же разгоне давление повышается резко, сильно давит на клапан и не дает ему открыться сразу.

Электроника существенно расширила возможности автоматических коробок. К классическим преимуществам гидромеханических АКПП добавились новые:  разнообразие режимов, способность самодиагностики, адаптивность под стиль вождения, возможность выбирать режим вручную, экономия топлива.

Диагностика и ремонт МКПП и АКПП

Записаться на СТО

Как работает АКПП | Устройство автоматической коробки передач

СКИДКА 20% НА РЕМОНТ! ФИЛИАЛ «ВОСТОК»!

Записаться на БЕСПЛАТНУЮ диагностику АКПП

записаться

  • Эвакуатор бесплатно
  • Гарантия до 2-х лет
  • Ремонт до 2-х дней
  • Бесплатная диагностика

86. 000

90.000

85.000

92.000

77.000

77.000

97.000

85.000

92.000

79.000

79.000

79.000

85.000

90.000

84.000

92.000

95.000

82. 000

98.000

94.000

90.000

88.000

88.000

86.000

89.000

84.000

Запишитесь на БЕСПЛАТНУЮ диагностику АКПП

Просто напишите свое имя и номер телефона и нажмите «Записаться». Мы Вам перезвоним и запишем Ваше авто на диагностику в удобное для Вас время. Это не рекламный трюк. Это действительно БЕСПЛАТНО! (Наш адрес Москва, ул.Подольских Курсантов д.22)

Не секрет, что трансмиссия оказывает основное влияние на динамику автомобиля. Производители постоянно испытывают и внедряют новейшие технологии в наши автомобили. Тем не менее большинство автомобилистов предпочитают эксплуатировать автомобили с механической коробкой передач, так как считают, что головной боли последняя приносит гораздо меньше.

Впрочем скорее всего многие просто опасаются автоматической коробки передач, т.к не знают устройства акпп, принцип действия, и не подозревают как просто работает АКПП.

Как правильно ездить на вариаторе, советы по эксплуатации

Проблемы DSG — симптомы и разновидности

Самая надежная и лучшая АКПП | Рейтинг по показателю надежности

Прогрев АКПП зимой | Как правильно прогревать коробку? + Видео

S-Tronic Audi коробка передач, отзывы и характеристики

Коробка Powershift | Форд Фокус 3

Роботизированная коробка передач — что это?

Как пользоваться АКПП? Режимы работы | Управление

Акпп 722.9 Мерседес | Характеристики | Неисправности | Устройство | Отзывы

Лада Гранта с АКПП | Автоматическая коробка переключения передач Лада — Отзывы, Видео

Типичные неисправности АКПП | Причины поломки автомата | Симптомы

Масло для вариатора — какое лучше заливать в CVT?

Какое масло заливать в АКПП (автоматическую коробку передач)?

Замена масла в АКПП Шевроле Авео

Замена масла в АКПП Ford Fusion (Фьюжн) + Видео

Замена масла в АКПП (PowerShift) Форд Мондео

Замена масла в АКПП Пежо 308 и 307 (AL4)

Замена масла в АКПП Ниссан Альмера

Замена масла в АКПП Peugeot 206 (DP0, AL4)

Замена масла в АКПП Опель Инсигния своими руками

АКПП встает в аварийный режим: причины и способы их устранения

Толчки и рывки при включении АКПП – причины и пути исправления

Буксует АКПП | Устранение пробуксовки автоматической коробки передач

Пинки, рывки и недостатки АКПП U660E / U760E — перепрошивка

Ремонт АКПП DP0, AL4 (гидроблок) своими руками — советы, видео

Стук в АКПП — причины неисправности

Перегрев АКПП — симптомы и причины

Ремонт АКПП 01N | Переборка автомата Volkswagen Passat B5

Как заменить детали мехатроника (DSG 6) ремонт — подробный отчет

Датчик переключения передач АКПП | Принцип работы, возможные поломки и их устранение

Как работает автоматическая коробка передач?

Если вы похожи на большинство, то разбираться в тонкостях вашего автомобиля так же просто, как разбираться в продвинутой ядерной физике. Но именно так хотят производители автомобилей. Они проектируют ваш автомобиль, грузовик или внедорожник так, чтобы они оптимально работали сами по себе. Таким образом, если он работает правильно, вы даже не заметите, что происходит.

При этом полезно точно знать, как работают различные системы и компоненты вашего автомобиля, чтобы лучше понимать необходимость регулярного планового технического обслуживания. Возможно, ни одна другая система не является более важной для понимания, чем та, которая обеспечивает движение вашего автомобиля: ваша трансмиссия.

Ваш двигатель и ваша трансмиссия

Подождите минутку: разве двигатель автомобиля не обеспечивает его мощность? Да, но что-то должно быть способно распределять эту энергию по колесам и контролировать динамику движения вашего автомобиля, включая скорость, расход топлива и число оборотов в минуту. Это работа вашей передачи. Поскольку ваш двигатель генерирует крутящий момент (сила, которая создает вращение), ваша трансмиссия использует различные передаточные числа, которые регулируют энергию вращения для вращения колес. При включении передачи (или при остановке) должен быть какой-то механизм, который отключает трансмиссию от двигателя, чтобы двигатель мог продолжать вращаться. В противном случае ваш двигатель либо глохнет каждый раз, когда вы останавливаете автомобиль, либо вы не можете контролировать ускорение.

В механической коробке передач это достигается включением сцепления при каждом переключении передач. С автоматом переключение передач срабатывает за вас. Простота эксплуатации автоматических коробок передач делает их гораздо более привлекательными для водителей. Действительно, только около 10 процентов автомобилей на американском автомобильном рынке по-прежнему предлагают варианты с механической коробкой передач.

Что такое автоматическая коробка передач

Вам важно задать себе вопрос: «Как работает автоматическая коробка передач?» Просто потому, что большинство автомобилей имеют автоматические коробки передач. Вместо сцепления в автоматической коробке передач используется преобразователь крутящего момента. Это гидромуфта, в которой используется отдельный насос и турбина, вращающиеся в противоположных направлениях внутри самого преобразователя, что позволяет двигателю вращаться независимо от трансмиссии.

Вместо того, чтобы использовать разные наборы шестерен для блокировки и разблокировки выходных валов коробки передач, автоматическая коробка передач использует один набор шестерен для достижения различных передаточных чисел. Сложная гидравлическая система регулирует работу различных ремней и муфт, управляющих коробкой передач, а шестеренчатый насос прокачивает трансмиссионную жидкость. Затем регулятор регулирует движение клапанов переключения, которые подают гидравлические жидкости для включения различных передач. По мере того, как давление жидкости внутри регулятора увеличивается или уменьшается, он заставляет клапаны переключения закрывать и открывать различные контуры шестерен.

Понимание того, как работает ваш автомобиль, является важным компонентом его технического обслуживания. Тем не менее, простое понимание сложности вашей коробки передач может не означать знания того, как правильно ее обслуживать. При возникновении проблем с трансмиссией лучше доверить ремонт нашей команде сертифицированных специалистов ASE в Sun Auto Service. Вместе мы сможем обеспечить правильную работу вашего автомобиля.

Как работает автоматическая коробка передач | Искусство мужественности

Добро пожаловать обратно в Gearhead 101 — серию статей об основах работы автомобилей для начинающих автомобилистов.

Если вы следили за Gearhead 101, вы знаете, как работает автомобильный двигатель, как двигатель передает мощность, которую он вырабатывает, через трансмиссию, и как механическая коробка передач функционирует как своего рода распределительный щит между двигателем и трансмиссией. .

Но большинство людей в наши дни (по крайней мере, если вы живете в Соединенных Штатах) ездят на машинах с автоматической коробкой передач . Вы когда-нибудь задумывались, как ваш автомобиль может переключаться на соответствующую передачу без каких-либо действий, кроме нажатия на педаль газа или тормоз?

Ну, держись за задницу. Мы собираемся познакомить вас с одним из самых удивительных образцов механической (и гидродинамической) инженерии в истории человечества: автоматической коробкой передач.

(Серьезно, я не преувеличиваю: как только вы поймете, как работают автоматические коробки передач, вы будете поражены тем, что люди смогли придумать эту штуку без компьютеров.)

Время обзора: назначение коробки передач

Прежде чем мы углубимся во все тонкости работы автоматической коробки передач, давайте кратко рассмотрим, зачем транспортным средствам нужна коробка передач — любого типа — в первую очередь.

Как уже говорилось в нашем учебнике по работе автомобильного двигателя, двигатель вашего автомобиля создает мощность вращения. Чтобы двигать машину, нам нужно передать эту вращающую силу на колеса. Это то, что делает трансмиссия автомобиля, частью которой является трансмиссия.

Но вот проблема: двигатель может вращаться только в пределах определенной скорости, чтобы работать эффективно. Если он вращается слишком низко, вы не сможете заставить машину тронуться с места; если он вращается слишком быстро, двигатель может самоуничтожиться.

Нам нужен какой-то способ увеличить мощность, вырабатываемую двигателем, когда это необходимо (начало движения с места, подъем в гору и т. д.), а также уменьшить мощность, отправляемую двигателем, когда это не требуется. необходимо (спуск с горы, очень быстрая скорость, резкое торможение).

Войти в передачу.

Коробка передач обеспечивает оптимальную скорость вращения двигателя (ни слишком медленную, ни слишком быструю), одновременно обеспечивая колеса необходимой мощностью, необходимой для движения и остановки автомобиля, независимо от ситуации, в которой вы оказались. Он находится между двигателем и остальной частью трансмиссии и действует как распределительный щит автомобиля.

Ранее мы подробно рассказывали о том, как механические коробки передач достигают этого с помощью передаточных чисел. Соединяя шестерни разного размера друг с другом, вы можете увеличить количество мощности, передаваемой остальной части автомобиля, без существенного изменения скорости вращения двигателя. Если вы еще не поняли идею передаточных чисел, я рекомендую вам посмотреть видео, которое мы включили в прошлый раз, прежде чем двигаться дальше; ничто другое не будет иметь смысла, если вы не поймете эту концепцию.

С механической коробкой передач вы управляете включенными передачами, нажимая сцепление и переключая передачи на место.

В автоматической коробке передач блестящая инженерия определяет, какая передача включена, и вам не нужно делать ни черта, кроме как нажимать на педали газа или тормоза. Это автомобильная магия.

Детали автоматической коробки передач

Итак, к этому моменту у вас должно быть общее представление о назначении коробки передач: она обеспечивает оптимальную скорость вращения двигателя (ни слишком медленную, ни слишком быструю), одновременно обеспечивая работу колес. с нужным количеством энергии, чтобы двигаться и останавливать автомобиль, независимо от ситуации.

Рассмотрим детали, которые позволяют это сделать в случае с автоматической коробкой передач:

Картер коробки передач

В картере коробки передач находятся все части коробки передач. Он чем-то похож на колокольчик, поэтому его часто называют «кожухом колокола». Корпус трансмиссии обычно изготавливается из алюминия. Помимо защиты всех движущихся шестерен трансмиссии, кожух колокола на современных автомобилях имеет различные датчики, которые отслеживают входную скорость вращения двигателя и выходную скорость вращения остальной части автомобиля.

Гидротрансформатор

Вы никогда не задумывались, почему вы можете включить двигатель вашего автомобиля, но он не движется вперед? Ну, это потому, что поток мощности от двигателя к трансмиссии отключен. Это отключение позволяет двигателю продолжать работу, даже если остальная часть трансмиссии автомобиля не получает мощности. На механической коробке передач вы отключаете питание от двигателя к трансмиссии, выжимая сцепление.

Но как отключить питание двигателя от остальной части трансмиссии на автоматической коробке передач без сцепления?

Конечно, с гидротрансформатором.

Вот тут-то и начинается черная магия автоматических коробок передач (мы еще даже не дошли до планетарных передач).

Гидротрансформатор находится между двигателем и коробкой передач. Это нечто похожее на пончик, которое находится внутри большого отверстия колокола трансмиссии. Он выполняет две основные функции по передаче крутящего момента:

  1. Передает мощность от двигателя на первичный вал коробки передач
  2. Умножает выходной крутящий момент двигателя

Он выполняет эти две функции благодаря гидравлической мощности, обеспечиваемой трансмиссионной жидкостью внутри вашей коробки передач.

Чтобы понять, как это работает, нам нужно знать, как работают различные части гидротрансформатора.

Детали гидротрансформатора

В большинстве современных автомобилей гидротрансформатор состоит из четырех основных частей: 1) насоса, 2) статора, 3) турбины и 4) гидротрансформатора. схватить.

1. Насос (он же рабочее колесо). Насос выглядит как вентилятор. Он имеет множество лопастей, исходящих из его центра. Насос крепится непосредственно к корпусу гидротрансформатора, который, в свою очередь, крепится болтами непосредственно к маховику двигателя. Следовательно, насос вращается с той же скоростью, что и коленчатый вал двигателя. (Вы должны помнить об этом, когда мы рассмотрим, как работает гидротрансформатор.) Насос «качает» трансмиссионную жидкость наружу от центра к . . .

2. Турбина. Турбина находится внутри корпуса гидротрансформатора. Как и насос, он выглядит как вентилятор. Турбина соединяется непосредственно с входным валом коробки передач. Он не подключен к насосу, поэтому может двигаться с другой скоростью, чем насос. Это важный момент. Это то, что позволяет двигателю вращаться с другой скоростью, чем остальная часть трансмиссии.

Турбина может вращаться благодаря трансмиссионной жидкости, подаваемой насосом. Лопасти турбины сконструированы таким образом, что поступающая на них жидкость перемещается к центру турбины и обратно к насосу.

3. Статор (он же Реактор). Статор находится между насосом и турбиной. Это похоже на лопасть вентилятора или пропеллер самолета (вы видите здесь закономерность?). Статор делает две вещи: 1) более эффективно отправляет трансмиссионную жидкость из турбины обратно в насос и 2) увеличивает крутящий момент, поступающий от двигателя, чтобы помочь машине двигаться, но затем передает меньший крутящий момент, когда машина движется с хорошей скоростью. клип.

Это достигается благодаря умной инженерии. Во-первых, лопасти реактора сконструированы таким образом, что когда трансмиссионная жидкость, выходящая из турбины, попадает на лопасти статора, жидкость отклоняется в том же направлении, что и вращение насоса.

Во-вторых, статор соединен с неподвижным валом трансмиссии через обгонную муфту. Это означает, что статор может двигаться только в одном направлении. Это гарантирует, что жидкость из турбины будет направлена ​​в одном направлении. Статор начнет вращаться только тогда, когда скорость жидкости от турбины достигнет определенного уровня.

Эти два конструктивных элемента статора облегчают работу насоса и создают большее давление жидкости. Это, в свою очередь, создает усиленный крутящий момент на турбине, а поскольку турбина соединена с трансмиссией, больший крутящий момент может передаваться на трансмиссию и остальную часть автомобиля. Фух.

4. Муфта гидротрансформатора. Благодаря тому, как работает гидродинамика, мощность теряется, когда трансмиссионная жидкость проходит от насоса к турбине. Это приводит к тому, что турбина вращается с несколько меньшей скоростью, чем насос. Это не проблема, когда автомобиль начинает движение (на самом деле разница в скорости позволяет турбине передавать больший крутящий момент на трансмиссию), но когда он движется, эта разница приводит к некоторой неэффективности использования энергии.

Чтобы свести на нет эту потерю энергии, большинство современных гидротрансформаторов имеют муфту гидротрансформатора, соединенную с турбиной. Когда автомобиль достигает определенной скорости (обычно 45-50 миль в час), муфта гидротрансформатора включается и заставляет турбину вращаться с той же скоростью, что и насос. Компьютер контролирует, когда муфта гидротрансформатора включена.

Итак, это детали гидротрансформатора.

Давайте соберем все вместе и посмотрим, как будет выглядеть действие гидротрансформатора при переходе от полной остановки к крейсерской скорости:

Вы включаете автомобиль, и он работает на холостом ходу. Насос вращается с той же скоростью, что и двигатель, и подает трансмиссионную жидкость к турбине, но, поскольку двигатель вращается не очень быстро при полной остановке, турбина не вращается так быстро, поэтому она не может подавать. крутящий момент на трансмиссию.

Вы жмете на газ. Это заставляет двигатель вращаться быстрее, что приводит к более быстрому вращению насоса гидротрансформатора. Поскольку насос вращается быстрее, трансмиссионная жидкость движется от насоса достаточно быстро, чтобы турбина начала вращаться быстрее. Лопасти турбины направляют жидкость к статору. Статор еще не вращается, потому что скорость трансмиссионной жидкости недостаточно высока.

Но из-за конструкции лопастей статора, когда жидкость проходит через них, она отводит жидкость обратно к насосу в том же направлении, что и насос. Это позволяет насосу перекачивать жидкость обратно в турбину с более высокой скоростью и создает большее давление жидкости. Когда жидкость возвращается к турбине, она делает это с большим крутящим моментом, в результате чего турбина передает больший крутящий момент на трансмиссию. Автомобиль начинает двигаться вперед.

Снова и снова этот цикл продолжается по мере того, как ваша машина набирает скорость. Когда вы достигаете крейсерской скорости, трансмиссионная жидкость достигает давления, при котором лопасти реактора начинают вращаться. При вращении реактора крутящий момент уменьшается. В этот момент вам не нужен большой крутящий момент для движения автомобиля, потому что автомобиль движется с хорошей скоростью. Муфта гидротрансформатора включается и заставляет турбину вращаться с той же скоростью, что и насос и двигатель.

Итак, преобразователь крутящего момента — это то, что позволяет или предотвращает передачу мощности от двигателя к трансмиссии и умножает крутящий момент на трансмиссию, чтобы заставить автомобиль трогаться с мертвой точки. Пришло время взглянуть на части трансмиссии, которые позволяют автомобилю переключаться автоматически.

Планетарные передачи

По мере того, как ваш автомобиль достигает более высоких скоростей, ему требуется меньший крутящий момент, чтобы поддерживать движение автомобиля. Трансмиссии могут увеличивать или уменьшать крутящий момент, передаваемый на колеса автомобиля, благодаря передаточному числу. Чем меньше передаточное число, тем больше крутящий момент передается. Чем выше передаточное число, тем меньше крутящий момент.

На механической коробке передач для изменения передаточных чисел необходимо переключить рычаг переключения передач.

В автоматической коробке передач передаточные числа увеличиваются и уменьшаются автоматически. И это возможно благодаря хитроумной конструкции планетарной передачи.

Планетарная передача состоит из трех компонентов:

  1. Солнечная шестерня. Расположен в центре планетарного ряда.
  2. Планетарные шестерни/шестерни и их водила. Три или четыре шестерни меньшего размера, окружающие солнечную шестерню и находящиеся в постоянном зацеплении с солнечной шестерней. Планетарные шестерни (или шестерни) установлены и поддерживаются водилом. Каждая из планетарных шестерен вращается на отдельных валах, соединенных с водилой. Планетарные шестерни не только вращаются, но и вращаются вокруг солнечной шестерни.
  3. Зубчатый венец. Зубчатый венец является внешним зубчатым колесом и имеет внутренние зубья. Зубчатый венец окружает остальную часть набора шестерен, и его зубья находятся в постоянном зацеплении с планетарными шестернями.

Одинарный планетарный ряд обеспечивает передачу заднего хода и пять уровней передачи вперед. Все зависит от того, какой из трех компонентов зубчатой ​​передачи движется или остается неподвижным.

Давайте посмотрим на это в действии с различными компонентами, действующими как входная шестерня (шестерня, которая генерирует мощность), выходная шестерня (шестерня, которая получает мощность) или неподвижно.

Солнечная шестерня: входная шестерня / водило планетарной передачи: выходная шестерня / кольцевая шестерня: удерживается неподвижно

В этом сценарии солнечная шестерня является входной шестерней. Зубчатый венец не двигается. Когда солнечная шестерня движется, а зубчатый венец удерживается на месте, планетарные шестерни будут вращаться на собственных несущих валах и перемещаться внутри зубчатого венца, но в направлении, противоположном направлению солнечной шестерни. Это заставляет водило вращаться в том же направлении, что и солнечная шестерня. Таким образом, водила становится выходной шестерней.

Эта конфигурация создает низкое передаточное число, что означает, что входная шестерня (в данном случае солнечная шестерня) вращается быстрее, чем выходная шестерня (водило планетарной передачи). Но крутящий момент, создаваемый водилом планетарной передачи, намного больше, чем у солнечной шестерни.

Такая конфигурация используется, когда автомобиль только заводится.

Солнечная шестерня: неподвижна / Водило планетарной передачи: выходная шестерня / Кольцевая шестерня: входная шестерня

он передает мощность на систему передач). Поскольку солнечная шестерня удерживается, вращающиеся планетарные шестерни будут ходить вокруг солнечной шестерни и нести с собой водило планетарной передачи.

Водило планетарной передачи движется в том же направлении, что и зубчатый венец, и является выходной шестерней.

Эта конфигурация создает немного более высокое передаточное число, чем первая конфигурация. Но входная шестерня (коронная шестерня) по-прежнему вращается быстрее, чем выходная шестерня (водило планетарной передачи). Это приводит к тому, что планетарная передача передает больший крутящий момент или мощность на остальную часть трансмиссии. Эта конфигурация, вероятно, будет использоваться, когда ваша машина ускоряется после полной остановки или когда вы едете в гору.

Солнечная шестерня: входная шестерня / Водило планетарной передачи: выходная шестерня / Кольцевая шестерня: входная шестерня

В этом сценарии и солнечная шестерня, и коронная шестерня действуют как входные шестерни. То есть оба вращаются с одинаковой скоростью и в одном направлении. Это приводит к тому, что планетарные шестерни не вращаются на своих отдельных валах. Почему? Если зубчатый венец и солнечная шестерня являются входными элементами, внутренние зубья зубчатого венца будут пытаться вращать планетарные шестерни в одном направлении, в то время как внешние зубья солнечной шестерни будут пытаться вращать их в противоположном направлении. Так они фиксируются на месте. Весь узел (солнечная шестерня, водило планетарной передачи, зубчатый венец) движется вместе с одинаковой скоростью и передает одинаковую мощность. Когда вход и выход передают одинаковый крутящий момент, это называется прямым приводом.

Эта схема будет работать, когда вы едете со скоростью около 45-50 миль в час.

Солнечная шестерня: удерживается неподвижно / Водило планетарной передачи: входная шестерня / Кольцевая шестерня: выходная шестерня

система передач. Кольцевая шестерня теперь является выходной шестерней.

При вращении водила планетарные шестерни вынуждены ходить вокруг удерживаемой солнечной шестерни, что приводит в движение зубчатый венец быстрее. Один полный оборот водила планетарной передачи приводит к тому, что зубчатый венец совершает более одного полного оборота в одном и том же направлении. Это высокое передаточное число, обеспечивающее большую выходную скорость, но меньший крутящий момент. Эта схема также известна как «овердрайв».

Вы будете в этой конфигурации, когда едете по автостраде со скоростью 60+ миль в час.

Автоматическая коробка передач обычно имеет более одного планетарного ряда. Они работают вместе, чтобы создать несколько передаточных чисел.

Поскольку шестерни в планетарной системе передач находятся в постоянном зацеплении, переключение передач производится без включения или выключения шестерен, как в механической коробке передач.

Но как автоматическая коробка передач определяет, какие части планетарной системы передач должны работать как входная шестерня, как выходная шестерня или оставаться неподвижными, чтобы мы могли получить эти различные передаточные числа?

С помощью тормозных лент и муфт внутри трансмиссии.

Тормозные ленты и муфты

Тормозные ленты изготовлены из металла, футерованного органическим фрикционным материалом. Тормозные ленты могут затягиваться, чтобы удерживать кольцо или солнечную шестерню в неподвижном состоянии, или ослабляться, чтобы позволить им вращаться. Натяжение или ослабление тормозной ленты контролируется гидравлической системой.

Ряд муфт также соединяются с различными частями планетарной системы передач. Сцепления трансмиссии в автоматических коробках передач состоят из нескольких металлических и фрикционных дисков (поэтому их иногда называют «многодисковым сцеплением в сборе»). Когда диски прижимаются друг к другу, это приводит к включению сцепления. Муфта может привести к тому, что часть планетарной передачи станет входной шестерней, или она может стать неподвижной. Это просто зависит от того, как он связан с планетарной передачей. Включается сцепление или нет, определяется комбинацией механической, гидравлической и электрической конструкции. И все это происходит автоматически.

Теперь сложно понять, как различные муфты работают вместе, чтобы удерживать и приводить в движение различные компоненты. Слишком сложно, чтобы описать это в тексте. Это лучше всего понять визуально. Я настоятельно рекомендую просмотреть это видео, которое проведет вас через это:

Как работает автоматическая коробка передач

Как вы видите, внутри автоматической коробки передач много движущихся частей. В нем используется сочетание механической, гидравлической и электрической инженерии, чтобы обеспечить плавный переход от полной остановки до крейсерской скорости на шоссе.

Итак, давайте рассмотрим общую картину потока мощности в автоматической коробке передач.

Двигатель подает мощность на насос гидротрансформатора .

Насос передает мощность на турбину гидротрансформатора через трансмиссионную жидкость.

Турбина отправляет трансмиссионную жидкость обратно в насос через статор .

Статор умножает мощность трансмиссионной жидкости, позволяя насосу передавать больше мощности обратно на турбину. Внутри гидротрансформатора создается вихревое силовое вращение.

Турбина соединена с центральным валом, который соединяется с коробкой передач. Когда турбина вращается, вал вращается, передавая мощность на первый планетарный ряд трансмиссии.

В зависимости от того, какая многодисковая муфта или тормозная лента задействована в трансмиссии, мощность от гидротрансформатора будет вызывать солнечную шестерню , водило планетарной передачи или зубчатый венец планетарная система передач, чтобы двигаться или оставаться неподвижным.

В зависимости от того, какие части планетарной системы движутся или нет, определяет передаточное число . Независимо от того, какой у вас механизм планетарной передачи (солнечная шестерня действует как вход, водило планетарной передачи действует как выход, зубчатый венец неподвижен — см. выше), будет определять количество мощности, которую трансмиссия передает на остальную часть трансмиссии.

Так, в общих чертах, работает автоматическая коробка передач. Есть датчики и клапаны, которые регулируют и модифицируют вещи, но в этом суть.

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *