Индикатор уровня lm339 – Индикатор уровня напряжения аккумулятора на светодиодах и ОУ LM339

Содержание

Знакомство с компараторами на примере чипа LM339

Ранее мы с вами познакомились с такими интегральными схемами, как таймер 555, счетчик 4026, логические вентили, а также сдвиговые регистры и декодеры. Теперь же пришло время узнать о компараторах. Несмотря на кажущуюся простоту, компараторы — куда более интересные устройства, чем может показаться на первый взгляд. Читайте далее, и сможете убедиться в этом самостоятельно.

Крайне наглядная картинка, объясняющая работу компаратора, была найдена мной в книге Чарльза Платта Электроника: логические микросхемы, усилители и датчики для начинающих. С некоторыми изменениями эта иллюстрация приведена ниже:

Внутреннее устройство компаратора

Компаратор имеет два входа, обозначаемые знаками минус (инвертирующий вход) и плюс (неинвертирующий вход), и один выход. Для нормальной работы выход компаратора обязательно должен быть подключен к плюсу источника питания через подтягивающий резистор. Почему нельзя было сделать это просто внутри микросхемы, скоро станет понятно.

Используется компаратор следующим образом. На инвертирующий вход подается эталонное напряжение. Когда напряжение на втором, неинвертирующем, входе больше эталонного, выход компаратора имеет высокое напряжение. Если же напряжение на неинвертирующем входе ниже эталонного, выход компаратора имеет низкое напряжение. Проще говоря, компаратор сравнивает два значения напряжения и на выходе говорит, какое больше. Входы компаратора можно использовать и наоборот, тогда выход компаратора будет инвертирован.

В качестве типичной микросхемы, содержащей внутри себя целых 4 компаратора, можно назвать LM339. Данный чип выпускается как в виде SMD-компонента, так и варианте для монтажа через отверстия. Распиновка у LM339 следующая:

Распиновка LM339

Данная иллюстрация взята из даташита микросхемы [PDF].

На практике компараторы чаще всего используют одним из следующих образов:

Примеры использования компаратора

Важно! По неудачному стечению обстоятельств, компаратор обозначается на схемах точно так же, как и операционный усилитель. Однако операционные усилители работают иначе, нежели компараторы, и их не следует путать. Определить, что именно используется в схеме, обычно можно по указанному названию чипа.

В левой части схемы изображен компаратор, чей выход соединяется с неинвертирующим входом через потенциометр или резистор. Это — так называемая положительная обратная связь. Благодаря ей достигается гистерезис. То есть, если напряжение на неинвертирующем входе будет колебаться в некотором коридоре возле эталонного, выход компаратора не будет постоянно изменяться. Если помните, триггер Шмитта (чип 74HC14) делает то же самое.

Кстати, можно заметить, что одна из связей на потенциометре в положительной обратной связи как бы лишняя. Как объяснил мне Melted Metal, так принято делать на случай потери контакта движка потенциометра с резистивной дорожкой.

Что же касается правой части схемы, на ней изображена схема двухпорогового компаратора. Если вход схемы, обозначенный, как signal, имеет напряжение между low и high, на выходе схемы образуется высокое напряжение. В противном случае напряжение на выходе низкое.

На следующем фото изображена первая схема, собранная на макетной плате:

Пример использования LM339, собранный на макетке

Потенциометр слева задает напряжение на инвертирующем входе, а потенциометр справа — на неинвертирующем. Потенциометр по центру участвует в положительной обратной связи. Напряжение на обоих входах отображается при помощи миниатюрных цифровых вольтметров. Поскольку напряжение на неинвертирующем входе выше эталонного, светодиод, подключенный к выходу компаратора, горит.

Обратите внимание, что на входы неиспользованных компараторов также подается высокое и низкое напряжение. Это увеличивает надежность работы схемы и уменьшает потребляемую ею электроэнергию. Не имеет значения, на какой из входов подается высокое напряжение, а на какой — низкое. Главное, чтобы выход каждого отдельного компаратора был строго определен.

Вторую схему в собранном виде здесь я не привожу. Так что, вам придется поверить мне на слово, что она работает 🙂

Помимо всех озвученных выше, следует иметь в виду еще пару важных моментов:

  • Через компаратор не следует пропускать слишком большой ток. Ток больше 20 мА может его сжечь;
  • Напряжение на выходе компаратора может быть как выше, так и ниже напряжения на любом из входов. То есть, выход можно питать от совершенно другого источника питания. А питание на саму микросхему при этом может идти от третьего. Для правильной работы микросхемы нужно только, чтобы все эти источники имели общую землю;

Последнее обстоятельство позволяет использовать компаратор в качестве преобразователя уровня сигнала. Кроме того, теперь наконец-то стало ясно, зачем были все эти сложности со внешним подтягивающим резистором.

Вообще, компаратор можно рассматривать, как очень простой вольтметр или АЦП. В частности, с его помощью не представляет труда собрать индикатор уровня заряда Li-Ion аккумулятора. Если же у вас есть лишний фоторезистор (см заметку Мои первые страшные опыты с Arduino) или фототранзистор, на базе компаратора можно сделать датчик освещения. Если же вместо фоторезистора воспользоваться термометром типа TMP36, можно собрать устройство, управляющее кулером или кондиционером, способное регулировать температуру.

Наконец, компаратор можно использовать в качестве логического элемента НЕ, а также, если соединить выходы нескольких компараторов, в качестве элемента И. Отсюда несложно получить ИЛИ, по форуме

x || y = !(!x && !y), ровно как и любую другую булеву функцию. Само собой разумеется, при желании можно придумать и другие применения.

А какие безумные варианты использования компараторов приходят вам на ум?

Метки: Электроника.

Индикатор напряжения на lm339 схемы самоделки - Moy-Instrument.Ru

Индикатор напряжения на lm339 схемы самоделки

Автомобильные схемы
Автомобильные схемы электрических соединений
Основные обозначения элементов
Определение сопротивления резистора по цветовой маркировке
Калькулятор расчета резистора для светодиодов
Плавное включение и выключение светодиодов на микроконтроллере

Простая схема плавного включения и выключения светодиодов
Стабилизатор тока для светодиодов
Схема регулировки яркости светодиодов (диммер)

Светодиодный индикатор напряжения

Светодиодный индикатор на универсальных поликомпараторных микросхемах, содержащих в одном корпусе по несколько аналоговых компараторов общего назначения. Микросхема LM339, которая в одном корпусе DIP-14 содержит четыре компаратора с полевыми входами. Используя одну LM339 можно сделать четырехпороговый индикатор постоянного напряжения.

На рисунке 1 показана схема такого индикатора с линейной зависимостью измерения. Инверсные входы всех компараторов соединены вместе, — их общая точка является входом индикатора. На прямые входы подается опорное постоянное напряжение +Uomax через резистивный делитель, обеспечивающий распределение этого напряжения так, чтобы получить необходимый закон измерения. В данном случае резисторы делителя R2-R5 выбраны одинаковыми, поэтому и зависимость линейная.

Максимальная величина измеряемого напряжения (величина порога, при котором включается светодиод HL4) равна напряжению +Uomax (опорное напряжения максимума). Это напряжение желательно стабилизировать хотя-бы обычным параметрическим стабилизатором. Минимальная величина (порог при котором загорается HL1) зависит от сопротивления резистора R5 или от величины опорного напряжения минимума (Uomin).

Например, если нужно производить измерения в каком-то остро зажатом узком интервале напряжений, например, от 10 до 11V, то +Uomax должно быть равно 11V, а Uomin = 10V, при этом сопротивление R5 нужно исключить из схемы. Либо выбрать Uomin равным нулю (как на рисунке 1) и установить R5 такой величины, чтобы напряжение на нем было равно 10V.

Сопротивления R10-R13 нужны для придания компараторным схемам небольшого гистерезиса, улучшающего четкость работы индикатора. Индикаторная шкала состоит из четырех светодиодов HL1-HL4, подключенных к выходам компараторов через токоограничительные резисторы R14-R17.

Чтобы измерять переменное напряжение, например, в схеме индикации аудиосигнала, можно на входе сделать детектор на диодах или операционном усилителе.

Конечно, схема показанная на рисунке 1 несколько сложнее схемы на ВА6884 или другой аналогичной микросхемы, но это усложнение не столь существенно, особенно если нужно получить какую-то специфическую характеристику закона измерения. К тому же в данной схеме можно использовать практически любые доступные в текущий момент аналоговые компараторы или операционные усилители.

Схему, показанную на рисунке 1 можно легко каскадировать чтобы получить практически любое количество порогов измерения. На рисунке 2 показана схема восьмипорогового индикатора на двух микросхемах LM339, то есть, на восьми компараторах.

Схема на рисунке 2 специально показана так, чтобы было видно, как соединить схемы при каскадировании. Входы всех компараторов, сколько бы их ни было нужно соединить вместе, — это будет общий вход, на который поступает напряжение, подлежащее измерению.

Резисторы делителя (R2-R5 и R18-R21) включены последовательно. Если схема на большее число порогов, то и компараторов будет больше и больше будет резисторов в этом делителе. Например, используя четыре микросхемы LM339 можно сделать 16-пороговый индикатор.

Число порогов может быть практически любым, — совсем не обязательно кратным четырем. Все зависит от того, сколько компараторов вы используете. Например, если использовать в индикаторе уровня для стереоусилителя пять микросхем LM339, можно получить двухканальный шкальный десятипороговый индикатор. При этом, в каждом из каналов будут работать по две микросхемы LM339. И еще одна LM339, два компаратора которой работают в одном канале, а два других — в другом.

Нагрузочная способность выходов компараторов LM339 не слишком высока, поэтому для получения достаточной яркости индикатора желательно использовать сверх-яркие светодиоды. Либо сделать выходы на дополнительных ключах — усилителях, но это приводит к существенному усложнению схемы.

Индикатор разряда литиевых аккумуляторов

Так как индикатор разряда батареи (п.3 комментария) целесообразно применять на любом автономном электронном устройстве, для исключения неожиданных сбоев или отказа аппаратуры в самый неподходящий момент при разряде батареи, то изготовление индикатора разряда вынесено отдельной статьей.

Применение индикатора разряда особенно важно для большинства литиевых аккумуляторов с номинальным напряжением 3.7 вольта (например, популярные сегодня 18650 и им аналогичные или распространенные плоские Li-ion аккумуляторы от заменяемых на смартфоны телефонов), т.к. они очень «не любят» разряд ниже 3,0 вольт и выходят при этом из строя. Правда, в большинство из них должны быть встроены схемы аварийной защиты от глубокого разряда, но кто знает какой аккумулятор в ваших руках, пока вы его не вскроете (Китай полон загадок).

Но главное, хотелось бы заранее узнать, какой заряд в настоящее время имеется в используемом аккумуляторе. Тогда мы могли бы вовремя подключить зарядку или поставить новый аккумулятор, не дожидаясь грустных последствий. Поэтому нам нужен индикатор, который заранее подаст сигнал о том, что аккумулятор скоро сядет окончательно. Для реализации этой задачи существуют различные схемотехнические решения — от схем на одном транзисторе до навороченных устройств на микроконтроллерах.

В нашем случае, предлагается изготовить простой индикатор разряда литиевых аккумуляторов, который с легкостью собирается своими руками. Индикатор разряда отличается экономичностью и надежностью, компактностью и точностью определения контролируемого напряжения.

Схема индикатора разряда

Схема выполнена с применением, так называемых детекторов напряжения. Их еще называют мониторами напряжения. Это специализированные микросхемы, разработанные специально для контроля напряжения. Неоспоримые достоинства схем на мониторах напряжения — чрезвычайно низкое энергопотребление в дежурном режиме, а также ее крайняя простота и точность. Чтобы сделать индикацию разряда еще более заметной и экономичной, выход детектора напряжения нагружаем на мигающий светодиод или «мигалку» на двух биполярных транзисторах.

Применяемый в схеме детектор напряжения (DA1) PS Т529Н соединяет выход (вывод 3) микросхемы с общим проводом, при снижении контролируемого напряжения на батарее до 3,1 вольта, включая этим питание на генератор импульсов высокой скважности. При этом сверхяркий светодиод начинает вспыхивать с периодом: пауза — 15 сек., короткая вспышка — 1 сек. Это позволяет снизить потребляемый ток до 0,15 ma в паузе, и 4,8 ma при вспышке. При напряжении на аккумуляторе более 3,1 вольта, схема индикатора практически отключается и потребляет всего 3 мкa.

Как показала практика, указанного цикла индикации вполне достаточно, чтобы увидеть сигнал. Но при желании можно установить более удобный для вас режим подбором резистора R2 или конденсатора С1. В связи с малым током потребления устройства, отдельный выключатель напряжения питания для индикатора не предусмотрен. Устройство работоспособно при снижении питающего напряжения до 2,8 вольта.

Изготовление зарядного устройства

1. Комплектация.
Приобретаем или подбираем из имеющихся в наличии, комплектующие для сборки в соответствии со схемой.

2. Сборка схемы.
Для проверки работоспособности схемы и ее настройки, собираем индикатор разряда на универсальной монтажной плате. Для удобства наблюдения (большая частота импульсов), на время проверки, заменяем конденсатор С1 на конденсатор меньшей емкости (например 0,47 мкф). Подключаем схему к блоку питания с возможностью плавной регулировки постоянного напряжения в пределах от 2 до 6 вольт.

3. Проверка схемы.
Медленно понижаем напряжение питания индикатора разряда, начиная с 6 вольт. Наблюдаем на дисплее тестера величину напряжения, при которой включится детектор напряжения (DA1) и начнет мигать светодиод. При правильном подборе детектора напряжения, момент переключения должен состояться в районе 3,1 вольта.

4. Готовим плату для монтажа и пайки деталей.
Вырезаем необходимый для монтажа кусочек из универсальной печатной платы, аккуратно обрабатываем края платы напильником, очищаем и лудим контактные дорожки. Размер вырезаемой платы зависит от применяемых деталей и их компоновки при монтаже. Размеры платы на фото 22 х 25 мм.

5. Монтаж отлаженной схемы на рабочую плату
При положительном результате в работе схемы на монтажной плате, переносим детали на рабочую плату, паяем детали, выполняем недостающую разводку соединений тонким монтажным проводом. По окончании сборки проверяем монтаж. Схема может быть собрана любым удобным способом, в том числе и навесным монтажом.

6. Проверка рабочей схемы индикатора разряда
Проверяем работоспособность схемы индикатора разряда и ее настройки, подключив схему к блоку питания, а затем к тестируемому аккумулятору. При напряжении в цепи питания менее 3,1 вольта, индикатор разряда должен включиться.

Вместо применяемого в схеме детектора напряжения (DA1) PS Т529Н на контролируемое напряжение 3,1 вольта, возможно применить аналогичные микросхемы других производителей, например BD4731. Этот детектор имеет открытый коллектор на выходе (о чем свидетельствует дополнительная циферка «1» в обозначении микросхемы), а также самостоятельно ограничивает выходной ток на уровне 12 мА. Это позволяет подключать к ней светодиод напрямую, без ограничительных резисторов.

В схеме также возможно применить детекторы на напряжение 3.08 вольта — TS809CXD, TCM809TENB713, МСР103Т-315Е/ТТ, САТ809ТТВI-G. Точные параметры выбираемых детекторов напряжения желательно уточнить в их datasheet.

Аналогичным образом можно применить и другой детектор напряжения на любое другое необходимое для работы индикатора напряжение.

Решение по второй части вопроса в п.3 приведенного комментария – работы индикатора разряда только при наличии освещенности, отложено по следующим причинам:
— работа дополнительных элементов в схеме, требует дополнительных затрат энергии от аккумулятора, т.е. страдает экономичность схемы;
— работа индикатора разряда днем, чаще всего, бесполезна, т.к. в комнате нет «зрителей», а к вечеру заряд батареи может и закончиться;
— работа индикатора в темное время суток ярче и эффективнее, а для быстрого отключения устройства имеется выключатель питания.

Применение, предложенного по п.2 комментария, отечественного операционного усилителя не рассматривал, по причине отладки режимов работы схемы по минимальным токам, в процессе доводки на монтажной плате.

Для решения задачи по п. 1 комментария, несколько изменил схему устройства «Ночник с акустическим включателем». Для чего включил положительную шину питания акустического реле через инвертор на VT3, с управлением от постоянно работающего фотореле.

Таким образом, добавив две детали (на монтажной плате выделены овалом), получили возможность частично отключать акустическое реле в светлое время суток. Частичное отключение потому, что различные элементы обеих микросхем работают и в акустическом и в фото реле, но имеют общее питание, следовательно не отключаются полностью. Тем не менее некоторый эффект по энергосбережению имеется.
До доработки, схема устройства потребляла в дежурном режиме 1,1 ma.

После доработки, схема устройства потребляет в дежурном режиме в светлое время — 0,4 ma, в темное время — 1,7 ma (разница в 0,6 ma – плата за работу VT3).

Таким образом, можно посчитать, что в летнее время доработка оправдана и дает экономию, а зимой (когда длинные ночи) менее выгодна. Но имеется простое решение – шунтировать VT3 двухпозиционным переключателем «зима-лето» или «вкл-выкл».

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Поделки своими руками для автолюбителей

Простой и точный индикатор заряда-разряда АКБ

Сегодня статья будет с процессом сборки простого индикатора уровня заряда аккумуляторов, но с более высокоточной схемой, которая пригодна для реального использования и может стать отличным дополнением на панели приборов вашего автомобиля.

Индикатор построен на базе микросхемы ELM339, она в свою очередь представляет из себя четыре отдельных компаратора в едином корпусе.

Компаратор имеет два входа и один выход, он просто сравнивает напряжение на входах, исходя из этого на выходе получаем либо логический 0, либо единицу.

Использованный в схеме компаратор можно найти на платах компьютерного блока питания, ориентируйтесь по цифрам 339, буквы могут отличаться в зависимости от производителя.

В качестве индикаторов задействованы 3 миллиметровые светодиоды.

Схема работает очень простым образом, имеем источник опорного напряжения в лице стабилитрона, цепочки из резисторов представляют из себя делители, которые создают на входах компараторов определенное напряжение, назовем их пороговыми.

Компаратор постоянно сравнивает эти напряжения с напряжением, которые образуют делитель на резисторах R5 и R6, этот делитель снижает напряжение тестируемой батареи в три раза, если напряжение на прямом входе компаратора больше чем на инверсном, то на выходе получаем логическую единицу или напряжение питания.

Светодиод светится, если всё наоборот, то на выходе получаем логическую 0 или массу питания, светодиод в данном случае не светится.

Входные делители подобраны в узком диапазоне, поскольку схема предназначена для работы в качестве индикатора заряда 12-вольтовых аккумуляторов.

Маломощный диод 4148 защищает микросхему компаратора от обратной полярности.

Токо-ограничивающие резисторы для светодиодов подбираются с сопротивлением от 1 до 2,2 килом, можно ограничиться всего одним резистором.

Печатная плата довольно компактна, рисовал на скорую руку, но разводка неплохая, кстати её вы можете скачать в конце статьи.

Для проверки этой платы нам нужен лабораторный источник питания на котором нужно выставить напряжение около 13,5 — 14 вольт, имитируя полностью заряженный автомобильный аккумулятор.

Загораются сразу все светодиоды, постепенно снижая напряжение на блоке питания мы можем наблюдать потухание светодиодов при определенных напряжениях.

Горение только красных светодиодов означает, что аккумулятор почти разряжен.

Можно пересчитать входные делители и использовать схему для аккумуляторов с иным напряжением, кстати эту схему можно также применить и в зарядных устройствах.

Индикатор заряда для Li-ion аккумуляторов

Всем привет, мы давно не делали индикаторы разряда автомобильного аккумулятора. Но в этой статье мы будем делать такой, же индикатор только для одной банки LI-ION аккумуляторов с напряжением 3,7 вольт. Такие индикаторы конечно можно купить и на рынке, но, а для тех, кто не прочь поработать руками и мозгами, двигаемся дальше.

Данная схема мало чем отличается от стандартных индикаторов заряда для автомобильных аккумуляторов, но некоторые отличия все же есть. Схема этого индикатора построена на базе компаратора LM-339.

Микросхема LM339 содержит четыре отдельных компаратора, каждый из них имеет два входа и один выход.

Если меняется напряжение на одном входе, это моментально приводит к изменению состояния выхода компаратора. В случаем микросхемы LM 339 на выходе может быть либо вообще ничего, либо масса или минус питания. Такой компаратор называется с открытым коллектором, поэтому светодиоды подключены катодами к компаратору.

На некоторых входах компаратора нужно формировать стабильное или опорное напряжение.

Как правило, для этих целей используется стабилитрон, но дело в том, что мы собираемся контролировать напряжение на низковольтном источнике. Сам стабилитрон также должен быть низковольтным. Точнее говоря напряжение стабилизации стабилитрона должно быть меньше чем напряжение максимально разряженного аккумулятора.

В случае же обычных LI-ION аккумуляторов это около 3-х вольт. Исходя из выше написанного, для сборки необходимо найти стабилитрон с напряжением стабилизации на 2,5 и меньше вольт. (в нашем случае был использован стабилитрон на 3,3 вольт ).

Решение такое – использовать светодиод в качестве источника опорного напряжения. Для красных, желтых и зеленых светодиодов минимальное напряжение свечения – в пределах 2 вольт, только светодиод уже подключается в прямом направлении в отличие от стабилитрона. Резистивные делители на входах компаратора пришлось пересчитать под литиевый аккумулятор. Была сделана новая плата, рассчитанная для работы с банками 3,7 вольт. Еще один момент на плате есть две перемычки, обозначенные желтыми линиями.

Диод VD1 защищает микросхему, в случае если вы перепутаете полярность подключения к аккумулятору.

Как нам известно, напряжение полностью заряженного литий-ионного аккумулятора должно быть в районе 4,2 вольт, поэтому делители подобраны в очень узком диапазоне, при том использованы резисторы с погрешностью всего в 1 %., что гарантирует высокоточную работу индикатора. На плате имеем 4 индикаторных светодиода (цвета могут быть разными).

Для проверки работоспособности индикатора, его необходимо вначале подключить к лабораторному источнику питания, с выставленным напряжением 4,2 вольт имитируя полностью заряженный литий ионный аккумулятор.

Как видно, все светодиоды горят. Далее постепенно снижаем напряжение, имитируя разряд аккумулятора, и сразу видим поочередное потухание светодиодов при определенных напряжениях. Все работает.

Такой индикатор можно пристроить под какую-нибудь самоделку или использовать в качестве пробника для литиевых банок.

Вот и все, Не забывайте поделиться с друзьями и посвить лайк тем самым, вы поддержите проект.

Индикаторы разряда автомобильного аккумулятора ВАРИАНТ – 1 , ВАРИАНТ – 2 , ВАРИАНТ – 3.

Прикрепленные файлы – СКАЧАТЬ

Схема индикатора заряда аккумулятора на светодиодах

Успешный пуск автомобильного двигателя во многом зависит от состояния заряда аккумулятора. Регулярно проверять напряжение на клеммах с помощью мультиметра – неудобно. Гораздо практичнее воспользоваться цифровым или аналоговым индикатором, расположенным рядом с приборной панелью. Простейший индикатор заряда аккумулятора можно сделать своими руками, в котором пять светодиодов помогают отслеживать постепенный разряд либо заряд батареи.

Принципиальная схема

Рассматриваемая принципиальная схема индикатора уровня заряда представляет собой простейшее устройство, отображающее уровень заряда аккумулятора (АКБ) на 12 вольт. Её ключевым элементом является микросхема LM339, в корпусе которой собрано 4 однотипных операционных усилителя (компаратора). Общий вид LM339 и назначение выводов показан на рисунке. Прямые и инверсные входы компараторов подключены через резистивные делители. В качестве нагрузки используются индикаторные светодиоды 5 мм.

Диод VD1 служит защитой микросхемы от случайной смены полярности. Стабилитрон VD2 задаёт опорное напряжение, которое является эталоном для будущих измерений. Резисторы R1-R4 ограничивают ток через светодиоды.

Принцип работы

Работает схема индикатора заряда аккумулятора на светодиодах следующим образом. Застабилизированное с помощью резистора R7 и стабилитрона VD2 напряжение 6,2 вольт поступает на резистивный делитель, собранный из R8-R12. Как видно из схемы между каждой парой этих резисторов формируются опорные напряжения разного уровня, которые поступают на прямые входы компараторов. В свою очередь, инверсные входы объединены между собой и через резисторы R5 и R6 подключены к клеммам аккумуляторной батарее (АКБ).

В процессе заряда (разряда) аккумулятора постепенно изменяется напряжение на инверсных входах, что приводит к поочередному переключению компараторов. Рассмотрим работу операционного усилителя OP1, который отвечает за индикацию максимального уровня заряда АКБ. Зададим условие, если заряженный аккумулятор имеет напряжение 13,5 В, то последний светодиод начинает гореть. Пороговое напряжение на его прямом входе, при котором засветится этот светодиод, рассчитаем по формуле:
UOP1+ = UСТ VD2 – UR8,
UСТ VD2 =UR8+ UR9+ UR10+ UR11+ UR12 = I*(R8+R9+R10+R11+R12)
I= UСТ VD2 /(R8+R9+R10+R11+R12) = 6,2/(5100+1000+1000+1000+10000) = 0,34 мА,
UR8 = I*R8=0,34 мА*5,1 кОм=1,7 В
UOP1+ = 6,2-1,7 = 4,5 В

Это означает, что при достижении на инверсном входе потенциала величиной более 4,5 вольт компаратор OP1 переключится и на его выходе появится низкий уровень напряжения, а светодиод засветится. По указанным формулам можно рассчитать потенциал на прямых входах каждого операционного усилителя. Потенциал на инверсных входах находят из равенства: UOP1- = I*R5 = UБАТ – I*R6.

Печатная плата и детали сборки

Печатная плата изготавливается из одностороннего фольгированного текстолита размером 40 на 37 мм, которую можно скачать здесь. Она предназначена для монтажа DIP элементов следующего типа:

  • резисторы МЛТ-0,125 Вт с точностью не менее 5% (ряд Е24)
    R1, R2, R3, R4, R7, R9, R10, R11– 1 кОм,
    R5, R8 – 5,1 кОм,
    R6, R12 – 10 кОм;
  • диод VD1 любой маломощный с обратным напряжением не ниже 30 В, например, 1N4148;
  • стабилитрон VD2 маломощный с напряжением стабилизации 6,2 В. Например, КС162А, BZX55C6V2;
  • светодиоды LED1-LED5 – индикаторные типа АЛ307 любого цвета свечения.

Данную схему можно использовать не только для контроля напряжения на 12 вольтовых аккумуляторах. Пересчитав номиналы резисторов, расположенных во входных цепях, получаем светодиодный индикатор на любое желаемое напряжение. Для этого следует задаться пороговыми напряжениями, при которых будут включаться светодиоды, а затем воспользоваться формулами для пересчёта сопротивлений, приведенные выше.

Индикатор разряда Li-ion на TL431

Всем привет! Давно ничего не выкладывал, да и на само радиолюбительство подзабил в последнее время. Данный проект у меня уже давно «висит», вот нашёл время поделиться им с вами.

Итак, что и зачем: в большинстве моих (и не только моих) поделок используются элементы питания li-ion номиналом 3,7в — стандартные 18650, всяческие аккумы из сотовых телефонов и китайские разнокалиберные «лепёхи». На том же алиэкспресс есть модули зарядки, повышающие модули, модули для контроля разряда и прочая полезная ерунда, которая сильно облегчает жизнь. Но я не нашёл ничего вменяемого чтобы следить за уровнем заряда батареи и в случае достижения какого-то порогового значения сообщать об этом. Можно конечно сделать слежение на мозгах мк самоделки, либо поставить вольтметр за 70р с того же али, но всегда либо ног у мк не хватает, либо решение получается чрезмерным и громоздким. Исходя из всего этого возникла цель сделать маленькое и просто устройство, которое можно было бы клепать пачками из дешевых компонентов и которое выполняло бы свою функцию — показывало бы что батарея садится и её нужно зарядить.

Началось с вот такой схемы, которую я нашёл на просторах интернета:

Тут используются 4 резистора, R1 и R2 составляют делитель напряжения на управляющем контакте TL431, R3 подтяжка базы NPN транзистора к плюсу питания, R4 — токоограничивающий для индикаторного светодиода, уже упомянутый NPN-транзистор, а также регулируемый стабилитрон TL431, который является сердцем всей схемы.

Сначала был собран DIP-прототип, для проверки работоспособности, вот его фото, если кто захочет в таком варианте повторить:

Образец тесты прошёл, после чего была разработана (слово то какое громкое) новая схема на смд компонентах, собственно к чему я и стремился:

После ЛУТ, травления и сверловки я получил несколько таких вот малышек (часть уже где-то просрал):

ну и собственно готовое изделие, я бы даже сказал модуль:

вот он же в сравнении с драйвером шаговика А4988

получилось довольно компактно, удобно, а самое главное функцию свою выполняет и настраивается легко, для настройки понадобится ЛБП или любой регулируемый БП, выставляем напряжение срабатывания (то, при котором мы хотим видеть сигнал о разряде), затем крутим подстроечник пока светодиод не погаснет или не загорится — ловим «границу», затем уже проверяем работу индикатора изменением входного напряжения с ЛБП. Вот видео работы уже настроенного модуля:

Специально для тех, кто любит орать о сверхогромном потреблении питания и разрядке батареи от второстепенных потребителей в ущерб основному устройству:

при работе как видно потребляется аж целых 10 мА, а при заряженной батарее в 4 раза меньше — 2,3 мВ, что разрядит среднестатистический 1000 мАч аккум «очень быстро» — аж за 18 суток, но это опять же если модуль будет подключен к батарее постоянно. Поэтому при подключении необходимо предусмотреть выключатель, который размыкает цепь батареи полностью, давая ей полностью насладиться процессом саморазряда. Опять же можно заметить что я, как криворукий бабуин вместо 300 омного резистора в цепи светодиода воткнул 68 омный, что так же влияет на потребление. Пробовать с 300ом тупо обламывает, оставлю это моим покорным читателям.

И для тех, кто стойкий оловянный солдатик и дочитал до этого места, я напишу как эта ебала работает:

Вся соль заключается в особенности регулируемого стабилитрона ТЛ431 — он начинает пропускать ток через себя только при наличии на управляющей ноге напряжения равном или выше 2,6в, следовательно при правильно подобранном делителе напряжения из R1 и R2, где первый равен 1,5кОм а второй является подстроечным, на управляющую ногу ТЛ431 при заряженной батарее приходит напряжение, которое выше 2,6в, следовательно весь ток идёт через стабилитрон и светодиод не горит. Как только напряжение на батарее становится ниже порогового — на ТЛ431 приходит меньше 2,6в и он закрывается, тем самым открывая транзистор и зажигая светодиод. Просто как с балкона поссать.

Кто не хочет заморачиваться с подбором резисторов в делителе — вот вам скрин из полезной проги на андроиде:

3,3в — напряжение срабатывания

1,5кОм — постоянный резистор

5,6кОм — значение подстроечника

2,603В — получаемое на выходе делителя, то есть на входе ТЛ431

Какие могут быть нюансы:

1) забыть отзеркалить плату при печати (как я) — тупо переворачиваем полупроводники кверху ногами и всё ок

2) не работает схема — пробуем перевернуть ТЛ431 кверху ногами, ушлые китайцы штампуют ТЛ432 под видом ТЛ431 (у них распиновка зеркальная)

3) не горит светодиод/горит тускло — шаманим с номиналом токоограничивающего резистора

Ссылка на скачивание печаток в формате *.lay:

В общем сумбурно как-то изложил, но вроде инфу донёс, пишите вопросы, пожелания, советы, буду рад почитать.

Индикатор температуры на четыре фиксированных уровня (LM339, LM325AH)

В некоторых случаях требуется определить, что температура какого-либо объекта находится в некоторых заданных пределах, либо не ниже или не выше определенного предела. Здесь предлагается схема очень точного четырехпорогового индикатора температуры со светодиодной индикацией.

Причем, пороги включения индикаторных светодиодов можно устанавливать для каждого светодиода произвольно и даже в любом порядке без какого-либо вторжения в схему прибора. Это можно даже сделать непосредственно на объекте, при помощи обычного мультиметра и отвертки для регулировки подстроечных резисторов. Дело в том, что данный прибор измеряет температуру с помощью датчика LM235AH, который, по сути является стабилитроном, напряжение стабилизации которого линейно зависит от температуры.

Принципиальная схема

Напряжение на датчике LM235AH в зависимости от температуры можно определить по формуле: U = (273 + t°C)0,01. Например, если температура 20°С, то напряжение будет: (273+20)0,01 =2,93V.

Принципиальная схема индикатора температуры на 4 уровня измерения

Рис. 1. Принципиальная схема индикатора температуры на 4 уровня измерения.

Если некий из светодиодов должен загораться при таком напряжении, то на соответствующей контрольной точке должно быть установлено подстроечным резистором именно такое напряжение. Просто, подключаем между этой контрольной точкой и общим минусом мультиметр в режиме вольтметра и подстроечным резистором устанавливаем напряжение, рассчитанное по выше приведенной формуле.

А теперь рассмотрим схему прибора. Основу прибора составляет микросхема LM339, в которой есть четыре одинаковых компаратора. На соединенные вместе инверсные входы компараторов поступает напряжение с датчика температуры VD2, поскольку датчик температуры LM235AH работает аналогично стабилитрону, то на него поступает ток от источника питания через резистор R6. Как уже сказано выше, напряжение на LM235AH непосредственно и линейно зависит от температуры среды, в которой находится датчик.

На прямые входы компараторов, каждому от своего, поступает напряжение от соответствующего подстроечного резистора R2-R5, а на них поступает напряжение от параметрического стабилизатора на стабилитроне VD1 и резисторе R1.

Напряжение, поступающее на прямой вход компаратора регулируется соответствующим переменным резистором и контролируется на соответствующей контрольной точке.

Например, если нужно чтобы светодиод HL2 загорался при превышении температуры 20°С, то нужно подключить мультиметр к контрольной точке КТ2 и подстроечным резистором R3 установить на ней напряжение 2,93В. Аналогичным образом на требующиеся значения температуры можно настроить и остальные компараторы.

Напряжение источника питания 9V, но это не критично, может быть от 6 до 30В, и может быть нестабильным, на точность прибора это никак не влияет, потому что точность зависит не от питания, а от стабильности напряжения на входах компараторов. Здесь напряжение на прямых входах стабилизировано стабилитроном VD1, а напряжение на датчике тоже стабильно и зависит только от температуры, а не от напряжения питания всей схемы. При использовании стабилитрона КС147А максимальная измеряемая температура +197°С.

Детали и конструкция

Данную схему можно питать и более низким напряжением. Например, может быть очень заманчиво использовать для её питания зарядное устройство-блок питания для «гаджетов», питающихся через USB-порт.

У таких блоков питания номинальное напряжение 5V. Но, в этом случае, стабилитрон VD1 должен быть на напряжение не более 4V. Например, КС139. В этом случае возможно питание от 5-вольтового источника, но максимальная измеряемая температура будет всего 117°С.

Если требуется большая точность задания порогов нужно чтобы подстроечные резисторы были многооборотными. Микросхему LM339 можно заменить любым аналогом, или даже собрать эту схему на четырех отдельных компараторах. Светодиоды можно заменить любыми индикаторными.

Если предполагается напряжение питания более 20V желательно несколько увеличить сопротивления резисторов R7-R10 чтобы не возникало перегрузки по току выходов компараторов. Монтаж был выполнен на макетной печатной плате, поэтому рисунок дорожек печатной платы у автора отсутствует.

Данный индикатор напряжения можно использовать и для управления каким-то внешним устройством в зависимости от температуры. Для этого достаточно светодиоды на каналах, на которых должно происходить управление, заменить оптопарами. Например, оптосимисторами или, так называемыми, твердотельными реле, включив их светодиоды вместо индикаторных.

Если датчик будет расположен на значительном удалении от платы индикатора, то соединение лучше сделать экранированным кабелем, и между соединенными вместе инверсными входами компараторов и общим минусом питания включить конденсатор на 0,01-0,1 мкФ.

Клотов Н. РК-02-2016.

Индикатор напряжения на lm339 схемы самоделки

Светодиоды давно применяется в любой технике из-за своего малого потребления, компактности и высокой надежности в качестве визуального отображения работы системы. Индикатор напряжения на светодиодах это полезное устройство, необходимое любителям и профессионалам для работы с электричеством. Принцип используется в подсветках настенных выключателей и выключателей в сетевых фильтрах, указателях напряжения, тестерных отвертках. Подобное устройство можно сделать своими руками из-за его относительной примитивности.

Индикатор переменного напряжения 220 В

Рассмотрим первый, наиболее простой вариант индикатора сети на светодиоде. Его применяют в отвертках для нахождения фазы 220 В. Для реализации нам понадобится:

Светодиод (HL) вы можете выбрать абсолютно любой. Характеристики диода (VD) должны быть ориентировочно такими: прямое напряжение, при прямом токе 10-100 мА – 1-1,1 В. Обратное напряжение 30-75 В. Резистор (R) должен иметь сопротивление не меньше 100 кОм, но и не больше 150 кОм, иначе просядет яркость свечения индикатора. Такое устройство можно самостоятельно выполнить в навесной форме, даже без использования печатной платы.

Схема примитивного индикатора тока будет выглядеть аналогичным образом, только необходимо использовать емкостное сопротивление.

Индикатор переменного и постоянного напряжения до 600 В

Следующий вариант представляет собой немного более сложную систему, из-за наличия в схеме кроме уже известных нам элементов, двух транзисторов и емкости. Но универсальность этого индикатора вас приятно удивит. Ему доступна безопасная проверка наличия напряжения от 5 до 600 В, как постоянного, так и переменного.

Основным элементом схемы индикатора напряжения выступает полевой транзистор (VT2). Пороговое значение напряжения, которое позволит сработать индикатору фиксируется разностью потенциалов затвор-исток, а максимально возможное напряжение определяет падение на сток-истоке. Он выполняет функции стабилизатора тока. Через биполярный транзистор (VT1) осуществляется обратная связь для поддержания заданного значения.

Принцип работы светодиодного индикатора заключается в следующем. При подаче на вход разности потенциалов, в контуре возникнет ток, значение которого определяется сопротивлением (R2) и напряжением перехода база-эмиттер биполярного транзистора (VT1). Для того чтобы слабенький светодиод загорелся, достаточно тока стабилизации 100 мкА. Для этого сопротивление (R2) должно быть 500-600 Ом, если напряжение база-эмиттер примерно 0,5 В. Конденсатор (С) необходим неполярный, емкостью 0,1 мкФ, служит он защитой светодиода от скачков тока. Резистор (R1) выбираем величиной 1 МОм, он исполняет роль нагрузки для биполярного транзистора (VT1). Функции диода (VD) в случае индикации постоянного напряжения – это проверка полюсов и защита. А для проверки переменного напряжения он играет роль выпрямителя, срезая отрицательную полуволну. Его обратное напряжение должно быть не меньше 600 В. Что касается светодиода (HL), то выбирайте сверхъяркий, для того, чтобы его свечение при минимальных токах было заметно.

Автомобильный индикатор напряжения

Среди областей, где применение индикатора напряжения на светодиодах имеет неоспоримую пользу, можно выделить эксплуатацию автомобильного аккумулятора. Для того чтобы аккумулятор служил долго, необходимо контролировать напряжение на его клеммах и поддерживать в заданных пределах.

Предлагаем вам обратить внимание на схему автомобильного индикатора напряжения на RGB-светодиоде, с помощью которой вы поймете, как изготовить устройство самостоятельно. RGB-светодиод отличается от обычного, наличием 3-х разноцветных кристаллов внутри своего корпуса. Данное свойство мы будем использовать для того, чтобы каждый цвет сигнализировал нам об уровне напряжения.

Схема состоит из девяти резисторов, трех стабилитронов, трех биполярных транзисторов и одного 3-цветного светодиода. Обратите внимание, какие элементы рекомендуется выбирать для реализации схемы.

  1. R1=1, R2=10, R3=10, R4=2.2, R5=10, R6=47, R7=2.2, R8=100, R9=100 (кОм).
  2. VD1=10, VD2=8.2, VD3=5.6 (В).
  3. VT – BC847C.
  4. HL – LED RGB.

Результат такой системы следующий. Светодиод загорается:

  • зеленым – напряжение 12-14 В;
  • синим – напряжение ниже 11,5 В;
  • красным – напряжение свыше 14,4 В.

Это происходит за счет правильно собранной схемы. С помощью потенциометра (R4) и стабилитрона (VD2) выставляется низший предел напряжения. Как только разность потенциалов между клеммами батареи становится меньше указанного значения – транзистор (VT2) закрывается, VT3 открывается, синий кристалл индуцирует. Если напряжение на клеммах находится в указанном диапазоне, то ток проходит через резисторы (R5,R9), стабилитрон (VD3), светодиод (HL), естественно, светит зеленым, транзистор (VT3) находится в закрытом состоянии, а второй (VT2) – в открытом. С помощью настройки переменного резистора (R2), превышение напряжения больше 14,4 В будет отображаться свечением светодиода красного цвета.

Индикатор напряжения на двухцветном светодиоде

Еще одна популярная схема индикации, это схема с использованием двухцветного светодиода для отображения степени заряда батареи или же сигнализации о включении или выключении лампы в другом помещении. Это может быть очень удобно, например, если выключатель света в подвале расположен до лестницы ведущей вниз (кстати, не забудьте прочитать интересную статью о том как сделать подсветку лестницы светодиодной лентой). До того как спуститься туда, вы зажигаете свет, и индикатор загорается красным, в выключенном состоянии вы видите зеленое свечение на клавише. В этом случае вам не придется заходить в темную комнату и уже там нащупывать выключатель. Когда вы покинули подвал, вы по цвету светодиода знаете, горит свет в подвале или нет. Одновременно с этим, вы контролируете исправность лампочки, потому что в случае ее перегорания, красным светодиод светиться не будет. Вот схема индикатора напряжения на двухцветном светодиоде.

В заключении можно сказать, что это лишь основные возможные схемы использования светодиодов для индикации напряжения. Все они несложные, и в своей реализации под силу даже дилетанту. В них не использовалось никаких дорогостоящих интегральных микросхем и тому подобное. Рекомендуем обзавестись таким устройством всем любителям и профессионалам электрикам, чтобы никогда не подвергать свое здоровье опасности, приступая к ремонтным работам, не проверив наличие напряжения.

Зачем следить за состоянием аккумулятора?

Автомобильный аккумулятор состоит из шести последовательно соединённых аккумуляторных батарей с напряжением питания 2,1 — 2,16В. В норме АКБ должен выдавать 13 — 13,5В. Нельзя допускать значительного разряда аккумуляторной батареи, поскольку при этом падает плотность и, соответственно, повышается температура промерзания электролита.

Чем выше износ аккумулятора, тем меньшее время он удерживает заряд. В тёплое время года это не критично, а вот зимой забытые во включённом состоянии габаритные огни к моменту возвращения способны полностью «убить» аккумулятор, превратив содержимое в кусок льда.

В таблице можно увидеть температуру промерзания электролита, в зависимости от степени заряженности агрегата.

Зависимость температуры промерзания электролита от степени заряда аккумулятора
Плотность электролита, мг/см. куб. Напряжение, В (без нагрузки) Напряжение, В (с нагрузкой 100 А) Степень заряда АКБ, % Температура замерзания электролита, гр. Цельсия
1110 11,7 8,4 0,0 -7
1130 11,8 8,7 10,0 -9
1140 11,9 8,8 20,0 -11
1150 11,9 9,0 25,0 -13
1160 12,0 9,1 30,0 -14
1180 12,1 9,5 45,0 -18
1190 12,2 9,6 50,0 -24
1210 12,3 9,9 60,0 -32
1220 12,4 10,1 70,0 -37
1230 12,4 10,2 75,0 -42
1240 12,5 10,3 80,0 -46
1270 12,7 10,8 100,0 -60

Критическим считается падение уровня заряда ниже 70%. Все автомобильные электроприборы потребляют не напряжение, а ток. Без нагрузки даже сильно разряженный аккумулятор может показывать нормальное напряжение. Но при низком уровне, во время запуска двигателя, будет отмечаться сильная «просадка» напряжения, что является тревожным сигналом.

Своевременно заметить приближающуюся катастрофу возможно лишь в том случае, когда непосредственно в салоне установлен индикатор. Если во время работы автомобиля он постоянно сигнализирует о разрядке – пора ехать на СТО.

Какие существуют индикаторы

Многие АКБ, особенно необслуживаемые, имеют встроенный датчик (гигрометр), принцип работы которого основан на измерении плотности электролита.

Этот датчик контролирует состояние электролит и ценность его показателей относительна. Не очень удобно по несколько раз залазить под капот автомобиля, что бы проконтролировать состояние электролита в разных режимах работы.

Для контроля состояния АКБ значительно удобнее электронные приборы.

Виды индикаторов заряда аккумуляторной батареи

В автомагазинах продаётся множество таких устройств, различающихся дизайном и функционалом. Фабричные приборы условно делятся на нескольких типов.

По способу подключения:

  • к разъёму прикуривателя;
  • к бортовой сети.

По способу отображения сигнала:

Принцип работы у них одинаков, определение уровня заряда АКБ и отображение информации в наглядном виде.

Принципиальная схема индикатора

Как сделать индикатор заряда аккумулятора на светодиодах?

Существуют десятки разнообразных схем контроля, но результат они выдают идентичный. Подобное устройство возможно собрать самостоятельно из подручных материалов. Выбор схемы и комплектующих зависит исключительно от ваших возможностей, фантазии и ассортимента ближайшего магазина радиотоваров.

Вот схема для понимания как работает индикатор заряда аккумулятора на светодиодах. Такую портативную модель можно собрать «на коленке» за несколько минут.

Д809 – стабилитрон на 9В ограничивает напряжение на светодиодах, а на трёх резисторах собран сам дифференциатор. Такой светодиодный индикатор срабатывает на силу тока в цепи. При напряжении 14В и выше сила тока достаточно для свечения всех светодиодов, при напряжении 12-13,5В светятся VD2 и VD3, ниже 12В — VD1.

Более продвинутый вариант при минимуме деталей можно собрать на бюджетном индикаторе напряжения — микросхеме AN6884 (KA2284).

Схема led индикатора уровня заряда АКБ на компараторе напряжения

Схема работает по принципу компаратора. VD1 – стабилитрон на 7,6В, он служит в качестве эталонного источника напряжения. R1 – делитель напряжения. При первоначальной настройке он выставляется в такое положение, чтобы при напряжении 14В светились все светодиоды. Напряжение, поступающее на входы 8 и 9, сравнивается через компаратор, а результат дешифруется на 5 уровней, зажигая соответствующие светодиоды.

Контроллер зарядки АКБ

Что бы отслеживать состояние аккума во время работы зарядного устройства, делаем контроллер заряда АКБ. Схема устройства и используемые компоненты максимально доступны, в то же время обеспечивают полный контроль над процессом подзарядки батарей.

Принцип работы контроллера следующий: пока напряжение на аккумуляторе ниже напряжения заряда – горит зелёный светодиод. Как только напряжение сравняется, открывается транзистор, зажигая красный светодиод. Изменение резистора перед базой транзистора меняет уровень напряжения, необходимого для открытия транзистора.

Это универсальная схема контроля, которую можно использовать как для мощных автомобильных аккумуляторов, так и для миниатюрных литиевых батареек-аккумуляторов.

Светодиодный индикатор на универсальных поликомпараторных микросхемах, содержащих в одном корпусе по несколько аналоговых компараторов общего назначения. Микросхема LM339, которая в одном корпусе DIP-14 содержит четыре компаратора с полевыми входами. Используя одну LM339 можно сделать четырехпороговый индикатор постоянного напряжения.

На рисунке 1 показана схема такого индикатора с линейной зависимостью измерения. Инверсные входы всех компараторов соединены вместе, — их общая точка является входом индикатора. На прямые входы подается опорное постоянное напряжение +Uomax через резистивный делитель, обеспечивающий распределение этого напряжения так, чтобы получить необходимый закон измерения. В данном случае резисторы делителя R2-R5 выбраны одинаковыми, поэтому и зависимость линейная.

Максимальная величина измеряемого напряжения (величина порога, при котором включается светодиод HL4) равна напряжению +Uomax (опорное напряжения максимума). Это напряжение желательно стабилизировать хотя-бы обычным параметрическим стабилизатором. Минимальная величина (порог при котором загорается HL1) зависит от сопротивления резистора R5 или от величины опорного напряжения минимума (Uomin).

Например, если нужно производить измерения в каком-то остро зажатом узком интервале напряжений, например, от 10 до 11V, то +Uomax должно быть равно 11V, а Uomin = 10V, при этом сопротивление R5 нужно исключить из схемы. Либо выбрать Uomin равным нулю (как на рисунке 1) и установить R5 такой величины, чтобы напряжение на нем было равно 10V.

Сопротивления R10-R13 нужны для придания компараторным схемам небольшого гистерезиса, улучшающего четкость работы индикатора. Индикаторная шкала состоит из четырех светодиодов HL1-HL4, подключенных к выходам компараторов через токоограничительные резисторы R14-R17.

Чтобы измерять переменное напряжение, например, в схеме индикации аудиосигнала, можно на входе сделать детектор на диодах или операционном усилителе.

Конечно, схема показанная на рисунке 1 несколько сложнее схемы на ВА6884 или другой аналогичной микросхемы, но это усложнение не столь существенно, особенно если нужно получить какую-то специфическую характеристику закона измерения. К тому же в данной схеме можно использовать практически любые доступные в текущий момент аналоговые компараторы или операционные усилители.

Схему, показанную на рисунке 1 можно легко каскадировать чтобы получить практически любое количество порогов измерения. На рисунке 2 показана схема восьмипорогового индикатора на двух микросхемах LM339, то есть, на восьми компараторах.

Схема на рисунке 2 специально показана так, чтобы было видно, как соединить схемы при каскадировании. Входы всех компараторов, сколько бы их ни было нужно соединить вместе, — это будет общий вход, на который поступает напряжение, подлежащее измерению.

Резисторы делителя (R2-R5 и R18-R21) включены последовательно. Если схема на большее число порогов, то и компараторов будет больше и больше будет резисторов в этом делителе. Например, используя четыре микросхемы LM339 можно сделать 16-пороговый индикатор.

Число порогов может быть практически любым, — совсем не обязательно кратным четырем. Все зависит от того, сколько компараторов вы используете. Например, если использовать в индикаторе уровня для стереоусилителя пять микросхем LM339, можно получить двухканальный шкальный десятипороговый индикатор. При этом, в каждом из каналов будут работать по две микросхемы LM339. И еще одна LM339, два компаратора которой работают в одном канале, а два других — в другом.

Нагрузочная способность выходов компараторов LM339 не слишком высока, поэтому для получения достаточной яркости индикатора желательно использовать сверх-яркие светодиоды. Либо сделать выходы на дополнительных ключах — усилителях, но это приводит к существенному усложнению схемы.

Микросхема lm339n и ее применение схема

Эта статья содержит основную информацию о работе компараторов напряжения построенных на интегральных микросхемах и может быть использована в качестве справочного материала для построения различных схем.

В электронике, компаратор представляет собой устройство, которое сравнивает между собой два электрических сигнала и выводит цифровой сигнал, указывающий на увеличение одного входного сигнала над другим. Компаратор имеет два аналоговых входа и один цифровой выход.

Компаратор, как правило, построен на дифференциальном усилителе с высоким коэффициентом усиления. Компараторы широко используются в устройствах, которые измеряют и оцифровывают аналоговые сигналы, например, в аналого-цифровых преобразователях (АЦП)

Примеры работы компаратора приведены на основе микросхемы LM339 (счетверенный компаратора напряжений) и LM393 (сдвоенный компаратор напряжения). Эти две микросхемы по своему функционалу идентичны. Компаратор напряжения LM311 так же может быть использован в данных примерах, но он имеет ряд функциональных особенностей.

Структурная схема одного компаратора входящего в микросхему LM339 и LM393

Микросхема lm339n и ее применение схема

Компаратор напряжения — выход с открытым коллектором

Как правило, выход компаратора напряжения представляет собой выход с открытым коллектором.

Выход открытый коллектор имеет отрицательную полярность. Это означает, что на этом выходе не бывает положительного сигнала и нагрузка должна подключаться между этим выходом и источника питания.

В некоторых схемах к выходу компаратора подключают нагрузочный (подтягивающий) резистор для того, чтобы обеспечить сигнал высокого уровня поступающего на вход следующего элемента схемы.

Операционные усилители (ОУ), такие как LM324, LM358 и LM741 обычно не используются в радиоэлектронных схемах в качестве компаратора напряжения из-за их биполярных выходов. Тем не менее, эти операционные усилители могут быть использованы в качестве компараторов напряжения, если к выходу ОУ подключить диод или транзистор для того чтобы создать выход с открытым коллектором.

Ниже представлена логика работы компаратора имеющий выход с открытым коллектором:

Микросхема lm339n и ее применение схема

Ток будет течь через открытый коллектор, когда напряжение на входе (+) будет ниже, чем напряжение на входе (-). И соответственно ток не будет протекать через открытый коллектор, когда напряжение на входе (+) будет выше, чем напряжение на входе (-).

Схема эквивалента компаратора напряжения с однополярным источником питания

Микросхема lm339n и ее применение схема

Принципиальная схема «компаратор напряжения» эквивалентна работе операционного усилителя, например, LM358 или LM324, имеющим на выходе два транзистора типа NPN (см. выше). Таким образом, можно сделать все 4 выхода ОУ (LM339) с открытым коллектором. Каждый такой выход может выдерживать ток нагрузки 15 мА и напряжение до 50 вольт.

Выход включается или выключается в зависимости от относительных напряжений на плюсовом (+) и минусовом (-) входах компаратора. Входы компаратора крайне чувствительны и разница напряжения между ними всего лишь в несколько милливольт приводит к переключению его выхода.

Схема эквивалента компаратора напряжения с двухполярным источником питания

Компараторы напряжения LM339, LM393 и LM311могут работать с одно- или двухполярным источником питания до 32 вольт максимум.

При работе с двухполярным питанием, режим сравнения напряжения остается таким же, за исключением того, что для большинства схем эмиттер выходного транзистора подключается к отрицательной шине питания, а не к общей цепи. Исключением из этого правила является операционный усилитель LM311, имеющий изолированный эмиттер, который можно подключить как к минусу однополярного источника питания, так или к общему проводу двухполярного.

Микросхема lm339n и ее применение схема

При работе с двухполярным источником питания, входное напряжение может быть выше или ниже относительно общего провода блока питания. Кроме того, один из входов компаратора может быть подключен к общему проводу, таким образом создается детектор «пересечение нуля».

Описание работы компаратора

Следующий рисунок показывает простейшую конфигурацию для компаратора напряжения, а так же графическое изображение режима его работы. В этой схеме опорное напряжение составляет половину напряжения питания, а входное напряжение может меняться от нуля до напряжения питания. В теории опорное и входное напряжение могут иметь значение от нуля и до напряжения источника питания, но есть реальные ограничения, зависящие от конкретно используемого компаратора.

Микросхема lm339n и ее применение схема

Сигнал на выходе:

  1. Ток будет течь через открытый коллектор, когда напряжение на входе плюс (+) ниже, чем напряжение на входе минус (-).
  2. Ток не будет протекать через открытый коллектор, когда напряжение на входе плюс выше, чем напряжение на входе минус.

Входное напряжение смещения компаратора

Компараторы не являются совершенными устройствами, и их работа может иметь недостаток от последствий такого параметра, как входное напряжение смещения. Входное напряжение смещения для многих компараторов может составлять всего несколько милливольт и в большинстве схем может быть проигнорировано.

В основном проблема, связанная с входным напряжением смещения возникает, когда входное напряжение изменяется очень медленно. Конечным результатом входного напряжения смещения является то, что выходной транзистор не полностью открывается или закрывается, когда входное напряжение находится недалеко от опорного напряжения.

Следующая диаграмма иллюстрирует эффект смещения входного напряжения возникающий в результате медленного изменения входного напряжения. Этот эффект возрастает при увеличении выходного тока транзистора. Поэтому, для уменьшения этого эффекта, необходимо обеспечить максимальное сопротивление резистора R4.

Микросхема lm339n и ее применение схема

Последствия входного напряжения смещения можно уменьшить, добавив в схему гистерезис. Это приведет к тому, что опорное напряжение будет меняться, когда выход компаратора переходит на высокий или низкий уровень.

Входное напряжение смещения и гистерезис

Для большинства схем построенных на компараторах, величина гистерезиса является разностью напряжений входного сигнала, при котором выход компаратора либо полностью включен или полностью выключен. Гистерезис в компараторах, как правило, нежелателен, но он может потребоваться, когда необходимо уменьшить чувствительность к шуму или при медленном изменении входного сигнала.

Внешний гистерезис использует положительную обратную связь (ПОС) с выхода на неинвертирующий вход компаратора. В результате полученный триггер Шмитта обеспечивает дополнительную помехоустойчивость и более чистый выходной сигнал.

Эффект от использования гистерезиса в том, что при постепенном изменении входного напряжения, а опорное напряжение будет быстро изменяться в противоположном направлении. Это обеспечивает чистое переключение выхода компаратора.

Механический аналог гистерезиса может быть обнаружен в разнообразных тумблерах. Как только рукоятка тумблера перемещается мимо центральной точки, пружина в тумблере переводит контакты реле в гарантированное положение (открытое или закрытое).

Микросхема lm339n и ее применение схема

Гистерезис является неотъемлемой частью большинства компараторов составляющая всего несколько милливольт и он обычно влияет только на схемы, где входное напряжение поднимается или падает очень медленно или имеет скачки напряжения, известные как «шум»…

Рассчитываем свою первую схему, или Торжество закона Ома.

Расчет абсолютно бесполезного в большинстве случаев устройства рассмотрим ниже. Это индикатор напряжения на 12В аккумуляторе типа "Светодиодная линейка". Должен сказать, что мне для конкретного применения потребовался индикатор напряжения на аккумуляторе на 4 уровня — 10, 11, 12 и 13вольт. Имеется ввиду, что аккумулятор с напряжением 10вольт считается разряженным, а с 13вольт — заряженным. Да, измерения проводить этим устройством смысла нет, а вывести его на переднюю панель устройства — пусть глаз радует.

С чего начнем расчеты? Прежде всего, с выбора элементной базы. Очевидно, что в схеме должно быть некое устройство, чувствительное к изменению какого-то параметра и выдающее ответ типа "больше-меньше" — это компаратор. Как работает компаратор, мы уже рассматривали в Обучалке, я просто напомню:

Микросхема lm339n и ее применение схема

Общее правило компаратора: "если напряжение на неинвертирующем (+) входе больше, чем на инвертирующем (-), то выдать ответ ДА". Ответ ДА — это не что иное, как плюс питания компаратора. Ответ НЕТ — это минус питания, логично. Запомнить, нам пригодится.
Повесим компаратору на входы по батарейке, смотрим:
Напряжение на входе "+" равно 6 вольт
Напряжение на входе "-" равно 5 вольт
Значит, компаратор выдаст на своем выходе напряжение, равное своему питанию (12вольт) и у нас загорится светодиод VD2. VD1 будет погашен. Если нам обе батарейки поменять местами, то будет гореть светодиод VD1, а VD2 будет погашен.
Размышляем, приходим к выводу, что для индикации четырех уровней напряжения нам потребуются четыре компаратора.
Пошукав в загашниках, порывшись в коробочках, нахожу удивительно простой счетверенный компаратор LM339. Почитав даташит, рисую цоколевку:

Микросхема lm339n и ее применение схема

С левой стороны — входы компараторов. Инвертирующие входы обозначены кружочками, неинвертирующие — простые. С правой стороны — выходы (напротив инвертирующих входов) и лапки питания (лапка 3 — плюс питания, лапка 12 — минус питания).
У этой микры есть одна особенность — она не выдает ответ "ДА". То есть НЕТ она выдать может, а ДА — увы. Или НЕТ, или ничего. Почему? Смотрим структурную схему:

Микросхема lm339n и ее применение схема

Это один (любой) компаратор из LM339. Смотрите на транзистор Q8 — выходной транзистор. Если на входе "+" напряжение меньше, чем на "-", Q8 открывается и на выходе "Output" формируется минус питания — ответ НЕТ. А такого же транзистора, только с плюса, у нее нет: значит, ДА она нам не выдаст. Видимо, не хватило места в микросхеме. Шутка. Такой выход называется "Выход с открытым коллектором" и довольно часто попадаются микросхемы, построенные именно так — это и логические схемы, и компараторы и дешифраторы и пр.
Но открытый коллектор не помешает нам пользовать микросхему так, как нам хочется. Давайте повесим на нее светодиоды.
Как мы уже поняли, у компараторов из LM339 только один транзистор может зажечь светодиод, и зажечь может, только подав на него минус. Значит, вторые лапки светодиодов должны идти на плюс. Иначе не загорятся.

Микросхема lm339n и ее применение схема

Поскольку схема будет питаться тем же напряжением, которое измеряет, а светодиоды таких напряжений не любят, включим их через токоограничивающие резисторы R1. R4.
Рассчитаем резисторы. Причем, используя один-единственный закон Ома. И не забывая о том, что ток измеряется в Амперах, напряжение в Вольтах, сопротивление — в Омах.

Светодиод D1 — зеленый, АЛ307Н — с этой буквой он самый яркий (6мкд). По справочнику максимальный ток 22мА при напряжении на диоде 2В. Гонять на максимальном токе мы его не будем, выберем поменьше, к примеру, 17мА. Загораться он будет при напряжении питания 13вольт. Резистор R1 должен погасить на себе лишнее напряжение (напряжение падения), равное
Uпад=13-2=11В
при токе через диод (впрочем, такой же, что и через резистор), равном
Iд=17мА,
значит его сопротивление будет равно
R=Uпад/Iд=11/0,017=647Ом.
Выберем резистор из ряда стандартных сопротивлений — 680Ом. Это, правда, уменьшит ток через диод, ну и ладно — дольше жить будет.

Со светодиодом D2 посложнее — он должен загораться при напряжении 12вольт, но должен гореть и при 13вольтах.
Выбираем желтый светодиод АЛ307Ж — те же 22мА при падении 2В. При напряжении питания 13В и токе 17мА, резистор, очевидно, будет таким же. А какой ток будет через диод на 12вольтах?
I=(12-2)/680=14,7мА
Что, впрочем, не уменьшает его яркость. Или уменьшает, но не намного.
Так же рассчитываем резисторы R3 и R4 для светодиодов D3 (АЛ307Ж) и D4 (АЛ307К):
R3=R2, так как светодиоды D3 и D2 одинаковые — желтые.
А у D4 ток уже не 22мА, а 20, поэтому выберем рабочий ток до 15мА и посчитаем резистор:
Uпад=13-2=11В
Iд=15мА
R=Uпад/Iд=11/0,015=733Ом.
Выберем штатный резистор 750Ом и посчитаем ток через диод при десяти вольтах питания (D4 должен зажечься при питании 10В):
Uпад=10-2=8В
R=750Ом
I=8/750=10,6мА
Здесь нам нужно поставить следственный эксперимент и проверить, как ярко горит красный светодиод на токе 10мА. Берем блок питания, выставляем у него напряжение 10вольт и подключаем к нему светодиод АЛ307К, включенный последовательно с резистором 750Ом.
Нормально?
А теперь увеличим напряжение до 13вольт и снова проверим.
Годится?
Замечательно. Эту часть схемы мы рассчитали, уфф! Она приобрела такой вид:

Микросхема lm339n и ее применение схема

Следующая часть расчетов — тепловая. Нам нужно проверить, как будут греться резисторы и выбрать их мощность. Формула для расчета мощности так же проста, как сам закон Ома:
P=UI
В нашем случае U это напряжение падения на резисторе, I — ток через него. Вообще просто. Итак, считаем мощность, выделяемую резистором R1 при зажигании светодиода.
Ток берем штатный, напряжение — самое тяжелое для резистора — при питании схемы максимальным напряжением:
P=Uпад*Iд=11*0,017=0,187Вт.
Это больше, чем допустимая мощность для самого мелкого резистора (0,125Вт), поэтому выберем резистор R1 чуток помощнее, типа МЛТ-0,25. Резисторы R2 и R3 будут такими же, ведь токи через них те же и максимальные напряжения такие же.
Резистор R4 посчитаем, давайте уж:
P=Uпад*Iд=11*0,015=0,165Вт.
Ну и его туда же. Все резисторы МЛТ-0,25.

Сделаем паузу, мы устали.

Снова ффперед!
Как компаратор определит, что измеряемое напряжение повысилось до какого-то уровня? Ему же надо его с чем-то сравнить, так ведь? То есть нам требуется какой-то источник напряжения, неизменного в пространстве и времени: Напряжения, которое не менялось бы при изменении питания устройства во всем диапазоне +9:+13В. Напряжение это должно быть стабилизировано: что же это? Правильно, стабилитрон! Про него опять же написано много слов, песен спето различных, блоков питания напаяно: но всё же напомню, что сие есть такое. Стабилитрон — это диод с нелинейной вольт-амперной характеристикой. Проще говоря, это такой диод, который держит постоянным напряжение на себе при изменении тока через него.
Поставим лабораторный опыт. Приобретем (или спаяем откуда-нибудь, роли не играет абсолютно никакой) стабилитрон КС147Г. Его параметры такие:
Напряжение стабилизации 4,2. 5,2В (номинальное 4,7В)
Ток стабилизации 1. 26мА
Всё это значит, что при изменении тока через него от 1 до 26мА напряжение на стабилитроне будет меняться от 4,2 до 5,2вольт. Как это понять и применить на практике?
Смотрим схему:

Микросхема lm339n и ее применение схема

Резистор R1 задает стабилитрону необходимый ток. Параллельно стабилитрону подключим вольтметр — он будет измерять напряжение стабилизации Uст. Регулируя напряжение на блоке питания 0. 12В, наблюдаем показания вольтметра:
0. 5В — вольтметр показывает нарастание напряжения до 4В
5. 12В — вольтметр показывает увеличение напряжения 4. 5В
Видали? Мы изменили напряжение на 7вольт, а получилось — всего на 1вольт! Давайте подумаем, в чем он нам может пригодиться и как из него вытащить пользу.
Корыстные мы, да. Напряжение, которое выдает нам стабилитрон, назовем опорным напряжением. Это для него оно — напряжение стабилизации, а для нас — опорное. Вот с этим самым опорным напряжением наши компараторы будут сравнивать измеряемое напряжение и выдавать диагноз — изменилось ли оно или нет, зажигать нам светодиоды или пущай тухнут.
Рассуждаем логически: поскольку светодиоды зажигаются на ответе компаратора "НЕТ", это значит, что сравниваемое напряжение поднялось выше опорного. Следовательно, опорное напряжение нам нужно подать на неинвертирующие входы компараторов. Входы можно соединять меж собой без вреда озоновому слою Земли и численности населения китайцев. Последствий не будет никаких. Так и сделаем:

Микросхема lm339n и ее применение схема

Неинвертирующие входы компараторов мы соединили и кинули стабилитрон на землю и резистор на плюс питания. Этот "плюс питания" у нас будет одновременно и питанием, и измеряемым напряжением, да и Бог с ним! Опорное напряжение будет стабилизировано.
Резистор R5 требует расчета, займемся им:
Максимальное напряжение схемы 13В
Напряжение стабилитрона 4,7В
Падение напряжения на резисторе R5 равно
Uпад=13-4,7=8,3В
Максимальный ток стабилизации стабилитрона Iд=26мА, но мы выберем поменьше, к примеру, 15мА. Тогда сопротивление резистора R5 посчитаем
R=Uпад/Iд=8,3/0,015=553Ом
Выберем резистор 560Ом из существующих в ряду стандартных сопротивлений.
Проверим, укладываемся ли мы в стабилизацию при минимальном питании:
Минимальное питание 10В
Сопротивление резистора R5 560Ом
Ток через стабилитрон посчитаем, предположив, что напряжение на стабилитроне не изменилось:
Iд=Uпад/R=(10-4,7)/560=9,4мА
Если бы напряжение стабилитрона упало ниже 4,7В (к примеру, до минимального 4,2В), ток стабилитрона все равно находился бы в диапазоне допустимых (выше 1мА), что нам и требуется. Принимаем R5 равным 560Ом.
Смотрим, что у нас получилось:

Микросхема lm339n и ее применение схема

Светодиоды я подписал, чтобы было нагляднее.
На свободные лапки компараторов нужно завести измеряемое напряжение, но как-то так, чтобы оно соответствовало зажигаемому светодиоду. Ну не напрямую же их соединять, так ведь?
Смотрим на самый нижний компаратор:
На его неивертирующем входе напряжение 4,7В. Чтобы зажечь светодиод D4 (то есть выдать ответ НЕТ), на инвертирующем входе должно быть напряжение больше 4,7В — это порог срабатывания при повышении входного напряжения до 10В. Нам нужно эти самые 10В завести на инвертирующий вход, но чтобы они выглядели на нем как 4,7В. Как-то надо поделить эти 10вольт до 4,7. Как? Очень просто — делителем напряжения.
Простейший делитель напряжения состоит из двух резисторов.

Микросхема lm339n и ее применение схема

Входное напряжение может быть любым, а выходное напряжение будет ровно в 2 раза меньше входного. Надо сказать, что делитель напряжения не выдает какой-либо мощности, то есть использовать его в блоках питания нельзя. Можно только получать маломощные, слаботочные напряжения в качестве сигналов управления, ослабить звук перед усилителем: много применений у делителя, но все они — ну никак не про мощность.
Значит, нам надо 10вольт поделить до 4.7. Будем думать.
На вход делителя мы подаем 10В, снимаем 4.7В. На нижнем резисторе (он называется "нижнее плечо делителя") мы видим 4,7В, на верхнем резисторе (верхнее плечо делителя) упадет разница между напряжениями, то есть 5,3В. Отношение 5,3/4,7 будет разницей между резисторами. 5,3/4,7=1,13 раза. В эти 1,13 раза будут отличаться сопротивления резисторов. То есть, если нижний резистор будет 10кОм, то верхний надо искать на 11,3кОм — в таком случае мы получим ровно 4,7В на выходе при входном 10В. Номинал 11,3кОм найти сложно, но можно удвоить оба резистора — соотношение между ними останется таким же — 1,13раза, а номиналы 20кОм и 22,6кОм искать легче — 22,6кОм можно заменить на 22, будет небольшая погрешность, ну и ладно. Нам это не страшно.

Конечно, сам делитель будет потреблять какой-то ток от источника входного напряжения, и нужно, чтобы тот источник входного напряжения мог обеспечить такой ток. Мы не будем рассчитывать всё до мелочей, я скажу только, что делитель с килоомными резисторами меньше потребляет ток, чем с омными резисторами, и плясать мы будем именно от килоомных резисторов.
Итак, мы определили 2 резистора для первого компаратора. Верхний резистор мы подключаем к плюсу питания, ведь оно у нас и питание, и измеряемое напряжение одновременно. Выходное напряжение подаем прямо на компаратор, на лапку 10. Точно так же рассчитаем все остальные делители:
Для компаратора, индицирующего порог "+11В":
Входное напряжение 11В
Опорное напряжение 4,7В
Падение напряжения на верхнем плече делителя Uпад=11-4,7=6,3В
Отношение резисторов равно 6,3/4,7=1,34 раза
Если нижний резистор 10кОм, то верхний будет R=10*1,34=13,4кОм
Резистора 13,4кОм у нас нет, зато удвоенный резистор 13,4*2=26,8кОм можно заменить на 27кОм. В таком случае удвоим и нижний резистор — он будет не 10кОм, а 20.

Для компаратора "+12В":
Входное напряжение 12В
Опорное напряжение 4,7В
Падение напряжения на верхнем плече делителя Uпад=11-4,7=7,3В
Отношение резисторов равно 7,3/4,7=1,55 раза
Если нижний резистор 10кОм, то верхний будет R=10*1,55=15,5кОм
Резистор 15,5кОм можно заменить на 15кОм. Это некритично. Нижний резистор остается прежним — 10кОм.

Для компаратора "+13В":
Входное напряжение 13В
Опорное напряжение 4,7В
Падение напряжения на верхнем плече делителя Uпад=13-4,7=8,3В
Отношение резисторов равно 8,3/4,7=1,77 раза
Если нижний резистор 10кОм, то верхний будет R=10*1,77=17,7кОм
Существует номинал 18кОм, нам подойдет. Нижний резистор — 10кОм.
Наша схема снова немного преображается:

Микросхема lm339n и ее применение схема

Можно считать эту схему законченной — она будет работать, причем вполне сносно. Свои функции выполнять будет. Ее преимущество в том, что можно легко изменить пороги срабатывания каждого компаратора в отдельности, не мешая другим. Дальше мы рассмотрим, как можно немного упростить эту схему, и чуток ее доработаем.

Микросхема lm339n и ее применение схема

Схема индикатора температуры на счетверённом компараторе LM339N, предназначена для индикации нагрева теплоотводов в мощных усилителях низкой частоты, фазовых регуляторов мощности. Также его можно использовать для световой сигнализации перегрева электродвигателей, трансформаторов сварочных аппаратов, двигателей внутреннего сгорания с воздушным охлаждением.

Интегральная микросхема LM339N представляет собой счетверённый прецизионный компаратор напряжения. Микросхема выполнена в стандартном корпусе DIP-14, имеет широкий диапазон питающего напряжения — двуполярное от ±1 В до ±18 В, однополярное от 2 до 36 В. Функциональная схема одного компаратора микросхемы показана на рис. 2.

Микросхема lm339n и ее применение схема Используя эту микросхему, легко построить, например, различные узлы индикации со светодиодной шкалой.

В недалёком прошлом построение устройств со светодиодными шкалами вызывало определённые трудности, связанные с тем, что несколько одновременно включенных светодиодов потребляли от источника питания значительный ток, иногда достигающий сотен миллиампер.

В настоящее время, с появлением сверхярких светодиодов, которые достаточно ярко светят уже при токе менее 1 мА, можно создавать линейные светодиодные шкалы с простым управлением, потребляющие ток менее 20 мА при 10 и более одновременно включенных светодиодах.

В качестве датчика температуры работает терморезистор R1 с отрицательным ТКС — чем больше температура его корпуса, тем меньше сопротивление. Работает устройство следующим образом. Допустим, напряжение на входе "+", вывод 7 компаратора DA1.1 больше, чем на входе "-", вывод 6 DA1.1. В этом случае на выходе компаратора, вывод 1 будет высокий уровень напряжения, светодиод HL1 не светится.

При нагреве корпуса терморезистора R1 напряжение на его выводах понижается, также понижается напряжение на выводе 7 DA1. Когда напряжение на входе "+" DA1.1 станет меньше напряжения на входе "-" DA1.1, на выходе этого компаратора высокий уровень напряжения сменится на низкий, светодиод HL1 зелёного цвета свечения засветится.

Если движки подстроенных резисторов R2 -R5 настроены так, что, начиная с R2, на движке каждого следующего подстроечного резистора напряжение меньше, чем у предыдущего, то при нагреве корпуса терморезистора светодиоды HL1-HL4 будут последовательно зажигаться. Сначала загорится светодиод зелёного цвета HL1, затем жёлтого HL2, красного HL3.

Светодиод HL4 красный мигающий, вспышки которого по замыслу должны сигнализировать критический нагрев контролируемого объекта. Стабилитрон VD1 уменьшает напряжение питания мигающего светодиода до безопасного для него уровня. Светодиод HL5 синего цвета свечения светит постоянно, он обозначает начало шкалы.

Конденсаторы С2, С3, С4 и дроссель L1 выполняют функцию фильтра питания микросхемы. Резисторы R10 — R13 осуществляют небольшую отрицательную обратную связь по постоянному напряжению, что позволяет наблюдать относительно плавное зажигание или погасание светодиодов при изменении температуры. Если вы желаете, чтобы светодиоды зажигались на полную яркость и погасали мгновенно, то резисторы R10 — R13 нужно исключить.

Вместо компаратора LM339N можно применить аналогичные LM339AN, LM239AN, LM239A, MC3302N, LM139N. Светодиоды можно взять любые доступные сверхяркие, например, из серий КИПД40, L-1513, L-1503, L-7104, L-7113, L-7143. Стабилитрон КС175А можно заменить на Д814А1, 2С175Ж, 2С483Г, 1N4737A.

При напряжении питания устройства менее 9 В этот стабилитрон можно не устанавливать. Оксидные конденсаторы — аналоги К50-35, К53-19. Неполярные — К10-17, К10-50, КМ-5. Дроссель L1 — любой малогабаритный маломощный.

При отсутствии можно заменить резистором сопротивлением 1,0. 2,2 Ом. Переменные резисторы — малогабаритные импортные в закрытом корпусе. Также подойдут высоконадёжные отечественные СП4-1 или малогабаритные многооборотные СПЗ-39. Терморезистор ММТ-1, ММТ-4 или другой малогабаритный сопротивлением 4,3. 10 кОм при 25 °С.

Чем меньше размер терморезистора, тем быстрее он будет реагировать на резкое изменение температуры контролируемого объекта. При отсутствии подходящего терморезистора его можно заменить сборкой из 8. 12 включенных параллельно германиевых точечных диодов серий Д9, Д18. Сопротивление резистора R1 подбирают так, чтобы при номинальной рабочей температуре напряжение на выводах терморезистора R1 было равным примерно половине от напряжения питания.

Светодиоды располагают в конструкции в виде шкалы, начинающейся со светодиода HL5, после которого последовательно установлены HL1 — HL4. Если последовательно с мигающим светодиодом HL4 вместо резистора R17 установить пьезокерамический или электромагнитный излучатель звука с встроенным генератором, например, НРА24АХ, то устройство, в такт со вспышками светодиода HL4 будет издавать прерывистый сигнал тревоги.

Индикатор температуры желательно питать стабилизированным напряжением. Если, например, в модернизированном усилителе отсутствует стабилизатор напряжения +12. +18 В, то его можно изготовить дополнительно, например, на микросхеме КР142ЕН8В, 7815. При напряжении питания +15 В и погашенных светодиодах HL1 — HL4 устройство потребляет от источника питания ток около 8 мА.

Рассчитываем свою первую схему, или Торжество закона Ома.

РадиоКот >Обучалка >Аналоговая техника >Рассчитываем свою схему >

Рассчитываем свою первую схему, или Торжество закона Ома.

Расчет абсолютно бесполезного в большинстве случаев устройства рассмотрим ниже. Это индикатор напряжения на 12В аккумуляторе типа "Светодиодная линейка". Должен сказать, что мне для конкретного применения потребовался индикатор напряжения на аккумуляторе на 4 уровня - 10, 11, 12 и 13вольт. Имеется ввиду, что аккумулятор с напряжением 10вольт считается разряженным, а с 13вольт - заряженным. Да, измерения проводить этим устройством смысла нет, а вывести его на переднюю панель устройства - пусть глаз радует.

С чего начнем расчеты? Прежде всего, с выбора элементной базы. Очевидно, что в схеме должно быть некое устройство, чувствительное к изменению какого-то параметра и выдающее ответ типа "больше-меньше" - это компаратор. Как работает компаратор, мы уже рассматривали в Обучалке, я просто напомню:

Общее правило компаратора: "если напряжение на неинвертирующем (+) входе больше, чем на инвертирующем (-), то выдать ответ ДА". Ответ ДА - это не что иное, как плюс питания компаратора. Ответ НЕТ - это минус питания, логично. Запомнить, нам пригодится.
Повесим компаратору на входы по батарейке, смотрим:
Напряжение на входе "+" равно 6 вольт
Напряжение на входе "-" равно 5 вольт
Значит, компаратор выдаст на своем выходе напряжение, равное своему питанию (12вольт) и у нас загорится светодиод VD2. VD1 будет погашен. Если нам обе батарейки поменять местами, то будет гореть светодиод VD1, а VD2 будет погашен.
Размышляем, приходим к выводу, что для индикации четырех уровней напряжения нам потребуются четыре компаратора.
Пошукав в загашниках, порывшись в коробочках, нахожу удивительно простой счетверенный компаратор LM339. Почитав даташит, рисую цоколевку:

С левой стороны - входы компараторов. Инвертирующие входы обозначены кружочками, неинвертирующие - простые. С правой стороны - выходы (напротив инвертирующих входов) и лапки питания (лапка 3 - плюс питания, лапка 12 - минус питания).
У этой микры есть одна особенность - она не выдает ответ "ДА". То есть НЕТ она выдать может, а ДА - увы. Или НЕТ, или ничего. Почему? Смотрим структурную схему:

Это один (любой) компаратор из LM339. Смотрите на транзистор Q8 - выходной транзистор. Если на входе "+" напряжение меньше, чем на "-", Q8 открывается и на выходе "Output" формируется минус питания - ответ НЕТ. А такого же транзистора, только с плюса, у нее нет: значит, ДА она нам не выдаст. Видимо, не хватило места в микросхеме. Шутка. Такой выход называется "Выход с открытым коллектором" и довольно часто попадаются микросхемы, построенные именно так - это и логические схемы, и компараторы и дешифраторы и пр.
Но открытый коллектор не помешает нам пользовать микросхему так, как нам хочется. Давайте повесим на нее светодиоды.
Как мы уже поняли, у компараторов из LM339 только один транзистор может зажечь светодиод, и зажечь может, только подав на него минус. Значит, вторые лапки светодиодов должны идти на плюс. Иначе не загорятся.

Поскольку схема будет питаться тем же напряжением, которое измеряет, а светодиоды таких напряжений не любят, включим их через токоограничивающие резисторы R1...R4.
Рассчитаем резисторы. Причем, используя один-единственный закон Ома. И не забывая о том, что ток измеряется в Амперах, напряжение в Вольтах, сопротивление - в Омах.

Светодиод D1 - зеленый, АЛ307Н - с этой буквой он самый яркий (6мкд). По справочнику максимальный ток 22мА при напряжении на диоде 2В. Гонять на максимальном токе мы его не будем, выберем поменьше, к примеру, 17мА. Загораться он будет при напряжении питания 13вольт. Резистор R1 должен погасить на себе лишнее напряжение (напряжение падения), равное
Uпад=13-2=11В
при токе через диод (впрочем, такой же, что и через резистор), равном
Iд=17мА,
значит его сопротивление будет равно
R=Uпад/Iд=11/0,017=647Ом.
Выберем резистор из ряда стандартных сопротивлений - 680Ом. Это, правда, уменьшит ток через диод, ну и ладно - дольше жить будет.

Со светодиодом D2 посложнее - он должен загораться при напряжении 12вольт, но должен гореть и при 13вольтах.
Выбираем желтый светодиод АЛ307Ж - те же 22мА при падении 2В. При напряжении питания 13В и токе 17мА, резистор, очевидно, будет таким же. А какой ток будет через диод на 12вольтах?
I=(12-2)/680=14,7мА
Что, впрочем, не уменьшает его яркость. Или уменьшает, но не намного.
Так же рассчитываем резисторы R3 и R4 для светодиодов D3 (АЛ307Ж) и D4 (АЛ307К):
R3=R2, так как светодиоды D3 и D2 одинаковые - желтые.
А у D4 ток уже не 22мА, а 20, поэтому выберем рабочий ток до 15мА и посчитаем резистор:
Uпад=13-2=11В
Iд=15мА
R=Uпад/Iд=11/0,015=733Ом.
Выберем штатный резистор 750Ом и посчитаем ток через диод при десяти вольтах питания (D4 должен зажечься при питании 10В):
Uпад=10-2=8В
R=750Ом
I=8/750=10,6мА
Здесь нам нужно поставить следственный эксперимент и проверить, как ярко горит красный светодиод на токе 10мА. Берем блок питания, выставляем у него напряжение 10вольт и подключаем к нему светодиод АЛ307К, включенный последовательно с резистором 750Ом.
Нормально?
А теперь увеличим напряжение до 13вольт и снова проверим.
Годится?
Замечательно. Эту часть схемы мы рассчитали, уфф! Она приобрела такой вид:

Следующая часть расчетов - тепловая. Нам нужно проверить, как будут греться резисторы и выбрать их мощность. Формула для расчета мощности так же проста, как сам закон Ома:
P=UI
В нашем случае U это напряжение падения на резисторе, I - ток через него. Вообще просто. Итак, считаем мощность, выделяемую резистором R1 при зажигании светодиода.
Ток берем штатный, напряжение - самое тяжелое для резистора - при питании схемы максимальным напряжением:
P=Uпад*Iд=11*0,017=0,187Вт.
Это больше, чем допустимая мощность для самого мелкого резистора (0,125Вт), поэтому выберем резистор R1 чуток помощнее, типа МЛТ-0,25. Резисторы R2 и R3 будут такими же, ведь токи через них те же и максимальные напряжения такие же.
Резистор R4 посчитаем, давайте уж:
P=Uпад*Iд=11*0,015=0,165Вт.
Ну и его туда же. Все резисторы МЛТ-0,25.

Сделаем паузу, мы устали.

Снова ффперед!
Как компаратор определит, что измеряемое напряжение повысилось до какого-то уровня? Ему же надо его с чем-то сравнить, так ведь? То есть нам требуется какой-то источник напряжения, неизменного в пространстве и времени: Напряжения, которое не менялось бы при изменении питания устройства во всем диапазоне +9:+13В. Напряжение это должно быть стабилизировано: что же это? Правильно, стабилитрон! Про него опять же написано много слов, песен спето различных, блоков питания напаяно: но всё же напомню, что сие есть такое. Стабилитрон - это диод с нелинейной вольт-амперной характеристикой. Проще говоря, это такой диод, который держит постоянным напряжение на себе при изменении тока через него.
Поставим лабораторный опыт. Приобретем (или спаяем откуда-нибудь, роли не играет абсолютно никакой) стабилитрон КС147Г. Его параметры такие:
Напряжение стабилизации 4,2...5,2В (номинальное 4,7В)
Ток стабилизации 1...26мА
Всё это значит, что при изменении тока через него от 1 до 26мА напряжение на стабилитроне будет меняться от 4,2 до 5,2вольт. Как это понять и применить на практике?
Смотрим схему:

Резистор R1 задает стабилитрону необходимый ток. Параллельно стабилитрону подключим вольтметр - он будет измерять напряжение стабилизации Uст. Регулируя напряжение на блоке питания 0...12В, наблюдаем показания вольтметра:
0...5В - вольтметр показывает нарастание напряжения до 4В
5...12В - вольтметр показывает увеличение напряжения 4...5В
Видали? Мы изменили напряжение на 7вольт, а получилось - всего на 1вольт! Давайте подумаем, в чем он нам может пригодиться и как из него вытащить пользу.
Корыстные мы, да. Напряжение, которое выдает нам стабилитрон, назовем опорным напряжением. Это для него оно - напряжение стабилизации, а для нас - опорное. Вот с этим самым опорным напряжением наши компараторы будут сравнивать измеряемое напряжение и выдавать диагноз - изменилось ли оно или нет, зажигать нам светодиоды или пущай тухнут.
Рассуждаем логически: поскольку светодиоды зажигаются на ответе компаратора "НЕТ", это значит, что сравниваемое напряжение поднялось выше опорного. Следовательно, опорное напряжение нам нужно подать на неинвертирующие входы компараторов. Входы можно соединять меж собой без вреда озоновому слою Земли и численности населения китайцев. Последствий не будет никаких. Так и сделаем:

Неинвертирующие входы компараторов мы соединили и кинули стабилитрон на землю и резистор на плюс питания. Этот "плюс питания" у нас будет одновременно и питанием, и измеряемым напряжением, да и Бог с ним! Опорное напряжение будет стабилизировано.
Резистор R5 требует расчета, займемся им:
Максимальное напряжение схемы 13В
Напряжение стабилитрона 4,7В
Падение напряжения на резисторе R5 равно
Uпад=13-4,7=8,3В
Максимальный ток стабилизации стабилитрона Iд=26мА, но мы выберем поменьше, к примеру, 15мА. Тогда сопротивление резистора R5 посчитаем
R=Uпад/Iд=8,3/0,015=553Ом
Выберем резистор 560Ом из существующих в ряду стандартных сопротивлений.
Проверим, укладываемся ли мы в стабилизацию при минимальном питании:
Минимальное питание 10В
Сопротивление резистора R5 560Ом
Ток через стабилитрон посчитаем, предположив, что напряжение на стабилитроне не изменилось:
Iд=Uпад/R=(10-4,7)/560=9,4мА
Если бы напряжение стабилитрона упало ниже 4,7В (к примеру, до минимального 4,2В), ток стабилитрона все равно находился бы в диапазоне допустимых (выше 1мА), что нам и требуется. Принимаем R5 равным 560Ом.
Смотрим, что у нас получилось:

Светодиоды я подписал, чтобы было нагляднее.
На свободные лапки компараторов нужно завести измеряемое напряжение, но как-то так, чтобы оно соответствовало зажигаемому светодиоду. Ну не напрямую же их соединять, так ведь?
Смотрим на самый нижний компаратор:
На его неивертирующем входе напряжение 4,7В. Чтобы зажечь светодиод D4 (то есть выдать ответ НЕТ), на инвертирующем входе должно быть напряжение больше 4,7В - это порог срабатывания при повышении входного напряжения до 10В. Нам нужно эти самые 10В завести на инвертирующий вход, но чтобы они выглядели на нем как 4,7В. Как-то надо поделить эти 10вольт до 4,7. Как? Очень просто - делителем напряжения.
Простейший делитель напряжения состоит из двух резисторов.

Входное напряжение может быть любым, а выходное напряжение будет ровно в 2 раза меньше входного. Надо сказать, что делитель напряжения не выдает какой-либо мощности, то есть использовать его в блоках питания нельзя. Можно только получать маломощные, слаботочные напряжения в качестве сигналов управления, ослабить звук перед усилителем: много применений у делителя, но все они - ну никак не про мощность.
Значит, нам надо 10вольт поделить до 4.7. Будем думать.
На вход делителя мы подаем 10В, снимаем 4.7В. На нижнем резисторе (он называется "нижнее плечо делителя") мы видим 4,7В, на верхнем резисторе (верхнее плечо делителя) упадет разница между напряжениями, то есть 5,3В. Отношение 5,3/4,7 будет разницей между резисторами. 5,3/4,7=1,13 раза. В эти 1,13 раза будут отличаться сопротивления резисторов. То есть, если нижний резистор будет 10кОм, то верхний надо искать на 11,3кОм - в таком случае мы получим ровно 4,7В на выходе при входном 10В. Номинал 11,3кОм найти сложно, но можно удвоить оба резистора - соотношение между ними останется таким же - 1,13раза, а номиналы 20кОм и 22,6кОм искать легче - 22,6кОм можно заменить на 22, будет небольшая погрешность, ну и ладно. Нам это не страшно.

Конечно, сам делитель будет потреблять какой-то ток от источника входного напряжения, и нужно, чтобы тот источник входного напряжения мог обеспечить такой ток. Мы не будем рассчитывать всё до мелочей, я скажу только, что делитель с килоомными резисторами меньше потребляет ток, чем с омными резисторами, и плясать мы будем именно от килоомных резисторов.
Итак, мы определили 2 резистора для первого компаратора. Верхний резистор мы подключаем к плюсу питания, ведь оно у нас и питание, и измеряемое напряжение одновременно. Выходное напряжение подаем прямо на компаратор, на лапку 10. Точно так же рассчитаем все остальные делители:
Для компаратора, индицирующего порог "+11В":
Входное напряжение 11В
Опорное напряжение 4,7В
Падение напряжения на верхнем плече делителя Uпад=11-4,7=6,3В
Отношение резисторов равно 6,3/4,7=1,34 раза
Если нижний резистор 10кОм, то верхний будет R=10*1,34=13,4кОм
Резистора 13,4кОм у нас нет, зато удвоенный резистор 13,4*2=26,8кОм можно заменить на 27кОм. В таком случае удвоим и нижний резистор - он будет не 10кОм, а 20.

Для компаратора "+12В":
Входное напряжение 12В
Опорное напряжение 4,7В
Падение напряжения на верхнем плече делителя Uпад=11-4,7=7,3В
Отношение резисторов равно 7,3/4,7=1,55 раза
Если нижний резистор 10кОм, то верхний будет R=10*1,55=15,5кОм
Резистор 15,5кОм можно заменить на 15кОм. Это некритично. Нижний резистор остается прежним - 10кОм.

Для компаратора "+13В":
Входное напряжение 13В
Опорное напряжение 4,7В
Падение напряжения на верхнем плече делителя Uпад=13-4,7=8,3В
Отношение резисторов равно 8,3/4,7=1,77 раза
Если нижний резистор 10кОм, то верхний будет R=10*1,77=17,7кОм
Существует номинал 18кОм, нам подойдет. Нижний резистор - 10кОм.
Наша схема снова немного преображается:

Можно считать эту схему законченной - она будет работать, причем вполне сносно. Свои функции выполнять будет. Ее преимущество в том, что можно легко изменить пороги срабатывания каждого компаратора в отдельности, не мешая другим. Дальше мы рассмотрим, как можно немного упростить эту схему, и чуток ее доработаем.

Вопросы, как обычно, складываем тут.


Как вам эта статья?

Заработало ли это устройство у вас?

Индикатор уровня напряжения аккумулятора на светодиодах и ОУ LM339

Сейчас вольтметр на приборной панели автомобиля - большая редкость. Все больше лампочки с изображением аккумулятора. Лампочка эта загорается когда нет зарядки аккумулятора. И все же, нужен хотя бы какой-то индикатор, показывающий ориентировочно напряжение.

Здесь приводится схема хорошо проверенного автомобильного индикатора напряжения, который можно применять и для других целей. Схема состоит из четырех компараторов микросхемы LM339. Соответственно, получается четырехпороговое устройство индикации.

Особенность схемы в том, что порог напряжения для каждого светодиода можно установить произвольно, причем делается это очень легко и не требует какого-либо вторжения в схему. Нужно всего-то подать на схему напряжение и покрутить один из подстроечных резисторов так, чтобы при этом напряжение загорался соответствующий светодиод. Практически, можно задать любые пороги для четырех светодиодных индикаторов, и даже в любом порядке.

При этом нижний предел ограничивается напряжением 6V (напряжение, при котором еще хорошо работает ИМС LM339), а верхний зависит от сопротивления R6, величина которого в килоомах должна быть равна верхнему пределу напряжения в вольтах. Еще нужно учесть, что верхнее напряжение не должно быть более 30В (максимум напряжения питания ИМС LM339).

Индикатор уровня напряжения аккумулятора на светодиодах и ОУ LM339

Схема питается от измеряемого напряжения. На прямые входы компараторов поступает напряжение с подстроечных резисторов R2-R5. Для каждого из компараторов можно установить свое опорное напряжение.

Чтобы опорное напряжение не менялось при изменении напряжения питания, оно стабилизировано стабилитроном VD1. Измеряемое напряжение поступает на соединенные вместе инверсные входы компараторов через делитель на резисторах R6 и R7.

Светодиоды можно заменить любыми индикаторными. Если предполагается измерять напряжение более 20V желательно несколько увеличить сопротивления резисторов R8-R11 чтобы не возникало перегрузки по току выходов компараторов. Если требуется большая точность задания порогов нужно чтобы подстроечные резисторы были многооборотными.

Клотов Н. РК-2016-01.

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *