Преобразователь напряжения для питания автомобильного усилителя
Эта статья содержит описание схемы простейшего импульсного повышающего преобразователя для авто усилителей (например на TDA7294 или любой другой микросхеме с двухполярным питанием), без лишних расчетов или теорий только необходимый минимум. Это действительно самый простой способ на сегодня запустить усилитель достаточно высокой мощности в автомобиле, с бортовым питанием 12 В. Представленный инвертор может выдавать постоянную мощность около 100 Вт, а при небольшой доработке схемы ещё больше.
Схема и описание преобразователя
Схема была разделена на несколько частей для облегчения описания и понимания сути работы деталей.
Зеленая часть представляет собой генератор, использующий популярную микросхему TL494. Чтобы сделать структуру максимально простой, использовалась только часть м/с, а именно только генератор. Частота его работы определяется элементами R4 и C4. Для текущих значений (10 кОм и 1 нФ) она составляет около 30 кГц. Увеличив частоту также можно повысить эффективность, но для этого необходимо намотать трансформатор более тонкими проводами (из-за скин-эффекта).
Желтая часть — усилители тока. Они используются только для облегчения повторной загрузки затворных мощностей мосфетов, которые разгружают внутренние выходные транзисторы в TL494. Фактически, схема в текущей конфигурации будет работать и без них, потому что внутренние транзисторы TL494 в принципе могут управлять одним затвором без особых проблем, но в случае падения напряжения в источнике питания инвертор может работать нестабильно. Вот почему рекомендуется установить их. В этой роли практически любой транзистор может быть использован для создания комплементарной пары. Схема также хорошо работает например с парой BC547 / BC557 и т.п.
Оранжевая часть — это ключевые выходные элементы. Мосфет включается при получении импульса от предыдущего каскада. Преобразователь включает мосфеты попеременно с так называемым мертвым временем (когда оба выключены). Особое внимание следует уделить C8 (10 нФ) и R12 (4,7 Ом), потому что от них зависит безопасность транзисторов. Они используются для подавления перенапряжений, возникающих в индуктивности во время переходных процессов. Используйте конденсатор 10 нФ на минимальное напряжение 250 В и резистор 3,3 … 4,7 Ома с минимальной мощностью 0,5 Вт.
Для преобразователя могут быть выбраны разные типы мосфетов, в значительной степени от них зависит, какой мощности и эффективности удастся достичь. Важно выбирать с низким сопротивлением и большим рабочим током. Тут использовались IRF3205, но одинаково хорошо заработают IRFZ44n, BUZ11 или IRFP064n для немного большей мощности.
Красная часть — трансформатор с выпрямителем. Про трансформатор и его перемотатку будет чуть ниже. Сейчас остановимся на схеме выпрямления и фильтрации. Это классический симметричный источник питания, в котором используются ультрабыстрые выпрямительные диоды или диоды Шоттки. В данном случае использовался диод MBR10100CT. Ещё нужен выходной дроссель и конденсаторы фильтра. Для одной микросхемы TDA7294 просто используйте 2200 мкФ + 100 нФ на каждое плечо. Ставьте нормальный электролитический конденсатор, нет необходимости использовать конденсаторы с низким ЭПР.
Предохранители инвертора
Схему контроля выходного тока будет лучше заменить на так называемый электронный предохранитель, который в случае короткого замыкания будет отключать преобразователи (потребуется перезапуск). Схема управления током в инверторе с питанием, сделанным для конкретной системы (в данном случае стерео TDA7294 для громкоговорителя 8 Ом), может отключить преобразователь только во время басов, когда усилитель потребляет больше энергии.
Модуль управления имеет предохранитель в виде резистора R11. Используем стандартный 4.7R 0.25W резистор — в случае короткого замыкания в TL494 или усилителях тока, резистор немедленно перегорает. Силовая часть защищена предохранителем на 10 А. В вышеуказанной схеме короткое замыкание на выходе вызывает его немедленное сгорание.
Сборка преобразователя питания
Можно вытравить полноценную печатную плату, а можно использовать универсальную макетку. Важно, чтобы пути тока были максимально короткими и толстыми.
Сначала собираем зеленую, желтую и оранжевую части. При этом схема питается через маленькую лампочку (например, 10 Вт) или установите ограничение тока 200 мА на блоке питания. Подключите один щуп осциллографа к источнику питания плюс, а другой — к усилителям УТ. Должны увидеть прямоугольную осциллограмму с амплитудой около напряжения питания. Форма волны должна быть очень похожей на фото.
Если сигнал не отображается, проверьте правильность сборки и работоспособность зеленой и желтой секций ИБП.
Затем подключаем осциллограф параллельно мосфетам и наблюдаем форму сигнала там. Это должен быть прямоугольник с амплитудой, аналогичной напряжению питания. Если он не просматривается, это означает, что установили поврежденный mosfet (или неправильно впаяли его).
Если все в порядке, можем начать наматывать трансформатор.
Намотка трансформатора
Трансформатор — самый важный элемент и самый сложный. Во-первых, нужно достать ферритовый сердечник. Можно добыть его из блока питания ATX или другого импульсного преобразователя. Крайне важно, чтобы это был сердечник без зазора, иначе инерционный ток преобразователя будет выше, а КПД будет значительно ниже. В худшем случае может вообще не работать. Чтобы разобрать такой трансформатор, нагрейте его в кипящей воде, потому что тогда смола размягчится. Затем, используя тряпку, разломите горячий трансформатор. Важно не повредить сердечник. Затем снимаем заводские обмотки и наматываем новые в соответствии с инструкциями далее.
Начнем с первичной обмотки. В ней две обмотки должны быть намотаны по 3 витка одновременно, где начало второй является концом первой. Обе обмотки намотаны в одном и том же направлении. Из-за того что инвертор работает на высокой частоте, возникает скин-эффект. Поэтому не стоит намотать трансформатор одним толстым проводом, как в случае классических трансформаторов. Для данного инвертора намотаем 4 провода по 0,3 мм. Обмотка должна выглядеть примерно так:
Теперь изолируйте первичку от вторички. Например слоями скотча. Пришло время намотать вторичную обмотку. Намотайте две обмотки по 7 витков. Трансформатор готов.
Вместо основного предохранителя вставляем лампу значительной мощности (предпочтительно 50 Вт, чтобы при малом токе она не вызывала значительного падения напряжения). Измеряем ток, потребляемый преобразователем, должно составлять 100-250 мА. Форма сигнала на осциллографе должна быть прямоугольной с требуемой амплитудой.
Инвертор практически закончен. Осталось смонтировать схему выпрямителя со сверхбыстрыми диодами или диодами Шоттки. Далее устанавливаем дроссель и фильтрующие конденсаторы.
Выходной дроссель в этом инверторе будет необходим. С натяжкой он может работать и без него, но его эффективность станет меньше и может быть слышен писк под нагрузкой. Дроссель наматывается на порошковое кольцо. Вы можете также выпаять его от источника питания ATX. Обмотка двойная по 17 витков (значение выбрано методом проб и ошибок).
Выходное напряжение инвертора должно быть примерно +/- 36 В. Это оптимальное значение для микросхем TDA7294.
Инвертор должен быть нагружен для испытаний электронной нагрузкой или мощным резистором с сопротивлением 50 Ом. Резистор будет выдавать около 100 Вт мощности в виде тепла. Выходное напряжение преобразователя под этой нагрузкой не должно падать ниже 32 В. Наиболее теплым элементом должны быть выпрямительные диоды. Трансформатор должен слегка нагреваться, как и мосфеты. Тест 100 Вт должен занять 10 минут.
Нужен ли стабилизатор напряжения
Стабилизация выходного напряжения на БП усилителя звука — плохая идея. Усилитель имеет очень нелинейное энергопотребление, кроме того, когда проходит бас, он может потреблять много энергии (в импульсе). Обратная связь для управления выходным напряжением может мешать реакции на повышенное энергопотребление.
Для тестирования блок питался от адаптера 12 В 60 A. Кроме того, предохранители желательно установить на линиях +36 В и -36 В. Плата имеет размеры, подходящие для установки в корпуса автомобильного радио, и все элементы можно легко охладить одним вентилятором при необходимости.
Преобразователь однополярного в двухполярное питание
Привет всем любителям радиоконструкторов. В этой статье я расскажу, как сделать преобразователь однополярного напряжения в двухполярное при помощи кит-набора, купленного на али, к слову такие же наборы можно приобрести в радиомагазине вашего города, но цена может значительно отличаться.
Данный преобразователь поможешь запитать те схемы, которые требуют двухполярного питания, часто такое питание необходимо усилителям звука.
Перед прочтением подробного описания сборки, предлагаю посмотреть видео о данном наборе.
Для того, чтобы собрать данный преобразователь, понадобится:
* Кит-набор, заказанный на али
* Паяльник, припой, флюс
* Приспособления для пайки, такие как «третья рука»
* Мультиметр
А теперь перейдем к самой сборке набора.
Шаг первый.
Включаем паяльник и начинаем сборку с резисторов, на плате они обозначены вытянутыми овалами с обозначением сопротивления, например, овал с надписью 2к2 значит, что сюда устанавливается резистор сопротивлением 2,2кОм.
Для определения сопротивления каждого резистора можно воспользоваться несколькими методами. При помощи мультиметра легко и быстро измерить сопротивление резистора, если же мультиметра нет, то вполне рабочим будет метод определения сопротивления по цветовой маркировке или онлайн-калькулятору.
Для удобства я обозначил все 5 резисторов, которые необходимо впаять на плату, соблюдая их номиналы.
Далее необходимо припаять керамические конденсаторы, они маркируются цифрой 104, так же, как и на плате. К слову полярности они не имеют, поэтому положение их контактов никак не повлияет на работу схемы.
Шаг второй.
После установки неполярных конденсаторов переходим к предохранителю, в данной схеме используется самовосстанавливающийся предохранитель, рассчитанный на ток в 3А. При достижении тока в 3А данный предохранитель размыкает цепь, а при снижении тока продолжает свою работу. Устанавливаем его на плату в место, обозначенное UF300.
Шаг третий.
Теперь при помощи «третьей руки» фиксируем положение платы и припаиваем выводы радиокомпонентов к контактным площадкам, используя флюс.
После припаивания откусываем выводы при помощи бокорезов, делаем это аккуратно, чтобы не повредить дорожки на плате.
Шаг четвертый.
На нашей плате также присутствуют элементы, которые необходимо припаять с лицевой стороны, а именно катушки и регуляторы, способ припаивания такой же, как и при пайке SMD компонентов. Наносим флюс на контакты платы и в первую очередь припаиваем диоды, так как припаять их после установленных катушек индуктивности будет неудобно. Припаиваются диоды следующим образом, серая полоска должна совпадать с широкой линией, на плате обозначены надписью SS34, на схеме их всего два.
Должно получиться примерно так, как на фото.
Далее паяем три катушки индуктивности, полярности они не имеют и припаиваются в местах с изображением скругленного квадрата и круга с волнистой линией.
Шаг пятый.
Припаиваем остальные компоненты, расположенные на лицевой стороне, они имеют маркировку как на корпусе, так и на самой плате.
Главное на данном этапе не перегреть ножки, так как это может привести к выводу из строя микросхемы. Некоторые ножки на микросхемах расположены очень близко, поэтому может получиться так, что они спаяются вместе, устранить это можно легко при помощи специального экрана, который впитает в себя лишний припой.
Шаг шестой.
Далее устанавливаем электролитические конденсаторы, плюс это длинный вывод, минус-короткий, также на корпусе показан минусовой контакт.
Таким же образом определяется полярность на светодиодах. На плате конденсаторы подписаны, так что припаиваем их, соблюдая маркировку. После установки конденсаторов припаиваем светодиоды, плюс на плате показан в виде треугольника, минус в виде полоски, еще можно установить светодиоды по срезу, выполненному на его корпусе и маркировке на плате.
Наносим флюс и припаиваем выводы.
И также соблюдая аккуратность удаляем лишние остатки выводов бокорезами.
Шаг седьмой.
Осталось совсем немножко, а именно припаять разъемы подачи питания и колодки выхода питания. Устройство питается, как от микро юсб, так и от разъема 5.5мм.
Припаиваем их на плату, перед этим соединяем колодки вместе, в итоге получается одна длиная. В данной колодке достаточно толстые выводы, так что для ее припаивания лучше использовать паяльник помощнее. В завершении устанавливаем алюминиевые радиаторы на микросхемы, так как они греются при работе.
На этом сборке преобразователя из кит-набора завершена, единственное что остается сделать, это проверить работоспособность. Подаем 9 вольт на штекер 5.5 мм, три светодиода показывают, что плата работает, а именно, один светодиод информирует о том, что есть питание на входе и два светодиода о том, что есть напряжение на выходах 5 вольтовой линии.
Вот данные с мультиметра.
Также возможна некоторая комбинация выводов, можно получить при этом 18, 8 и 9 вольт, помимо стандартных 12+,12-, 5+, 5- и 3.3 вольт.
Всем спасибо за внимание и удачных сборок кит-наборов.
Купить Kit-набор на Aliexpress
Доставка новых самоделок на почтуПолучайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!
*Заполняя форму вы соглашаетесь на обработку персональных данных
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.Инвертирующий усилитель на ОУ | Практическая электроника
Инвертирующий усилитель – это собрат НЕинвертирующего усилителя на ОУ. Такой усилитель дает на выходе инвертируемый сигнал.
Схема и ее описание
Базовая схема инвертирующего усилителя с двухполярным питанием выглядит вот так:
Здесь мы видим два резистора и сам ОУ. На вход подаем сигнал, а с выхода уже снимаем усиленный сигнал. Как можно заметить, НЕинвертирующий вход ОУ заземлен. Как же работает схема? Здесь мы видим обратную связь. То есть с выхода сигнал подается обратно на вход через резистор R2. Наш усилитель является инвертирующим, так как сигнал на выходе на 180 градусов сдвинут по фазе относительно входного сигнала. Значит, в узле, где соединяются два резистора и инвертирующий вход, выходной сигнал будет приходить со знаком “минус”. Такая обратная связь называется отрицательной обратной связью (ООС). Она уменьшает высокий коэффициент усиления ОУ до нужных нам значений.
В НЕинвертирующем усилителе обратная связь идет по напряжению, а в инвертирующем усилителе – по току.
Если вы читали статью про ОУ, то, наверное, помните, что если один из входов ОУ соединен с землей, то и другой вход имеем точно такой же потенциал. В данном случае НЕинвентирующий вход у нас соединен с землей, следовательно, на инвертирующем входе будет точно такой же потенциал, то есть 0 Вольт. Такой вход еще называют мнимой (виртуальной) землей. Как говорит на Википедия, “мнимый – это фальшивый, поддельный, ложный”.
Коэффициент усиления по напряжению любого усилителя выражается формулой
Итак, что получаем в итоге?
Входное напряжение из формулы выше
Но так как наш усилитель инвертирует входной сигнал, следовательно, на выходе у нас будет напряжение со знаком “минус”, то есть -Uвых.
В этом случае ток I2 будет выражаться формулой:
Отсюда находим коэффициент усиления
Так как входное сопротивление инвертирующего входа бесконечно велико, следовательно, ток будет протекать только через цепь R1—>R2. Два разных тока в одной ветви быть не может, поэтому получается, что
В итоге наша формула сокращается и получаем
Симуляция в Proteus
Давайте посмотрим, как работает наш усилитель в программе-симуляторе электронных схем Proteus. Здесь мы собираем базовую схему с двухполярным питанием
В Proteus она будет выглядеть вот так:
Здесь мы взяли значение резисторов R2=10 кОм и R1=1 кОм, следовательно, коэффициент усиления такой схемы будет равен -10. Знак “минус” в данном случае просто инвертирует усиленный сигнал, что мы и видим на осциллограмме ниже. Входной сигнал – это розовая осциллограмма, а выходной – это желтая осциллограмма. Выходной сигнал находится в противофазе относительно входного, то есть инвертирует его. Отсюда и название “инвертирующий усилитель”.
Насыщение выхода
Давайте представим себе такую ситуацию. У нас входное переменное напряжение амплитудой 1 В. Коэффициент усиления 50. По нашим расчетам на выходе мы должны получить сигнал амплитудой 50 В. Но как мы получим 50 В, если питание нашего усилителя, допустим, +-15 В? Усиленный сигнал, амплитудой больше чем 15 В, мы получить не сможем. Хотя типичное падение напряжения во внутренних цепях реальных ОУ составляет около 0,5-1,5 В. То есть максимальный размах сигнала, который мы можем получить в данном случае на выходе будет 27-29 Вольт.
Хотя в настоящее время есть ОУ, которые все-так позволяют получать на выходе +-Uпит. Такое свойство некоторых ОУ называется Rail-to-Rail. В дословном переводе “от рельса до рельса” или “от шины до шины”. Есть такие параметры, как Rail-to-Rail по входу (Rail-to-Rail input). Здесь на вход мы можем подавать сигналы вплоть до Uпит ОУ. Иногда в даташите оговаривается, с отрицательной или положительной шины питания можно подходить к этому параметру. Есть также есть Rail-to-Rail output. Здесь на выходе мы можем получить напряжение +-Uпит. Если усиленный сигнал на выходе не вписывается в такой диапазон, то он будет срезаться. Такое свойство ОУ называется насыщением выхода. То есть надо всегда помнить, что если амплитуда сигнала будет превышать +-Uпит усилителя, то такой сигнал на выходе будет срезан по этому уровню.
Продемонстрируем это в симуляторе Proteus. Итак, давайте на вход подадим синусоидальный сигнал амплитудой в 1 В, а коэффициент усиления сделаем 20, подобрав нужные резисторы. То есть по нашим расчетам мы должны получить синус с амплитудой в 20 Вольт. Смотрим осциллограмму
Подавали на вход синусоиду, а получили на выходе синусоиду с обрезанными верхушками и амплитудой в 14 В. Одна клеточка в данном случае – это 2 В. Как вы видите,сигнал, амплитудой более чем +-Uпит мы получить не сможем. Всегда помните об этом, особенно при конструировании радиоэлектронных устройств.
Ток смещения и смещение выхода
Входы реального ОУ потребляют небольшой ток, который называется током смещения. В англоязычных даташитах он называется Input Bias Current. Если входные цепи ОУ построены на биполярных транзисторах, то такой ток смещения будет где-то несколько десятков наноампер, в отличите от ОУ, где входные цепи построены на полевых транзисторах. Во входных цепях, построенных на полевых транзисторах, ток смещения оценивается десятыми долями пикоампер. Следовательно, ток смещения очень важен именно для ОУ, чьи входные цепи построены на биполярных транзисторах.
Почему же так важен ток смещения? Давайте еще раз рассмотрим схему
Даже если мы не подаем никакого сигнала на вход, то на выходе у нас все равно будет какое-то маленькое постоянное напряжение. Почему так происходит? Во всем как раз и виноват ток смещения. Он создает падение напряжения на резисторе обратной связи. В данном случае – это резистор R2. А как вы знаете, на большем сопротивлении падает большее напряжение. То есть если номинал сопротивления R2 будет очень большим, то на нем будет падать большое напряжение, которое как раз и пойдет на выход нашего ОУ.
Допустим, ток смещения равен 0,1 мкА, а резистор R2= 1 МОм, то какое падение напряжения будет в этом случае на резисторе? Вспоминаем закон Ома: I=U/R, отсюда U=IR= 0,1 В. То есть на выходе у нас уже будет постоянное напряжение 0,1 В! Подавая на вход такого усилителя полезный сигнал с током смещения в 0,1 мкА , на выходе этот сигнал будет усиливаться и суммироваться с постоянной составляющей в 0,1 В. В нашем случае происходит смещение нулевого уровня. Наглядно – на рисунке ниже.
Способы борьбы с током смещения
В некоторых случаях током смещения можно пренебречь, если он не оказывает сильного влияния на ваши требования по сигналу. Но если все-таки вы разрабатываете какое-либо точное устройство, где выходной сигнал должен строго вписываться в рамки ТЗ, то в этом случае можно прибегнуть к таким способам:
1) Ставить в цепь обратной связи резистор малого номинала. На малом сопротивлении падает малое напряжение. Следовательно, на выходе уже будет меньшее постоянное напряжение. Стандартный диапазон резисторов от нескольких килоом и до 50 кОм.
2) Ввести в схему компенсирующий резистор
В этом случае он будет определяться по формуле:
Если все-таки выходной сигнал соответствует вашим ожиданиям и без RК , то лучше его не ставить, так как любой резистор вносит шумовые искажения в сигнал. Зачем лишний раз добавлять в схему шум?
3) Использовать ОУ с входными цепями, построенными на полевых транзисторах, либо подбирать ОУ с малыми токами смещения, благо сейчас технологии производства таких ОУ далеко шагнули вперед.
Инвертирующий усилитель с однополярным питанием
В некоторых случаях нам даже иногда нужно переместить нулевой уровень на более высокий “пьедестал”, чтобы мы могли полностью усиливать сигнал, если дело касается однополярного питания. Работать с однополярным питанием всегда проще и удобнее, чем с двухполярным. Поэтому, в этом случае надо поднять нулевой уровень на некоторый пьедестал, чтобы полностью усиливать переменный сигнал. То есть добавить постоянную составляющую в сигнал. В этом случае схема примет чуть-чуть другой вид:
Как можно увидеть, сейчас мы питаем наш ОУ однополярным питанием. Что будет, если мы НЕинвертирующий выход посадим на землю?
То есть мы получили базовую схему инвертирующего усилителя, но только с однополярным питанием. Давайте ппросимулируем такую схему. Коэффициент усиления в данном случае будет равен-10, так как мы взяли соотношение резисторов 10 килоом и 1 килоом. Загоняю на вход сигнал амплитудой в 1 В.
Что имеем в итоге на виртуальном осциллографе?
Как вы видите, в этом случае усиленная полуволна сигнала вырезается полностью. Оно и понятно, так как напряжение питания у нас однополярное и проломить “пол” нулевого потенциала невозможно. Но можно сделать одну хитрость: поднять “уровень пола” и дать сигналу место для размаха.
В этом случае нам надо добавить Uсм , для того, чтобы поднять сигнал над уровнем “пола”. Но не все так просто, дорогие друзья!
Здесь уже будет использоваться более хитрая формула, а не просто вольтдобавка. Приблизительная формула выглядит вот так:
Итак, мы хотим усилить наш сигнал полностью без среза. Какое же должно быть значение Uвых ? Оно должно иметь значение половины Uпит , чтобы сигнал ходил туда-сюда без срезов. Но также надо учитывать и коэффициент усиления, иначе получится насыщение выхода, о чем мы писали выше.
В нашем случае мы хотим увеличить сигнал амплитудой в 1 В в 10 раз. То есть Uпит должно быть как минимум 20 Вольт. Так как ОУ поддерживают однополярное питание до 32 В, то давайте для красоты выставим Uпит = 30 В. Рассчитываем Uсм :
Проверяем симуляцию, все ок!
Как здесь можно увидеть, желтый выходной сигнал поднялся над нулевым уровнем и усилился без искажений. В данном случае желтый сигнал – это сумма постоянного напряжения и переменного синусоидального сигнала.
То есть получилось что-то типа вот этого:
Хорошо это или плохо, когда в переменном сигнале есть постоянная составляющая, то есть постоянное напряжение? В некоторых случаях это плохо, потому как такой сигнал трудно использовать, и поэтому чаще всего его прогоняют через конденсатор, так как он пропускает через себя только переменный ток и блокирует прохождение постоянного тока. А еще лучше поставить фильтр из дифференцирующей цепи, с помощью которого можно отсекать лишние частоты.
Свойства инвертирующего усилителя
Двухполярное питание из однополярного | AUDIO-CXEM.RU
Недавно столкнулся со следующей проблемой, собрал два усилителя НЧ на TDA7294, следующим этапом была сборка импульсного блока двухполярного питания, но как-то не терпелось проверить работоспособность усилителей. Естественно трансформатора с двумя вторичными обмотками на нужное напряжение у меня не оказалось, да и вообще не было у меня трансформатора с двумя вторичными обмотками.
Покопавшись в своем барахле, нашел два не очень мощных трансформатора, каждый имел одну вторичную обмотку, но на разное напряжение. Далее я принял решение собрать плату, которая будет из одной вторичной обмотки делать двухполярное питание.
Устройство, преобразующее двухполярное питание из однополярного, имеет следующую схему:
Схема была найдена в интернете, но в ней нет ничего сложного и объяснять работу данного устройства я не буду.
Компоненты для сборки:
ОБОЗНАЧЕНИЕ | ТИП | НОМИНАЛ | КОЛИЧЕСТВО | КОММЕНТАРИЙ |
VDS1,VDS2 | Выпрямительный диодный мост | Любой на нужное напряжение и ток | 2 | Распространенные KBU-610, KBU-810 |
C1,C5 | Электролит | 4700 мкФ 50В | 2 | |
C2,C6 | Конденсатор неполярный | 100 нФ | 2 | Пленка или керамика |
C3,C4 | Электролит | 470 мкФ 100В | 2 |
Скачать список компонентов в файле PDF
Описываемый в этой статье преобразователь двухполярного питания из однополярного не работает с постоянным током на входе преобразователя. Работает только с переменным током. Суть устройства такова, что из одной вторичной обмотки можно сделать двухполярное питание.
Диодные мосты выбирайте любые, какие есть, главное, чтобы по напряжению и току подходили. У меня лежали с давней распайки мосты RBA-401, током 4 Ампера, напряжением 95 Вольт. Для питания одной TDA7294 (+-30В) этого достаточно. Распространенные мосты KBU-610, KBU-810 и другие.
Если вы захотите использовать данное устройство на напряжение больше 45 Вольт, то следует заменить конденсаторы C1,C5 на более высоковольтные. У меня не было электролитов ёмкостью 4700 мкФ, но были 2200 мкФ, их я и поставил 4 штуки.
Неполярные конденсаторы C2,C6 я поставил полипропиленовые, с разборки компьютерных блоков питания.
Трансформатор я использовал кольцевой, с одной вторичной обмоткой, напряжением 29 Вольт, мощностью 50 Вт. После выпрямления получил +-41 Вольт на конденсаторах.
При проверке я запитал TDA7294, выжал из не примерно 35 Вт, при этом просадка напряжения составила +-25 Вольт. Большая просадка напряжения произошла из-за слабого трансформатора. На плате преобразователя, все элементы кроме мостов были холодные, мосты теплые.
Сделаю вывод, что данный преобразователь двухполярного питания из однополярного, работает стабильно, и может использоваться для запитывания усилителей НЧ.
Минус данного устройства заключается в использовании на его входе только переменного тока.
Список компонентов в файле PDF СКАЧАТЬ
Печатная плата СКАЧАТЬ
Похожие статьи
МОЩНЫЙ ИМПУЛЬСНЫЙ СЕТЕВОЙ ДВУХПОЛЯРНЫЙ БЛОК ПИТАНИЯ
Всем привет! После сборки усилителя на ТДА7294, сделал еще и инвертор, чтобы можно было питать от 12 В, то есть автомобильный вариант. После того как все сделал в плане УНЧ, был поставлен вопрос: чем теперь его питать? Даже для тех же тестов, или чтобы просто послушать? Думал обойдется все АТХ БП, но при попытке «навалить», БП надежно уходит в защиту, а переделывать как-то не очень хочется… И тут осенила мысль сделать свой, без всяких «прибамбасов» БП (кроме защиты разумеется). Начал с поиска схем, присматривался к относительно не сложным для меня схем. В итоге остановился на этой:
Схема ИБП для УМЗЧ
Нагрузку держит отлично, но замена некоторых деталей на более мощные позволит выжать из неё 400 Вт и более. Микросхема IR2153 — самотактируемый драйвер, который разрабатывался специально для работы в балластах энергосберегающих ламп. Она имеет очень малое потребление тока и может питаться через ограничительный резистор.
Сборка устройства
Начнем с травления платы (травление, зачистка, сверление). Архив с ПП скачайте тут.
Сначала прикупил некоторые отсутствующие детали (транзисторы, ирка, и мощные резисторы).
Кстати, сетевой фильтр полностью снял с БП от проигрывателя дисков:
Далее внимательно распаиваем детали на плате согласно схеме и ПП.
Теперь самое интересное в ИИП — трансформатор, хотя ничего сложного тут нету, просто надо понять, как его правильно мотать, и всего то. Для начала нужно знать, чего и сколько наматывать, для этого есть множество программ, однако самая распространённая и пользующаяся популярностью у радиолюбителей это – ExcellentIT. В ней мы и будем рассчитывать наш трансформатор.
Как видим, получилось у нас 49 витков первичная обмотка, и две обмотки по 6 витков (вторичная). Будем мотать!
Изготовление трансформатора
Так как у нас кольцо, скорее всего грани его будут под углом 90 градусов, и если провод мотать прямо на кольцо, возможно повреждение лаковой изоляции, и как следствие межвитковое КЗ и тому подобное. Дабы исключить этот момент, грани можно аккуратно спилить напильником, или же обмотать Х/Б изолентой. После этого можно мотать первичку.
После того как намотали, еще раз заматываем изолентой кольцо с первичной обмоткой.
Затем сверху мотаем вторичную обмотку, правда тут чуть сложней.
Как видно в программе, вторичная обмотка имеет 6+6 витков, и 6 жил. То есть, нам нужно намотать две обмотки по 6 витков 6 жилами провода 0,63 (можно выбрать, предварительно написав в поле с желаемым диаметром провода). Или еще проще, нужно намотать 1 обмотку, 6 витков 6 жилами, а потом еще раз такую же. Что бы сделать этот процесс проще, можно, и даже нужно мотать в две шины (шина-6 жил одной обмотки), так мы избегаем перекоса по напряжению (хотя он может быть, но маленький, и часто не критичный).
По желанию, вторичную обмотку можно изолировать, но не обязательно. Теперь после этого припаиваем трансформатор первичной обмоткой к плате, вторичную к выпрямителю, а выпрямитель у меня использован однополярный со средней точкой.
Расход меди конечно больше, но меньше потерей (соответственно меньше нагрева), и можно использовать всего одну диодную сборку с БП АТХ отслуживший свой срок, или просто нерабочий. Первое включение обязательно проводим с включённой в разрыв питания от сети лампочкой, в моем случае просто вытащил предохранитель, и в его гнездо отлично вставляется вилка от лампы.
Если лампа вспыхнула и погасла, это нормально, так как зарядился сетевой конденсатор, но у меня данного явления не было, либо из-за термистора, или из-за того, что я временно поставил конденсатор всего на 82 мкФ, а может все месте обеспечивает плавный пуск. В итоге если никаких неполадок нету, можно включать в сеть ИИП. У меня при нагрузке 5-10 А, ниже 12 В не просаживалось, то что нужно для питания авто усилителей!
Примечания и советы
- Если мощность всего около 200 Вт, то резистор, задающий порог защиты R10, должен быть 0,33 Ом 5 Вт. Если он будет в обрыве, или сгорит, сгорят все транзисторы, а также микросхема.
- Сетевой конденсатор выбирается из расчета: 1-1,5 мкФ на 1 Вт мощности блока.
- В данной схеме частота преобразования примерно 63 кГц, и в ходе эксплуатации, наверное, лучше для кольца марки 2000НМ, частоту уменьшить до 40-50 кГц, так как предельная частота, на которой кольцо работает без нагрева – 70-75 кГц. Не стоит гнаться за большой частотой, для данной схемы, и кольца марки 2000НМ, будет оптимально 40-50 кГц. Слишком большая частота приведет к коммутационным потерям на транзисторах и значительных потерях на трансформаторе, что вызовет его значительный нагрев.
- Если у вас на холостом ходу при правильной сборке греется трансформатор и ключи, попробуйте снизить емкость конденсатора снаббера С10 с 1 нФ до 100-220 пкФ. Ключи нужно изолировать от радиатора. Вместо R1 можно использовать термистор с БП АТХ.
Вот конечные фото проекта блока питания:
Всем удачи! Специально для Радиосхем — с вами был Alex Sky.
Форум по ИБП
Обсудить статью МОЩНЫЙ ИМПУЛЬСНЫЙ СЕТЕВОЙ ДВУХПОЛЯРНЫЙ БЛОК ПИТАНИЯ
Продолжаем наш проект Black Andel-2. Сборку деталей печатных плат к нашему домашнему усилителю мы начнём с источника питания, точнее двух источников, так как требуется два БП. Конечно мы используем не силовые трансформаторы на железе, а импульсные блоки питания.ИНВЕРТОР 1Этот инвертор предназначен только для питания сабвуферного усилителя по схеме ланзара. Выходное напряжение +/-65 Вольт. Инвертор не имеет стабилизацию выходного напряжения, но не смотря на это серьезные скачки напряжения не наблюдал. Построен инвертор по классической двухтактной схеме с применением ШИМ контроллера на микросхеме TL494.Перед и после дросселей стоят пленочные конденсаторы с напряжением 100 Вольт, их емкость не особа критична и может быть в районе 0,1-1 мкФ. ЗАПУСК ПЕРВОГО ИНВЕРТОРА БППеред запуском инвертора тщательно проверяем правильность монтажа. Маломощные транзисторы BC556/557 можно заменить на отечественный аналог КТ3107, ВС546 на КТ3102 или любые другие с близкими параметрами. Полевые ключи в ходе работы без выходной нагрузки не должны нагреваться, а с нагрузкой нагрев плеч должен быть равномерным. Последний этап — теплоотвод. Полевые транзисторы в моем случае укреплены на теплоотвод от компьютерного блока питания, через слюдяные прокладки и изолирующие шайбы. Проблема. Бывает так, что при первом же включении выходят из строя полевики. Причина и устранение. Неправильно сфазирована первичная обмотка или бракованные транзисторы. Если уверены в правильности монтажа и в исправности всех компонентов, то скорее всего первичная обмотка трансформатора неправильно сфазирована. Для этого отключаем вторичную цепь, то есть нагрузку, которая подключена ко вторичной обмотке и снова запускаем трансформатор (часто, проблемы могут возникнуть на вторичных цепях), если все также, то проверяем транзисторы на исправность, они скорее всего будут «убитыми», заменяем и фазируем трансформатор правильно. Причина и устранение. Вначале проверяем наличие прямоугольных импульсов на 9 и 10 выводах микросхемы, если все ок, то проверяем посключение диодов и маломощных транзисторов, такая проблема возникает по двум причинам — неправильное подключение маломощных транзисторов драйвера или же неравноценные плечи первичной обмотки. ИНВЕРТОР 2Схема и печатная плата второго инвертора полностью схожа с первым. Выходное напряжение для питания каналов ОМ составляет 2х55 Вольт (+/-55В). Вторичная обмотка на сей раз намотана 6-ю жилами провода 0,8 мм и состоит из 2х28 Витков, мотается по той же технологии, что и в случае первого инвертора. Обратите внимание на то, чтобы первичные и вторичные обмотки были обязательно намотаны В ОДИНАКОВОМ НАПРАВЛЕНИИ! Другая вторичка предназначена для запитки блока усилителей на микросхемах LM1875. Обмотка состоит из 2х8 Витков, намотана 4-мя жилами провода 0,8 мм.ПЕРВОЕ ВКЛЮЧЕНИЕ Первый запуск инвертора стоит сделать от лабораторного БП с защитой от КЗ, при этом в момент запуска защита может ошибочно сработать, если блок маломощный, в моем случае использовался переделанный БП с током 3,5 А. Холостой ток инвертора 170-280 мА, зависит от правильного расчета трансформатора, рабочей частоты генератора и типа полевых ключей, немалую роль играет резистор снаббера, в моем случае с ним пришлось чуток поиграться, чтобы снизить потребление схемы. Обсудить статью ДОМАШНИЙ УСИЛИТЕЛЬ — ИНВЕРТОРЫ |
Полный усилитель для автомобильного сабвуфера – Поделки для авто
В очередные выходные просматривая фотографии сделанных мною автомобильных усилителей обратил внимание на то, что все они имеют довольно большие габаритные размеры, оно и понятно , если усилитель работает в классе АВ, то нужны большие теплоотводы, которые естественно увеличивают вес и размеры конструкции, но сами платы тоже не из маленьких, ведь автомобильный усилитель это не только усилитель , а совокупность повышающего преобразователя, фильтра низких частот и усилителя низкой частоты.
В общем был охвачен идеей создать компактный усилитель для среднего автомобильного сабвуфера и быстро сел за компьютер и разработал печатную плату, она получилась довольно компактной и продуманной, никакого лишнего пространства, все заполнено компонентами.
Несколько слов о конструкции.
Это законченный моноблок для автомобильного сабвуфера с фильтром низких частот, который обеспечивает срез порядка 100Гц, выполнен на сдвоенном операционном усилителе BA4558, ценители качественного звука может и будут критиковать за такое решение, мол микросхема не из самых лучших, но эту микру внедряю в самые разные проекты и превосходно работает не один год, к тому же микросхема популярная и найти не составит труда.
фильтр низких частот
Фильтр имеет на входе сумматор для суммирования входного сигнала с обеих каналов, лишь только потом сигнал обрабатывается ОУ, срезаются все частоты выше 100Гц, при желании частоту среза можно сделать ниже.
Усилитель мощности построен на привычной для таких целей микросхеме TDA7294, обеспечивает выходную мощность около 100 ватт (70 ватт номинальная), тут хочу обратить внимание зрителей на тот момент, что указанная мощность является реальной, синусоидальной мощностью, а не то, что пишут китайцы на дешевых усилителях, так, что усилитель на полную может раскачивать такие динамические головки как 75ГДН- именно они находят широкое применение в самодельных автомобильных (да и не только) сабвуферных системах.
Преобразователь напряжения.
Я неоднократно пояснял для чего он нужен, более-менее серьезные усилители нуждаются в двухполярном источнике питания, напряжение которого в разы выше, чем напряжение бортовой сети автомобиля, преобразователь просто повышает напряжение до нужного уровня, для питания микросхемы усилителя.
В этом варианте использована традиционная схематика преобразователя – пуш-пул. Это двухтактный DC-DC преобразователь напряжения, имеется трансформаторная развязка, как и в прочем любом автомобильном усилителе.
Микросхема генератора – TL494 настроена на частоту около 150кГц, это довольно много, с учетом того, что во многих источниках советуется настраивать генератор на частоту в 2-3 раза ниже указанной, но сердечник трансформатора у меня марки epcos N87, в случае наших сердечников не советую увеличивать частоту выше 60кГц.
Полевые транзисторы типа IRFZ44, холостой ход инвертора без выходной нагрузки не более 50мА , с подключенным усилителем и фильтром (без входного сигнала) 250мА – это реальные цифры зафиксированные приборами.
Данные намотки трансформатора будут зависеть исключительно от вашего сердечника, в моем случае кольцо имеет размеры 28х14х10, первичная обмотка 2х5 витков жгутом из 5 проводов по 0,7мм, вторичная – 11 витков, жгут состоит из проводов 0,35мм 6 жил.
Напряжение ХХ около 25-27 вольт, под нагрузкой до 50 ватт почти никакой просадки, при нагрузке 100-120 вольт просадка минимальна.
Не смотря на простоту схематических решений, этот комплекс имеет все, что должен иметь любой автомобильный усилитель.
Микросхемы были установлены на панельки DIP8 и DIP16 для быстрой замены, хотя с учетом того, что усилитель будет работать в автомобиле, а это значит вечные вибрации, то желательно их запаять на плату без использования указанных панелей. Выходные выпрямительные диоды поставил типа UF5408, хотя они на 3 Ампера, но справляются отлично.
Дросселя (входной и выходные) были выдраны из вторичных цепей компьютерного бп, намоточные данные особо не критичны, их можно вообще не ставить (многие производители автомобильных усилителей так и делают).
Плата в формате .lay скачать…
Автор; АКА КАСЬЯН