Импульсные зарядные устройства – Импульсное зарядное устройство для автомобильного аккумулятора: схема, как работает, принцип

Эволюция импульсных зарядных устройств для автомобильного аккумулятора на основе AT/ATX.

РадиоКот >Схемы >Питание >Зарядные устройства >

Эволюция импульсных зарядных устройств для автомобильного аккумулятора на основе AT/ATX.


В инструкциях по эксплуатации к первым отечественным автомобилям было написано, что аккумулятор нельзя эксплуатировать летом (начинать заводить автомобиль и двигаться) при заряде менее 50%, и зимой менее 75%. Проанализируем, почему аккумулятор в некоторых случаях не будет успевать полностью заряжаться. Например, на улице зима, вам нужно за день съездить в 3-4 места, на улице -25, двигатель остывает уже через 15 мин, а перерывы межу поездками 1-3 часа. Уже темно и вы пользуетесь фарами, а также подогревом сиденья и стекол. В результате все это дело потребляет не менее 400- 500 ватт. Генератор дает ватт 800 и у вас остается ватт 300 (в теории) на зарядку аккумулятора. 300 ватт при 14 В в бортовой сети автомобиля это примерно 20 А. Так вот полностью разряженный аккумулятор с емкостью, например, в 52 Ач даже в теории полностью может зарядиться не быстрее чем за 3,5 часа (70 Ач химической емкости 3,5 часа * 20 А). А реально ток заряда никогда не достигнет значения 20 А, в первые минуты зарядка будет происходить током 10-15А, а далее 3-5А. В результате аккумулятор не успевает зарядиться по пути до ближайшего места стоянки. Конечно, он не полностью разряжен. Давайте посчитаем, насколько он разряжается стартером в зимнее время. При температуре -25 общее время работы стартера составит от 30 сек до 5 мин, например ваш стартер в общей сложности проработал 3 мин в день. Стартер потребляет при такой температуре двигателя в среднем 250А (при пуске может и 900А), при этом за 3 мин расходуется 360 часа * 250А = 12,5 Ач. Это много или мало? Как отмечалось выше, у аккумулятора есть химическая емкость и полезная. Химическая — это та, что запасается в химической реакции, а полезная, та, что расходуется на нагрузку. Естественно, что часть энергии при разряде в виде тепла теряется на самом аккумуляторе и полезная емкость зависит от нагрузки и температуры. Например, разряжаете аккумулятор в течении 10 часов при +25 градусах — его емкость становится 52 Ач (а химическая около 70), если разряжаете за час в тепле — его емкость падает до 35 Ач, остальные 35, от химической, идут на нагрев самого аккумулятора. Если же разряд идет при -25, то сопротивление электролита возрастает, и на самом аккумуляторе тепла теряется еще больше. Реальная емкость на морозе может составить 60% от номинальной, т.е при стартерном режиме 35*0,6= 21 Ач. Так много ли потраченных 12,5 Ач для работы стартера за день? В этой ситуации самым не приятным является то, что химическая емкость не меняется. И для того чтобы зарядить аккумулятор надо потратить в любой ситуации 70 Ач. Покрутили 3 минуты стартер, потратили 12.5 Ач (60 % емкости), вернуть придется 40 Ач. Если же вы не ездите по 4 часа до гаража, не стоите с работающем двигателем в морозы во многочасовых пробках, то ваш генератор не в состоянии обеспечить полный заряд аккумулятора, поэтому его и необходимо периодически дозаряжать.

Конечное напряжение заряда при температуре 20 градусов Цельсия равно 2.25-2.3 вольта на элемент батареи. Для батареи с номинальным напряжением 12 В (6 элементов) конечное напряжение заряда равно 13.5-13.8 В. Если батарея эксплуатируется при других температурах, то для увеличения ресурса батарей рекомендуется уменьшать конечное напряжение заряда до 2.2-2.25 В/эл при температуре 40 градусов и увеличивать напряжение до 2.35-2.4 В при температуре 0 градусов. Применение такой температурной компенсации зарядного напряжения позволяет увеличить ресурс батареи при 40 градусах Цельсия на 15 %. Но чтобы аккумулятор заряжался нужно выходное напряжение зарядного поднять хотя бы на один вольт выше максимального напряжения заряженного аккумулятора (напряжение примерно 15,8 вольта). Для полного заряда разряженной батареи рекомендуется проводить заряд в течение 24 часов. Если необходим более быстрый (в течение 8-10 часов) заряд батареи в случае циклического режима эксплуатации, конечное напряжение заряда увеличивают до 2.4-2.48 В/эл (при 20 градусах Цельсия) и обязательно ограничивают время заряда в соответствии с остаточным зарядом батареи перед зарядкой. Следует отметить, что потенциал электрохимической поляризации свинца примерно при 65С падает до нуля, и выше этой температуры аккумулятор не может существовать, т.е. его невозможно будет зарядить, так как на «-» будет идти исключительно побочная реакция, при которой будет восстанавливаться только водород, да и сам свинец начнет реагировать с серной кислотой. Подача на аккумулятор при заряде напряжения ЭДС в 2В + потенциал электрохимической поляризации 1,3В (примерно 3, 3В на ячейку) также ведет к полному смещению процесса к побочным реакциям. При эксплуатации для сведения к минимуму побочного газообразования и скорости коррозии положительных пластин подаваемое напряжения на элемент не следует делать выше 2,4В на ячейку. Если точнее, то максимальное напряжение заряда 2.33 В на банку при +25С. Температурный коэффициент 0,002 Вград. Т.е. зимой при -25 это будет составлять на каждую банку плюс 50град.*0.002 Вград = 0.1 В . Батарею из 6 банок летом надо заряжать напряжением не выше, чем 2,33*6=13,98 В, а зимой (2,33+0,1)*6= 14,58В. При этом, ни какого специального ограничения тока иили времени заряда не требуется. Ток будет ограничиваться естественным образом, за счет сопротивления проводников и переходного сопротивления на клеммах. А жестко заданное напряжение не приведет к закипанию аккумулятора и не создаст условий для повышенной коррозии положительных пластин. Фактически это будет эквивалентно заряду аккумулятора генератором в бортовой сети. И теперь самое важное, на что никогда не акцентируется внимание. Все эти напряжения являются максимальными (пиковыми), и справедливы для зарядных устройств с ограничением максимального напряжения, т.е. стабилизированных источников питания. Многие зарядные устройства не ограничивают напряжение, а регулируют мощность, отдаваемую в батарею. Действующее значение напряжение, которое будет показывать вольтметр может быть и меньше указанных 14 В, но аккумулятор будет кипеть и плохо заряжаться. Потому что часть времени подводимое напряжение будет превышать норму в 14 В, и большая часть подводимой мощности уйдет на электролиз воды и разрушение анода электрода, а оставшуюся часть периода напряжение будет ниже 14 В, ток будет равен 0. Вольтметр на зарядном устройстве может показывать и 11 В, но аккумулятор при этом будет кипеть и едва заряжаться. В нашем зарядном устройстве аккумулятор почти не кипит и хорошо заряжается. Огромный плюс зарядных устройств с ограничением пиковых напряжений — это возможность ставить аккумулятор на заряд не отключая клеммы аккумулятора от бортовой сети. При этом электроника не сбрасывается, крепления клемм не снашиваются, а времени на периодический подзаряд уходит минимум (открыл капот, поставил на заряд минут на 10-15). Зарядка автомобильного аккумулятора при постоянном напряжении: при этом методе, в течение всего времени заряда напряжение зарядного устройства остается постоянным. Зарядный ток убывает в ходе заряда по причине повышения внутреннего сопротивления батареи. В первый момент после включения, сила зарядного тока определяется следующими факторами: выходным напряжением источника питания, уровнем заряженности батареи и числом последовательно включенных батарей, а также температурой электролита батарей. Сила зарядного тока в первоначальный момент заряда может достигать (1,0-1,5)С20. Для исправных, но разряженных автомобильных аккумуляторов такие токи не принесут вредных последствий. Несмотря на большие токи в первоначальный момент зарядного процесса, общая длительность полного заряда аккумуляторных батарей приблизительно соответствует режиму при постоянстве тока. Дело в том, что завершающий этап заряда при постоянстве напряжения происходит при достаточно малой силе тока. Однако, заряд по такой методике в ряде случаев предпочтителен, так как он обеспечивает более быстрое доведение батареи до состояния, позволяющего обеспечить пуск двигателя. Кроме того, сообщаемая на первоначальном этапе заряда энергия тратится преимущественно на основной зарядный процесс, то есть на восстановление активной массы электродов. При этом реакция газообразования в аккумуляторе еще не возможна. Итак, зарядка при постоянстве напряжения позволяет ускорять процесс заряда аккумуляторов при подготовке к использованию.

Различных зарядных устройств на основе блока питания гуляет по просторам интернета немало. Вот решил поведать и я об истории развития своей схемы зарядок. Схема создавалась для того, чтобы наш котомобиль в морозы зимой все же продолжал ездить на авто, а собрать мог каждый желающий, мало-мальски радиокот. Основной упор в схемотехнике зарядных устройств -простота переделки. В наш век «китайтизации» электроники и электронной промышленности зачастую проще, дешевле и доступнее взять готовый AT/ATX блок питания и переделать его под любые свои нужды, нежели купить отдельно силовой трансформатор, диоды на мост, тиристор и прочие детали. Сначала поведаю о самом простом (ну уже проще просто не бывает!!!) и надежном зарядном на основе AT блока питания, без индикатора тока (хотя амперметр никто не мешает поставить).

Ну, вот блоков для переделки вы уже поднасобирали, тогда начнем-с пожалуй:


Подходим поближе и отыскиваем блоки АТ


Эх, наконец-то раздобыли. Разбираем и смотрим на плату. Для нашей схемы берем самого распространенного китайца, собранного на TL494. Его моем, чистим, сушим и смазываем кулер.

Надо сказать небольшое отступление. О качестве комплектующих для АТ и АТХ блоков. Хочу сказать о важном элементе схемы — фильтрующий конденсатор 310 вольт в первичной цепи. От него зависит не только такой параметр как пульсации выходного напряжения с частотой сети под большой нагрузкой, но и, что очень важно — нагрев самих выходных ключей. Если емкости не хватает, то им приходится работать до 35% своего времени на большей ширине импульса, чем при нормальной емкости, так как среднее средневыпрямленное напряжение уже не 310 вольт, а 250 — 260 вольт напряжение, за счет пульсаций. Контроллеру приходится отрабатывать такие провалы, увеличивая ширину и время открытого состояния транзистора. Следовательно, им приходится работать на большем токе, чем при достаточной емкости. Больше ток — больше нагрев — меньше кпд. (Он и так небольшой 60 — 75% в зависимости от блока). Проведя некоторые измерения более древних и очень старых АТ блоков питания и более новых АТХ выяснилось — китайцы совсем совесть потеряли. Если раньше ставили конденсаторы — как на нем написано,


так оно и есть. То теперь 50% допуск всегда в минус. Перебрал сотни блоков: Написано 470МКФ, выпаиваешь замеряешь — 300 -330МКФ, даже новый конденсатор — та же история.


Ну, да и ладно, пусть пишут что хотят: Ну, а нам необходимо заменить в АТ блоке, на основе которого мы будем строить зарядку 200МКФ на эти самые 330МКФ, или еще лучше 470МКФ (настоящих 470). Транзисторам легче будет.

С дросселями та же история. АТ дроссель:


АТХ дроссель:


Не домотаны, и кольцо меньше… Следствием уменьшения индуктивности дросселя групповой стабилизации будет акустический свист на малых токах (1-2 ампера). Индуктивность этого дросселя рассчитывается, исходя из режима непрерывности тока через него при минимальных нагрузках. При включении блока, он сразу выходит на мощность не менее 150Вт (зависит от компьютера). Через дроссель протекают определённые токи, не менее какой то величины. Дроссель можно рассчитать на это минимальное значение тока, но тогда, при включении без нагрузки, ток через дроссель станет прерывистым, что повлечёт за собой некоторые неприятности… Схема ШИМ регулирования рассчитана для случая непрерывности тока, по этому, при прерывистом токе, регулирование будет сбиваться, дроссель будет петь, напряжения на выходах будут прыгать, вызывая дополнительные токи перезарядки электролитических конденсаторов… Конечно, в данном случае нам на помощь придет цепь RC коррекции обратной связи (некоторые расчеты ниже), но притуплять скорость реакции на изменение напряжения бесконечно нельзя, В какой-то момент TL494 при КЗ просто не успеет снизить ширину импульса и транзисторы выйдут из строя. Этот процесс достаточно быстрый. Поэтому с этим нужно быть осторожнее. Ну ладно, это было лирическое отступление. Продолжим с зарядным устройством.


Схема с мягкой характеристикой зарядного тока.


Плата стандартного АТ блока. Смотрим на схему, что надо выпаять (а выпаять надо много-много лишнего), а что запаять, чтобы получить самую простую зарядку для аккума. Схема взята стандартная, стандартного блока АТ и номиналы уже установленных элементов могут существенно отличаться от ваших. Менять их на указанные на схеме НЕ НАДО! Выпаиваем только ставшие ненужными защиты от перенапряжения, канал 5 вольт, канал -12 вольт. В общем, согласно схеме, оставляем следующее.


В итоге чтобы получить полноценную, регулируемую зарядку на 10 ампер и 15,8в с управляемым от тока нагрузки вентилятором, надо добавить всего восемь деталек!!! А именно: заменить два электролита, добавить шунт очень приближенного сопротивления 0,01ома -0,08 ома (например, три сантиметра шунта с китайского мультика — работает отлично). Фото исходного шунта (Авторский донор снят с советской Цэшки):


Резистор на 120ом, на 3,9к, и примерно 18к, переменный резистор на 10к, конденсатор на 10 нано и перевернуть обмотку на дросселе по каналу -5 вольта для вентилятора. Только не забудьте, что вентилятор теперь подключать надо так: красный на корпус, а черный на -5:.-12в. Шунт припаиваем в разрыв косички с силового трансформатора. Когда будете настраивать резистор на 3,9к то его сопротивление подберите по току заряда 10 ампер на реальном аккумуляторе. Вы не поверите — это всё! Это просто небывалая простота переделки практически уже металлолома во вполне достойную вещь! Если диоды по каналу +12в у Вас изначально стояли FR302, то надо заменить на более мощные, например выпаять из более современного ATX блока питания. Причем короткого замыкания он не боится — входит в ограничение тока. А вот переполюсовка подключения к аккумулятору приведет к большому ба-баху! Про «НОУ-ХАУ», уникальную защиту от перегрузки и короткого замыкания, в конце статьи. Цветными кружочками и линиями обозначены добавленные дополнительные элементы.


Настройка: Все включения до полной настройки проводить включая в сеть только последовательно с лампочкой накаливания 60 ватт. Проверяем монтаж.

Настройка канала напряжения. Подключаем крокодилами мультиметр в режиме измерения напряжении на диапазоне до 200вольт. Включаем в сеть. Напряжение на выходе должно быть в пределах 16 вольт плюс/минус 4 вольта. Если что-то около 5 вольт, значит забыли заменить резистор в цепи контроля напряжения (1 вывод TL494) на 18к. Если около 23-25в, и постепенно без нагрузки нагреваются выходные ключи, то значит в цепи контроля напряжения (1 вывод TL494) обрыв или сопротивление 18к слишком большое, и блок вышел на полную ширину импульса и все равно не может набрать напряжение, для включения обратной связи. Настраиваем подбором этого резистора на напряжение примерно 15,8 — 16,2 вольта. Если вы выставите 14,4 в то акум через примерно 1 час перестанет у вас заряжаться вообще (проверено многократно на разных аккумуляторах).

Настройка канала тока. Резистор включенный последовательно с регулятором тока временно меняем на подстроечник 22к выставляем его в положение минимального сопротивления. Подключаем крокодилами мультиметр в режиме измерения тока на диапазоне 10 ампер. Включаем в сеть блок через лампочку. Если лампочка вспыхнула и продолжает ярко светиться, значит что-то напутали, проверяем монтаж. Если амперметр показывает ток в пределах от 1 до 4 ампер то все нормально. Выставляем переменный резистор в режим максимального сопротивления, а подстроечным резистором настраиваем ток 15 -16 ампер. Иногда лампочка не дает так настроить, поэтому настройте примерно такой ток. Теперь подключив на выход разряженный аккумулятор и амперметр последовательно, убираем лампочку и включаем в сеть. Подстроечным резистором подстраиваем более точно ток, но уже 10 ампер. Затем подстроечник выпаиваем, меряем и впаиваем постоянный резистор такого же сопротивления. Вентилятор охлаждения должен вращаться с оборотами пропорционально току. Если на максимальном токе или коротком обороты слишком велики (напряжение выше 20 вольт), то необходимо отмотать витков 10 с обмотки минус 5 вольт канала питания вентилятора Напряжение на вентиляторе при подобранных витках должно быть от 6 вольт до 17 вольт. Все, на этом настройка закончена.

В итоге на выходе сборочного стола получаем такое зарядное устройство. И даже с корпусом практически никаких слесарных работ не нужно. Выходные/входные провода выведены сзади через пластмассовые разъемы. Таких зарядных в свое время было сделано десятки, и все работают до сих пор :-).


Далее приспособим сюда индикатор тока на светодиодах или на люминесцентном индикаторе, кому, как нравится. В итоге чтобы получить на выходе такое симпатичное зарядное устройство, надо всего совсем немного доработать нашу схему. На люминесцентном индикаторе:


На светодиодах:


И корпус без покраски, индикатор на КТ315И.


Если всё устраивает, то тогда продолжаю мурлыкать по теме. Для измерения тока с более менее сносной точностью, нужно собрать усилитель напряжения с шунта на LM358 и сам индикатор на двух LM324 или на КТ315-х и всё :-). Приведу схему отдельно усилителя, с простой платой, и отдельно самого индикатора. Крепить внутри лучше и проще. Индикаторов два варианта.


Схема усилителя. Диод D1, резистор R3, конденсатор С3 интегрирующая цепь, так как на входе пульсирующее напряжение отрицательной полярности, а нам надо на выходе получить постоянное напряжение пропорциональное току. Настройка: обязательно проверить 12 вольт, часто попадаются бракованные КРЕН-ки, затем резистором R2 калибруют показания индикатора по мультиметру. Резистором регулировки тока выставляете максимальный ток и резистором настраиваете, чтобы только-только зажегся, последний светодиод. Конденсатор С3 работает как интегратор и задает плавность спадания показаний индикатора.

Фото собранных плат усилителей напряжения с шунта (подстроечные сопротивления еще не запаяны).


Схема индикатора на КТ 315. Конечно, «прошлый век» и все такое, скажите Вы, но, а если их в наличии 3 литровая банка. Куда прикажите девать? Выбросить? А SMD-шные транзисторы надо идти на базар и купить, а места в корпусе все равно много. Сверлить отверстия под 315 тоже не надо. Но все же на ваш выбор, схема не критична к выбору транзисторов, хоть МП10 запаяйте, все равно будет работать.


Количество транзисторов и светодиодов можно уменьшить, например до 6 шт., но когда много, то красивше. Фото собранной линейки, пока еще без впаянных светодиодов.


И более ранняя разводка


Эмитерный повторитель можно и не запаивать, а включить напрямую, работает и без него, только спадают показания быстро, а не плавно по одному светодиоду. Иногда на некоторых экземплярах требовалось включать прямо включенный диод, типа КД522, между выходом усилителя и линейкой. Это было необходимо, когда при нулевом токе светились один — два первых светодиода. Налаживание линейки. Правильно собранный без ошибок индикатор работает сразу. Подключаем на вход переменный резистор — бегунок ко входу, правый конец резистора на +, левый на -. Подаем питание, вращаем резистор и смотрим на светодиоды, должны поочередно вспыхивать и гаснуть. Данный индикатор обладает существенной нелинейностью показаний (сначала завал и посередине бывают горбы), но для зарядного вполне подойдет. Просто при настройке значение каждого светодиода отмаркируете.

В схеме блока на плате надо добавить источник 6…8в для светодиодной линейки. Для люминесцентного индикатора добавлять этот источник не надо.


Фото собранной зарядки по вышеприведенным схемам, но на блоке ATX (разницы с АТ особой нет, отличие что питание TL494 питается от дежурки):


Фото крепления платы усилителя. Припаивается в основную плату выводами: корпус и +22в.


Далее приведу схему индикатора на операционных усилителях. В качестве самого индикатора лучше использовать люминесцентный индикатор (схема проще). Если использовать светодиоды, то надо будет добавить еще 8 резисторов по 2к и подключать катодами на корпус. Принцип работы прост. Схема в настройке не нуждается, кроме подбора резистора в цепи накала.


В данной схеме используется два счетверенных усилителя, для формирования восемь уровней индикации. Операционные усилители, используемые в этой схеме — LM324 (Или LM393 если используете светодиоды. Тогда подключаем их аноды на +, а катоды каждый на свой выход). Это довольно распространенная ИМС и найти ее не составит труда. Резисторы R2:.R10 образуют делитель, задающий пороги срабатывания каждого усилителя. Усилители работают в режиме компараторов.

Фото собранного индикатора тока на люминесцентный индикатор


Крепится к передней стенке с помощью термоклея пистолетом или паяльником.

Вышеприведенная схема имеет мягкую характеристику зарядного тока. Ток снижается плавно на протяжении всего времени заряда (Как в автомобиле).


Теперь рассмотрим схему с жесткой характеристикой зарядного тока.

Здесь ток снижается более круто и только к концу заряда. На протяжении основного времени ток стабильный. Здесь нам потребуется уже АТХ блок питания. Нововведение коснулось и защиты от переполюсовки и короткого замыкания. В данном зарядном шунт установлен по минусовой шине, поэтому необходимо разрезать соединение платы с корпусом блока. Если этого не сделать то при случайном касании плюсовым проводом металлического корпуса блок питания придется ремонтировать (менять джентльменский комплект — предохранитель, мост, пара MJE13007, резисторы 10 ом базовые :-)). Схема содержит усилитель напряжения с шунта, компаратор с обратной связью на конденсаторе ( о конденсаторе и его расчетах ниже) для более плавной работы и для устранения перерегулирования и любая из рассмотренных выше линеек индикаторов, но предпочтительней на LM324. В данном случае управление микросхемой TL494 осуществляем через вывод 4, как имеющий самое маленькое усиление и следовательно саму малую реакцию на изменение напряжения на его входе, а не 3, 1,16. При управлении через 4 вывод вся схема зарядного работает устойчиво, отсутствуют возбуждения, перерегулирования, нет нагрева выходных транзисторов.

Теперь немного теории. Для устойчивой работы замкнутых обратными связями преобразователей, необходимо, чтобы коэффициент усиления разомкнутого контура стал меньше единицы до того, как фазовый угол достигнет значения -180 гр. Кроме того, в области среза должен быть сформирован наклон ЛАХ (логарифмическая амплитудная характеристика) разомкнутой системы -20дБ/Дек, а в области низких частот коэффициент усиления должен быть достаточно большим для того, чтобы снизить погрешность при измерениях входного напряжения и тока нагрузки. Т.е. мы считаем частоту индуктора выходной емкости по формуле для LC. Потом для этой же частоты по формуле RC считаем сопротивление и емкость в цепи обратной связи. А если у нас выходной конденсатор низкого сопротивления, то по этой же формуле еще раз считаем следующий конденсатор и пару для него берем сопротивление из высокого плеча делителя выходного напряжения.


Правда там не сказано, от чего отталкиваться, выбирая соотношение для величины емкости и сопротивления. Т.е. знаем частоту, знаем формулу, но два неизвестных. А вот в этом


есть эмпирическая формула для подбора величины сопротивления в цепи обратной связи ОУ. R = 5800 * Cвых * Fперекрест * Vвых, где Fперекрест — численно принимается 1/10 от частоты работы преобразователя. Правда почему-то в 2й картинке они емкость считают отталкиваясь от 1/3 частоты LC, что вносит несуразицу, т.к. в 1й картинке считалось ровно по частоте LC. Но хотя бы примерный порядок для подбора величин эти данные дают.

Защита от переполюсовки и КЗ выполнена на двух транзисторах и светодиоде. Схема:


Настройка заключается в подборе R3 в зависимости от вашего шунта, и подборе R5 для ограничения максимального выходного тока на уровне 10 ампер. Доработки линеек индикаторов состоят только в установке и подстройке подстроечного сопротивления для диапазона отображения тока 3 — 10 ампер. Настройка канала тока. Резистор R5 временно меняем на подстроечник 10к выставляем его в положение максимального сопротивления. Подключаем мультиметр в режиме измерения тока на диапазоне 10 ампер. Включаем в сеть блок через лампочку. Если лампочка вспыхнула и продолжает ярко светиться, значит что-то напутали, проверяем монтаж. Если амперметр показывает ток в пределах от 0,2 до 1 ампер то все нормально. Выставляем переменный резистор R6 в режим максимального напряжения с бегунка, а подстроечным резистором настраиваем ток 10 ампер. Затем выпаиваем подстроечник, замеряем и впаиваем постоянный резистор такого же сопротивления. Работа и настройка канала напряжения аналогично первой схеме.

Доработки основной платы АТХ блока для схемы управления на LM358.


Доработки схемы линеек:


В схеме с операционными усилителями ставим Р1 и подбираем его или подбираем R2, а Р1 не добавляем, а подключаем напрямую.


Подробней остановимся на защите от переполюсовки и от короткого замыкания. Схема своего рода «НОУ-ХАУ», по простоте и надежности. Плюс в том, что не нужно использовать мощное реле, или тиристор, на котором падение напряжения около двух вольт. Схема как самостоятельное устройство может быть встроена в любое зарядное устройство и блок питания. Выход из режима защиты автоматический, как только устранится короткое замыкание или преполюсовка. При срабатывании светится светодиод «ошибка подключения».


Описание работы: При нормальном режиме напряжение через светодиод и резистор R9 отпирает VT1 и все напряжение со входа поступает на выход. При коротком замыкании или переполюсовке ток импульсно резко возрастает, падение напряжения на полевике и шунте резко увеличивается, что приводит к открыванию VT2, который в свою очередь шунтирует затвор исток. Добавочное отрицательное напряжение по отношению к истоку (падение на шунте) прикрывает VT1. Далее происходит лавинный процесс закрытия VT1. Светодиод засвечивается через открытый VT2. Схема может находиться в данном состоянии сколь угодно долго, до устранения замыкания.

Для зарядки дополнительно и мотоциклетных аккумуляторов можно добавить переключатель подключающий дополнительный подобранный резистор в цепи вывода 1 TL494. Конструкция будет универсальной если поставите переменный резистор. На выходе можно регулировать напряжение до 20 вольт.


Если поставить мост в выходном канале 12в, то тогда можно регулировать напряжение до 35 вольт. Дальнейшие доработки ограничены только фантазией.

Дабы не быть голословным, привожу фотки работы зарядного

Фото работы зарядного устройства. Ток зарядки 10 ампер.


Также разработаны и другие схемные решения. Продолжение следует…


Файлы:
Печатные платы в формате SL 5.0.


Вопросы, как обычно, складываем тут.


Как вам эта статья?

Заработало ли это устройство у вас?

Подбираем импульсное зарядное устройство для аккумулятора

Срочную поездку приходится отменить по банальной причине – не завелась машина. Такая ситуация хотя бы раз, но случается у каждого автомобилиста. И виновником этого очень часто является аккумулятор. Чтобы избежать подобного недоразумения необходимо иметь дома специальное оборудование для восстановления батареи. Это может быть импульсное зарядное устройство для автомобильного аккумулятора. Каким требованиям должен отвечать этот прибор и для чего он нужен? Ответы на эти вопросы узнаем у специалистов.

Почему именно импульсное ЗУ

Оборудование, позволяющее восстанавливать аккумуляторы подразделяется на две основные группы:

  1. Трансформаторное;
  2. Импульсное.

Устройства первого типа отличают большие габариты и масса, но при этом у них более низкий КПД, чем у других моделей. Эти особенности привели к снижению спроса на них, как только на рынке появились импульсные ЗУ. Они отличаются компактными габаритами и невысокой ценой и пользуются определенным спросом у автовладельцев.

Однако, как бы не велики были трансформаторные модели они все же имеют ряд преимуществ:

  • Надежность;
  • Отказоустойчивость.

И именно этих параметров так часто не хватает импульсным устройствам. Но все же они сумели доказать свои неоспоримые преимущества. О них и будет рассказано в этой статье.

Конструктивные особенности

Согласно прилагаемой к прибору документации ЗУ представляет собой электронный прибор, используемый для восстановления аккумуляторов. Он состоит из следующих компонентов:

  • Импульсного трансформатора;
  • Выпрямителя;
  • Стабилизатора;
  • Средств индикации;
  • Блока для контроля процесса зарядки.

Все детали прибора достаточно миниатюрны по сравнению с громоздкими узлами трансформаторных моделей. Самое простое импульсное зарядное устройство для автомобильного аккумулятора может собираться с использованием недорогой микросхемы, управляющей полевым транзистором. Нагрузкой для него является импульсный трансформатор.

Благодаря столь простой конструкции и доступности элементной базы импульсные устройства пользуются большим спросом.

Принцип действия ЗУ

Процесс зарядки батареи может быть выполнен одним из трех способов:

  • Напряжением неизменного значения;
  • При постоянном токе;
  • Комбинированным.

Если рассматривать работу импульсного зарядного устройства для автомобильного аккумулятора с точки зрения теории, то наиболее правильным представляется первый вариант. Это объясняется возможностью импульсных ЗУ осуществлять контроль за значением силы тока автоматически только в случае постоянного напряжения. Чтобы добиться максимальной зарядки батареи устройство должно учитывать уровень разряда.

Использование второго способа не считается лучшим вариантом. Так как при быстрой зарядке, получаемой при постоянном токе могут осыпаться пластины батареи, восстановить которые невозможно.

Комбинированный способ один из самых щадящих. При его использовании сначала идет постоянный ток и только в конце процесса он меняется на переменный, который снижается до нуля тем самым стабилизируя напряжение. Такой подход делает вероятность закипания батареи и выделение газа минимальными.

Критерии выбора устройства для восстановления батареи

Чтобы добиться эффективной работы аккумулятора необходимо побеспокоиться о приобретении качественного оборудования для его восстановления. Существует перечень критериев, которым должно соответствовать зарядное устройство.

Смотрим видео, выбор устройства:

Первый и самый главный вопрос, который задают покупатели – это способен ли прибор восстановить максимально разряженный аккумулятор? К сожалению, далеко не все модели ЗУ способны справиться с этой задачей. Поэтому приобретая агрегат стоит поинтересоваться у менеджеров имеет ли он такую функцию.

Следующий параметр, на который обращают внимание – это максимальное значение тока, выдаваемого ЗУ в процессе работы, а также напряжения, до которого заряжается батарея. Если вы выбираете импульсный прибор, то в нем должна быть функция автоматического отключения или перехода в режим поддержки.

Следует учитывать и возможность КЗ, которое происходит при попытке зарядки вышедшей из строя батареи. Для таких случаев схема импульсного зарядного устройства для автомобильных аккумуляторов должна включать защиту.

Обзор популярных моделей

Для рассмотрения характеристик мы отобрали несколько моделей с током от 6 до 9 А: На них и были проведены тесты по работе импульсных ЗУ для автомобильных аккумуляторов.

Модель Bosch C7

Среди них такие модели, как:

  • Bosch C7;
  • KeePower Medium;
  • Optimate 6.

Первый прибор выпускается довольно известным зарубежным производителем различной техники.

Он может использоваться в следующих режимах:

  • стандартом;
  • зимнем;
  • для сильно разряженной батареи;
  • при выходном токе до 5 А.

Для контроля за процессом используется две группы индикаторов. Одна позволяет получить информацию о ходе работы устройства, а вторая о конкретном режиме.

В комплектацию прибора включен комплект кронштейнов, дополнительный кабель. Он оснащен разъемом и клеммами, расположенными на его концах.

Модель марки KeePower Medium

Импульсное защитное устройство этой марки не требует специальной подготовки к работе. При первом использовании необходимо выбрать удобный вариант подключения провода и необходимый режим. Возможно использование прибора как источника питания.

Одним из простых в эксплуатации является зарядное устройство Optimate 6. Оно прекрасно справляется со своими функциями без контроля со стороны человека и способно работать автономно за что и попало в рейтинг лучших импульсных зарядных устройств для автомобильных аккумуляторов.

Смотрим видео обзор о модели Optimate 6:

Уникальный дизайн прибора отмечен отечественными покупателями. Внешне устройство напоминает небольшую машинку на капоте которой находятся индикаторы. Провода выходят из мест, где у настоящих автомобилей располагаются номерные знаки. Их входы защищены пластиковыми муфтами. Днище машинки – это вентиляционная сетка, а на крыше можно ознакомиться с техническими характеристиками прибора.

В комплектацию ЗУ входят провода для различных способов соединения и тканевый мешок в который упаковывается все содержимое.

Советы по эксплуатации

При зарядке аккумулятора необходимо соблюдать определенную последовательность действий. Сначала снимаются крышки с банок и выворачиваются пробки.

Смотрим видео, правильные советы:

Концентрация электролита должна быть выравнена при помощи дистиллированной воды до зарядки.

Следует учитывать и такие параметры, как:

  • Напряжение;
  • Силу тока;
  • Время восстановления батареи.

Максимальное значением первой характеристики не должно превышать 14,4 В. Сила тока регулируется в зависимости от уровня разрядки аккумулятора. Так если он разряжен на четверть, то при включении возможно возрастание силы тока. Значение этого параметра должно соответствовать одной десятой от емкости батареи.

Если зарядное устройство не оснащено индикаторами, то узнать, заряжен аккумулятор или нет можно по величине тока. Если она остается неизменной на протяжении 3 часов, значит батарея восстановлена.

Нельзя производить зарядку аккумулятора при большом токе более суток. Это может привести к закипанию электролита и даже замыканию между пластинами.

Импульсное зарядное устройство для авто, схема, описание

К вашему вниманию простая схема импульсного ЗУ для автомобильного акб, компактная, проверенная в работе и со всеми защитами.

 зарядное устройство для автоЭлектронный трансформатор немного дорабатываем, чтобы в конечном итоге выход был 14 вольт, то есть если нет 14 вольт, то нужно немного домотать вторичную обмотку. Затем мы добавим (тут по желанию) сетевой фильтр. Сделаем обязательно диодный выпрямитель и схемы защиты от короткого замыкания, переполюсовки и перегрузки. Ну и добавим индикацию.

 домотать вторичную обмотку

 зарядное устройство для авто, схема

Я взял китайский электронный трансформатор на 80 ватт. Частота задаётся динистором DB3 в районе 30 кГц. Имеется 2 трансформатора, один ОС, второй (основной) понижающий.

. Были взяты ключи MJE 13005.

3 обмотки содержит тран-тор ОС, две базовые обмотки ключей и саму обмотку ОС. Были взяты ключи MJE 13005.

Чтобы использовать наше зарядное устройство можно было ещё и в качестве БП, реализуем включение без нагрузки.

Итак, что для этого надо….

1) Выпаять обмотку ОС и вместо неё сделать перемычку.
2) Мотаем 2 витка проводом 0.4 мм на основном трансе и подключаем всё это дело как показано на схеме ниже. Это делать не обязательно, если данное устройство будет работать только как зарядное для аккумуляторов.

Резистор нужно взять мощностью 5-10 ватт и то он всегда будет тёплый, но это нормально.

Такая переделка даёт нам защиту от короткого замыкания и включение системы без нагрузки. Но всё равно при длительном замыкании (больше 10 сек) ключи могут выйти из строя, поэтому мы будем делать отдельную защиту от короткого замыкания.

Сделаем на отдельной плате.

В схеме использован транзистор IRFZ44, можно взять и помощней IRF3205. Ключи можно использовать на ток более 20 ампер, такие как  IRFZ24, IRFZ40, IRFZ46, IRFZ48 и т.д. Теплоотвод для полевика не требуется. Выбор второго транзистора не критичен, я взял биполярник  MJE13003, но выбор за вами. Шесть резисторов по 0.1 ому,Шесть резисторов по 0.1 ому, подключены параллельно задают сопротивление шунта, которым подбирается ток защиты. При таком раскладе ток защиты срабатывает при нагрузке в 6 или 7 ампер. Также можно подстроить ток срабатывания переменным резистором.

Шесть резисторов по 0.1 ому,

Выходной ток БП доходит до 7 ампер, довольно прилично. Резисторы для шунта брал на 5 ватт, но подойдут и по 2-3 ватта.

Шесть резисторов по 0.1 ому, Шесть резисторов по 0.1 ому, Шесть резисторов по 0.1 ому,

Теперь нужно переделать чтобы выходное напряжение было 14 вольт вместо 10-12.

Это делается просто на вторичную обмотку доматываем всего 3 витка и этим повышаем напряжение на три вольта. Сердечник сам разбирать не обязательно. Провод брал сечением 1 мм и подключаем, вернее припаиваем нашу обмотку одним концом к заводской, а другой конец получается выходом. (то есть последовательно)

Теперь приступим к выпрямителю.

Диоды взял шоттки, выпаял из БП от компьютера. Нужны три одинаковые сборки. Обязательно диоды должны быть импульсные или ультрафасты и не менее 10 ампер. Подойдут и наши типа КД213 и подобные.

Диоды взял шоттки,Собираем мост, блоки в кучу и включаем в сеть 220, чтобы схема не сгорела (в случаи если что накосячили) её следует подключить через обыкновенную лампочку на 60-100 ватт, которую соединяем последовательно с нашей схемой.

При правильной сборке блок работает сразу, теперь замыкаем выход на нём, при этом загорается светодиод (свидетельствует о коротком замыкании).

Теперь собираем схему индикатора

 собираем схему индикатораСама схема взята от зарядника аккумуляторной отвёртки. Где зелёный огонёк показывает, что идёт заряд, а красный показывает, что есть напряжение на выходе блок питания.

Зелёный индикатор будет затухать постепенно и после 12.4 вольт он окончательно потухнет.

Зелёный индикатор

Сетевой фильтр

Но вот и осталось нам только сделать сетевой фильтр, он у нас будет состоять из 2-х плёночных конденсаторов и дросселя.

Коденсаторы подключаются перед дросселем и после.  Дроссель можно взять готовый от ИБП или намотать самому. Берём кольцо и мотаем две отдельные обмотки, по 20 витков проводом 0.5 мм. Конденсаторы по 0,47 мкФ 250 или 400 вольт, лучше взять плёночные. две отдельные обмоткиТеперь собираем всё в корпус и наслаждаемся полноценным импульсным зарядным устройством. Если будет желание, можно сделать и регулятор мощности.

 две отдельные обмотки  две отдельные обмотки

В устройстве можно применить и более мощные трансформаторы. Практика показала надёжность данного устройства и его простоту в изготовлении. более мощные трансформаторы.Автор; АКА Касьян

Импульсная зарядка для литий-ионных аккумуляторов (без микропроцессора)

Всем нам уже все уши прожужжали, что литий-ионные аккумуляторы правильнее всего заряжать постоянным током до напряжения 4.2 В. По достижении данного значения считается, что аккумулятор набрал где-то 70-80% своей максимальной емкости. К слову сказать, этот момент наступает достаточно быстро и чем больше был ток заряда, тем быстрее.

Теперь остается зафиксировать на аккумуляторе это напряжение и подержать его так еще какое-то время. За это время аккумулятор должен набрать еще процентов 20 емкости. Ток заряда при этом будет неуклонно снижаться но, что немаловажно, до нуля так никогда и не дойдет. Окончанием заряда можно считать снижение тока до ~0.05 от номинальной емкости (той, которая указана на этикетке).

Это так называемый двухэтапный режим заряда CC/CV, о котором более подробно мы рассказывали в этой статье.

Описанная логика по своей сути очень правильная и в первом приближении не имеет недостатков: быстрый набор основной емкости, четко заданные критерии перехода к фазе снижения тока и момента окончания зарядки. Но так ли это?

На самом деле, для описанной выше логике работы зарядных устройств порог в 4.2 вольта выбран далеко не случайно. Дело в том, что длительное прикладывание повышенного напряжение к li-ion аккумуляторам ведет к деградации их электродов и электродных масс (электролита) и, как следствие, потери емкости. А так как фаза заряда с фиксированным напряжением и падающим током обычно довольно длительная, то желательно ограничить напряжение сверху на уровне 4.2 (или 4.24В). Что и делается на практике.

Однако, более правильным было бы контролировать напряжение на аккумуляторе не тогда, когда через него протекает большой зарядный ток, а во время холостого хода. Дело в том, что в зависимости от величины внутреннего сопротивления батареи и тока, напряжение на аккумуляторе может запросто достигать 4.3 и даже 4.4 Вольта (если, конечно, нет PCB-модуля, который отрубит акб из-за перенапряжения). Таким образом, зарядное устройство перейдет в режим стабилизации напряжения немного раньше, чем хотелось бы, увеличивая тем самым общее время заряда.

Заряд импульсами тока с паузами между ними

Умная зарядка дейстовала бы следующим образом: сначала отключила бы зарядный ток, выждала бы небольшую паузу, измерила бы напряжение холостого хода на аккумуляторе и на основании этого приняла бы решение о своих дальнейших действиях. Чем ближе напряжение приблизилось к 4.15В (это напряжение полностью заряженного аккумулятора), тем более короткий импульс зарядного тока выдает зарядка. Как только напряжение достигнет заданного порога (4.15 вольта), импульсы тока совсем прекратятся.

Вот как это выглядит на графике:

В таком зарядном устройстве можно оставлять аккумулятор на сколь угодно длительное время, и он будет подзаряжаться по мере необходимости.

Мы только что описали еще один (более правильный) способ зарядки литиевых аккумуляторов — импульсный. Но такие зарядки менее распространены, так как для реализации этого алгоритма требуется микропроцессорное управление, что усложняет и удорожает схему.

Схема зарядника

Но не надо грустить! Оказывается, существует схема импульсного зарядного устройства для литий-ионных аккумуляторов БЕЗ МИКРОПРОЦЕССОРА. Вот она:

Как это ни удивительно эта несложная схема в полной мере реализует весь описанный выше алгоритм заряда при полном отсутствии «мозгов». Схема работает следующим образом.

С момент включения схема начинает заряжать аккумулятор постоянным током. Величина тока зависит от напряжения питания и сопротивления резистора RD.

В момент, когда напряжение на элементе при наличие зарядного тока начинает превышать 4,15 Вольта, компаратор (KA393 или KIA70XX) видит это и закрывает транзистор VT1. Далее следует пауза, за время которой напряжение на элементе снижается до своего истинного значения. Т.к. напряжение холостого хода на аккумуляторе ещё не достигло величины 4,15 В, оно вскоре упадет ниже этого значения. Компаратор, увидив это, вновь откроет зарядный ключ.

Процесс будет повторяться снова и снова, с той лишь разницей, что по мере зарядки аккумулятора импульсы зарядного тока будут всё время сокращаться, а длительность паузы между импульсами, наоборот, увеличиваться. То есть будет увеличиваться скважность импульсов.

Ближе к концу зарядки длительность импульса зарядного тока составляет доли процента от длительности паузы между ними, а напряжение на элементе будет практически равно 4,15 Вольта (конкретное значение выставляется потенциометром R1 при настройке схемы).

Теперь о деталях. Разумеется, можно использовать обычный трансформатор без средней точки. Прекрасно можно обойтись и однополупериодным выпрямителем. А еще проще взять в качестве питания какой-нибудь уже готовый 5-вольтовый зарядник от сотового телефона. Чтобы его не спалить возможно придется еще сильнее ограничить ток заряда, увеличив RD, например, до 0.47 Ом.

Транзисторы что-то типа KTA1273. Силовой полевик указан на схеме, но еще лучше взять PHB108NQ03LT (выпаять из старой материнской платы от компа).

Подстроечник 470 Ом. И не самых маленьких размеров, т.к. он все-таки должен рассеивать какую-то мощность. Брать более 470 ом не советую, т.к. это увеличивает гистерезис срабатывания микросхемы KIA (микросхема может просто вырубить зарядку вместо того, чтобы генерировать импульсы, как задумано).

Схемы можно объединять в последовательные цепочки. Это позволяет заряжать батареи из последовательно соединенных аккумуляторов.

Внимание! В случае одновременного заряда нескольких элементов соединенных последовательно, для каждого аккумулятора должна использоваться своя схема со своим собственным трансформатором питания. Или со своей собственной вторичной обмоткой трансформатора. В любом случае каждый канал должен иметь собственный источник питания, не имеющий гальванической связи с другими источниками. В противном случае некоторые из аккумуляторов окажутся замкнутыми накоротко и произойдет небольшой ба-ба-бах!

Схему можно значительно упростить, выкинув необязательные цепи, а также заменив полевик на обычный биполярный транзистор. Вот, например, парочка вполне рабочих вариантов:

Транзистор можно заменить на наш дубовый КТ837. Питания лучше не делать больше 6 вольт, т.к. чем оно выше, тем сильнее все будет греться. Резистором R1 при сильно разряженном аккумуляторе нужно ограничить ток на уровне 700-800 мА, этого будет вполне достаточно для одного элемента li-ion. При подборе резистора главное не превысить максимальную мощность силового транзистора и способности источника питания.

Если не получилось найти микросхемы KIA70хх, их можно заменить другими детекторами напряжения, например, BD4730. Вот вариант зарядки с этой микросхемой:

Для того, чтобы настроить схему, необходимо отловить момент, когда напряжение на аккумуляторе станет ровно 4.2В и в этот момент выставить на 5-ом выводе микросхемы напряжение 2.99 Вольта (при помощи резистора R6). Если есть регулируемый блок питания, можно выставить на нем ровно 4.2 Вольта и на время настройки подключить его вместо аккумулятора.

Любая из этих схем позволяет заряжать литиевые аккумуляторы любых типоразмеров и емкостей (с учетом коррекции зарядного тока) — от небольших элементов в призматических корпусах до циллиндрических 18650 или гигантских 42120.

Импульсные зарядные устройства для автомобильных аккумуляторов — Лада мастер

Современный автомобиль умнеет на глазах. Он может сделать с собой практически все. Даже ездить сам может. Правда пока плохо, потому что очередной гуглмобиль с автопилотом снова попал в аварию, правда, не по своей вине. Тем не менее, автомобиль требует все меньше внимания к себе. За исключением одного упрямого устройства, которое напоминает о первоначальном источнике энергии для автомобиля — аккумулятора.

Содержание:

  1. Какие бывают зарядные устройства
  2. Что такое импульсное зарядное устройство
  3. Как заряжает АКБ импульсное устройство
  4. Зарядка постоянным током
  5. Комбинированный метод и схема импульсного зарядного устройства

Какие бывают зарядные устройства

Зарядные устройства

Зарядные устройства

Аккумулятор не вечный и даже в самых заботливых руках может прослужить не более 5-6 лет. Но многие и до этого не дотягивают, потому что водители часто пренебрегают элементарными правилами эксплуатации устройства. И обслуживания, в том числе. Правил обслуживания аккумулятора есть много, но качественная подзарядка необходима аккумулятору даже при полной работоспособности всего бортового электрооборудования.

Импульсная зарядкаИмпульсная зарядка

Нынешние зарядные устройства для автомобильных аккумуляторов представлены только двумя типами:

  • импульсными зарядками;
  • трансформаторными устройствами.

Трансформаторные модели устройств при всех своих достоинствах имеют огромный вес и габариты. Это не проблема для тех, у кого есть полноценная мастерская, просторный гараж. Да и по надежности и стабильности зарядных характеристик трансформаторные динозавры гораздо лучше импульсных устройств. Но время идет, и тяжелые трансформаторы заменяют импульсные устройства.

Что такое импульсное зарядное устройство

Небольшой вес и невысокая ценаНебольшой вес и невысокая цена

Кроме небольшого веса и невысокой цены импульсные устройства имеют еще некоторые особенности и функции, иначе ими просто не пользовались бы. Первая и главная причина полюбить импульсное зарядное устройство стает огромное количество процессов, которые можно автоматизировать. Также масса защитных функций существенно упрощают жизнь пользователю. Не нужно ходить вокруг трансформатора с мультиметром, на импульсных устройствах есть все возможности для контроля зарядных характеристик, он все расскажет в доступной форме в виде световой индикации и цифровых табло обо всех процессах, которые происходят с вашим АКБ.

Световая индикацияСветовая индикация

Это во-первых, а во-вторых, импульсное устройство полностью исключает вероятность ошибки при подключении и выборе тока, напряжения и времени зарядки. А это, естественно, способствует долговечности АКБ, поскольку уменьшает вероятность ее погибели в кривых руках чайника. Самое страшное, что может случиться, если чайник уже слишком отполирован, сгорит само устройство. Но цена его довольно низка, поэтому это не может рассматриваться, как ощутимая финансовая потеря.

Как заряжает АКБ импульсное устройство

Зарядка проходит тремя способамиЗарядка проходит тремя способами

Зарядка любого аккумулятора проходит всего тремя способами, и импульсное устройство, в зависимости от сложности, может обеспечить их полностью:

  •  Зарядка АКБ напряжением постоянного значения.
  • Зарядка постоянным током.
  • Комбинированный метод зарядки.

Теоретически, самый правильный метод зарядки аккумулятора — постоянным напряжением. Импульсные зарядные устройства для автомобильных аккумуляторов способны контролировать силу тока при постоянном напряжении автоматически. Дело в том, что для максимально эффективной зарядки устройству нужно учитывать уровень разряда АКБ, и по мере набора заряда уменьшать ампераж при постоянном напряжении. Трансформатор может это делать, но процесс зарядки занимает довольно длительное время.

Способны контролировать силу токаСпособны контролировать силу тока

Зарядка постоянным током

Зарядка постоянным токомЗарядка постоянным током

Постоянный ток при зарядке — не самый лучший выход. Торопиться в этом деле не нужно. От такой спешки осыпаются и сульфатируются пластины АКБ, а это уже не подлежит восстановлению. Большинство мертвых аккумуляторов отошли в мир иной именно по причине зарядки постоянным током. Мы все время спешим, и зарядить АКБ быстро позволяет именно этот метод.

10% от емкости АКБ10% от емкости АКБ

10% от емкости АКБ — таким должен быть зарядный ток при постоянном его значении. В этом случае устройство контролирует напряжение, причем от качества контроля зависит длительность жизни аккумулятора, потому что напряжение на каждой из банок не должно превышать 2,5В. Пластины рассыпятся очень быстро, если напряжение хоть на несколько минут превысит эту норму. Аппарат должен контролировать и скачки напряжения в сети, которые сказываются на выходных показателях прибора. Это еще один плюс такого устройства — в одном небольшом корпусе поместился еще и стабилизатор сетевого напряжения.

Комбинированный метод и схема импульсного зарядного устройства

Комбинированный методКомбинированный метод

Правильно разработанная схема импульсного ЗУ позволяет использовать самый правильный метод зарядки аккумулятора — комбинированный. Он предполагает, как следует из названия, переменные комбинации методов зарядки, что дает даже очень невнимательному пользователю такие возможности:

  1.  Теоретическое исключение закипания электролита при зарядке АКБ.
  2.  Автоматические переключения с одного режима на другой, что способствует максимально полной зарядке аккумулятора.
  3. Пластины аккумулятора не подвержены экстремальным нагрузкам и в ходе зарядки не осыпаются.
  4.  Полная индикация и вывод информации о состоянии АКБ во время зарядки и автоматическое отключение после ее завершения.Схема импульсного зарядного устройстваСхема импульсного зарядного устройства

Как видно из схемы, импульсные зарядные устройства автомобильных АКБ не самые простые устройства пульсирующего тока. Но несомненным плюсом их считается максимальная простота пользования. Здесь все процессы автоматизированы, а технологии изготовления схемы и ее элементов позволили снизить себестоимость производства ЗУ до минимума.

Заряжайте аккумуляторы правильноЗаряжайте аккумуляторы правильно

Но даже при этом, импульсное зарядное устройство остается надежным и долговечным, бережет АКБ от неумелого использования и имеет цену, гораздо меньшую, чем у трансформаторного конкурента. Заряжайте аккумуляторы правильно, никуда не спешите и удачных вам дорог!

Читайте также  Интеллектуальные зарядные устройства для автомобильных аккумуляторов. Срок годности автомобильного огнетушителя

Author:

Отправить ответ

avatar
  Подписаться  
Уведомление о