Как правильно посадка напряжения или просадка – Посадка напряжения ? (Страница 1) — Аварии, дефекты оборудования… — Советы бывалого релейщика

Содержание

Посадка напряжения - это... Что такое Посадка напряжения?



Строительный словарь.

  • Пороговый фибрилляционный ток ндп. Порог фибрилляционного тока
  • Последствия отказа

Смотреть что такое "Посадка напряжения" в других словарях:

  • посадка напряжения — Внезапное значительное снижение напряжения в системе электроснабжения. [ГОСТ 23875 88] EN voltage collapse sudden decrease in voltage leading to loss of voltage in the whole or a part of a power system NOTE – A cascading tripping of… …   Справочник технического переводчика

  • посадка напряжения — 3.1.26 посадка напряжения : Внезапное значительное снижение напряжения в системе электроснабжения. [ГОСТ 23875 88, пункт 24] Источник: СТО Газпром 2 2.3 141 2007: Энергохозяйство ОАО "Газпром". Термины и определения 24. Посадка… …   Словарь-справочник терминов нормативно-технической документации

  • Посадка напряжения — – внезапное значительное снижение напряжения в системе электроснабжения. ГОСТ 23875 88 …   Коммерческая электроэнергетика. Словарь-справочник

  • посадка — 3.55 посадка: Геометрическое соответствие деталей, включающее допуски на размеры деталей при их конструировании и сопряжении. Источник: ГОСТ Р 51365 99: Оборудование нефтепромысловое добычное устьевое. Общие технические условия …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ 23875-88: Качество электрической энергии. Термины и определения — Терминология ГОСТ 23875 88: Качество электрической энергии. Термины и определения оригинал документа: Facteur de distortion (d’une tension ou d’un courant alternatif non sinusoïdal) 55 Определения термина из разных документов: Facteur de… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 54130-2010: Качество электрической энергии. Термины и определения — Терминология ГОСТ Р 54130 2010: Качество электрической энергии. Термины и определения оригинал документа: Amplitude die schnelle VergroRerung der Spannung 87 Определения термина из разных документов: Amplitude die schnelle VergroRerung der… …   Словарь-справочник терминов нормативно-технической документации

  • СТО Газпром 2-2.3-141-2007: Энергохозяйство ОАО "Газпром". Термины и определения — Терминология СТО Газпром 2 2.3 141 2007: Энергохозяйство ОАО "Газпром". Термины и определения: 3.1.31 абонент энергоснабжающей организации : Потребитель электрической энергии (тепла), энергоустановки которого присоединены к сетям… …   Словарь-справочник терминов нормативно-технической документации

  • Требования — 5.2 Требования к вертикальной разметке 5.2.1 На поверхность столбиков, обращенную в сторону приближающихся транспортных средств, наносят вертикальную разметку по ГОСТ Р 51256 в виде полосы черного цвета (рисунки 9 и 10) и крепят световозвращатели …   Словарь-справочник терминов нормативно-технической документации

  • давление — 2.3 давление: Механическая величина, характеризующая интенсивность сил, действующих на внутреннюю (внутреннее давление среды) или наружную (внешнее давление воды, грунта) поверхность трубопровода по нормали к ней. Источник: СТО Газпром 2 2.1 318… …   Словарь-справочник терминов нормативно-технической документации

  • Ил-76 — …   Википедия

Термины и определения некачественного электропитания. Часть 1.

Современный цивилизованный мир во всех сферах использует разработки в области электроники: компьютеры, ноутбуки, промышленная автоматика, системы «умного дома», центры обработки данных и т.д. – всё это, в отличие от старых асинхронных электродвигателей и лампочек накаливания требует повышенного качества потребляемой электроэнергии. В то же время известно, что электросеть далеко не всегда способна обеспечить качественное электропитание. В данной статье рассматриваются термины, описывающие те или иные отклонения в электропитании от нормы.

В стандарте IEEE 1159-1995 «IEEE Recommended Practice for Monitoring Electrical Power Quality» (Рекомендации по мониторингу качества электросети) института инженеров по электротехнике и электронике (Institute of Electrical and Electronics Engineers, IEEE) выделено несколько видов искажений сети, наиболее распространенные из которых следующие:

1.Переходные процессы.

2.Перебои.

3.Провалы напряжения/ просадки напряжения.

4.Всплески напряжения/ перенапряжения.

5.Флуктуации напряжения.

6.Вариации частоты.

Переходные процессы

Импульсные переходные процессы (электростатический разряд)

Причины возникновения:

  • Гроза: как случай прямого попадания, так и разряды в небе, влияющие на электросеть посредством электромагнитного поля
  • Коммутация индуктивных нагрузок
  • Срабатывание защитной автоматики
  • Неисправность заземления

Ход процесса:

  • Импульсный переходный процесс представляет собой резкий скачок напряжения в несколько киловольт (длительность скачка составляет наносекунды, общая длительность помехи – десятки наносекунд)

Опасность:

  • Электростатический разряд не наносит вреда человеку (не считая неприятного треска и искры), но «убивает» любую микросхему

Меры предупреждения и подавления:

  • Поддержание влажности в помещении в диапазоне 40-60%
  • Антистатическое заземление (браслеты, коврики, обувь)
  • Общее заземление
  • Устройства подавления всплесков:
    • на основе металооксидных варисторов, подавляющих всплески любой продолжительности)
    • тепловая защита
    • газовые разрядники
    • тиристоры

Устройства подавления всплесков – неотъемлемая часть источников бесперебойного питания (ИБП), часто их можно встретить и в блоках питания компьютеров.

Колебательные переходные процессы

Причины возникновения:

  • Отключение индуктивной или емкостной нагрузки (электродвигатель или конденсаторная батарея)

Ход процесса:

  • Колебательный переходный процесс представляет собой наложение затухающего колебательного процесса на синусоиду переменного тока. При этом наблюдаются частые пики и спады напряжения. Длительность искажения составляет десятки миллисекунд.

Опасность:

  • Колебательный переходный процесс оказывает значительное негативное влияние на работу электронного оборудования.
  • Низкочастотный колебательный переходный процесс существенно искажает синусоиду и, как правило, повышает общий уровень напряжения, что может привести к срабатыванию защиты по перенапряжению.

Меры предупреждения и подавления:

  • Установка дросселей, понижающий амплитуду колебания (ими оснащены, например, частотники электродвигателей)
  • Подключение батарей конденсаторов через статические выключатели, которые отключают батарею в момент прохождения синусоиды через ноль. Возникающие искажения при этом на порядок меньше, т.к. их амплитуда зависит от текущего значения напряжения в сети)

Перебой электропитания

Причины возникновения:

  • Повреждение (разрыв) электросети
  • Отказ электрооборудования
  • Срабатывание защиты

Ход процесса:

  • Полное отсутствие напряжения в сети в течение некоторого времени (от миллисекунд до нескольких суток при крупной аварии)

Опасность:

  • Даже кратковременный перебой электропитания приводит к перезагрузке компьютерного оборудования с потерей несохраненных данных, рестарту электродвигателя или компрессора. При этом не исключается их повреждение.
  • Перебои особенно опасны в промышленности, медицине и в области ЦОД: в промышленности есть множество безостановочных процессов, в медицине перебои могут нарушить ход операции, а в случае ЦОД – это простой бизнеса компании.

Меры предупреждения и подавления:

  • Наиболее надежный способ решения проблем с перебоем напряжения – применение ИБП, одной из составляющих которых являются аккумуляторные батареи. В случае перебоя питание нагрузки мгновенно производится именно от них (длительность переключения – менее полупериода, т.е. менее 10мс).
  • Проблему продолжительных перебоев решить за счет аккумуляторных батарей практически невозможно из-за больших габаритов и дороговизны такого решения. Поэтому, для критически важных процессов применяются источники гарантированного электроснабжения. Наиболее распространенные из них – дизель-генераторные установки (ДГУ).

Пониженное напряжение (провал и просадка)

Причины возникновения:

  • Включение в сеть мощного потребителя (электродвигателя, компрессора и т.д.)
  • Временное явление при устранении других неполадок сети

Ход процесса:

  • Временное падение амплитуды напряжения. Провал от просадки отличается длительностью неполадки: при провале счет идет на периоды синусоиды (десятые доли секунды), а при просадке пониженное напряжение наблюдается не менее нескольких секунд.

Опасность:

  • При серьезном снижении напряжение возможно отключение электрооборудования, перезагрузка компьютера и др.

Меры предупреждения и подавления:

  • По возможности – подключение нагрузок с высоким пусковым током по выделенной линии
  • Понижение пусковых явлений, например, за счет переключения конфигураций звезда/треугольник
  • Применение электронных устройств таких, как инверторы (частотники)
  • В случае просадок поможет использование ИБП

Повышенное напряжение (всплеск, перенапряжение)

Причины возникновения:

  • Схемы заземления с высоким импедансом
  • Отключение мощного потребителя
  • Пробой фаз в трехфазной сети
  • Неравномерность потребления электроэнергии

Ход процесса:

  • Временное повышение амплитуды напряжения. Всплеск от перенапряжения отличается длительностью: всплеск, аналогично провалу, является более короткой неполадкой (десятые доли секунды), а перенапряжение, аналогично просадке, длится не менее нескольких секунд.

Опасность:

  • Ошибки в данных
  • Мерцание освещения
  • Износ электрических контактов и изоляции
  • Повреждение полупроводниковых приборов
  • Повышение силы тока и, как следствие, срабатывание автоматических выключателей

Меры предупреждения и подавления:

  • Лучшей защитой является использование ИБП

Флуктуации напряжения

Причины возникновения:

  • Наличие в сети нагрузки с нестабильным потреблением тока

Ход процесса:

  • Систематическое либо периодическое небольшое отклонение напряжения от нормы (±5%)

Опасность:

  • Мерцание ламп накаливания
  • Снижение срока службы чувствительного электрооборудования

Меры предупреждения и подавления:

  • Отключение нагрузки с нестабильным потреблением тока
  • Использование ИБП

Вариации частоты

Причины возникновения:

  • Как правило, в электросети не бывает вариаций частоты. Данное явление гораздо чаще возникает при питании от резервных автономных источников питания, например, ДГУ.

Ход процесса:

  • Частота питания отклоняется от стандартных 50Гц в большую или меньшую сторону.

Опасность:

  • Наибольшее влияние оказывается на электродвигатели: изменение частоты вращения ротора. ИТ-оборудование практически не страдает.
  • Снижение срока службы чувствительного электрооборудования

Меры предупреждения и подавления:

  • Диагностика соответствующих источников питания
  • Использование ИБП

 

 

 

Автор: Хомутский Юрий

Посадка напряжения

Посадка напряжения - внезапное значительное снижение напряжения в системе электроснабжения [1].

Физически процесс, происходящий в системе при любых изменениях напряжения, одинаков и отличается прежде всего нормируемыми значениями характеристик (рис.1).

 

1 Медленные изменения, 2

Резкое изменение (заброс, выброс)

напряжения, 3 Флуктуации напряжения, 4 Диапазон допустимых изменений напряжения, 5 Глубина посадки напряжения,

6 Остаточное напряжение при посадке,

7-длительность посадки напряжения

 

        Например, согласно [2] посадка напряжения характеризуется:

        - глубиной посадки напряжения 5, определяемой как разность между номинальным значением напряжения и наименьшим значением напряжения во время его посадки;

        - остаточным напряжением при посадке 6;

        - длительностью посадки напряжения 7, определяемой как разность между конечным и начальным моментами времени выхода напряжения за нижнюю границу диапазона допустимых значений.

        Таким образом, посадка напряжения представляет собой частный случай провала напряжения. Посадки напряжения связаны с задержками в отключении коротких замыканий и отказами оборудования и относятся к компетенции энергоснабжающей компании.

        Понятия, обозначенные терминами посадка напряжения и провал напряжения, объединяет так же то, что после прекращения существования причины, вызвавшей эти процессы, происходит восстановление напряжения.

        Для записи процесса изменения напряжения при его посадке используют различного рода осциллографы.

 

Литература

2. Жак КУРО. Современные технологии повышения качества электроэнергии при ее передаче и распределении// Новости электротехники, №2(32) 2005//материал помещен по адресу:http://www.news.elteh.ru/arh/2005/32/03.php.

 

 

причины возникновения и защита от них

Обеспечение качества электроэнергии, отвечающего нормам ГОСТ 13109-97, является основной задачей при электроснабжении потребителей. Отклонения от номинальных значений, в частности, провалы напряжения, отрицательно отражаются на работе электрооборудования и могут стать причиной серьезного материального ущерба. В данной статье мы ответим на ключевые вопросы, связанные с кратковременным понижением напряжения, рассмотрим природу этого явления и причины его проявления.

Что такое провал напряжения?

В соответствии с определением, приведенным в ГОСТ 13109-97, под данным явлением подразумевается внезапное понижение амплитуды напряжения с последующим динамическим восстановлением питания в пределах номинального значения. Пример осцилограммы падения напряжения представлен ниже.

Осцилограмма провала напряженияОсцилограмма провала напряжения

Характеризующие показатели

Для описания понижения амплитуды напряжения используются следующие показатели:

δUп – глубина провалов, для вычисления применяется следующая формула: δUп = (Uном — Uмин) / Uном , где Uном – номинальная величина амплитуды питающего напряжения, Uмин – значение остаточного напряжения;

∆t – длительность, данная величина определяется как разность между моментом восстановления напряжения к номинальному значению tк и временным параметром фиксации начальной стадии отклонения tн. Формула расчета длительности будет иметь следующий вид: ∆t = tк — tн

Fп – частотность повторений (частота возникновения провалов), приведем формулу, используемую для расчета этого параметра: Fп= 100% * m * (δUп* ∆tп) / M, где числитель дроби описывает количество отклонений, определенной глубины и длительности, произошедших в течение измеряемого периода. Знаменатель – общее количество отклонений, обнаруженных в ходе измерений.

Основные показатели провала напряженияОсновные показатели провала напряжения

Приведенные выше показатели используются для определения качества электроэнергии в той или иной системе электроснабжения.

Причины появления провалов

Несмотря на то, что проявления отклонения напряжения имеют случайный характер, вероятность этого события зависит от вполне определенных причин. К таковым относятся:

  1. Пусковые токи.
  2. Колебания напряжения при коротком замыкании.
  3. Внезапное значительное увеличение нагрузки.
  4. Другие причины сетевого происхождения.

Рассмотрим подробно каждый из перечисленных факторов.

Токи включения

Образование токов включения, например, при старте мощных электродвигателей или другого устройства — самая распространенная причина подобных провалов. На рисунке ниже представлен пример, когда мощный двигатель подключен к единому вводу питания с другими потребителями.

Образование провала напряжения при запуске электродвигателяОбразование провала напряжения при запуске электродвигателя

Обозначения:

  • Т1 – Понижающий трансформатор.
  • RZ – Полное сопротивление на вводе питания.
  • RZ1-RZ3 — Полные сопротивления цепей потребителей.
  • М – мощный асинхронный двигатель.

С включением двигателя М образуется пусковой ток Iпуск, величина которого превышает номинальный по значению (Iпуск > Iном). Это приводит к образованию зоны провала c существенным понижением напряжения в цепи RZ1 и незначительным отклонениям на главном распределителе остальных цепей потребителей.

Короткие замыкания

Возникновение в электросети токов коротких замыканий также вызывают отклонения напряжения от нормы. Рассмотрим, как протекает и определяется процесс в сетях с различным классом напряжения.

КЗ в сетях с низким напряжением.

Пример такой ситуации проиллюстрирован на рисунке ниже. В данном случае на величину тока КЗ влияют полные сопротивления RZ и RZ2.

Образование провала вследствие КЗ в цепи потребителя 2Образование провала вследствие КЗ в цепи потребителя 2

Исходя из этого, можно сказать, что чем больше будет величина полного сопротивления в сети низкого напряжения, тем меньшим будет значение тока КЗ.

На практике, в случае КЗ в цепи потребителя 2 должно произойти срабатывание защиты этой группы. Например, если отключение цепи произойдет через 50 мс, то на главном распределителе образуется зона провала длительностью 50 мс. То есть, данный параметр зависит от скорости срабатывания защиты. При этом глубина провала будет уменьшаться по мере удаления от поврежденного участка, соответственно, чем ближе нагрузка, тем большее отклонение. Эти правила работают как в сетях с низким, среднем и высоким напряжением.

КЗ в сетях с напряжением среднего класса.

Больше всего проблем возникает, когда КЗ происходит в трехфазных сетях среднего класса напряжения. Несмотря на случайный характер этого явления, вероятность возникновения аварийной ситуации довольно велика, поскольку нельзя исключать влияние сторонних факторов. К таковым можно отнести:

  • Различные виды земляных работ, в ходе которых может быть нанесено повреждение кабельной линии.
  • Пробои в местах соединений.
  • Старение изоляционного покрытия.
  • Воздействие природных и техногенных факторов.

При образовании тока КЗ он будет протекать, пока устройства автоматического защитного отключения на распределительной подстанции не изолирует аварийный участок. Пока этого не произойдет, в сети распределительной подстанции будет наблюдаться значительное снижение линейных напряжений.

КЗ в высоковольтных линиях.

В большинстве случаев замыкания в ВЛ происходят вследствие воздействия природных факторов (грозовые разряды, ураган и т.д.) или по причине ошибочных коммутаций и ложных срабатываний автоматической защиты.

Большие нагрузки

При подключении к электросети большой нагрузки, может привести к образованию пусковых токов, превышающих номинальные в несколько раз. В тех случаях, когда электроцепь рассчитана под номинальный ток, превышение этого параметра станет причиной снижения амплитуды источника питания. Масштабность данного проявления напрямую зависит от запаса мощности электрической сети и величины полного сопротивления.

Провалы сетевого происхождения

Учитывая сложность распределительных цепей, следует принять во внимание, что при повреждении одного из участков цепи будет оказываться влияние на остальные части. При этом на глубину и продолжительность провалов будет оказывать влияние следующие факторы:

  • топология цепи;
  • величина полного сопротивления проблемного участка;
  • текущая мощность нагрузки и источника электрической энергии (генератора).

Для более детального представления, рассмотрим пример, представленный на рисунке ниже.

Провалы сетевого происхожденияПровалы сетевого происхождения

Допустим, произошло фазное замыкание в точке Р2, это приведет к тому, что у потребителя 1 отклонения напряжения наблюдаться не будут, у потребителя 2 глубина провала составит 63%, а у потребителя 3 – 97%.

Если однофазное замыкание возникнет в точке Р1, то глубина провала будет 50% от номинала у всех потребителей, за исключением потребителя 1. То есть, как мы видим, чем выше уровень топологии, где произошло повреждение, тем большее число потребителей попадает в зону провала напряжения. Соответственно, у потребителей, подключенных к уровню 3 риск появления провала значительно выше, чем у потребителей, запитанных от первого и второго уровня.

Допустимые провалы напряжения по ГОСТ

Согласно ГОСТ 32144 2013 для определения показателей качества электроэнергии провалы следует классифицировать по двум критериям:

  1. Величина остаточного напряжения.
  2. Длительность.

Поскольку появление провалов носит случайный характер, для представленных выше критериев не установлены численные значения. Тем не менее, измерения амплитуды и длительности должны проводиться с целью создания статистического массива, позволяющего установить вероятность случайного события для определенной электросети, с целью характеризовать КЭ.

Что касается «допустимых по ГОСТу провалов», то данное словосочетание не имеет смысла, поскольку под провалом подразумевается отклонение от установленной ГОСТом нормы (0,9Uном). Если быть точным, то можно назвать нормированием допустимую длительность провала (30 с), при превышении которого отклонение считается пониженным напряжением.

Влияние провалов на работу электрооборудования

Данное явление считается менее опасным отклонения частоты и импульсов напряжения, но, тем не менее, провалы могут привести к следующим последствиям:

  • Понижению интенсивности светового потока, производимого источниками с нитью накала.
  • Снижению чувствительности радио- и телеприемников.
  • Нестабильности работы рентгеновских установок.
  • Ложным срабатываниям электронных систем управления.
  • Понижение уровня постоянного тока в контактной сети электротранспорта негативно отражается на работе подвижного состава.
  • Изменению характеристик преобразователей напряжения.
  • Падение мощности электродвигателей, что приводит к электропотерям и износу.

Глубина провала более 10% от допустимого отклонения с большой вероятностью вызовет отключение газоразрядных источников освещения. При низком напряжении, более 15% от допустимой нормы, произойдет размыкание пускателей, что вызовет отключение электрооборудования и, как следствие, приведет к нарушению техпроцесса.

Характерно, что на дуговую электросварку провалы не оказывают серьезного влияния ввиду большой термической инерционности процесса, в то время как качество точечной сварки существенно снижается.

Финансовая сторона вопроса

Говоря о влиянии провалов на электрооборудование, мы упустили из виду финансовые потери, которые складываются из следующих составляющих:

  • Упущенная прибыль из-за простоя оборудования и потери времени на возобновление технологического цикла.
  • Ремонт вышедшего из строя оборудования.
  • Потери сырья и т.д.

Как бороться с провалами напряжения?

Как мы выяснили, провалы являются случайным явлением, длительность которого зависит от срабатывания защитных систем, а глубина – удаленностью от проблемного участка. Поскольку изменить вероятность проявления не представляется возможным, то остается только влияние на масштаб провала и устранение последствий.

Сделать это можно путем оптимизации сети, чтобы производилась компенсация провалов при резких изменениях нагрузки, а также установки специальных приборов для контроля фазных напряжений на соответствие номинальному уровню и исключению несимметрии. Не менее эффективно действует стабилизирующее оборудование, установленное у потребителя электроэнергии. Более серьезные приборы могут выступать в роли регулятора напряжения и преобразователя основной частоты.

Если проблема вызывается замыканиями, то установка системы АПВ, а при критических провалах и АВР, может сократить предельно допустимую длительность отклонения до короткого прерывания. То есть, автоматическая система произведет повторное включение и если это не даст результата, произойдет ввод резерва.

Советуем ознакомиться и прочитать:

причины, что делать, куда звонить и жаловаться

Эффект «проседания» входного напряжения ниже установленной нормы довольно распространенная проблема. Она более характерна для электроснабжения в сельской местности, но нередко ее проявления могут наблюдать и горожане. Известно, что низкое напряжение в сети приводит к сбоям в работе бытовых приборов, понижению их мощности и преждевременному выходу из строя. Этих причин достаточно, чтобы не пускать дело на самотек и принимать решительные меры для устранения или снижения перепадов напряжения.

Причины просадки напряжения

Существуют определенные требования к электрической сети, они приведены в ГОСТе 13109 97. В нем указано, что возможны длительные отклонения напряжения от номинала в пределах 10% (-5% и +5%). Помимо этого допускаются краткосрочные скачки напряжения до 20% от номинала (от -10% до +10%). То есть, при норме 220 вольт длительное «проседание» до 209,0 В будет не критичным, как и краткосрочное понижение до 198,0 В. Падение напряжения за указанные пределы (например, до 180 Вольт) говорит о том, что параметры сети не отвечают установленным нормам.

190 В – это уже пониженное напряжение190 В – это уже пониженное напряжение

Важно установить природу «просадок» напряжения, в противном случае устранение последствий будет неэффективным. Проблемы с электрической сетью могут быть связаны со следующими причинами:

  1. Износ проводов ЛЭП, большое число соединителей, магистральные лини не соответствуют возросшей нагрузки и т.д.
  2. Мощность трансформаторов недостаточна для текущей нагрузки. Большинство трансформаторных подстанций были установлены более 30-40 лет назад, естественно, что за прошедшее время число потребителей электроэнергии существенно возросло. В результате действительные мощности превышают расчетные, что приводит к перегрузке трансформаторов, и, как следствию – нестабильному напряжению сети.
  3. Дисбаланс мощности. Как правило, в квартиру или дом заводится однофазное питание, но каждая из фаз является отдельным плечом трехлинейной схемы. Соответственно, при неравномерном распределении нагрузки будет наблюдаться понижение или повышение напряжения. Такой эффект получил название «перекос фаз».
  4. Подвод осуществляется кабелем с недостаточным сечением проводов для подключения нагрузки. Например, при расчетной мощности 11 кВт, подключение нагрузки осуществляется жилами сечением 6,0 мм2, при норме 10,0 мм2. Таблица соответствия площади сечения вводного кабеля подключаемой нагрузкеТаблица соответствия площади сечения вводного кабеля подключаемой нагрузке
  5. Некачественное ответвление от воздушной линии.
  6. Плохой контакт на входном автомате.

В первых трех случаях самостоятельно устранить причину не представляется возможным, но можно подать жалобу в энергосбыт на поставщика электроэнергии (подробно об этом будет рассказано в другом разделе). В пунктах 4-6 указаны неисправности в домашних электросетях, поэтому такие проблемы решаются потребителями электроэнергии самостоятельно или для этой цели привлекаются специалисты.

Влияние и последствия низкого напряжения на электроприборы

Пониженное напряжение отражается на бытовых электроприборах следующим образом:

  • Происходит существенно ухудшение пусковых характеристик электродвигателей и компрессорных установок. В частности, превышает норму пусковой ток, что может привести критическому перегреву обмоток.
  • Изменяются основные параметры и эксплуатационные характеристики электрических приборов, например, на нагрев воды бойлером занимает больше времени из-за слабой мощности.
  • Понижается интенсивность светового потока у ламп с нитью накала. Примечательно, что перепады в сети не приводят к снижению яркости энергосберегающих и светодиодных источников с импульсными источниками питания. Качественные модели могут работать и с сетевым напряжением 140 Вольт, но при этом снижается ресурс устройства. Снижение яркости лампы накаливания – характерный признак падения напряженияСнижение яркости лампы накаливания – характерный признак падения напряжения
  • Повышение силы тока и как следствие перегрев проводов линий сети частного дома, что может привести к разрушению изоляции.
  • Сбои в работе электроники.

Исходя из вышесказанного, можно констатировать, что наиболее подвержены пагубному воздействию пониженного (маленького) напряжения те устройства, конструкция которых включает в себя электродвигатель или компрессор. К таковым относится большая часть бытовых электроинструментов, холодильные установки, насосное оборудование и т.д. Встроенная защита такого оборудования может не позволить включить приборы, если напряжение скачет или существенно ниже нормы. Нештатные режимы работы снижают ресурсы оборудования, что приводит к уменьшению срока эксплуатации.

Менее подвержена влиянию техника, оснащенная импульсными БП с широким диапазоном входных напряжений. На нагревательном оборудовании «проседание» практически не отражается, единственное, что наблюдается — снижение мощности по сравнению с нормальным напряжением. Исключение — устройства с электронным управлением.

Способы решения проблемы

Начать необходимо с установления причины, повлекшей «проседание» электрической энергии. Распишем подробно алгоритм действий:

  1. Можно начать с опроса соседей, чтобы установить имеется ли у них подобная проблема. Если они столкнулись с подобной ситуацией, то велика вероятность, что имеет место внешний фактор (слабый трансформатор на подстанции, проблемы с ВЛ или дисбаланс мощности). Но прежде, чем писать коллективное заявление в Энергосбыт, следует проверить внутреннею сеть, поэтому вне зависимости от результатов опроса переходим к следующему пункту.
  2. Отключите вводный автомат защиты и измерьте напряжение на входных клеммах, после чего повторить измерение с подключенной нагрузкой. Вводный автоматический выключатель отмечен зеленым оваломВводный автоматический выключатель отмечен зеленым овалом

Если без нагрузки напряжение в пределах нормы, а после подключения внутренней сети «проседает», то можно констатировать, что проблема имеет местный характер и решать ее придется своими силами. В первую очередь необходимо проверить вводный автомат, поскольку слабый контакт на его входе или выходе может вызвать «проседание» напряжения.

Проблемы с электрическим контактом в автоматическом выключателе (АВ)Проблемы с электрическим контактом в автоматическом выключателе (АВ)

Как правило, в случаях с плохим электрическим контактом в проблемном месте выделяется много тепла, что приводит к деформации корпуса АВ. В таких случаях необходимо произвести замену защитного устройства. Поскольку на входе прибора имеется высокое напряжение, такую работу должен выполнять специалист с 3-й группой допуска, самостоятельно производить замену опасно для жизни.

  1. Если с АВ все в порядке и дефектов не обнаружено, следует проверить соответствие сечения вводного кабеля. Для этой цели можно воспользоваться таблицей, приведенной на рисунке 2. При необходимости производится замена провода.
  2. В том случае, когда проверка кабеля и АВ не дала результатов (автомат защиты в норме, а кабель соответствует нагрузке), следует проверить отвод. Оплавленный корпус или искрение при подключении нагрузку свидетельствует о ненадежном контакте, следовательно, необходимо выполнить переподключение.

Обратим внимание, что все монтажные работы «до счетчика» должны выполняться специалистами поставщика услуг (если договор заключен напрямую) или управляющей компании.

Все значительно сложнее, когда имеют место внешние причины. Модернизацию линии или трансформаторов на подстанции можно ждать годами. В таких случаях поднять напряжение до приемлемого уровня поможет установка стабилизатора.

Электронный стабилизатор Luxeon EWR-10000Электронный стабилизатор Luxeon EWR-10000

Представленный на рисунке стабилизатор напряжения имеет рабочий диапазон от 90,0 до 270 Вольт и рассчитан на нагрузку до 10,0 кВА. Приборы такого типа устанавливаются на весь дом или квартиру, то есть, нет необходимости защищать каждый бытовой прибор отдельно. Стоимость электронных стабилизаторов напряжения около $200-$300, что однозначно дешевле, чем покупка новой техники, взамен вышедшей из строя.

Поднять напряжение до должного уровня также можно путем подключения домашней сети через повышающий трансформатор. Такой способ решения проблемы неудачный, поскольку нормализация электросистемы приведет к перенапряжению, что в лучшем случае приведет к срабатыванию защиты в бытовой технике. По этой же причине не рекомендуется использовать повышающей автотрансформатор.

Иногда проблему пытаются решить путем установки реле напряжения. Эффективность такого решения нулевая, прибор просто отключает питание сети, когда напряжение выходит из допустимого диапазона. В результате в розетках нет тока пока ситуация не нормализуется.

Куда звонить и жаловаться на электросети?

Звонками сложившуюся проблему не решить, необходимо подавать претензию на ненадлежащее качество предоставляемых услуг. То есть, пишите заявление в компанию, обеспечивающую поставки электроэнергии (если договор заключен напрямую) или подавайте жалобу в управляющую компанию. Заявление необходимо зарегистрировать или отправить заказное письмо (почтовый адрес указан в договоре).

Если вышеуказанные меры не помогли, можно обратиться в прокуратуру, Роспотребнадзор, районную администрацию, общественную палату, а также в районный суд.

Обратим внимание, что более эффективны коллективные жалобы, поэтому если с проблемой низкого напряжения столкнулись соседи или другие жильцы дома (района, поселка и т.д.), то лучше и их привлечь к процессу.

Если из-за отклонения напряжения от установленных норм (по вине поставщика услуг) вышла из строя бытовая техника, можно требовать возместить ущерб. Для этого необходимо действовать по следующему алгоритму:

  1. Следует обратиться к поставщику услуг, чтобы его представители зафиксировали, что авария имела место, и составили соответствующий акт.
  2. Берется заключение из сервисного центра, в котором указывается причина выхода бытовой техники из строя.
  3. Подается претензия поставщику услуг с требованием возместить ущерб.
  4. При отказе, необходимо решать вопрос в судебном порядке.

Просадка напряжения что это такое

Эффект «проседания» входного напряжения ниже установленной нормы довольно распространенная проблема. Она более характерна для электроснабжения в сельской местности, но нередко ее проявления могут наблюдать и горожане. Известно, что низкое напряжение в сети приводит к сбоям в работе бытовых приборов, понижению их мощности и преждевременному выходу из строя. Этих причин достаточно, чтобы не пускать дело на самотек и принимать решительные меры для устранения или снижения перепадов напряжения.

Причины просадки напряжения

Существуют определенные требования к электрической сети, они приведены в ГОСТе 13109 97. В нем указано, что возможны длительные отклонения напряжения от номинала в пределах 10% (-5% и +5%). Помимо этого допускаются краткосрочные скачки напряжения до 20% от номинала (от -10% до +10%). То есть, при норме 220 вольт длительное «проседание» до 209,0 В будет не критичным, как и краткосрочное понижение до 198,0 В. Падение напряжения за указанные пределы (например, до 180 Вольт) говорит о том, что параметры сети не отвечают установленным нормам.

190 В – это уже пониженное напряжение

Важно установить природу «просадок» напряжения, в противном случае устранение последствий будет неэффективным. Проблемы с электрической сетью могут быть связаны со следующими причинами:

  1. Износ проводов ЛЭП, большое число соединителей, магистральные лини не соответствуют возросшей нагрузки и т.д.
  2. Мощность трансформаторов недостаточна для текущей нагрузки. Большинство трансформаторных подстанций были установлены более 30-40 лет назад, естественно, что за прошедшее время число потребителей электроэнергии существенно возросло. В результате действительные мощности превышают расчетные, что приводит к перегрузке трансформаторов, и, как следствию – нестабильному напряжению сети.
  3. Дисбаланс мощности. Как правило, в квартиру или дом заводится однофазное питание, но каждая из фаз является отдельным плечом трехлинейной схемы. Соответственно, при неравномерном распределении нагрузки будет наблюдаться понижение или повышение напряжения. Такой эффект получил название «перекос фаз».
  4. Подвод осуществляется кабелем с недостаточным сечением проводов для подключения нагрузки. Например, при расчетной мощности 11 кВт, подключение нагрузки осуществляется жилами сечением 6,0 мм 2 , при норме 10,0 мм 2 . Таблица соответствия площади сечения вводного кабеля подключаемой нагрузке
  5. Некачественное ответвление от воздушной линии.
  6. Плохой контакт на входном автомате.

В первых трех случаях самостоятельно устранить причину не представляется возможным, но можно подать жалобу в энергосбыт на поставщика электроэнергии (подробно об этом будет рассказано в другом разделе). В пунктах 4-6 указаны неисправности в домашних электросетях, поэтому такие проблемы решаются потребителями электроэнергии самостоятельно или для этой цели привлекаются специалисты.

Влияние и последствия низкого напряжения на электроприборы

Пониженное напряжение отражается на бытовых электроприборах следующим образом:

  • Происходит существенно ухудшение пусковых характеристик электродвигателей и компрессорных установок. В частности, превышает норму пусковой ток, что может привести критическому перегреву обмоток.
  • Изменяются основные параметры и эксплуатационные характеристики электрических приборов, например, на нагрев воды бойлером занимает больше времени из-за слабой мощности.
  • Понижается интенсивность светового потока у ламп с нитью накала. Примечательно, что перепады в сети не приводят к снижению яркости энергосберегающих и светодиодных источников с импульсными источниками питания. Качественные модели могут работать и с сетевым напряжением 140 Вольт, но при этом снижается ресурс устройства. Снижение яркости лампы накаливания – характерный признак падения напряжения
  • Повышение силы тока и как следствие перегрев проводов линий сети частного дома, что может привести к разрушению изоляции.
  • Сбои в работе электроники.

Исходя из вышесказанного, можно констатировать, что наиболее подвержены пагубному воздействию пониженного (маленького) напряжения те устройства, конструкция которых включает в себя электродвигатель или компрессор. К таковым относится большая часть бытовых электроинструментов, холодильные установки, насосное оборудование и т.д. Встроенная защита такого оборудования может не позволить включить приборы, если напряжение скачет или существенно ниже нормы. Нештатные режимы работы снижают ресурсы оборудования, что приводит к уменьшению срока эксплуатации.

Менее подвержена влиянию техника, оснащенная импульсными БП с широким диапазоном входных напряжений. На нагревательном оборудовании «проседание» практически не отражается, единственное, что наблюдается — снижение мощности по сравнению с нормальным напряжением. Исключение — устройства с электронным управлением.

Способы решения проблемы

Начать необходимо с установления причины, повлекшей «проседание» электрической энергии. Распишем подробно алгоритм действий:

  1. Можно начать с опроса соседей, чтобы установить имеется ли у них подобная проблема. Если они столкнулись с подобной ситуацией, то велика вероятность, что имеет место внешний фактор (слабый трансформатор на подстанции, проблемы с ВЛ или дисбаланс мощности). Но прежде, чем писать коллективное заявление в Энергосбыт, следует проверить внутреннею сеть, поэтому вне зависимости от результатов опроса переходим к следующему пункту.
  2. Отключите вводный автомат защиты и измерьте напряжение на входных клеммах, после чего повторить измерение с подключенной нагрузкой. Вводный автоматический выключатель отмечен зеленым овалом

Если без нагрузки напряжение в пределах нормы, а после подключения внутренней сети «проседает», то можно констатировать, что проблема имеет местный характер и решать ее придется своими силами. В первую очередь необходимо проверить вводный автомат, поскольку слабый контакт на его входе или выходе может вызвать «проседание» напряжения.

Проблемы с электрическим контактом в автоматическом выключателе (АВ)

Как правило, в случаях с плохим электрическим контактом в проблемном месте выделяется много тепла, что приводит к деформации корпуса АВ. В таких случаях необходимо произвести замену защитного устройства. Поскольку на входе прибора имеется высокое напряжение, такую работу должен выполнять специалист с 3-й группой допуска, самостоятельно производить замену опасно для жизни.

  1. Если с АВ все в порядке и дефектов не обнаружено, следует проверить соответствие сечения вводного кабеля. Для этой цели можно воспользоваться таблицей, приведенной на рисунке 2. При необходимости производится замена провода.
  2. В том случае, когда проверка кабеля и АВ не дала результатов (автомат защиты в норме, а кабель соответствует нагрузке), следует проверить отвод. Оплавленный корпус или искрение при подключении нагрузку свидетельствует о ненадежном контакте, следовательно, необходимо выполнить переподключение.

Обратим внимание, что все монтажные работы «до счетчика» должны выполняться специалистами поставщика услуг (если договор заключен напрямую) или управляющей компании.

Все значительно сложнее, когда имеют место внешние причины. Модернизацию линии или трансформаторов на подстанции можно ждать годами. В таких случаях поднять напряжение до приемлемого уровня поможет установка стабилизатора.

Электронный стабилизатор Luxeon EWR-10000

Представленный на рисунке стабилизатор напряжения имеет рабочий диапазон от 90,0 до 270 Вольт и рассчитан на нагрузку до 10,0 кВА. Приборы такого типа устанавливаются на весь дом или квартиру, то есть, нет необходимости защищать каждый бытовой прибор отдельно. Стоимость электронных стабилизаторов напряжения около $200-$300, что однозначно дешевле, чем покупка новой техники, взамен вышедшей из строя.

Поднять напряжение до должного уровня также можно путем подключения домашней сети через повышающий трансформатор. Такой способ решения проблемы неудачный, поскольку нормализация электросистемы приведет к перенапряжению, что в лучшем случае приведет к срабатыванию защиты в бытовой технике. По этой же причине не рекомендуется использовать повышающей автотрансформатор.

Иногда проблему пытаются решить путем установки реле напряжения. Эффективность такого решения нулевая, прибор просто отключает питание сети, когда напряжение выходит из допустимого диапазона. В результате в розетках нет тока пока ситуация не нормализуется.

Куда звонить и жаловаться на электросети?

Звонками сложившуюся проблему не решить, необходимо подавать претензию на ненадлежащее качество предоставляемых услуг. То есть, пишите заявление в компанию, обеспечивающую поставки электроэнергии (если договор заключен напрямую) или подавайте жалобу в управляющую компанию. Заявление необходимо зарегистрировать или отправить заказное письмо (почтовый адрес указан в договоре).

Если вышеуказанные меры не помогли, можно обратиться в прокуратуру, Роспотребнадзор, районную администрацию, общественную палату, а также в районный суд.

Обратим внимание, что более эффективны коллективные жалобы, поэтому если с проблемой низкого напряжения столкнулись соседи или другие жильцы дома (района, поселка и т.д.), то лучше и их привлечь к процессу.

Если из-за отклонения напряжения от установленных норм (по вине поставщика услуг) вышла из строя бытовая техника, можно требовать возместить ущерб. Для этого необходимо действовать по следующему алгоритму:

  1. Следует обратиться к поставщику услуг, чтобы его представители зафиксировали, что авария имела место, и составили соответствующий акт.
  2. Берется заключение из сервисного центра, в котором указывается причина выхода бытовой техники из строя.
  3. Подается претензия поставщику услуг с требованием возместить ущерб.
  4. При отказе, необходимо решать вопрос в судебном порядке.
  • 2019
  • 2018
  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2009
  • 2008

Термины и определения некачественного электропитания. Часть 1.

Современный цивилизованный мир во всех сферах использует разработки в области электроники: компьютеры, ноутбуки, промышленная автоматика, системы «умного дома», центры обработки данных и т.д. – всё это, в отличие от старых асинхронных электродвигателей и лампочек накаливания требует повышенного качества потребляемой электроэнергии. В то же время известно, что электросеть далеко не всегда способна обеспечить качественное электропитание. В данной статье рассматриваются термины, описывающие те или иные отклонения в электропитании от нормы.

В стандарте IEEE 1159-1995 «IEEE Recommended Practice for Monitoring Electrical Power Quality» (Рекомендации по мониторингу качества электросети) института инженеров по электротехнике и электронике (Institute of Electrical and Electronics Engineers, IEEE) выделено несколько видов искажений сети, наиболее распространенные из которых следующие:

1.Переходные процессы.

3.Провалы напряжения/ просадки напряжения.

4.Всплески напряжения/ перенапряжения.

Переходные процессы

Импульсные переходные процессы (электростатический разряд)

  • Гроза: как случай прямого попадания, так и разряды в небе, влияющие на электросеть посредством электромагнитного поля
  • Коммутация индуктивных нагрузок
  • Срабатывание защитной автоматики
  • Неисправность заземления
    Импульсный переходный процесс представляет собой резкий скачок напряжения в несколько киловольт (длительность скачка составляет наносекунды, общая длительность помехи – десятки наносекунд)

  • Электростатический разряд не наносит вреда человеку (не считая неприятного треска и искры), но «убивает» любую микросхему

Меры предупреждения и подавления:

  • Поддержание влажности в помещении в диапазоне 40-60%
  • Антистатическое заземление (браслеты, коврики, обувь)
  • Общее заземление
  • Устройства подавления всплесков:
  • на основе металооксидных варисторов, подавляющих всплески любой продолжительности)
  • тепловая защита
  • газовые разрядники
  • тиристоры

Устройства подавления всплесков – неотъемлемая часть источников бесперебойного питания (ИБП), часто их можно встретить и в блоках питания компьютеров.

Колебательные переходные процессы

  • Отключение индуктивной или емкостной нагрузки (электродвигатель или конденсаторная батарея)
    Колебательный переходный процесс представляет собой наложение затухающего колебательного процесса на синусоиду переменного тока. При этом наблюдаются частые пики и спады напряжения. Длительность искажения составляет десятки миллисекунд.

  • Колебательный переходный процесс оказывает значительное негативное влияние на работу электронного оборудования.
  • Низкочастотный колебательный переходный процесс существенно искажает синусоиду и, как правило, повышает общий уровень напряжения, что может привести к срабатыванию защиты по перенапряжению.

Меры предупреждения и подавления:

  • Установка дросселей, понижающий амплитуду колебания (ими оснащены, например, частотники электродвигателей)
  • Подключение батарей конденсаторов через статические выключатели, которые отключают батарею в момент прохождения синусоиды через ноль. Возникающие искажения при этом на порядок меньше, т.к. их амплитуда зависит от текущего значения напряжения в сети)

Перебой электропитания

  • Повреждение (разрыв) электросети
  • Отказ электрооборудования
  • Срабатывание защиты
    Полное отсутствие напряжения в сети в течение некоторого времени (от миллисекунд до нескольких суток при крупной аварии)

  • Даже кратковременный перебой электропитания приводит к перезагрузке компьютерного оборудования с потерей несохраненных данных, рестарту электродвигателя или компрессора. При этом не исключается их повреждение.
  • Перебои особенно опасны в промышленности, медицине и в области ЦОД: в промышленности есть множество безостановочных процессов, в медицине перебои могут нарушить ход операции, а в случае ЦОД – это простой бизнеса компании.

Меры предупреждения и подавления:

  • Наиболее надежный способ решения проблем с перебоем напряжения – применение ИБП, одной из составляющих которых являются аккумуляторные батареи. В случае перебоя питание нагрузки мгновенно производится именно от них (длительность переключения – менее полупериода, т.е. менее 10мс).
  • Проблему продолжительных перебоев решить за счет аккумуляторных батарей практически невозможно из-за больших габаритов и дороговизны такого решения. Поэтому, для критически важных процессов применяются источники гарантированного электроснабжения. Наиболее распространенные из них – дизель-генераторные установки (ДГУ).

Пониженное напряжение (провал и просадка)

  • Включение в сеть мощного потребителя (электродвигателя, компрессора и т.д.)
  • Временное явление при устранении других неполадок сети
    Временное падение амплитуды напряжения. Провал от просадки отличается длительностью неполадки: при провале счет идет на периоды синусоиды (десятые доли секунды), а при просадке пониженное напряжение наблюдается не менее нескольких секунд.

  • При серьезном снижении напряжение возможно отключение электрооборудования, перезагрузка компьютера и др.

Меры предупреждения и подавления:

  • По возможности – подключение нагрузок с высоким пусковым током по выделенной линии
  • Понижение пусковых явлений, например, за счет переключения конфигураций звезда/треугольник
  • Применение электронных устройств таких, как инверторы (частотники)
  • В случае просадок поможет использование ИБП

Повышенное напряжение (всплеск, перенапряжение)

  • Схемы заземления с высоким импедансом
  • Отключение мощного потребителя
  • Пробой фаз в трехфазной сети
  • Неравномерность потребления электроэнергии
    Временное повышение амплитуды напряжения. Всплеск от перенапряжения отличается длительностью: всплеск, аналогично провалу, является более короткой неполадкой (десятые доли секунды), а перенапряжение, аналогично просадке, длится не менее нескольких секунд.

  • Ошибки в данных
  • Мерцание освещения
  • Износ электрических контактов и изоляции
  • Повреждение полупроводниковых приборов
  • Повышение силы тока и, как следствие, срабатывание автоматических выключателей

Меры предупреждения и подавления:

  • Лучшей защитой является использование ИБП

Флуктуации напряжения

  • Наличие в сети нагрузки с нестабильным потреблением тока
    Систематическое либо периодическое небольшое отклонение напряжения от нормы (±5%)

  • Мерцание ламп накаливания
  • Снижение срока службы чувствительного электрооборудования

Меры предупреждения и подавления:

  • Отключение нагрузки с нестабильным потреблением тока
  • Использование ИБП

Вариации частоты

  • Как правило, в электросети не бывает вариаций частоты. Данное явление гораздо чаще возникает при питании от резервных автономных источников питания, например, ДГУ.
    Частота питания отклоняется от стандартных 50Гц в большую или меньшую сторону.

  • Наибольшее влияние оказывается на электродвигатели: изменение частоты вращения ротора. ИТ-оборудование практически не страдает.
  • Снижение срока службы чувствительного электрооборудования

Меры предупреждения и подавления:

  • Диагностика соответствующих источников питания
  • Использование ИБП

Понятия и формулы

На каждом сопротивлении r при прохождении тока I возникает напряжение U=I∙r, которое называется обычно падением напряжения на этом сопротивлении.

Если в электрической цепи только одно сопротивление r, все напряжение источника Uист падает на этом сопротивлении.

Если в цепи имеются два сопротивления r1 и r2, соединенные последовательно, то сумма напряжений на сопротивлениях U1=I∙r1 и U2=I∙r2 т. е. падений напряжения, равна напряжению источника: Uист=U1+U2.

Напряжение источника питания равно сумме падений напряжения в цепи (2-й закон Кирхгофа).

1. Какое падение напряжения возникает на нити лампы сопротивлением r=15 Ом при прохождении тока I=0,3 А (рис. 1)?

Падение напряжения подсчитывается по закону Ома: U=I∙r=0,3∙15=4,5 В.

Напряжение между точками 1 и 2 лампочки (см. схему) составляет 4,5 В. Лампочка светит нормально, если через нее проходит номинальный ток или если между точками 1 и 2 номинальное напряжение (номинальные ток и напряжение указываются на лампочке).

2. Две одинаковые лампочки на напряжение 2,5 В и ток 0,3 А соединены последовательно и подключены к карманной батарее с напряжением 4,5 В. Какое падение напряжения создается на зажимах отдельных лампочек (рис. 2)?

Одинаковые лампочки имеют равные сопротивления r. При последовательном включении через них проходит один и тот же ток I. Из этого следует, что на них будут одинаковые падения напряжения, сумма этих напряжений должна быть равна напряжению источника U=4,5 В. На каждую лампочку приходится напряжение 4,5:2=2,25 В.

Можно решить эту задачу и последовательным расчетом. Сопротивление лампочки рассчитываем по данным: rл=2,5/0,3=8,33 Ом.

Ток в цепи I = U/(2rл )=4,5/16,66=0,27 А.

Падение напряжения на лампочке U=Irл=0,27∙8,33=2,25 В.

3. Напряжение между рельсом и контактным проводом трамвайной линии равно 500 В. Для освещения используются четыре одинаковые лампы, соединенные последовательно. На какое напряжение должна быть выбрана каждая лампа (рис. 3)?

Одинаковые лампы имеют равные сопротивления, через которые проходит один и тот же ток. Падения напряжения на лампах будут тоже одинаковыми. Значит, на каждую лампу будет приходиться 500:4=125 В.

4. Две лампы мощностью 40 и 60 Вт с номинальным напряжением 220 В соединены последовательно и включены в сеть с напряжением 220 В. Какое падение напряжения возникает на каждой из них (рис. 4)?

Первая лампа имеет сопротивление r1=1210 Ом, а вторая r2=806,6 Ом (в нагретом состоянии). Ток, проходящий через лампы, I=U/(r1+r2 )=220/2016,6=0,109 А.

Падение напряжения на первой лампе U1=I∙r1=0,109∙1210=132 В.

Падение напряжения на второй лампе U2=I∙r2=0,109∙806,6=88 В.

На лампе с большим сопротивлением большее падение напряжения, и наоборот. Накал нитей обеих ламп очень слаб, однако у лампы 40 Вт он несколько сильнее, чем у лампы 60 Вт.

5. Чтобы напряжение на электродвигателе Д (рис. 5) было равно 220 В, напряжение в начале длинной линии (на электростанции) должно быть больше 220 В на величину падения (потери) напряжения на линии. Чем больше сопротивление линии и ток в ней, тем больше падение напряжения на линии.

В нашем примере падение напряжения в каждом проводе линии равно 5 В. Тогда напряжение на шинах электростанции должно быть равно 230 В.

6. От аккумулятора напряжением 80 В потребитель питается током 30 А. Для нормальной работы потребителя допустимо 3% падения напряжения в проводах из алюминия с сечением 16 мм2. Каким может быть максимальное расстояние от аккумулятора до потребителя?

Допустимое падение напряжения в линии U=3/100∙80=2,4 В.

Сопротивление проводов ограничивается допустимым падением напряжения rпр=U/I=2,4/30=0,08 Ом.

По формуле для определения сопротивления подсчитаем длину проводов: r=ρ∙l/S, откуда l=(r∙S)/ρ=(0,08∙16)/0,029=44,1 м.

Если потребитель будет отдален от аккумулятора на 22 м, то напряжение на нем будет меньше 80 В на 3%, т.е. равным 77,6 В.

7. Телеграфная линия длиной 20 км выполнена из стального провода диаметром 3,5 мм. Обратная линия заменена заземлением через металлические шины. Переходное сопротивление между шиной и землей rз=50 Ом. Каким должно быть напряжение батареи в начале линии, если сопротивление реле на конце линии rр=300 Ом, а ток реле I=5 мА?

Схема включения показана на рис. 6. При нажатии телеграфного ключа в месте посылки сигнала реле в месте приема на конце линии притягивает якорь К, который в свою очередь включает своим контактом катушку записывающего аппарата. Напряжение источника должно компенсировать падение напряжения в линии, принимающем реле и переходных сопротивлениях заземляющих шин: U=I∙rл+I∙rр+I∙2∙rз; U=I∙(rл+rр+2∙rз).

Напряжение источника равно произведению тока на общее сопротивление цепи.

Сечение провода S=(π∙d^2)/4=(π∙3,5^2)/4=9,6 мм2.

Сопротивление линии rл=ρ∙l/S=0,11∙20000/9,6=229,2 Ом.

Результирующее сопротивление r=229,2+300+2∙50=629,2 Ом.

Напряжение источника U=I∙r=0,005∙629,2=3,146 В; U≈3,2 В.

Падение напряжения в линии при прохождении тока I=0,005 А будет: Uл=I∙rл=0,005∙229,2=1,146 В.

Сравнительно малое падение напряжения в линии достигается благодаря малой величине тока (5 мА). Поэтому в месте приема должно быть чувствительное реле (усилитель), которое включается от слабого импульса 5 мА и своим контактом включает другое, более мощное реле.

8. Как велико напряжение на лампах в схеме на рис. 28, когда: а) двигатель не включен; б) двигатель запускается; в) двигатель в работе.

Двигатель и 20 ламп включены в сеть с напряжением 110 В. Лампы рассчитаны на напряжение 110 В и мощность 40 Вт. Пусковой ток двигателя Iп=50 А, а его номинальный ток Iн=30 А.

Подводящий медный провод имеет сечение 16 мм2 и длину 40 м.

Из рис. 7 и условия задачи видно, что ток двигателя и ламп вызывает в линии падение напряжения, поэтому напряжение на нагрузке будет меньше 110 В.

Отсюда напряжение на лампах Uламп=U-2∙Uл.

Надо определить падение напряжения в линии при различных токах: Uл=I∙rл.

Сопротивление всей линии

Ток, проходящий через все лампы,

Падение напряжения в линии, когда включены только лампы (без двигателя),

Напряжение на лампах в этом случае равно:

При пуске двигателя лампы будут светить слабее, так как падение напряжения в линии больше:

2∙Uл=(Iламп+Iдв )∙2∙rл=(7,27+50)∙0,089=57,27∙0,089=5,1 В.

Минимальное напряжение на лампах при пуске двигателя будет:

Когда двигатель работает, падение напряжения в линии меньше, чем при пуске двигателя, но больше, чем при выключенном двигателе:

2∙Uл=(Iламп+Iном )∙2∙rл=(7,27+30)∙0,089=37,27∙0,089=3,32 В.

Напряжение на лампах при нормальной работе двигателя равно:

Даже небольшое снижение напряжения на лампах относительно номинального сильно влияет на яркость освещения.

Ответы@Mail.Ru: Просадка напряжения

Внутреннее сопротивление источника тока vs сопротивление нагрузки. Источник тока необходимо рассматривать как двухполюсник, для которого НЕ выполняется закон Ома. Уй, лениво писать - вот здесь <a rel="nofollow" href="http://ru.wikipedia.org/wiki/Внутреннее_сопротивление" target="_blank">http://ru.wikipedia.org/wiki/Внутреннее_сопротивление</a> все подробно, с формулами, про согласование внутреннего сопротивления источника тока и нагрузки... ------------------------- Бытовая сеть электроснабжения переменного тока в жилых помещениях имеет r от 0,05 Ом до 1 Ом и более (зависит от качества электропроводки) . Сопротивление 1 Ом и более соответствует плохой проводке: при подключении мощных нагрузок (например, утюга) напряжение падает, при этом заметно уменьшается яркость ламп освещения, подключенных к той же ветви сети. -------------------------

Коротко. . Если сечение проводов меньше необходимого при большой нагрузке - произойдет падение напряжения. ( по-вашему - просадка..)

скажите пож-та. если кабель вылетает (короткое) ток будет переть в небо а значит напряжение падать, это будет называться просадка напряжения. А когда случается так называемый "бросок" что с кабелем происходит? одна жила на землю, значит ток стремится к нулю так как земля-источник бесконечной ёмкости, а если ток к нулю соответственно напряжение будет расти -это есть бросок? так ли я излагаю или что-то не правильно? или ВСЁ не правильно??? за ранее спасибо!

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *