Фильтр нч для сабвуфера: BM2115, Активный фильтр НЧ для сабвуфера, Мастер Кит

Содержание

BM2115, Активный фильтр НЧ для сабвуфера, Мастер Кит

Описание

Усилители предварительные

Предлагаемый блок — это простой и надежный активный фильтр НЧ для сабвуфера, обладающий малым уровнем собственного шума, малыми габаритами и энергопотреблением, широким диапазоном питающих напряжений, минимальным числом внешних пассивных элементов обвязки. Использование активного фильтра избавит Вас от установки громоздкого пассивного ФНЧ на выходе УМ, обладающего низким КПД.

Фильтр устанавливается между линейным выходом источника сигнала и входом УМ сабвуфера. Он хорошо зарекомендовал себя при работе совместно с мощным автомобильным усилителем NM2034 (70 Вт/12 В).

Технические характеристики.
Напряжение питания: 3…32 В.
Ток потребления: 6 мА.
Частота среза: 100 Гц.
Усиление в полосе пропускания: 6 дБ.
Затухание вне полосы пропускания: 12 дБ/Окт.
Размеры печатной платы: 37×27 мм.

Описание работы.
Фильтр (неинвертирующий, второго порядка) выполнен на сдвоенном операционном усилителе LM358 (DA1). Светодиод HL1 индицирует работу устройства, потенциометром R1 осуществляется регулировка уровня входного сигнала.

Фильтр устанавливается между линейным выходом источника сигнала и входом УМ сабвуфера.

Конструкция.
Конструктивно активный фильтр выполнен на печатной плате из фольгированного стеклотекстолита. Конструкция предусматривает установку платы в корпус BOX-M01, который не входит в комплект .
Геометрия устройства позволяет монтировать его «в разрыв» сигнального провода. Для удобства подключения питающего напряжения и сигнальных проводов предусмотрены парные клеммные винтовые зажимы.
Перед установкой платы фильтра в корпус BOX-M01 , необходимо просверлить в верхней крышке отверстие диаметром 4 мм для светодиода HL1 и сделать выпилы под сигнальные провода и провода питания, а в нижней крышке просверлить отверстие диаметром 5 мм для регулировки R1.

Правильно собранное устройство не требует настройки.

Рекомендации по совместному использованию электронных наборов.


Данный набор рекомендуется использовать совместно с наборами NM2034 и NM2042 .

Технические параметры

Диапазон напряжений питания (B) 7…15
Длина (мм) 37
Затухание вне полосы пропускания (дБ/Окт) 12
Коэффициент усиления (dbi) 6
Потребляемый ток, не более (мА) 6
Частота среза (Гц) 100
Ширина (мм) 27
Вес, г 46

Техническая документация

Обзор ФНЧ для сабвуфера

Сегодня сабвуфер — неотъемлемая часть любого домашнего кинотеатра. Впрочем, не только домашнего. В публичных кинотеатрах тоже стоят сабвуферы. Их задача с максимальной реалистичностью воспроизводить звуки выстрелов, взрывов, грохота проползающего по экрану танка или проплывающего в экранном холодном космическом пространстве межзвездного галактического имперского крейсера. Да, да, я знаю, что крейсеры в космическом пространстве проплывают бесшумно, но у Джорджа Лукаса, который снял потрясающую киноэпопею «Звездные войны» на этот счет совершенно другое мнение. И это правильное мнение, поскольку одно дело смотреть на безмолвный имперский крейсер, а другое — слышать и даже ощущать проход мощной машины. Да, про ощущать я не оговорился, ибо низкочастотные вибрации, создаваемые мощным сабвуфером ощущаются буквально всем телом.

Собственно, сам сабвуфер является мощным низкочаcтотным динамиком, подключенным к специальному сабвуферному каналу многоканальной системы усилителей. Сабвуферный канал при записи звуковой дорожки к фильму пишется отдельно, так что вся информация в нем содержащаяся — это исключительно о том, где и когда надо бахнуть и с какой силой. Но это в случае цифровой записи сигнала. При аналоговой записи-воспроизведении сигнал сабвуферного канала может выделяться из общего сигнала фонограммы при помощи специального Фильтра Низких Частот — ФНЧ.

В общем случае именно ФНЧ формирует сигнал сабвуферного канала и именно от его параметров зависит насколько мощно, сочно, четко будет бабахать сабвуфер. Разумеется, не только от ФНЧ, но и от акустического оформления самого сабвуфера зависит насколько высоко вы будете подпрыгивать в кресле от очередного киношного выстрела или взрыва, но сейчас мы рассмотрим именно ФНЧ.

Два самых главных параметра ФНЧ называются: частота среза и крутизна спада.

Начнем с первой.

Дело в том, что динамик сабвуфера большой, тяжелый, неповоротливый, чаще всего с огромным диффузором, который призван создавать большое звуковое давление, вдавливающее зрителя в кресло. Амплитуда колебаний этого диффузора должна быть достаточно велика, поэтому на сабвуфер подается очень приличная мощность от выходного усилителя. Если мы не отфильтруем ВЧ составляющие сигнала, подаваемого на динамик, то просто спалим его, ибо он физически не сможет так быстро двигаться, в результате чего катушка динамика перегреется и разрушится.

Таким образом, наш ФНЧ занимается тем, что просто отрезает от входного сигнала ненужные для сабвуфера куски частотного диапазона и на выходе оставляет только те, которые не угробят сабвуфер и будут эффективно им воспроизводиться.

Посмотрим на амплитудно-частотную характеристику ФНЧ (ура, первая картинка!):


Итак, частота среза, выражаясь человеческим языком — это та частота, за которой амплитуда выходного сигнала резко падает. Посмотрите на левую картинку — так должен выглядеть идеальный ФНЧ — до определенной частоты сигнал есть, после нее — сигнала нет. Но реальность, как обычно, несколько хуже. На правой картинке показана работа реального ФНЧ. Частота, на которой уровень выходного сигнала ослабляется на 3дБ называется частотой среза ФНЧ — Fср. на картинке. Как видно по правой картинке, реальный ФНЧ ослабляет сигнал за частотой среза не сразу, а постепенно и тут у нас есть возможность перейти ко второй основной характеристике ФНЧ — крутизне спада.

Общеизвестно, что погоня за идеальным — самая большая ошибка человечества. Тем не менее, человечество не перестает за ним гнаться, набивая по пути знатные шишки.

С ФНЧ такая же история. Как вы видите на картинке выше, у идеального ФНЧ АЧХ поворачивает на 90 градусов на частоте среза, то есть, ни одна капелька сигнала за частотой среза не появится на выходе ФНЧ. Это — идеальная крутизна спада ФНЧ.

У любого реального ФНЧ данная характеристика более пологая и никогда не станет идеальной, но может максимально к ней приблизиться.

Посмотрим на второй рисунок — на нем отображены крутизна спада ФНЧ в зависимости от так называемого порядка ФНЧ — числа звеньев, из которых состоит фильтр.


Чем больше звеньев в ФНЧ, чем ближе его АЧХ к идеальной. Но тут надо заметить, что увеличение числа звеньев фильтра приводит к его схемотехническому усложнению и как следствие, увеличению количества электронных компонентов, из которых сделан фильтр, а следом и цены этого устройства. Помимо этого, разумеется, растут шум, искажения, уменьшается амплитуда выходного сигнала.

Простейшее звено ФНЧ выглядит следующим образом:

 


Это пассивный ФНЧ первого порядка. Включая такие звенья последовательно можно добиться весьма существенной крутизны спада. Но при этом, как уже отмечалось выше, существенно растут шумы и искажения в звуковом тракте. Более того, для согласования входного и выходного сопротивления такого фильтра необходимо на входе и выходе ФНЧ устанавливать буферные усилители. В противном случае сопротивление источника сигнала и сопротивление нагрузки фильтра будет существенно влиять на частоту среза.

Поэтому, чаще всего для построения ФНЧ используют схемы активного фильтра на операционных усилителях.

Вот, например, активный ФНЧ второго порядка:


Не смотря на простоту самого фильтра необходимо помнить о буферных усилителях, которые нужны и для этого типа ФНЧ. Да и к тому же, 2 порядок — это как-то маловато, а значит, нужно последовательное включение двух таких фильтров.

В общем, схема разрастется прилично.

Более того. Если вы только начинаете заниматься сабвуферами и всем, что с ними связано, непременно начнете читать профильные сайты и форумы, где обсуждаются те или иные способы построения ФНЧ. И тут выяснится, что помимо всего прочего есть фильтр Чебышева, фильтр Баттерворта, эллиптический фильтр, фильтр Саллена-Ки. И у каждого схемного решения есть свои плюсы и минусы. Честно говоря, закопаться можно запросто.

Видимо, поглядев на все это в древнерусской тоске, тайваньская компания PTC почесала в затылке и выпустила отличную микросхему — PT2351 – фильтр НЧ Саллена-Ки третьего порядка.

Микросхема в 8-выводном корпусе содержит в себе все элементы, необходимые для построения ФНЧ с очень приличными характеристиками.


Стерео сигнал от источника поступает на два буферных усилителя с высоким входным сопротивлениям. Сигнал смешивается и нормируется по уровню в смесителе, после чего поступает собственно на ФНЧ со встроенным выходным буферным каскадом (выходное сопротивление — всего 40 Ом), позволяющим подключать фильтр непосредственно к нагрузке без дополнительных плясок с буфером на ОУ.

Частота среза такого фильтра задается внешними конденсаторами.

На основе этой микросхемы был разработан набор для самостоятельной сборки NM0103 «ФНЧ для сабфувера».

 


Основные технические характеристики:

 

Частота среза, Гц60(80)
Крутизна спада, дб/окт.18
Коэффициент нелинейных искажений, %0,1
Отношение сигнал/шум, дБ (невзвешенное-82
Коэффициент усиления, дБ10
Максимальное выходное напряжение, В2,8
Входное сопротивление, кОм100
Напряжение питания, В12
Потребляемый ток, мА10

 

Принципиальная схема:


Как видите, схема простейшая с очень небольшим количеством навесных компонентов.

Схема универсальная — благодаря встроенному стабилизатору напряжения VD1, R3, C6 этот ФНЧ может применяться как для построения автомобильного сабвуфера, так и для домашнего кинотеатра или музыкальных систем 2.1. Максимальное напряжение питания, которое можно подавать на фильтр — 20 Вольт. Впрочем, если увеличить резистор R3, то можно и больше.

Питание однополярное, что серьезно облегчает встраивание такого фильтра в уже имеющийся звуковой тракт.

Частота среза фильтра определяется емкостью конденсаторов C3, C7. В наборе есть два комплекта конденсаторов разной емкости для построение ФНЧ с частотой среза 60Гц или 80Гц.

АЧХ фильтра:


Ну, а если номиналы конденсаторов, входящих в набор вас по каким-то причинам не устроят, их можно выбрать из нижеследующей таблицы:


Часть номиналов конденсаторов получается нестандартной и составляется из двух конденсаторов стандартной емкости — номиналы указаны в скобках.

Из недостатков данной схемы по сравнению со схемами на ОУ можно отметить невозможность плавной регулировки частоты среза, а так же отсутствие регулировки фазы выходного сигнала. Но вот часто ли нужны такие регулировки?

Фильтр НЧ для сабвуфера своими руками

Когда мы говорим «Фильтр для сабвуфера» — имеется в виду активный фильтр нижних частот. Он особенно полезен при расширении стереофонической звуковой системы на дополнительный динамик воспроизводящий только самые низкие частоты. Данный проект состоит из активного фильтра второго порядка с регулируемой граничной частотой 50 — 250 Гц, входного усилителя с регулировкой усиления (0.5 — 1.5) и выходных каскадов.

Конструкция обеспечивает прямое подключение к усилителю с мостовой схемой, так как сигналы сдвинуты относительно друг друга по фазе на 180 градусов. Благодаря встроенному источнику питания, стабилизатору на плате, можно обеспечить питание фильтра симметричным напряжением от усилители мощности — как правило это двухполярка 20 — 70 В. Фильтр НЧ идеально подходит для совместной работы с промышленными и самодельными усилителями и предусилителями.

Принципиальная схема ФНЧ

Схема фильтра для сабвуфера показана на рисунке. Работает он на основе двух операционных усилителей U1-U2 (NE5532). Первый из них отвечает за суммирование и фильтрацию сигнала, в то время как второй обеспечивает его кэширование.

Принципиальная схема ФНЧ к сабу

Стереофонический входной сигнал подается на разъем GP1, а дальше через конденсаторы C1 (470nF) и C2 (470nF), резистора R3 (100k) и R4 (100k) попадает на инвертирующий вход усилителя U1A. На этом элементе реализован сумматор сигнала с регулируемым коэффициентом усиления, собранный по классической схеме. Резистор R6 (27k) вместе с P1 (50k) позволяют провести регулировку усиления в диапазоне от 0.5 до 1.5, что позволит подобрать усиления сабвуфера в целом.


Резистор R9 (100k) улучшает стабильность работы усилителя U1A и обеспечивает его хорошую поляризацию в случае отсутствия входного сигнала.

Сигнал с выхода усилителя попадает на активный фильтр нижних частот второго порядка, построенный U1B. Это типичная архитектура Sallen-Key, которая позволяет получить фильтры с разной крутизной и амплитудной. На форму этой характеристики напрямую влияют конденсаторы C8 (22nF), C9 (22nF) и резисторы R10 (22k), R13 (22k) и потенциометр P2 (100k). Логарифмическая шкала потенциометра позволяет добиться линейного изменения граничной частоты во время вращения ручки. Широкий диапазон частот (до 260 Гц) достигается при крайнем левом положении потенциометра P2, поворачивая вправо вызываем сужения полосы частот до 50 Гц. На рисунке далее показана измеренная амплитудная характеристика всей схемы для двух крайних и среднего положения потенциометра P2. В каждом из случаев потенциометр P1 был установлен в среднем положении, обеспечивающим усиление 1 (0 дб).

Сигнал с выхода фильтра обрабатывается с помощью усилителя U2. Элементы C16 (10pF) и R17 (56k) обеспечивают стабильную работу м/с U2A. Резисторы R15-R16 (56k) определяют усиление U2B, а C15 (10pF) повышает его стабильность. На обоих выходах схемы используются фильтры, состоящие из элементов R18-R19 (100 Ом), C17-C18 (10uF/50V) и R20-R21 (100k), через которые сигналы поступают на выходной разъем GP3. Благодаря такой конструкции, на выходе мы получаем два сигнала сдвинутых по фазе на 180 градусов, что позволяет осуществлять прямое подключение двух усилителей и усилителя с мостовой схемой.

В фильтре используется простой блок питания с двухполярным напряжением, основанный на стабилитронах D1 (BZX55-C16V), D2 (BZX55-C16V) и двух транзисторах T1 (BD140) и T2 (BD139). Резисторы R2 (4,7k) и R8 (4,7k) представляют собой ограничители тока стабилитронов, и были подобраны таким образом, чтобы при минимальном напряжении питания ток составлял около 1 мА, а при максимальном был безопасен для D1 и D2.

Элементы R5 (510 Ом), C4 (47uF/25V), R7 (510 Ом), C6 (47uF/25V) представляют собой простые фильтры сглаживания напряжения на базах T1 и T2. Резисторы R1 (10 Ом), R11 (10 Ом) и конденсаторы C3 (100uF/25V), C7 (100uF/25V) представляют собой также фильтр напряжения питания. Разъем питания — GP2.

Подключение сабвуферного фильтра

Стоит отметить, что модуль фильтра для сабвуфера должен быть присоединен к выходу предварительного усилителя после регулятора громкости, что позволит улучшить регулировку громкости всей системы. Потенциометром усиления можно отрегулировать соотношение громкости сабвуфера к громкости всего сигнального тракта. К выходу модуля необходимо подключить любой усилитель мощности, работающий в классической конфигурации, например такой. При необходимости используйте только один из выходных сигналов, сдвинутых по фазе на 180 градусов относительно друг друга. Оба выходные сигнала можно использовать, если нужно построить усилитель в мостовой конфигурации.


Фильтр для сабвуфера своими руками. Фильтр низких частот для саба

Автор admin На чтение 5 мин Просмотров 3.6к. Опубликовано

Низкочастотная акустическая система предназначена для воспроизведения определённого участка звукового диапазона. Этот участок находится ближе к нижним границам зоны слышимости и составляет интервал от 20 до 100-200 Гц. Басовая колонка представляет собой прочный ящик, в котором установлены один или два мощных динамика. Благодаря особенностям воспроизведения низких частот диффузоры имеют большой диаметр, а подвес обеспечивает сильную амплитуду качания звуковой катушки и диффузора. Для того чтобы на катушку низкочастотного громкоговорителя не попадали лишние частоты, на входе системы ставится пассивный или активный фильтр-кроссовер. Фильтр для сабвуфера можно купить или сделать своими руками.

Фильтр низких частот для сабвуфера своими руками

Фильтр низких частот для сабвуфера представляет собой простую схему, которую можно сделать самостоятельно. Это устройство, в самом простом варианте, содержит катушку индуктивности и конденсатор, поэтому конструкция называется LC-фильтром. Индуктивности и ёмкостиявляются реактивными элементами, поэтому изменяют своё сопротивление в зависимости от частоты сигнала. Конденсатор меняет своё сопротивление обратно пропорционально частоте. При включении ёмкости параллельно нагрузке, высокочастотная составляющая сигнала, закорачивается на землю, а низкие частоты будут беспрепятственно проходить на динамик. Частота, на которой начинается подавление сигнала, называется частотой среза.

Идеальный низкочастотный фильтр для сабвуфера должен мгновенно «гасить» определённые частот. На снимке это показано жёлтой линией. Реальная схема фильтра для сабвуфера отличается тем, что спад происходит плавно. Простейшее устройство из двух элементов называется фильтр первого порядка. Он обеспечивает подавление частот выше порога среза в 6 dBна октаву. Схема второго порядка с дополнительными элементами увеличивает крутизну подавления до 12 dBна октаву, а каждое последующее звено добавляет по 6 dB. Чем больше звеньев, тем круче происходит подавление лишней полосы звукового диапазона.

Схема фильтра для сабвуфера сделанного своими руками, может включать в себя любое число звеньев. Устройство может быть пассивным или активным.

Пассивный фильтр НЧ для сабвуфера схема

Пассивный фильтр НЧ для сабвуфера своими руками можно сделать за короткое время. Схема не содержит дефицитных деталей и правильно собранная не требует настройки. Простой фильтр низких частот для сабвуфера состоит всего из двух деталей. Это катушка индуктивности и конденсатор. Для того чтобы определить электрические величины этих элементов лучше всего воспользоваться онлайн калькулятором. Для этого нужно набрать в строке поиска «Расчёт LC-фильтров. Онлайн калькулятор». Далее в окне нужно найти следующую таблицу.

Здесь достаточно указать нужную частоту среза, сопротивление нагрузки и нажать «Вычислить». Например, при сопротивлении динамика 4 Ома и частоте среза 220 Гц калькулятор выдаст ёмкость конденсатора в 255,7 микрофарад, а индуктивность 4,09 миллигенри. При сопротивлении головки 8 ом и подавлении «верхов» начиная с 250 Гц, данные будут 112,5 мкф и 7,2 мГн. Сделать фильтр низких частот для сабвуфера можно на простой печатной плате или использовать пластину из текстолита с контактными площадками.

В качестве конденсаторов используется ёмкость ближайшая по номиналу. В фильтре частот для сабвуфера можно использовать электролитические конденсаторы, но лучше поставить бумажные типа «МБГО», К73-16 или специально предназначенные для акустических систем полипропиленовые ёмкости К78-34. Для получения нужного номинала конденсаторы можно соединять параллельно. Катушки индуктивности можно купить готовые или намотать самостоятельно.

Активный фильтр для сабвуфера своими руками

По сравнению с пассивными конструкциями, активные схемы выравнивают амплитудно- частотную характеристику низкочастотного сигнала, корректируя пики и спады, негативно влияющие на прослушивание музыки. Простой фильтр для сабвуфера своими руками можно сделать на малошумящем операционном усилителе.

Схема фильтра НЧ для сабвуфера, сделанного своими руками, состоит из двух операционных усилителей и небольшого числа дискретных элементов. В качестве основного элемента используется интегральная микросхема LM324, которая содержит четыре операционных усилителя с однополярным питанием, что особенно удобно, если сабвуфер будет использоваться в автомобиле. Активное устройство обеспечивает подавление высокочастотной части звукового диапазона, начиная с 120 Гц. Существует много схем разного уровня сложности, которые сделаны на микросхемах или транзисторах. Интегральные схемы требуют меньшего количества деталей и не критичны к изменению напряжения питания.

Более качественную схему можно сделать на специализированной микросхеме РТ2351. Сигналы с выходов стереофонического усилителя поступают на входные каскады, микшируются и поступают на активный блок подавления низких частот. Точка начала подавления высокочастотной части спектра определяется величиной конденсаторов С3 и С7. Буферный каскад позволяет подключать устройство непосредственно к акустической системе.

Сигнал с двух каналов стереофонического усилителя через RCцепочки поступает на соответствующие входы интегральной микросхемы. Благодаря стабилизатору микросхему можно питать от любого однополярного источника постоянного тока напряжением до 20 вольт. Порог среза активного устройства составляет примерно 70 Гц. Для некоторых акустических систем эта величина подавления может быть слишком низкой. Для величины подавления 200 Гц номиналы конденсаторов должны быть следующими:

  • С1 – 0,47 мкф
  • С2 – 0,47 мкф
  • С3 – 0,047 мкф
  • С7 – 0, 068 мкф

Активный блок ограничения высокочастотной части звукового диапазонаможет использоваться как для домашнего звукового комплекса, так и в автомобиле. Недостатком данной схемы можно считать отсутствие плавной регулировки полосы пропускания, но для работы звукового комплекса это не так важно.

НЧ фильтр и сабвуфер

В настоящее время во всемирной паутине присутствует огромное количество всевозможных описаний и руководств по изготовлению сабвуферов различных и по конструкции и по техническим характеристикам [1], [2], [3]. После ознакомления с несколькими подобными описаниями автором была выбрана модель «Bandpass 6a» с применением головки бывшего отечественного производителя «Радиотехника» 50ГДН. Применять головку меньшей мощности автор не стал. У 35ГДН несколько мал диаметр диффузора. А это аргумент! Стало быть, либо 50ГДН либо 75ГДН. По своим параметрам обе головки почти идентичны, но 50ГДН дешевле. Импортные динамические головки в качестве головки сабвуфера автор не рассматривал – не хотелось покупать «китайского кота в мешке». Серьезные динамические головки импортного производителя и стоят не дешево. Другое дело динамические головки производства бывшего СССР. На каждой из динамических головок стоит знак качества – это хоть что-то, да значит (возможно, это просто условность). Да, и технические характеристики в глобальной паутине можно найти. Но дело в том, что эти динамические головки производил ряд заводов, и как следствие, характеристики одной динамической головки могут сильно варьироваться в зависимости от завода-изготовителя и, как следствие, отличаться от технических характеристик, найденных в интернете и справочниках по динамическим головкам.

Сначала выберем акустическое оформление динамической головки. Существует несколько часто встречающихся типов акустического оформления динамических головок.

1 – закрытый ящик (Closed). При этом мы получаем наименьший КПД акустической системы и необходимость подводить довольно высокую мощность, вследствие чего вероятен выход динамической головки из строя. При такой конструкции акустического оформления крепление стенок корпуса должно быть наиболее прочным, т.к. внутри ящика создается высокое давление, обусловленное движением диффузора, который будет пытаться сжимать упругий воздух в закрытом объеме.

2 – фазоинвертор (далее по тексту ФИ) (Vented). Модель несколько лучше по характеристикам. Искажения, вносимые динамиком, минимальны. Сам ФИ увеличивает КПД динамической головки. Все трудности начинаются при расчете ФИ. Дело в том, что большой диаметр ФИ требует большой его длины, а маленький – как раз небольшой. Казалось бы, что все хорошо. Не спешите радоваться. Перемещаясь, диффузор головки двигает упругий воздух через тоннель ФИ. Объем воздуха в тоннеле постоянен, а значит, скорость движения воздуха через тоннель ФИ будет во столько раз больше колебательной скорости диффузора, во сколько раз площадь сечения тоннеля меньше площади диффузора. В силу этого, в тоннеле ФИ начнутся завихрения воздуха и ФИ начнет свистеть. Вот и получается, что при расчетах, как правило, длина тоннеля ФИ оказывается чрезмерно большой, но это можно обойти[4].

3 – бандпасс (далее по тексту БП) (Bandpass). Динамическая головка заключена между двумя объемами воздуха. Настраивается в широких пределах путем выбора объемов передней и задней камер и частоты настройки двух ФИ. КПД самый высокий из всех рассмотренных выше. Недостаток один – БП наиболее сложен в изготовлении. Хотя, я бы не стал называть это недостатком, это скорее достоинство.

Для расчета параметров ящика существует ряд специализированных программ: JBL SpeakerShop, Box Plot, Blaupunkt BlauBox. Автор воспользовался программой winisdbeta, как оставившей самые наилучшие впечатления при работе в оной. При моделировании конструкции легко убедиться в том, что ФИ проигрывает БП при одинаковом (небольшом) объеме ящика. А вот при большом объеме – наоборот, проиграет БП. Но, учитывая, что большинство из нас проживает в среднестатистических квартирах и ездит на среднестатистических машинах – большой объем это не наш метод. С другой стороны, не стоит увлекаться его уменьшением – лучше не станет. Поэтому придется искать некий компромисс. Это так же Вы можете увидеть при моделировании своего сабвуфера в программе winisdbeta – поварьируйте параметрами объемов обеих камер БП, частотами настройки и длиной ФИ и Вы сразу увидите, как это отражается на АЧХ Вашего будущего детища.

Для проектирования и изготовления корпуса сабвуфера необходимо знать некоторые характеристики динамической головки. Необходимые параметры для расчета:

Fs — частота резонанса в открытом пространстве, Гц;
Qts — полная добротность динамической головки;
Qms — механическая добротность;
Qes — электрическая добротность;
Vas — эквивалентный объем, л;
Sd — эффективная излучающая поверхность диффузора, м2.

Замеры параметров динамической головки будем проводить по методике, изложенной в [5]. Собираем схему согласно рис. 1.


Рис. 1.

Вместо генератора удобно использовать выход звуковой карты компьютера и при помощи соответствующего программного обеспечения генерировать синусоидальные сигналы частотой 0-200Гц. Резистор сопротивлением 1кОм стабилизирует ток через динамик. Автор применил сопротивление мощностью 7,5Вт.
Измеряем сопротивление динамической головки омметром. Это и будет искомое Re – сопротивление постоянному току.
Динамическую головку располагаем вдали от стен, пола и потолка (в идеале – подвешиваем). Подключаем вольтметр к выходу УМ (рис. 1, точки 1 и 3) и выставляем выходное напряжение от 10В до 20В на частоте до 200Гц. Для нахождения резонансной частоты (Fs) динамической головки подключаем вольтметр к динамической головке (рис. 1., точки 2 и 3), плавно изменяем частоту генератора и смотрим на показания вольтметра. На лист бумаги записываем выставленную частоту генератора и показания вольтметра. Та частота, на которой напряжение на вольтметре будет максимальным (дальнейшее изменение частоты будет приводить к падению напряжения) и будет являться частотой основного резонанса для этой динамической головки. При измерении Fs автор изменял частоту с интервалом 1 Гц. Получаем графическую зависимость U=f(F), изображенную на рис. 2.


Рис. 2.

При измерении Fs мы имеем минимальное напряжение Um и соответствующую ему частоту F1, расположенную в области частот до Fs и частоту F2 при таком же значении напряжения, расположенную за частотой Fs. Частоты F1 и F2соответствуют напряжению U12, которое примерно равно 0,707Us Также, мы имеем значение напряжения Us при значении частоты Fs. Эти данные нам необходимы для расчета U12, Qms, Qes и Qts.
Как видно из рис.2, для данной динамической головки 50ГДН-3-4 частота основного резонанса в открытом пространстве составляет 35Гц. F1 = 16 Гц, F2 = 54 Гц, Um = 1,9 В, Us = 12 В.

Производим необходимые расчеты по формулам:


Результаты всех наших измерений дают: Qts = 0.37

Sd – это эффективная излучающая поверхность диффузора. Она совпадает с конструктивной и равна:


где R — половина расстояния от середины ширины резинового подвеса одной стороны до середины резинового подвеса противоположной. Половина ширины резинового подвеса также является излучающей поверхностью. Единица измерения этой площади — квадратные метры, и в программу winisdbeta Sd надо подставлять в метрах квадратных.
Vas принимаем равным 90л.
После подстановки всех параметров в программе winisdbeta имеем следующее:


Рис. 3.


Рис. 4.


Рис. 5.


Рис. 6.


Толщина стенок выбрана равной 19мм, материал – ДСП импортного производства. В качестве соединительных элементов – деревянный брус 40х40мм. Использовать торцевые поверхности ДСП (пусть даже и импортного производства) автор не стал – слишком рыхловатые, кроме этого, ДСП может расслаиваться. Здесь следует учесть, что брус, при помощи которого крепятся стенки корпуса сабвуфера между собой, тоже занимает определенный объем.

И если при моделировании корпуса этого объема не учесть, то в результате получаются несколько иные объемы обеих камер и, при сохранении частот настроек ФИ, их длины и диаметра, АЧХ готового изделия изменится очень сильно и не в лучшую сторону. Но и тут можно выкрутиться[4] относительно длины ФИ. В конечном итоге можно будет просто заменить оба ФИ с учетом изменений в объемах камер. На рис. 3 – рис. 6 приведены конструкционные характеристики сабвуфера без учета объема деревянных брусьев. Иными словами, это то, что мы хотим получить.
С учетом объема деревянных брусьев в обеих камерах имеем: объем передней камеры уменьшится на 2,4 л., задней камеры – на 6,5 л. Т.е. в результате мы получаем то, что изображено на рис. 7, 8.
Для сохранения гладкой АЧХ изменены настройки обоих ФИ, и, как следствие, изменилась их длина.
Окончательно: изготавливаем корпус сабвуфера с внешними размерами согласно рис. 5, но реально наше изделие будет обладать характеристиками согласно рис. 7, 8без учета установки наполнителя.
Несколько слов о длине ФИ. В передней камере длина ФИ составляет 95мм (рис. 8). Это более чем нормально и приемлемо. Добавляем к его длине 2-3см (настраивать все равно придется) и изготавливаем. А вот для задней камеры длина ФИ несколько великовата. Его можно укоротить. Как это сделать — подробно процедура расчета изложена в [4]. Приведу лишь основные моменты.
Формула для расчета укороченного варианта ФИ имеет вид:

частота настройки ФИ Fb– в герцах, объем камеры V – в литрах, длина L и диаметр D ФИ – в миллиметрах.


Рис. 7.

Поправка «-0,85D» появляется из-за того, что один конец ФИ находится в плоскости стенки и имеет место виртуальное удлинение ФИ, в результате чего изменяется частота его настройки и на АЧХ сабвуфера будет «провал». В программе winisdbeta эта поправка уже учтена. Исходя из этого, если установить фланец на второй конец ФИ, который находится внутри камеры в свободном пространстве (рис. 9), мы получим ФИ с еще меньшей длиной при сохранении диаметра и частоты настройки. И тогда формула для расчета длины ФИ примет вид:

Нетрудно видеть, как наши 287 мм (рис. 8) при частоте настройки ФИ на 38Гц (37,7Гц по формуле (6)) превращаются в 192 мм (по формуле (7)) с фланцем на втором конце ФИ при частоте настройки 38Гц задней камеры. Вот это наш метод – нормальный короткий ФИ. Оставляем этот вариант. Фланец изготавливаем из органического стекла толщиной 4 мм (Фото 4).


Рис. 8.


Рис. 9.

После того, как вырезаны все стенки, приступаем к креплению поверхностей между собой.
На рис. 10 показана общая конструкция корпуса сабвуфера.


Рис. 10.

Литература

1. http://forum.racing.kz/index.php?showtopic=1838 — Простой сабвуфер на 2х35ГДН-1-8
2. http://www.artmech.com/pavel/sub/index.htm — Сабвуфер на 75ГДН-1-4.
3. http://radist.izmuroma.ru/shems/audio/aksystems/aksystems_10.php — 2х35ГДН-1-4
4. http://www.cxem.net/sound/dinamics/dinamic55.php — Теория и практика ФИ. 
5. http://library.espec.ws/section2/article80.html — Измерение параметров Тиля — Смолла в домашних условиях.

Все стыки выполняются на деревянных брусках. Перед креплением бруса к стенкам корпуса сабвуфера брус прижимается снизу к стенке и сверлятся углубления через стенку в брус сверлом диаметром в 2 раза меньшим, чем диаметр самореза, которым впоследствии будет прикручен брус, с интервалом 5…7 см по периметру поверхности с соответствующим отступом от края поверхности стенки. Величина отступа зависит от параметров деревянного бруска, используемого в конструкции корпуса сабвуфера и диаметра самореза. На поверхности стенки все отверстия зенкуются.  

Прикручиваемая поверхность бруса перед свинчиванием густо смазывается неразбавленным клеем ПВА. Клей не жалейте. В процессе прикручивания бруса к поверхности стенки корпуса сабвуфера излишки клея выдавливаются из стыка и удаляются мануально.
Сначала подготавливается днище. К вырезанной по размерам поверхности днища корпуса сабвуфера с одной стороны крепится деревянный брус по периметру.

        

В вырезанной по размерам полке для динамической головки вырезается отверстие соответствующего размера под конкретную динамическую головку, размечаются и просверливаются отверстия для крепления динамической головки. Далее, крепится деревянный брус по периметру.
Затем, к одной из боковых стенок корпуса сабвуфера крепим днище и, тщательно вымеряв расстояние 185 мм от противоположного края этой же стенки, крепим полку для динамической головки. Вторую боковую стенку корпуса сабвуфера также крепим к днищу и полке для динамической головки . 
После этого крепим брус по периметру передней и задней камер. Т.к. на днище и на полке для динамической головки уже есть брус, то для задней камеры надо закрепить брус только вдоль вертикальных границ камеры с обеих сторон. А для передней камеры – вдоль вертикальных границ с обеих сторон и двух горизонтальных.

Вторую боковую стенку корпуса сабвуфера также крепим к днищу и полке для динамической головки . 
После этого крепим брус по периметру передней и задней камер. Т.к. на днище и на полке для динамической головки уже есть брус, то для задней камеры надо закрепить брус только вдоль вертикальных границ камеры с обеих сторон. А для передней камеры – вдоль вертикальных границ с обеих сторон и двух горизонтальных.

Далее, в вырезанной по размерам передней стенке корпуса сабвуфера вырезаем два отверстия диаметром 109мм для фазоинверторов. Именно 109мм составляет внешний диаметр канализационной пластмассовой трубы с внутренним диаметром 105мм. Фазоинверторы готовим заранее, т.к. их размеры нам становятся известными после моделирования сабвуфера в программе и выбора окончательного варианта частоты настройки каждого фазоинвертора, а так же других их параметров: диаметра фазоинвертора и объема камер.

Если впоследствии настройка фазоинверторов не планируется, то поверхность вырезанных отверстий для фазоинверторов хорошенько промазываем клеем ПВА. Клея не жалеем – лишнее все равно выдавится. Вставляем фазоинвертор и прикручиваем его 6 саморезами изнутри фазоинвертора. Проделываем то же самое и со вторым фазоинвертором. 
Если же Вы планируете настраивать фазоинверторы (очень желательно, почти обязательно), тогда вместо клея хорошо подойдет силиконовый герметик. А фазоинверторы лучше вырезать чуть бОльшей длинны, с запасом.

     

Когда передняя стенка с фазоинверторами готова, она прикручивается к торцевым поверхностям промазанным клеем нашей конструкции.
Сверлим отверстия для саморезов в задней стенке. Вырезаем отверстие для контактов соответствующих размеров. Наносим силиконовый герметик на панель контактов по периметру.Посредством саморезов крепим ее в отверстие задней стенки. 
Сверлим отверстия для крепления крышки.
Крышку и заднюю стенку на клей не садим – придется еще не раз снимать их. Пылесосом начисто удаляем опилки и мелкую стружку изнутри нашей конструкции.
После этого силиконовым герметиком тщательно заделываем все швы и стыки. Аккуратно промазываем их. Не забудьте и отверстия крепления ФИ — изнутри каждой камеры и снаружи. Даем затвердеть герметику.

Теперь крепим динамическую головку в отверстия полки, специально для этого предназначенное. Предварительно наносим по периметру окружности силиконовый герметик и даем ему, самую малость, затвердеть, чтобы создать небольшой амортизатор. После этого устанавливаем динамическую головку и с усилием затягиваем болты. Силиконовым герметиком промазываем стыки динамической головки с полкой.

Почти все готово – запаиваем электрические провода от динамической головки к панели контактов, установленной на задней стенке. Заднюю стенку и крышку временно крепим через клейкую ленту для утепления окон, притягиваем несколькими саморезами по периметру для пробы. Подключаем к УМ с НЧ фильтром и слушаем – что получилось.
Звукопоглощающего материала внутри нет. Поэтому и звучание такое – бас слышен — бесспорно, но не ощущается всем телом, как этого хотелось бы. Устанавливаем звукопоглощающий материал внутрь обеих камер.


В качестве звукопоглощающего материала использован ватин и вата, которая находится между внутренней поверхностью стенки корпуса сабвуфера и ватином. Что дает установка звукопоглощающего материала? С одной стороны, мы убиваем стоячие волны. С другой – добавляем дополнительно небольшой объем к объему наших камер. О том, сколько нужно звукопоглотителя установить внутрь Вашего изделия описано в статье [32]. Внутренние поверхности крышки и задней стенки корпуса сабвуфера также снабжены звукопоглотителем.
Вот теперь подключаем и…наслаждаемся. 
Эстетическое оформление зависит от личного вкуса. В авторском исполнении все углубления саморезов снаружи и стыки стенок зашпатлеваны шпатлевкой по дереву. После высыхания шпатлевки корпус сабвуфера зашкурен наждачной бумагой и оклеен декоративной пленкой с текстурой «под дерево». На одну из боковых поверхностей нанесен рисунок, выполненный плоттерной резкой. Спереди, на фазоинверторы установлены фланцы, выполненные из текстолита.

Готовое устройство имеет вид:

                 

При использовании сабвуфера в качестве НЧ звена домашней или авто- акустики необходимо наличие НЧ фильтра. НЧ фильтр предназначен для исключения из звуковоспроизводящего тракта сигнала с частотой выше частоты среза НЧ фильтра. Частота среза фильтра выбрана равной 100Гц с возможностью ее изменения. Изменяемая частота среза НЧ фильтра выбрана таковой исходя из двоякого применения сабвуфера – автомобильный и комнатный. Для автомобиля оптимальной частотой среза является 80Гц[30]. Для домашнего применения частота среза может составлять выше 100Гц, но это дело вкуса. Данное различие обусловлено различием в акустической характеристике звукопередачи (передаточной функции) салона автомобиля и комнаты.
Существует несколько видов НЧ фильтров, названных по имени математиков (Баттерворт, Чебышев, Линквиц, Кауэр, Бессель) первыми реализовавшими математическую модель той или иной функции, через которые, в свою очередь, выражается передаточная характеристика НЧ фильтра. Функция определяется порядком полинома (максимальным показателем степени) и коэффициентами ai и bi. 


Рис. 12.


На рис. 12 приведена схема активного фильтра нижних частот второго порядка с коэффициентом усиления равным 1.
В общем случае расчет фильтра производится следующим образом[2]. Выбираем частоту среза фильтра. Пусть частота среза будет равна 60Гц. Далее, выбираем вид аппроксимации. Применим аппроксимацию по Баттерворту. Выбираем порядок фильтра – 2-ой. Рассчитываем значения радиоэлементов, входящих в принципиальную схему НЧ фильтра (рис. 12). Значения сопротивлений и емкостей получаются из передаточной функции НЧ фильтра. Следует учесть, что при таком расчете фильтра значения сопротивлений должны быть не хуже 5% для НЧ фильтра до 4-го порядка и 1% (а лучше 0,5%) для НЧ фильтров от 4-го до 10 порядка. Допуск номинальных значений емкостей составляет 10%. Поэтому при расчете фильтра лучше задаваться значениями емкостей и вычислять значения сопротивлений. Пусть С1 и С2 заданы. Тогда значения сопротивлений будут равны:

(8), где


а1, b1 — коэффициенты полинома;
f0 — частота среза фильтра, Гц;
R1, R2 — сопротивления резисторов, Ом;
С1, С2 — емкости конденсаторов, Ф.
Чтобы сопротивления резисторов R1, R2 были действительными должно выполняться условие:


(9)

Не следует выбирать отношение С1/С2 многим больше правой части неравенства (9).

Подобным образом рассчитывается НЧ фильтр до 10 порядка подстановкой коэффициентов аi, bi соответствующего номера звена в формулу (8). Для фильтров нечетного порядка первым ставится звено первого порядка, остальные звенья – четного порядка. Для звена нечетного порядка коэффициент bi=0. Следует однако понимать, что, соединив подряд два фильтра второго порядка Баттерворта с одинаковой частотой среза f0 мы не получим фильтр Баттерворта 4-го порядка с частотой среза f0. Мы получим НЧ фильтр с частотой среза, отличной от и с другой АЧХ и передаточной функцией, не Баттерворта. Это будет НЧ фильтр с критическим затухаением.
Методика расчета НЧ фильтров до 5-го порядка приведена в [28]. Там же можно найти и коэффициенты НЧ фильтров для расчета.

В литературе[2] на стр. 136 приведена таблица 13.6 значений коэффициентов НЧ фильтров различного типа до 10 порядка и частОты среза звеньев фильтра. Обсчет НЧ фильтра по формуле (8) в программе Microsoft Excel достаточно прост. После расчетов мы получаем значения сопротивлений звеньев фильтра при заданных значениях емкостей. Допуск резисторов должен быть не хуже 1%. Тут есть несколько вариантов: составление заданного сопротивления из нескольких резисторов или использование прецизионных сопротивлений. При расчете НЧ фильтра по формуле (8) невозможно заложить в расчет допуск значений сопротивлений. В результате чего придется, в итоге, настраивать каждое звено по отдельности. Это приемлемо для НЧ фильтра невысокого порядка (до 4-го). При порядке НЧ фильтра выше 4-го проделав процедуру настройки каждого звена в отдельности, повторять подобный процесс Вам больше не захочется, я Вас уверяю. Методика настройки звеньев фильтра подробно изложена в [28].

Какого же порядка НЧ фильтр собирать?
1. Допуск сопротивлений при порядке фильтра не выше 4-го составляет должен быть не хуже 5%. НЧ фильтр второго порядка можно собрать и на 10% сопротивлениях. А вот выше 4-го порядка – допуск должен быть не хуже 1%.
2. Для наглядности посмотрим на АЧХ различного типа НЧ фильтров и разного порядка.

Рис. 13. АЧХ фильтров 4-го (а) и 10-го (б) порядков.

1 – фильтр с критическим затуханием;
2 – фильтр Бесселя;
3 – фильтр Баттерворта;
4 – фильтр Чебышева с неравномерностью 3дБ.

Рис. 14. Переходные характеристики фильтров НЧ 4-го порядка при ступенчатом входном сигнале.

1 – фильтр с критическим затуханием;
2 – фильтр Бесселя;
3 – фильтр Баттерворта;
4 – фильтр Чебышева с неравномерностью 0,5дБ;
5 – фильтр Чебышева с неравномерностью 3дБ.

Фильтр Чебышева отпадает сразу – не глядя даже на то, что крутизна спада у него выше, чем у фильтров Бесселя и Баттерворта (рис. 13, кривая 4). Мы видим неравномерность в полосе пропускания. Эта неравномерность может составлять от 0,5дБ до 3дБ. Чем резче спад АЧХ за частотой среза, тем выше неравномерность в полосе пропускания. При импульсном воздействии на фильтр очень высокие колебания переходного процесса (рис. 14, кривые 4, 5).
Оптимальная переходная характеристика наблюдается у НЧ фильтра Бесселя. Это имеет место в силу того, что фазовый сдвиг выходного сигнала фильтра Бесселя пропорционален частоте входного сигнала[2]. Переходный процесс фильтра Бесселя почти не имеет колебаний. Увеличение порядка этого фильтра, начиная с 4-го, приводит к затуханию переходного процесса.
Для полноты картины взглянем еще на АЧХ группового времени задержки и фазового сдвига фильтров нижних частот 4-го порядка.

Рис. 15. АЧХ группового времени задержки и фазового сдвига фильтров нижних частот 4-го порядка.

1 – фильтр с критическим затуханием;
2 – фильтр Бесселя;
3 – фильтр Баттерворта;
4 – фильтр Чебышева с неравномерностью 0,5дБ;
5 – фильтр Чебышева с неравномерностью 3дБ.

Максимальное время задержки присуще фильтрам Чебышева и Баттерворта. Минимальное – фильтр с критическим затуханием и фильтр Бесселя.

Кроме НЧ фильтра нам нужен регулятор фазы – фазовый фильтр первого порядка — для согласования сабвуфера с фронтальной акустикой. В общем виде принципиальная схема фазового фильтра первого порядка имеет вид:

Рис. 16. Фазовый фильтр первого порядка.

(10), где

а1 — коэффициент фазового фильтра[2];
f0 — частота среза фазового фильтра, Гц.

Коэффициенты фазового фильтра до 10-го порядка приведены в [2] в таблице 13.9, с.220.
Изменяя сопротивление R мы можем установить любую величину фазового сдвига от 0° до -180° не изменяя амплитуду выходного сигнала. При этом, фазовый фильтр преобразуется в фазовращатель.
Кроме метода расчета НЧ фильтра по формулам (8) и (9), описанного выше, существует еще несколько способов. Один из них подробно описан в [28] для НЧ фильтров до 5-го порядка. Существует также специализированная программа для создания НЧ фильтров – FilterPro[1]. Производитель программного продукта – Texas Instruments. На работе самой программы останавливаться не будем, интерфейс программы интуитивно понятен. Плюс этого программного продукта в том, что мы можем указать допуск применяемых сопротивлений и емкостей. И тогда отпадает необходимость в подборе резисторов.
На закостенелости менталитета западных производителей НЧ фильтров мы не станем размениваться, и собираем НЧ фильтр Бесселя 10 порядка по схеме звена Салена-Ки с частотой среза 100Гц, с фазовращателем и активным регулятором громкости.
На рис. 17 приведена принципиальная электрическая схема НЧ фильтра Бесселя 10-го порядка с частотой среза 100Гц.

Рис. 17.

В качестве ОУ были выбраны ОУ импортного производства LM324. Плюсов у них много: 4 ОУ в одном корпусе DIP14. Выходы каждого ОУ расположены по углам корпуса (выв. 1, 7, 8, 14). Дву- и одно полярное питание, что важно при использовании НЧ фильтра в автомобиле. Широкий диапазон питающих напряжений. Малый ток потребления. Самое главное — в диапазоне до 500Гц более чем достаточное качество ОУ.
К принципиально схеме НЧ фильтра, сгенерированной программой FilterPro, добавляем простейший сумматор на двух резисторах на входе. В схему НЧ фильтра, в последнее звено, добавляем сдвоенный переменный резистор для регулировки чатоты среза НЧ фильтра. На выходе фильтра ставим наш фазовращатель и активный регулятор громкости. Окончательно, принципиальная электрическая схема имеет вид, приведенный на рис. 18.

Рис. 18.

Рис. 19. Усилитель мощности низкой частоты на микросхеме TDA1562Q

Переключатель SA1 предназначен для включения и выключения УМ, SA2 – для включения режима «MUTE». В качестве SA1 можно применить любой малогабаритный переключатель.
Элементы SA1, SA2, VD1 и VD2 выведены на переднюю панель НЧ фильтра и соединяются с печатной платой посредством монтажного провода. В качестве электролитических конденсаторов вольтдобавки (С5, С6) использованы емкости по 10000 мкФ и по питанию установлены емкости 4700мкФ (С9, С10). Это позволяет развить бОльшую мощность при прочих равных условиях. Как известно, при выключенном двигателе автомобиля напряжение бортовой сети составляет 12В. При работающем двигателе напряжение несколько повышается, до 14,5В, что обеспечивает прирост выходной мощности УМ. Для предыдущей модефикации – TDA1560Q – в datasheet присутствует зависимость, приведенная на рис. 20.

Рис. 20. Зависимость выходной мощности TDA1560Q от частоты при коэффициенте гармонических искажений 10% для различных значений электролитических емкостей вольтдобавки

В нашем случае, для микросхемы TDA1562Q зависимость, приведенная на рис. 20, будет отличаться незначительно. Только лишь надо вместо цифры «40» мысленно подставить значение «70» — именно такую максимальную выходную мощность по словам производителя обеспечивает TDA1562Q при напряжении питании 14,4В и сопротивлении нагрузки 4Ом, и пропорционально заменить промежуточные значения по оси Po(W).
Большинство элементов НЧ фильтра и УМ смонтировано на печатной плате. В свое время я изготовил парочку различных вариантов, в т.ч. «слим» версию.

Литература

1.http://focus.ti.com/general/docs/lit/getliterature.tsp?literatureNumber=slvc003d&fileType=zip 
— программа FilterPro Ver.1.03.0003 от Texas Instruments для создания и моделирования НЧ фильтров до 10 порядка.
2. http://dmitriks.narod.ru/books/titsh2.rar, http://dmitriks.narod.ru/books/titsh3.rar — У.Титце, К. Шенк «Полупроводниковая схемотехника», М., «Мир», 1982.
3. http://www.the12volt.com/
4. http://www.the12volt.com/caraudio/boxcalcs.asp — расчет сабвуферов
5. http://sound.westhost.com/project103.htm — Subwoofer Phase Controller
6. http://www.realmofexcursion.com/videos.html — видео со звуком работы сабвуферов на головках известных мировых производителей
7. http://ra4a.narod.ru/portal/BA1.htm — Громкоговорители. Справочник.
8. http://radiotech.by.ru/Documentation/docum.htm — Документация, инструкции, описания.
9. http://www.bluesmobil.com/shikhman/ — страничка А. И. Шихатова.
10. http://dmitriks.narod.ru/books/books.html#ARTSCHEMES — П. Хоровиц У. Хилл «Искусство схемотехники», издание 5.
http://www.cxem.net/sound/dinamics/dinamics.php — Все об акустике — колонки, динамики, сабвуферы и др.
11. http://www.audioworld.ru/Links/links.html — Мир AUDIO — Электронное периодическое издание для аудиофилов и меломанов.
12. http://www.peps.ku.ru/audio/audio.html — Отечественные головки громкоговорителей
13. http://www.techhome.ru/catalog/auto/article_3674.html — Программы для расчета сабвуферов
14. http://radiotech.by.ru/Program/program.htm — Программы, связанные с электроникой.
15. http://forum.racing.kz/index.php?showtopic=1838 — Простой сабвуфер на 2х35ГДН-1-8
16. http://radiotech.by.ru/ — Портал радиоэлектроники. Конструкторские разработки.
17. http://www.artmech.com/pavel/sub/index.htm — Сабвуфер на 75ГДН-1-4.
18. http://radist.izmuroma.ru/shems/audio/aksystems/aksystems_10.php — 2х35ГДН-1-4
19. http://www.cxem.net/sound/amps/amp44.php — Схема автомобильного УНЧ на TDA1562Q.
20. http://www.cxem.net/sound/dinamics/dinamic55.php — Теория и практика ФИ.
21. http://library.espec.ws/section2/article80.html — Измерение параметров Тиля — Смолла в домашних условиях.
22. Ж-л «Радио», №12, 1999, с.21-22.
23. http://xopxe.narod.ru/articles/MesTune.htm — Об измерениях параметров TS динамиков в домашних условиях и один способ настройки фазоинверторов.
24. http://xopxe.narod.ru/articles/BasBox.html — Татевян Г.Р. О басах и корпусах. О том, как выбирать акустическое оформление динамика.
25. http://homesub.chat.ru/drive.htm — О параметрах T/S динамических головок.
26. Ж-л «Радио», №3, 1995, с.45-48, И. Романов, «Активные RC-фильтры:схемы и расчеты».
27. Ж-л «Радио», №8, 1986, с.51-22, В. Жбанов, «Настройка фазоинверторов».
28. Ж-л «Радио», №8, 1977, с.41-44, В. Карев, С. Терехов, «Операционные усилители в активных RC фильтрах».
29. http://dmitriks.narod.ru/books/books.html#BAS — В.К.Иоффе М.В.Лизунков «Бытовые акустические системы».
30. http://www.avtozvuk.com/az/Az_0800/p68-72-1.htm — Ж-л «Автозвук» № 8, 2000, «Право на передачу», А. Елютин, Ю. Евтушенко.
31. http://automoto.com.ua/articles/gd/sub3.stm.htm — Динамические головки низкочастотные.
32. М.Линовицкий, «Как сделать маленький бокс большим или кое-что о заполнении».


Фильтр низких частот | Микросхема

Как можете видеть, уважаемые радиолюбители, в комментариях к схемам усилителей звуковой частоты очень часто проскакивают вопросы новичков такого характера: «посоветуйте, как сделать фильтр низких частот для этого усилителя?»

На такие вопросы приходится отвечать, обычно, типовыми фразами или отсылкой к имеющимся схемам, за что, конечно же, прошу прощения. У нас на сайте есть достаточное количество схем, чтобы можно было без труда собрать качественный ФНЧ для использования с любым усилителем мощности. Приведу ссылки на простые и, в то же время, довольно кондиционные фильтры низких частот:

Неплохие результаты показывают наипростейшие фильтры низких частот: схемы в комментариях к статье.

Однако сегодня мы с вами будем собирать достаточно эффективный фильтр низких частот для сабвуфера.

Всем известно, что акустический спектр расположен в диапазоне 20…20 000 Гц. 20 Гц – это достаточно низкая частота. Вообще, на низких частотах ухудшается восприятие направленности звука или, скажем так, его локализация. Здесь я немного поясню. На частотах ниже 150 Гц разделение звукового сигнала по каналам не имеет смысла. Акустические системы, оснащённые сабвуфером, имеют, как правило, конфигурации 2.1, 5.1, 7.1. Сабвуфер в них один. В сабвуферном канале идёт смешение всех других каналов и срез частот от 20 Гц (не всегда) до какой-то верхней частоты (100, 130, 150 Гц).

Для качественного воспроизведения звукового тракта выделение низких частот в отдельный канал обязательно. В качестве удачного решения я предлагаю такую схему ФНЧ, ограничивающего частоту акустического спектра в районе 20 — 100 Гц.

На схеме можно видеть два каскада, каждый из которых собран на операционном усилителе. В качестве активного элемента в схеме применяется сдвоенный операционный усилитель типа TL082, TL062, NE5532.

Первый ОУ служит для смешения каналов и усиления входного сигнала (предусиления). Уровень выходного сигнала, снимаемого с первого операционника, зависит от сопротивления переменного резистора R3 номиналом 47 кОм.

На втором ОУ собран непосредственно сам фильтр среза. Частота среза зависит от номиналов деталей обвязки данного операционного усилителя. Частоту можно регулировать в достаточно широких пределах: от 30 Гц до 150 Гц. Регулировать частоту среза можно сдвоенным переменным резистором R5, R7 номиналом 22 кОм.

Перечень радиодеталей, используемых в фильтре низких частот:

  • R1 = 39 кОм
  • R2 = 39 кОм
  • R3 = 47 кОм
  • R4 = 10 Ом
  • R5 = 22 кОм
  • R6 = 4,7 кОм
  • R7 = 22 кОм
  • R8 = 4,7 кОм
  • R9 = 10 Ом
  • R10 = 220 Ом
  • C1 = 39 пФ
  • C2 = 0.1 мкФ
  • C3 = 0.1 мкФ
  • C4 = 0.2 мкФ
  • C5 = 0.4 мкФ
  • C6 = 0.1 мкФ
  • C7 = 0.1 мкФ
  • IC1 = TL062

Схема очень чувствительна к качеству радиодеталей, особенно к конденсаторам. Их допуск должен быть не более 5%. Проверить работоспособность фильтра можно с помощью звукового генератора. В итоге получается универсальный ФНЧ для сабвуферного канала практически для любой акустической системы.

Топология печатной платы и расположение радиодеталей на ней:

Обсуждайте в социальных сетях и микроблогах

Метки: акустика, предусилитель, сабвуфер, фильтр НЧ

Радиолюбителей интересуют электрические схемы:

Активные фильтры к сабвуферам
Кроссовер для сабвуфера

Лучшие активные фильтры для сабвуфера схема. Активный фильтр низких частот (ФНЧ) для сабвуфера

Многие киноманы хотят иметь личный домашний кинотеатр, однако не все могут позволить себе такую прихоть. Каждый выходит из такой ситуации по-своему: кто-то приобретет простые китайские колонки, кто-то приспособит для басов акустику советского производства, ну а самые продвинутые, владеющие познаниями в радиотехнике, сконструируют сабвуферный низкочастотный канал самостоятельно. Тем более что это довольно-таки несложно.

Общие сведения

Рассмотрим, что же представляет собой обычный сабвуфер. По сути, это простой активный фильтр на вход которого подаются сигналы от (правый и левый каналы), усилитель и НЧ-динамик. В этой статье мы рассмотрим самый сложный элемент устройства — схему, которая позволяет самостоятельно собрать фильтр НЧ для сабвуфера. Такие устройства воспроизводят частоты, не превышающие 40 Герц. Их используют совместно с сателлитными громкоговорителями небольшого размера. Сабвуферы бывают активными и пассивными. Последние представляют собой низкочастотную головку, подключенную к общему усилителю. Такого рода приборы малоэффективны и непопулярны. Совсем другое дело — первый вариант. В таких устройствах электронный разделительный активный фильтр НЧ для сабвуфера и отдельный отделяют басы от сигнала, который подается на основные громкоговорители непосредственно в том месте подаваемого тракта, где фильтрация данного сигнала внесет наименьший уровень нелинейных искажений, по сравнению с фильтрацией выходного усилителя мощности. Добавление отдельного усилителя в сабвуферный канал значительно увеличит динамический диапазон, а также освободит усилитель средних и высоких частот от дополнительной нагрузки.

Фильтр для сабвуфера: схемы

Читателю для рассмотрения предлагается три варианта схем такого устройства. В первой схеме предложен простейший фильтр для сабвуфера, выполненный в виде сумматора на одном транзисторе. Серьезного качества звучания с таким устройством добиться не получится, зато, благодаря своей простоте, оно прекрасно подойдет начинающим радиолюбителям. А вот фильтр для сабвуфера, представленный в следующих двух вариантах, с большим успехом зарекомендовал себя как устройство с отличными характеристиками. Такие устройства устанавливают непосредственно после линейного выхода источника и входа усилителя мощности. Фильтр для сабвуферахарактеризуется низким уровнем шумов, малым энергопотреблением, а также широким диапазоном напряжения питания.

Заключение

Подводя итоги, скажем, что добавление типа значительно снижает нижнюю границу воспроизводимых частот, повышает чистоту звучания на средних частотах и обеспечивает довольно высокий уровень громкости без искажений. Устранение из спектра основного воспроизводимого сигнала, поступающего на сателлиты, низких частот позволяет им звучать чище и громче. Это объясняется тем, что конус головки низкой частоты не колеблется с большой амплитудой, пытаясь воспроизвести басы и тем самым внося искажения в сигнал.

Вещь, о которой мы сейчас расскажем, как понятно из названия статьи, является самодельным усилителем для сабвуфера, в народе называемом «Саб». Устройство имеет активный фильтр НЧ, построенный на операционных усилителях, и сумматор, обеспечивающий ввод сигнала с выхода стерео.

Поскольку сигнал для схемы берется с выходов на акустические системы, нет необходимости вмешательства в работающий усилитель. Получение сигнала с динамиков имеет еще одно преимущество, а именно — позволяет сохранить постоянное соотношение громкости сабвуфера к стереосистеме.

Естественно, усиление канала сабвуфера можно регулировать с помощью потенциометра. После отфильтровывания высоких частот и выделения низких (20-150 Гц), звуковой сигнал усиливается с помощью микросхемы TDA2030 или TDA2040, TDA2050. Это дает возможность настройки выходной мощности басов по своему вкусу. В этом проекте успешно работает любой динамик НЧ с мощностью более 50 Ватт на сабвуфер.

Схема фильтра с УМЗЧ сабвуфера


Схема принципиальная ФНЧ и УМЗЧ сабвуфера

Описание работы схемы усилителя

Стерео сигнал подается на разъем In через C1 (100nF) и R1 (2,2 М) на первом канале и C2 (100nF) и R2 (2,2 М), в другом канале. Затем он поступает на вход операционного усилителя U1A (TL074). Потенциометром P1 (220k), работающем в цепи обратной связи усилителя U1A, выполняется регулировка усиления всей системы. Далее сигнал подается на фильтр второго порядка с элементами U1B (TL074), R3 (68k), R4 (150к), C3 (22nF) и C4 (4,7 nF), который работает как фильтр Баттерворта. Через цепь C5 (220nF), R5 (100k) сигнал поступает на повторитель U1C, а затем через C6 (10uF) на вход усилителя U2 (TDA2030).

Конденсатор С6 обеспечивает разделение постоянной составляющей сигнала предусилителя от усилителя мощности. Резисторы R7 (100k), R8 (100k) и R9 (100k) служат для поляризации входа усилителя, а конденсатор C7 (22uF) фильтрует напряжение смещения. Элементы R10 (4.7 k), R11 (150к) и C8 (2.2 uF) работают в петле отрицательной обратной связи и имеют задачу формирования спектральной характеристики усилителя. Резистор R12 (1R) вместе с конденсатором C9 (100nF) формируют характеристику на выходе. Конденсатор C10 (2200uF) предотвращает прохождение постоянного тока через динамик и вместе с сопротивлением динамика определяет нижнюю граничную частоту всего усилителя.

Защитные диоды D1 (1N4007) и D2 (1N4007) предотвращают появление всплесков напряжений, которые могут возникнуть в катушке динамика. Напряжение питания, в пределах 18-30 В подается на разъем Zas, конденсатор C11 (1000 — 4700uF) — основной фильтрующий конденсатор (не экономьте на его ёмкости). Стабилизатор U3 (78L15) вместе с конденсаторами C12 (100nF), C15 (100uF) и C16 (100nF) обеспечивает подачу напряжения питания 15 В на микросхему U1. Элементы R13 (10k), R14 (10k) и конденсаторы C13 (100uF), C14 (100nF) образуют делитель напряжения для операционных усилителей, формируя половину напряжения питания.

Сборка сабвуфера

Вся система паяется на . Монтаж следует начинать от впайки двух перемычек. Порядок установки остальных элементов любой. В самом конце следует впаивать конденсатор C11 потому что он должен быть установлен лежа (нужно согнуть соответствующим образом ножки).


Плата печатная для устройства

Входной сигнал должен быть подключен к разъему In с помощью скрученных проводов (витой пары). Микросхему U2 обязательно необходимо оснастить радиатором большого размера.

Схему следует питать от трансформатора через выпрямительный диодный мост, фильтрующий конденсатор стоит уже на плате. Трансформатор должен иметь вторичное напряжение в пределах 16 — 20 В, но чтобы после выпрямления оно не превышало 30 В. К выходу следует подключить сабвуфер с хорошими параметрами — от головки очень многое зависит.

ФИЛЬТР ДЛЯ САБВУФЕРА

Каждый хочет иметь у себя дома свой личный очень хороший домашний кинотеатр, что при нынешних ценах на посещение общественного вполне оправдано, но не у каждого это получается. Кто-то довольствуется покупкой дешёвых китайских 2.1 колоночек, кто-то приспосабливает для басов советскую акустику. А самые продвинутые радиолюбители меломаны делают сабвуферный НЧ канал сами. Тем более, что процедура изготовления совсем не сложная. Стандартный сабвуфер — это активный фильтр НЧ, на который подаются сигналы правого и левого каналов линейного выхода, усилитель мощности на много-много ватт и большой деревянный ящик с низкочастотным динамиком. Расчёт и изготовление корпуса дело чисто столярное, об этом можно почитать и на других ресурсах , усилитель мощности так-же не проблема — при богатом ассортименте всевозможных и . А вот на входном фильтре НЧ для усилителя сабвуферного канала мы здесь остановимся подробно.

Как известно, сабвуфер воспроизводит частоты до 40 Гц, и используется совместно с небольшими сателлитными громкоговорителями. Сабвуферы бывают пассивные и активные. Пассивный сабвуфер — это помещенная в корпус НЧ-головока, которая подключаются к общему усилителю. При таком способе подключения широкополосный выходной сигнал УМЗЧ подается на вход сабвуфера, а его разделительный фильтр удаляет из сигнала НЧ и подаёт отфильтрованный сигнал на громкоговорители.

Гораздо более эффективный и распространённый способ подключения сабвуфера с помощью электронного разделительного фильтра и отдельного усилителя мощности, что позволяет отделять басы от сигнала, подаваемого на основные громкоговорители в том месте тракта, где фильтрация сигнала вносит гораздо меньше нелинейных искажений, чем фильтрация выходного сигнала усилителя мощности. Кроме того, добавление отдельного усилителя мощности для сабвуферного канала существенно увеличивает динамический диапазон и освобождает усилитель основных СЧ и ВЧ каналов от дополнительной нагрузки. Ниже предлагаю первый, простейший вариант фильтра НЧ для сабвуфера. Выполнен он как фильтр сумматор на одном транзисторе и на серьёзное качество звучания с ним рассчитывать не приходится. Оставим его сборку самым начинающим.

А вот эти три варианта с одинаковым успехом зарекомендовали себя в качестве отличных фильтров для сабвуфера и некоторые из них установлены в моих усилителях.

Эти фильтры устанавливаются между линейным выходом источника сигнала и входом усилителя мощности сабвуфера. Все они обладают малым уровнем шумов и энергопотреблением, широким диапазоном питающих напряжений. Микросхемы использовал любые сдвоенные ОУ, например TL062, TL072, TL082 или LM358. К пассивным элементам предьявляются обычные требования, как к деталям высококачественных аудиотрактов. На мой слух, звучание нижней схемы было особенно упругим и динаминым, сабвуфер с таким вариантом слушаешь даже не ушами, а животом:)

Технические характеристики фильтра для сабвуфера :

  • напряжение питания, В 12…35В;
  • ток потребления, мА 5;
  • частота среза, Гц 100;
  • усиление в полосе пропускания, дБ 6;
  • затухание вне полосы пропускания, дБ/Окт 12.

Фотографии плат фильтров сабвуфера предоставленные товарищем Dimanslm:

Добавление активного сабвуфера существенно увеличивает динамический диапазон, понизижает нижнюю граничную частоту воспроизведения, улучшает чистоту звучания средних частот и обеспечивает высокий уровень громкости без искажений. Удаление низких частот из спектра основного сигнала, поступающего на сателлиты, позволяет им звучать громче и чище, так как конус НЧ-головки не колеблется с большой амплитудой внося серьёзные искажения, пытаясь воспроизвести басы.

При использовании современной магнитолы с акустикой чувствительностью 89 дБ и выше уровень громкости обычно вполне достаточен. Поэтому первый (бюджетный) усилитель, как правило, предназначается в первую очередь для сабвуфера. Обычно там есть блок формирования сигнала, но его возможности ограничены. Чаще всего фильтры имеют фиксированную частоту среза. А специализированный усилитель с плавно перестраиваемыми фильтрами — это вещь уже не бюджетная.

Предлагаемые схемы предназначены как раз для таких случаев. Большинство из них были разработаны «по просьбе трудящихся. Поэтому, кстати, мало рисунков печатных плат — это дело сугубо индивидуальное, зависит от деталей и компоновки в целом. Но платы зависит многое, в том числе и количество «граблей», на которые наступит радиолюбитель при повторении, поэтому все дополнения только приветствуются. Я пока проектирую платы только для конструкций «личного употребления», на все нет времени…

При разработке ставилось два условия:

  • обойтись только однополярным питанием 12 вольт, чтобы не связываться с изготовлением преобразователей и не лезть за повышенным напряжением внутрь усилителя
  • схема должна быть предельно простой и не требовать для повторения особой квалификации.

Первая схема предназначена для простейших установок. Поэтому ее характеристики далеки от идеала, но возможности вполне достаточны. Большой диапазон перестройки частоты частоты среза позволяет использовать сабвуфер практически с любой акустикой. Если у магнитолы нет линейных выходов — не беда. Схема может работать и с «колоночных» выходов магнитолы. Для этого нужно только увеличить сопротивление резисторов R1,R2 до 33…100 кОм.

При широкой полосе частот, воспроизводимых сабвуфером, для «стыковки» звучания с фронтальной акустикой необходимо использовать регулируемый фазовращатель. Схема простейшего сумматора с фазовращателем приведена на следующем рисунке. По сравнению с предыдущей схемой пределы перестройки частоты среза несколько сужены, все остальные рекомендации остаются в силе. Печатная плата не приводится — пусть это будет «домашним заданием».


Однако возможности простейших схем ограничены. Пассивный сумматор дает большое затухание сигнала, что заставляет использовать максимальную чувствительность усилителя. Кроме того, при работе от небуферизованного линейного выхода магнитолы (а в бюджетных линейках они все такие) возможно ухудшение разделения стереоканалов из-за невысокого входного сопротивления сумматора.
Поэтому нужно перейти к активному смесителю сигналов левого и правого каналов. Удобнее всего выполнить его на полевых транзисторах — при использовании транзисторов с напряжением отсечки более 3 вольт (КП303Г, КП303Е) необходимый режим работы достигается без смещения на затворе. В таком случае разделительный конденсатор на входе необязателен. А это дополнительное повышение качества звучания. Да и сами полевые транзисторы «благороднее».


Если встроенный фильтр усилителя устраивает, схему можно упростить.


И, наконец, когда есть все, что нужно и нужен только фазовращатель.


Наконец, если сабвуфер представляет сообой что-то более сложное, чем закрытый ящик, в канал усиления нужно включить фильтр обрезки инфранизких частот. Правда, для увеличения добротности пришлось выполнить его по схеме третьего порядка, хотя АЧХ соответствует второму.


В тех случаях, когда нужно встроить блок формирования сигнала сабвуфера непосредственно в усилитель, есть смысл перейти на двухполярное питание ОУ. Ниже приводится вариант схемы, дополненный входом высокого уровня и регулятором усиления. Резистор R18 определяет минимальный уровень выходного сигнала. Если нужно снижать его до нуля, резистор следует заменить перемычкой или снизить сопотивление до 100-200 Ом. Входные каскады и фильтр остались практически без изменений, но благодаря увеличению напряжения питания до 15 В несколько повышена перегрузочная способность. Небольшое изменение номиналов фильтра увеличило его добротность, как следствие — повысилась крутизна АЧХ непосредственно в зоне перегиба. При широкой полосе она приближается к фильтру третьего порядка. При налаживании нужно добиться, чтобы постоянное напряжение на эмиттере транзистора VT3 составляло 6-7 вольт.
Если нужно увеличить коэффициент передачи этого фильтра, можно зашунтировать резисторы в истоках полевых транзисторов электролитическими конденсаторами емкостью от 10 мкф и выше. Усиление возрастет примерно в 3 раза, но есть риск появления искажений.


Детали и монтаж
Для плавной регулировки частоты среза нужны резисторы с нелинейной зависимостью сопротивления (тип Б). В среднем пложении движка сопротивление одной половины «подковки» у них заметно больше, чем у другой. Включить их нужно так, чтобы движок закорачивал секцию с бОльшим сопротивлением.
Керамические конденсаторы в звуковом тракте использовать нельзя из-за микрофонного эффекта, их можно ставить только в цепи питания. Из недорогих и доступных лучше всего использовать полипропиленовые, фторопластовые или лавсановые. Например, К73-17 (от 0,01 до 6,8 мкф, напряжение от 50 до 630В, цена от 0,5 до 8 р за штуку в зависимости от размера и допуска). Конденсаторы нужно подобрать в пары с минимальным разбросом (важно не точное значение емкости, а рассогласование по каналам). Многие современные мультиметры позволяют измерить емкость непосредственно. Если такой возможности нет, лучше использовать конденсаторы с допуском 5%.
Полевые транзисторы по каналам нужно подбирать в пары по начальному току стока и напряжению отсечки. Если нет такой возможности, лучше использовать транзисторы из одной партии — в пределах упаковки разброс параметров обычно невелик. Вместо КП303 можно использовать сборки серии КПС, там идентичность пар обеспечивается технологически. Вместо КТ3102Е можно использовать любые другие n-p-n транзисторы с коэффициентом передачи тока более 50. Словом, возможности для творчества открываются широкие…
Чтобы избежать наводок, у транзисторов КП303 нужно соединить с общим проводом «земляную» ножку транзистора (вывод корпуса). Входные делители также должны быть как можно ближе к транзистору, чтобы в цепи «делитель-затвор» не было длинных проводников. Особенно важно это при высоком сопротивлении делителя.

Источник http://www.bluesmobil.com/shikhman/ А. И. Шихатов 1999-2003

ФИЛЬТР ДЛЯ САБВУФЕРА

Принципиальная схема, печатная плата, описание

Данный фильтр предназначен для суммирования стереосигнала и выделения из этой суммы НЧ сигнала для сабвуфера. По сложности фильтр является довольно сложным, поскольку построен по принципу параметрического эквалайзера, т.е. позволяет производить максимум регулировок.
Принципиальная схема фильтра для сабвуфера приведена на рисунке 1. Это последний, самый популярный и универсальный фильтр из разработанной пятерки фильтров для сабвуфера. На входе фильтра используется обычный резистивный микшер, далее на ОУ выполнен буферный усилитель с коррекцией АЧХ, позволяющей на обработку подавать сигнал с уже вырезанными СЧ и ВЧ сигналами, но довольно большой полосой захвата.
Далее идет уже сам фильтр выполненый на ОУ DA3 в обратную связь которого включен высокодобротный фильтр на ОУ DA2 и DA4. В этом фильтре происходит обработка аудиосигнала, причем имеется возможность регулировки добротности, т.е. полосы захвата. На рисунке 2 показано изменение АЧХ в зависимости от положения регулятора добротности (резистор R14).
На рисунке 3 приведен вид АЧХ в зависимости от положения регулятора частоты (резистор R15), на рисунке 4 приведен вид АЧХ уровня перегиба, по сути тот же уровень громкости, который стоит на входе, однако регулировка производится именно перегиба АЧХ, хотя на слух кажется, что изменяется уровень (резистор R16).
На рисунке 5 приведен вид АЧХ в зависимости от положени регуляторов частоты и добротности.
Как видно из рисунокв данный фильтр позволяет идиально настроить практически любой сабвуфер и может потягаться даже с корректором Линквица.

Рисунок 1 — принципиальная схема фильтра для сабвуфера.


Рисунок 2 — регулировка добротности.


Рисунок 3 — регулировка частоты.


Рисунок 4 — изменение уровня перегиба АЧХ.


Рисунок 5 — одновременное изменение частоты и добротности.

Принципиальная схема фильтра для сабвуфера чертеж печатной платы описание работы рекомендации фильтр для сабвуфера схема фильтра нч

На рисунке 6 приведен внешний вид фильтра, на рисунке 7 — чертеж расположения деталей на печатной плате. В формате lay плату можно взять . Поскольку высокодобротные фильтры довольно сильно сдвигают фазу сигнала в фильтр введен фазовращатель позволяющий получить максимальное совпадение сигналов по фазе широкополосного сигнала с сигналом сабвуфера. Кроме этого фильтр имеет 2 выхода, на которых сигнал идет в противофазе. Это позволяет компенсировать недостаточность сдвига фазы в фазовращателе при использовании типового усилителя для сабвуфера или же использовать 2 одинаковых усилителя соединенных мостом.


Рисунок 6 — внешний вид фильтра.


Рисунок 7 — расположение деталей и схема подключения.

Питание фильтра для сабвуфера производится от питания усилителя мощности (двуполярный источник), поскольку в фильтр уже интегрирован параметрических стабилизатор напряжения необходимо лишь подобрать токоограничивающие резисторы во избежания выхода из строя стабилитронов от теплового пробоя.

Несколько слов о построении этого фильтра и проверка его в симуляторе

Для Микрокап 8 в архиве лежит модель данного фильтра. Там же еще несколько фильтров как для двуполярного, так и однополярного питания, так что желающие могут поразминаться.

На что мне установить фильтр низких частот?

Получить этот сладкий басовый звук на самом деле не так уж и сложно, если вы знаете основы. Правильная частота низких частот может иметь большое значение!

В этой статье я поделюсь тем, что вам нужно знать, а также другой полезной информацией!

На что мне установить фильтр низких частот сабвуфера?

Сабвуфер имеет определенный диапазон звука, для которого он лучше всего подходит — в большинстве случаев только низкие частоты (это верно как для домашней, так и для автомобильной аудиосистемы).Это потому, что размер диффузора достаточно велик, чтобы воспроизводить низкие звуковые волны, в отличие от небольших динамиков.

Точно так же сабвуфер (в большинстве случаев) плохо воспроизводит высокочастотный звук в музыке, такой как вокал или высокие частоты, из-за его ограниченной частоты отклика . Мы хотим предотвратить это, поэтому очень важен выбор правильной частоты среза.

Настройки частоты кроссовера для домашнего стереофонического фильтра низких частот

Таблица №1: Рекомендуемые частоты НЧ для домашнего сабвуфера
Тип НЧ-динамика Частота среза
Активный или автономный сабвуфер от 70 до 80 Гц
НЧ-динамики Midbass в 3-полосной системе 250 Гц
Низкочастотные динамики в 2-полосном динамике 1.От 5 до 3,5 кГц, в зависимости от конструкции

Хорошее практическое правило для настройки фильтра нижних частот (LPF) домашнего стереофонического сабвуфера составляет от 70 до 80 Гц. После того, как вы настроите его, медленно отрегулируйте и прислушайтесь к тому, что звучит лучше всего для вас.

В идеале у вас будут только чистые, чистые басы из сабвуфера, и вы будете слышать музыку или звук фильмов без каких-либо перерывов в звуковом сигнале (нет областей, где бы не хватало басов). В некоторых случаях вам может потребоваться увеличить усиление активного сабвуфера, если уровень кажется слишком низким.

Выход низкочастотного эффекта домашнего приемника (канал LFE) может иметь несколько различных режимов, которые зависят от режима. Некоторые из них имеют фиксированную частоту среза (особенно для режима объемного звука) или могут предлагать регулируемый фильтр нижних частот для воспроизведения стерео музыки.

Должен ли я использовать фильтр высоких частот для моих основных динамиков?

Это не всегда необходимо, но иногда помогает избежать слишком большого количества басов. Не все основные динамики домашнего ресивера или домашнего кинотеатра могут хорошо воспроизводить низкие частоты.Для тех, кто умеет, возможно, вы получите «гулкий» бас, когда его воспроизводят оба сабвуфера и , являющиеся основными динамиками.

В этом случае, если ваш усилитель или ресивер оснащен фильтром высоких частот (HPF), часто хорошим выбором будет частота от 60 до 80 Гц. Всегда стоит попробовать, чтобы понять, как это звучит для вас, ведь тонких

так много.

gs, которые влияют на звук, включая комнату, ковер или паркетный пол и многое другое.

Настройки частоты кроссовера автомобильного стереофонического фильтра низких частот

Таблица № 2: Рекомендуемые частоты НЧ для автомобильного сабвуфера
Тип НЧ-динамика Частота среза
Активные сабвуферы или сабвуферы с усилителем от 70 до 80 Гц
НЧ-динамики Midbass в 3-полосной системе 250 Гц
Низкочастотные / средние низкие частоты в 2-полосном динамике 1.От 5 до 3,5 кГц, в зависимости от дизайна и динамиков

Те же правила более или менее справедливы и для автомобильной аудиосистемы. 70–80 Гц — обычно отличный выбор. Поскольку небольшие динамики (особенно те, которые установлены на приборной панели или дверях автомобиля или грузовика) обычно плохо воспроизводят низкочастотный звук, кроссовер высоких частот может помочь уменьшить искажения и обеспечить лучший звук.

Например, в дополнение к фильтру низких частот для ваших сабвуферов, использование фильтра высоких частот, установленного на 56-60 Гц для передних динамиков, предотвратит их сильные искажения, особенно на более высоких уровнях мощности.Это также означает, что вы можете использовать их для увеличения объема.

Описание вариантов крутизны кроссовера

A крутизна кроссовера — крутизна фильтрующей способности кроссовера. Другими словами, насколько он эффективен для уменьшения звуковых частот частот за пределами кроссовера частоты точки.

Наклоны, как и частота кроссовера, подразделяются на децибел (дБ) на октаву . Знак минус (-) используется для обозначения ослабления или уменьшения входного сигнала.

В мире аудио мы обычно измеряем диапазон звуковых частот между двумя точками с помощью октавы. Октава — это удвоение или уменьшение числа частоты вдвое. (100 Гц, 200 Гц, 400 Гц и т. Д.)

Когда мы говорим о кроссовере с отсечкой -6 дБ на октаву , мы имеем в виду, что он будет продолжать уменьшать выходную мощность на дополнительные 6 дБ при каждом удвоении предыдущей частоты .

Пример: -6 дБ при 1 кГц, -12 дБ при 2 кГц, -18 дБ при 4 кГц, -24 дБ при 8 кГц, -32 дБ при 16 кГц, до 20 кГц.

Какой наклон кроссовера следует использовать для корпуса сабвуфера?

Хотя вы могли бы подумать, что «чем выше, тем лучше» было бы правым, все усложняется, когда вы переходите к планам 2-го или 3-го порядка.

Вообще говоря, крутизна кроссовера -12 дБ часто является лучшим выбором и хорошо работает для большинства акустических систем.Сабвуфер обычно очень хорошо звучит с крутизной 12 дБ или 18 дБ.

Одна из причин заключается в том, что он имеет относительно доступную и несложную конструкцию, но все же дает хорошую возможность отсечки. Это отлично работает как с одиночными, так и с 2-полосными динамиками.

Наиболее часто используемые склоны:

Вы обнаружите, что крутизна кроссовера -12 дБ на октаву является наиболее распространенной для покупаемой вами бытовой электроники.

Нужен ли мне дозвуковой фильтр?

Что делает дозвуковой фильтр?

Дозвуковой фильтр — это фильтр верхних частот с очень низкой частотой кроссовера, например, часто около 30 или 20 Гц.Идея состоит в том, чтобы не допустить попадания басовых волн, которые мы не можем слышать, в коробку сабвуфера, чтобы предотвратить бесполезную трату энергии.

Диапазон частот человеческого слуха варьируется от человека к человеку, но большинство людей могут слышать примерно до 30 Гц или немного ниже. Звуковые волны 20 Гц можно почувствовать, но не услышать, поэтому довольно бессмысленно использовать большую мощность усилителя для того, что вы даже не слышите.

Не только это, но и большая часть звука микшируется с наиболее приятными басами около 40–50 Гц или около того для «удара» в музыке и грохота или звука действий в фильмах, что означает, что 20–30 Гц не нужны.

Нужно ли мне пользоваться?

Вообще говоря, нет, и на самом деле в большинстве случаев вы не услышите разницы. Тем не менее, это, конечно, ничего не повредит, и для некоторых аудио, таких как винтажные проигрыватели, где присутствует низкочастотный грохот, это может быть полезно.

Что такое регулятор усиления низких частот? Мне нужно его использовать?

Регулятор усиления низких частот — это дополнительная функция в некоторых домашних стереосистемах, автомобильных стереосистемах и усилителях для увеличения выходного сигнала в определенной точке выходного сигнала сабвуфера.Это очень часто встречается в современных автомобильных усилителях, но иногда встречается и в домашних ресиверах.

Обычно это один из нескольких типов:

  • Выключатель с фиксированным уровнем наддува
  • Переключатель A (например: 0 дБ, 6 дБ, 9 дБ усиление)
  • Поворотный переключатель с регулируемым уровнем выходного сигнала, обычно до 12 дБ

Не усиливает все низкие частоты. Вместо этого он сосредоточен в точке, называемой центральной частотой . Обычно это фиксированная точка около 45 или 50 Гц, именно там, где в музыке можно услышать самые «гулкие» или «грохочущие» басы.

Они полезны?

Это более забавная вещь, особенно если вы хотите немного усилить любимую музыку или если вы чувствуете, что вашей системе не хватает басов. Вообще говоря, это не обязательно с хорошо работающим сабвуфером, но может быть неплохо иметь. Стоит попробовать, чтобы узнать, что вы думаете.

Автомобильные усилители

иногда включают в себя съемную ручку дистанционного управления низкими частотами, которая позволяет регулировать ее с сиденья водителя — очень удобно, когда начинает играть любимая музыка!

Почему у некоторых усилителей есть регулятор усиления низких частот, а у некоторых нет?

Включение функции усиления полностью зависит от производителя и маркетинга — некоторые типы клиентов никогда не воспользуются ею (например, аудиофилы для домашнего стереозвука), в то время как другим, например, покупателям автомобильной аудиосистемы, может понравиться такая опция.

Больше замечательных статей, чтобы увидеть

Ознакомьтесь с другими замечательными статьями о сабвуферах:

Получение правильных настроек сабвуфера для домашнего кинотеатра

Управление низкими частотами — это термин, который часто обсуждают на онлайн-форумах и в технических руководствах пользователя.На самом деле мы говорим о настройке вашего AV-ресивера для правильной работы с сабвуфером. Есть настройки на ресивере объемного звучания и есть настройки на сабвуфере. Получение правильных настроек сабвуфера для домашнего кинотеатра означает правильную настройку и понимание того и другого.

Это пошаговое руководство поможет вам в этом. После настройки основных параметров вы можете углубиться в свою систему. Это поможет вам внести еще более конкретные настройки и корректировки. Правильные настройки сабвуфера почти всегда влияют на всю вашу систему.Это того стоит для тех, кто хочет получить наилучшие впечатления от просмотра фильмов или прослушивания музыки.

Определение терминов

Прежде чем мы начнем, давайте определим некоторые важные термины, которые вам необходимо знать:

  • Кроссовер нижних частот: Частота, ниже которой будет работать ваш сабвуфер. Выше этой частоты ваши основные динамики воспроизводят частоты для всего, что отправляется на низкочастотные эффекты или субканал. Кроссовер низких частот обычно изменяется от 40 Гц до примерно 160-200 Гц.
  • Кроссовер высоких частот: Частота, выше которой ваши динамики будут работать. Эта настройка обычно ассоциируется с сабвуфером, который имеет выходы уровня динамиков для подключения сателлитных динамиков. Кроссовер высоких частот обычно устанавливается на сабвуферы, у которых есть эта функция.
  • Большие динамики: Это действительно полнодиапазонные динамики с частотой воспроизведения до 20 Гц.
  • Маленькие динамики: это любые динамики, которые не воспроизводят до 20 Гц.
  • LFE: Означает эффект низкой частоты и является выделенным каналом «.1» в миксе объемного звучания 5.1 или 7.1. С каналом LFE связана определенная информация, которая улучшает музыку, взрывы и научно-фантастические среды.
  • Оба или LFE + Main: Большинство систем имеют режим, в котором низкие частоты ниже точки кроссовера AV-ресивера передаются как на сабвуфер, так и на основные динамики. Вы можете смело экспериментировать с этим режимом. По моему опыту, это дает неожиданные результаты, и этого следует избегать.

Настройки сабвуфера для домашнего кинотеатра: общая картина

Ресиверы объемного звучания различаются по способу управления низкими частотами. Как правило, они обеспечивают либо глобальную настройку для настройки частоты низких частот, либо настройку низких частот для каждого канала. По идее, вы хотите дополнить свои колонки сабвуфером. Это обрабатывает частоты, которые они не могут воспроизвести — или не могут воспроизводить с достаточным авторитетом.

Сабвуфер по своей конструкции обрабатывает частоты, которые заставляют ваши основные динамики плакать по своей маме.Для получения правильных настроек сабвуфера для домашнего кинотеатра необходимо правильно настроить каждый компонент. Им нужно работать друг с другом, а не друг против друга.

Если вы неправильно настроите управление басами, вы обнаружите, что ваши низкие частоты могут быть мутными. Это действительно приводит к получению звука ниже номинального. Я бывал в комнатах, где сабвуфер воспроизводил такие высокие частоты, что вы могли слышать диалоги из 10-дюймового вуфера! Это НЕ то, как вы хотите настроить свой сабвуфер.

Если не считать мутного звука, неправильная установка кроссовера не позволяет сабвуферу увеличивать громкость так, как это было задумано.Но он также делает кое-что еще. Если ваши динамики настроены неправильно, они будут принимать частоты, на которые они никогда не рассчитывались. То, что они не могут воспроизводить 20 Гц, не означает, что они не пытаются как сумасшедшие!

В результате получается мутный звук во всем диапазоне частот, для которого они лучше подходят. Просто все вокруг плохо. Из-за этого мы хотим быть уверены и оптимизировать наши настройки.

Как кроссовер помогает правильно настроить сабвуфер

Кроссовер встроен в каждую двухполосную или большую акустическую систему.Он контролирует, какие частоты какому драйверу идут. Без кроссовера твитер получал бы тот же сигнал, что и вуфер, и наоборот. Всегда лучше, когда каждый драйвер получает тот диапазон частот, для которого он разработан. Теперь, если вы возьмете этот принцип и примените его к сабвуферу, вы получите то же самое. Сабвуфер подобен низкочастотному динамику для ваших основных динамиков — только тот, который отделен сам по себе.

Установите частоту кроссовера, при которой ваши основные динамики могут комфортно обрабатывать звук выше точки кроссовера.Сабвуфер позаботится обо всем, что ниже этой точки. THX рекомендует 80 Гц для большинства систем. Однако некоторые сателлитные колонки не могут воспроизводить очень низкие частоты. И наоборот, некоторые (конечно, не все) большие колонки типа «башня» воспроизводят почти полнодиапазонный звук. Для этого могут потребоваться пользовательские настройки.

Работа с разными динамиками

Некоторые системы упрощают настройку кроссовера, поскольку все динамики совпадают и имеют одинаковую частотную характеристику. В других системах настройка кроссовера будет сложнее, потому что ваши основные динамики будут звучать ниже, чем ваши окружающие.В этих системах мы рекомендуем установить кроссовер на частоту, необходимую для самого маленького динамика в системе. Это означает, что один динамик не так низок, как другие.

Есть исключение из этого правила, однако мы не рекомендуем устанавливать кроссовер выше 100–120 Гц независимо от ваших динамиков. На таких высоких частотах ваш сабвуфер, скорее всего, будет издавать приглушенный звук. Если у вас есть более хорошие основные динамики, но вы используете пару сателлитов в качестве окружающих, подумайте о том, чтобы установить более крупные динамики.Это может оставить некоторые пробелы в окружении, но я предпочитаю отдавать приоритет тому, откуда исходит большая часть моего звука — и это впереди.

Проверка вашей работы

Одним из лучших инструментов для проверки вашей работы при наборе настроек сабвуфера для домашнего кинотеатра является изменение частоты низких частот. Это тон, который начинается с более высокой частоты и снижается до низкой, показывая вам, как именно ваша система обрабатывает переход от основного динамика к вспомогательному.

Вы можете найти такие тона развертки в любом фильме, сертифицированном THX.Просто найдите логотип THX на передней панели, вставьте фильм и найдите приложение THX Optimizer в разделе «Дополнительно» системы меню. Если при выполнении этого теста происходит резкое падение частот, возможно, вам придется либо изменить частоту кроссовера, чтобы она была выше. Возможно, вам даже придется немного переставить субмарину. Это может помочь вам увидеть, изменяет ли он акустические эффекты на низких частотах.

Вам нужен приятный плавный переход от начальной частоты 200 Гц к конечной частоте 20 Гц.У вас никогда не будет идеально плавного перехода, но вы хотите приблизиться к нему как можно ближе. Используйте этот тест, чтобы установить оптимальную настройку кроссовера.

Настройки кроссовера оптимизатора THX

Для получения правильных настроек сабвуфера необходимо знать размер громкоговорителей. Мы определили большие и малые динамики выше, однако, это требует некоторого повторения, потому что… ну, честно говоря, никто не хочет меня слушать. Меня не волнует, если ваши динамики 6 футов высотой — если они не могут воспроизводить до 20 Гц, вы должны установить их на «Маленький».Таким образом, настройка размера динамика вообще не соответствует размеру динамика. Речь идет о расширении частоты, особенно в нижней части.

Экранное меню настройки динамиков Yamaha

Когда вы устанавливаете динамик на «Маленький», вы позволяете сабвуферу выполнять свою работу. И это хорошо. Это снижает нагрузку на динамик, связанную с воссозданием самых низких частот (которые перемещают драйвер больше, чем более высокие частоты, хотя и с меньшей скоростью). Это дает новую жизнь вашим основным динамикам.Теперь они могут воспроизводить частоты, с которыми они наиболее близки и способны. И ваш сабвуфер тоже «счастлив», потому что он привлекает внимание низкими басами. Это действительно беспроигрышный вариант, как ни крути.

Как работает канал LFE

Таким образом, установка для динамика Small позволяет сабвуферу заниматься чем-то другим, кроме воспроизведения этого выделенного канала LFE (помните это?). LFE жестко запрограммирован в звуковую дорожку 5.1 или 7.1, но настройки управления низкими частотами добавляют к обязанностям сабвуфера, подавая им те надоедливые частоты, которые будут потеряны на ваших основных динамиках.

И мы не предполагаем, что вы, возможно, не захотите экспериментировать с некоторыми из этих настроек, но важно понимать, что происходит и как управление басами повлияет на вывод ваших низких частот. Вы хотите слышать все, и вы хотите услышать это наилучшим образом.

Перенаправление низкочастотной информации на ваш сабвуфер — отличный способ убедиться, что эти дозвуковые удары и глубокие басовые ноты получат должное звучание, которого они заслуживают. У меня были колонки Tower с частотой 32 Гц, и я все равно установил их на Small.В то время это казалось нелепым, но в итоге получилось намного лучше, и основные динамики показали средние басы и выше.

О самом сабвуфере

Если у вас есть способный AV-ресивер с адекватными регуляторами управления басами (кроссовером), всегда устанавливайте кроссовер низких частот сабвуфера на максимальное значение. Таким образом, кроссовер на сабвуфере не будет совпадать с кроссовером вашего AV-ресивера. Если вы когда-нибудь заметите огромный пик в точке кроссовера — который нельзя устранить, немного переместив сабвуфер — тогда не стесняйтесь набрать кроссовер назад, чтобы посмотреть, сможете ли вы немного сузить его.Но в целом вы хотите убедиться, что сабвуфер свободен и свободен для воспроизведения всего, что ему дано.

Также есть фазовые регуляторы на сабвуфере. У некоторых есть переключатель, который находится в положении 0 (синфазно) или 180 (не совпадает по фазе), в то время как у других сабвуферов есть вращающийся диск. Если вы не можете получить плавный отклик на сабвуфере и не можете переместить его в новое место, поэкспериментируйте с этим переключателем. Регулировка фазы на сабвуфере очень похожа на то, что происходит, когда вы перемещаете его по стене. Он немного регулирует форму волны, что, в свою очередь, меняет места пиков в комнате.Мы всегда стараемся добиться наилучшего звучания при настройке 0, но регулировка фазы может быть спасением, когда все остальное терпит неудачу.

Устанавливая громкость на сабвуфере, я обычно начинаю с более низкого уровня, пока не пойму, насколько громким он будет при воспроизведении моих фильмов и музыки. Как только вы знаете, что вас не снесет, вы обычно можете установить его в средней точке и перейти оттуда. После настройки AV-ресивер будет управлять громкостью с этого момента. Эти особые настройки сабвуфера для использования в домашнем кинотеатре гарантируют, что вы полностью используете потенциал каждого компонента.

Теперь экспериментируйте!

Надеюсь, этой информации достаточно для того, чтобы вы попрактиковались. После небольшой практики получение правильных настроек сабвуфера займет очень мало времени. Что вам действительно нужно, так это система, которая играет хорошо и громко, красиво и тихо, но без искажений. Используйте эти основные принципы, и вы добьетесь превосходного звука в домашнем кинотеатре, который вызовет у ваших соседей зависть… или действительно, очень злость, в зависимости от того, пригласите ли вы их послушать вместе с вами!

Есть ли другие предложения по получению наилучших низких частот или настройке сабвуфера? Дайте нам знать в комментариях ниже.

Схема фильтра нижних частот для сабвуфера

В сообщении объясняется простая схема фильтра нижних частот, которая может использоваться в сочетании с усилителями сабвуфера для получения экстремальных срезов или низких частот в регулируемом диапазоне частот 30 и 200 Гц.

Как это работает

Несколько схем фильтра нижних частот для сабвуфера представлены повсюду в сети, однако этот пример является усовершенствованным.

В схеме, представленной здесь, используется высокоэффективный операционный усилитель TL062 от ST Micro electronics.TL062 — это двойной операционный усилитель J-FET с высоким входным сопротивлением, демонстрирующий минимальное энергопотребление и большую скорость нарастания напряжения.

Операционный усилитель обладает выдающимися цифровыми атрибутами, а также исключительно совместим с этой схемой.

Между двумя операционными усилителями внутри TLC062 один соединен в виде смесителя с каскадом предварительного усилителя. Левый / правый каналы связаны с инвертирующим входом IC1a для микширования.

Коэффициент усиления первого каскада можно настроить с помощью POT R3. Выход 1-го каскада подключается к входу следующего каскада через схему фильтра, содержащую части R5, R6, R7, R8, C4 и C5.

Второй операционный усилитель (IC1b) функционирует как буфер, а отфильтрованный выходной сигнал может быть получен на выводе 7 TLC062.

Если вы хотите создать свой собственный фильтр нижних частот с помощью одной микросхемы IC 741 и настроить его, то следующее обсуждение может помочь!

Простая активная схема фильтра нижних частот с использованием IC 741

В электронике схемы фильтров в основном используются для ограничения прохождения определенного диапазона частот, в то же время допуская использование некоторого другого диапазона частот в последующих каскадах схемы.

Типы фильтров нижних частот

В первую очередь существует три типа частотных фильтров, которые используются для вышеупомянутых операций.

Это: фильтр низких частот, фильтр высоких частот и полосовой фильтр.
Как следует из названия, схема фильтра нижних частот позволяет использовать все частоты ниже определенного установленного диапазона частот.

Схема фильтра верхних частот разрешает только частоты, которые выше, чем предпочтительный установленный диапазон частот, в то время как полосовой фильтр разрешает только промежуточную полосу частот переходить к следующему этапу, запрещая все частоты, которые могут быть вне этого диапазона. установить диапазон колебаний.

Фильтры обычно изготавливаются с двумя типами конфигураций, активным типом и пассивным типом.
Фильтр пассивного типа менее эффективен и включает сложные цепи катушек индуктивности и конденсаторов, что делает устройство громоздким и нежелательным.

Тем не менее, они не требуют для работы каких-либо требований к мощности, а это преимущество слишком мало, чтобы считаться действительно полезным.

В отличие от этого активного типа фильтры очень эффективны, могут быть оптимизированы до точки и менее сложны с точки зрения количества компонентов и расчетов.

В этой статье мы обсуждаем очень простую схему фильтра нижних частот, которую попросил один из наших заядлых читателей мистер Буржуазия.

Глядя на принципиальную схему, мы можем увидеть очень простую конфигурацию, состоящую из одного операционного усилителя в качестве основного активного компонента.
Резисторы и конденсаторы имеют дискретные размеры для отключения 50 Гц, что означает, что никакая частота выше 50 Гц не может пройти через цепь на выход.

Принципиальная схема

Фильтр нижних частот сабвуфера с использованием транзисторов

На принципиальной схеме показана схема активного фильтра нижних частот, которой можно назначить любую предпочтительную точку отсечки в большом диапазоне, легко вычислив пару величин для четыре конденсатора.Фильтр включает RC-сеть и пару NPN / PNP BJT.

Указанные характеристики транзистора могут быть сразу заменены некоторыми другими разновидностями без изменения функциональности схемы. Используемое напряжение питания должно быть от 6 до 12 В.

Значения конденсаторов, выбранные для C1 — C4, определяют частоту среза. Эти величины могут быть получены из следующих двух формул:

C1 = C2 = C3 = 7,56 / fC

C4 = 4.46 / fC

Здесь fC обеспечивает желаемую частоту среза (в герцах). В этой формуле амплитудный отклик уменьшается на 3 дБ, а значения для C1 — C4 рассчитываются в микрофарадах (если мы используем единицу измерения в кГц, результат будет представлен в значениях нанофарад, а установка МГц создаст единицы пикофарад). Например, рассчитанный эффект показан для фильтра, построенного с C1 = C2 = C3 = 5n6 и C4 = 3n3.

«Точка -3 дБ» в этом сценарии развивается на частоте 1350 Гц.На октаву больше, при 2700 Гц затухание уже составляет 19 дБ.

Для технического объяснения схемы вы можете обратиться к данным, предоставленным здесь.

Что такое фильтр высоких частот?

Первая половина вопроса проста, вторая касается очень важной мысли о том, что такое сабвуфер и где его следует оставить, и ваши громкоговорители начинают зарабатывать. REL думает об этом по-другому и с большим уважением к артистам всех жанров — музыкальным артистам, звукорежиссерам фильмов и дизайнерам акустических систем, создавших вашу акустическую систему — как уникально одаренным артистам, которые доставляют вам поистине волшебный опыт.Мы поговорим об этом подробнее позже в этом посте.

Давайте начнем с того, что такое фильтр высоких частот? Название говорит само за себя: фильтр высоких частот пропускает более высокие частоты. Все звуковые системы начинаются с компонента Source. Это может быть проигрыватель компакт-дисков, в наши дни он, скорее всего, будет стримером, может даже смартфон, отправляющий информацию через BlueTooth в вашу систему. Каким бы ни было его происхождение — и для чистого качества звука тех, которые я перечислил, лучшие проигрыватели компакт-дисков и транспортные устройства / ЦАП по-прежнему обеспечивают лучший звук со значительным запасом — звук исходит от источника, проходит через электронное сердце вашей системы к вашим динамикам. .

Даже если вы о них не подозреваете, в ресиверах есть предусилители и усилители мощности. Интегрированные усилители просто объединяют предусилитель и стереоусилитель мощности в одно шасси. Большинство систем высочайшего качества имеют отдельные предусилители и усилители мощности, поскольку это дает наибольшую свободу в формировании звука именно таким, каким его хотят слышать их владельцы, поскольку каждый компонент имеет свою собственную звуковую сигнатуру. Оттуда звук проходит по акустическим кабелям, ВЕСЬ ДИАПАЗОН, к вашим громкоговорителям.

Фильтр высоких частот вставляется между предусилителем и усилителем мощности — он находится в сабвуферах наших конкурентов — и отсекает низкие частоты. Во-первых, позвольте мне объяснить, почему существуют эти фильтры, потому что на бумаге это звучит привлекательно. Вставив фильтр высоких частот, можно (теоретически) восстановить 3 децибела громкости вашей системы и снять напряжение низких басов, создаваемых вашими динамиками. Это в значительной степени верно, хотя можно спорить о том, действительно ли задействованные динамики могут справиться с этим дополнительным выходом.Но пока давайте согласимся, что это заявленные преимущества.

Они не говорят вам, что, пытаясь максимизировать децибелы, вы можете разрушить тщательно приобретенные звуковые качества тех динамиков, за которые вы, вероятно, хорошо заплатили. Это особенно верно, чем лучше ваши колонки.

Кроме того, вот почему мы, , не используем фильтры высоких частот. Во-первых, мы ожидаем, что наши клиенты обычно тщательно обдумывают, какие колонки им приобрести.Мы предполагаем, что они слушали несколько динамиков и в конечном итоге сделали выбор в пользу пары динамиков, которые воспроизводят музыку наиболее удовлетворительным образом и звучат так, как их уши воспринимают музыку как звук.

Позвольте мне заявить, что наши клиенты, вероятно, изрядно потрудились, чтобы найти акустические системы, которые им нравятся. Они вполне могли таскать своего партнера из магазина в магазин, покупать не те проклятые колонки (не раз, если вы были упрямы и, честно говоря, по крайней мере, некоторые из них тоже были большими и уродливыми) жили с ними, прежде чем, наконец, научиться доверять своему собственному опыту и купить пару, которая, наконец, звучала великолепно — как бы вы ни определяли «отлично».Слушайте внимательно, это , а не , наша работа — испортить всю эту тяжелую работу.

Мы говорим, что не наша работа ставить под угрозу жизнь великого дизайнера акустических систем. На наш взгляд, такие люди, как Дэвид Уилсон (покойный из Wilson Audio), Ричард Вандерштин (несколько лет назад Гейл Сандерс из Martin-Logan), Франко Серблин (из классического Sonus Fabers) потратили всю жизнь, оттачивая свое мастерство, а не в отличие от мастеров-музыкантов. То, что они делали или делали, как некоторые уже приняли, возможно, никогда больше не будет воспроизведено.Я не настолько эгоистичен, чтобы думать, что глубокий бас, обработанный способом цифрового вырезания и вставки, предлагаемым нашими конкурентами, важнее, чем проникновение в самую суть музыки.

Позвольте мне четко заявить, что низкие басы должны только возвышать и освещать главное событие. Таким образом, мы обрабатываем переходную зону между тем, где REL вступают во владение, и громкоговоритель естественным образом исчезает, как драгоценные украшения.

Во-вторых, мы знаем, что фильтры не работают как двухпозиционный переключатель на указанной частоте.Вместо этого фильтр затухает на октаву или больше. Вкратце, октава — это музыкальный термин, который выражается простой математикой как уменьшение частоты вдвое. Итак, когда апологеты фильтров высоких частот заявляют, что им нужен фильтр высоких частот 70 Гц для защиты их динамиков от низких басов, это на самом деле означает, что фильтр начинает изменять звук музыки на частоте 120 Гц, потому что, по определению, он будет понижен на единица громкости, называемая децибелом (по соглашению мы используем –3 дБ, а на практике мы ищем –6 дБ как значение, когда речь идет о том, чтобы не допустить попадания басов в динамик).

Для того, чтобы этот фильтр верхних частот работал и снизился на –6 дБ, вам нужно начать спад на 120 Гц в таблице ниже, и вы не доберетесь до –6 дБ до 70 Гц. Это означает, что вы начинаете примерно на октаву выше (140 Гц), чтобы спад на 70 Гц. Это означает, что вы настраиваете свою речь так, чтобы она прерывалась перед самыми низкими нотами голоса тенора или расцветом акустической гитары. Если ваши колонки не справляются с этим, вам действительно нужно стать лучше.

Я позаимствовал таблицу ниже в Sweetwater Music, одном из моих любимых онлайн-магазинов профессиональных аудио и музыкальных инструментов.

Для более качественных динамиков вам нужно снизить эту частоту примерно до 30 Гц и ниже. Попытка устранить по-настоящему глубокие басы означает, что вам нужно начать откат над бас-барабаном в рок-группе с частотой 60 Гц. Действительно? В некоторых случаях вы тратили 10 000–100 000 долларов на покупку удивительно динамичных динамиков только для того, чтобы разрушить их мощный средне-басовый отклик? Что затем разрушает средние частоты… вы поняли.

Негативные компромиссы FAR перевешивают практические преимущества.Купите хорошую пару динамиков независимо от вашего бюджета. Бюджет студента или молодого специалиста? Будьте изобретательны. Мне нравится маленький SPEAKERBOX 5 от Pro-Ject Audio, который в США стоит около 399 долларов. Он не обязательно должен быть безумно дорогим. Эти маленькие красотки звучат как музыка с невероятным твитером с мягким куполом, который можно слушать всю ночь. Они, вероятно, не делают ни одной ноты баса ниже 65 Гц, но соединяют их с T / 5i, и у вас есть потрясающая музыкальная система, в которой нет необходимости перечеркивать басы, если вы не хотите слушать на уровнях, которые вас вышибут. вашей квартиры.

Итак, чтобы подвести итог, REL не использует фильтры высоких частот. Мы предлагаем купить приличную пару динамиков независимо от вашего бюджета. Затем купите правильный партнерский REL, звуковое воздействие, которое обеспечивает один из наших сабвуферов, трудно переоценить.

Теперь вы можете вернуться к наслаждению музыкой и домашним кинотеатром, зная, почему вы наслаждаетесь богатым естественным звуком, которого мы все жаждем.



24 марта 2021 г. — Опубликовано в: Принципы звука

Активный фильтр низких частот сабвуфера

Рис. 1: Плата активного фильтра нижних частот сабвуфера.

В этой статье представлен простой активный фильтр нижних частот второго порядка с регулируемой частотой среза от 20 до 200 Гц. Схема, в которой используется один источник питания, работает с аудиосигналом малой мощности (то есть с линейными уровнями аудиосигнала) и предназначена в качестве фильтрующего элемента перед усилителем мощности звука, управляющим громкоговорителем сабвуфера. Дизайн основан на традиционной топологии Саллена-Ки, которая предлагает простые вычисления и реализацию, хотя коэффициент качества невысок. Более простой альтернативой этой схеме является пассивный фильтр нижних частот сабвуфера.

1 — Характеристики цепи

Рисунок 2: Принципиальная электрическая схема

Поведение фильтра было проверено как с помощью моделирования LTSpice, так и с помощью необработанных измерений с помощью звуковой карты ПК и программного обеспечения Visual Analyzer. На следующих изображениях модули передаточных функций представлены в случае установки потенциометра на самую низкую частоту среза (рисунок 3) и максимальную частоту среза (рисунок 4). Можно отметить, что две кривые в основном равны, за исключением высоких частот, где низкая чувствительность звуковой карты и шум не позволяют провести точное измерение.Наклон всегда составляет -40 дБ за декаду из-за фильтра второго порядка. Рисунок 3: Модуль передаточной функции схемы в дБ в случае частоты среза 20 Гц, полученный путем измерения в реальной цепи с помощью звуковой карты ПК и программного обеспечения Visual Analyzer. Разница между двумя кривыми на высоких частотах связана с низкой чувствительностью и шумом звуковой карты компьютера. По оси абсцисс использована логарифмическая шкала. Если частота среза составляет 20 Гц, резонансный пик отсутствует; напротив, этот пик появляется при f c = 200 Гц.Это согласуется с процессом проектирования, описанным в разделе 2, поскольку неравенство, допускающее отсутствие пика, было оценено для R P = R до , то есть для f c = 20 Гц. Пик резонанса в любом случае приемлем. Рисунок 4: Модуль передаточной функции схемы в дБ в случае частоты среза 200 Гц, полученный путем измерения в реальной цепи с помощью звуковой карты ПК и программного обеспечения Visual Analyzer. Разница между двумя кривыми на высоких частотах связана с низкой чувствительностью и шумом звуковой карты компьютера.По оси абсцисс использована логарифмическая шкала.

Отрицательной стороной фильтра является плохо сбалансированный потенциометр: линейное изменение его сопротивления не соответствует линейному изменению частоты среза. Ниже представлена ​​зависимость частоты среза от сопротивления потенциометра. Рис. 5: Изменение частоты как функция потенциометра.

2 — Конструкторские примечания

Реализация схемы несложная, так как использовались очень распространенные компоненты, ее размер и сложность невелики.Плата, показанная на рисунке 1, имеет размеры 4 см x 5 см и, следовательно, является частью европейского стандарта Eurocard, который имеет размер 160 мм x 100 мм. Разъемов три: один для аудиовхода, один для аудиовыхода и один для источника питания.

Рис. 6: Шелкография и печатная плата фильтра.

3 — Модификация стереовхода

Схема изначально была спроектирована так, чтобы иметь моновход. Самые низкие частоты, обозначенные значком, обычно одинаковы для правого и левого стереоканалов, поскольку наши уши не могут различить их пространственное происхождение.По той же причине обычно используются два динамика, один для правой стороны и один для левой стороны, для средних и высоких частот, но только один сабвуфер в центре. По просьбам в комментариях предлагается два решения:

  • Подключите ко входу фильтра только левый канал (L канал), так как басовые сигналы одинаковы на обоих каналах;
  • Измените схему, как показано на рис. 7;

При модификации схемы входное сопротивление R z и конденсатор CP1 не следует припаивать, а вместо них ставить два резистора с удвоенным значением вместе с их разделительными конденсаторами.Рис. 7: Модификация входа фильтра для получения стереовхода. R z и CP1 должны быть заменены двумя резисторами, включенными параллельно с двойным значением, вместе с их разделительными конденсаторами.

4 — Конструкция: каскад развязки и поляризации

Первый каскад схемы представляет собой неинвертирующий усилитель, который обеспечивает развязку входных напряжений фильтра и смещение сигнала путем суммирования половины напряжения питания.В традиционном неинвертирующем усилителе V IN подключается непосредственно к неинвертирующему выводу операционного усилителя; в этой конфигурации усиление составляет: В этом случае V IN — это напряжение после резистивной сети, составленной из R 1 , R 2 и R z . Чтобы вычислить V IN1 , мы можем использовать наложение эффектов, следуя процедуре, аналогичной той, которая обычно используется для определения поляризации в схемах традиционных биполярных транзисторов.Напряжение будет суммой двух элементов: компонента V 1 IN , относящегося к входному напряжению V IN , и V 1 alim , полученного из напряжения источника питания V alim . :

Чтобы найти значение V 1 alim , мы можем рассматривать конденсатор C P1 как разомкнутую цепь, так как V alim — это постоянное напряжение: В то время как для определения напряжения V 1 IN мы можем считать V alim = 0 В, и поэтому мы можем заменить источник питания коротким замыканием (как того требует метод наложения): Суммируя два результата, получаем:

Коэффициент усиления неинвертирующего усилителя не зависит от сопротивлений, которые появляются в выражении V IN1 , и поэтому для простоты мы можем положить его равным константе: Таким образом, общий коэффициент усиления неинвертирующего каскада составляет:

4.1 — Выбор значений компонентов

Чтобы найти значения компонентов, мы можем сделать некоторые краткие соображения: мы решаем, что напряжение V IN сообщается без изменений на выходе; для правильной поляризации сигнала необходимо суммировать половину напряжения источника питания с V IN ; наконец, мы выбрали α = 2, поскольку это позволяет нам использовать R F = R G . Теперь мы можем написать систему уравнений на основе коэффициентов усиления V IN e V alim : И, решая ее, получаем: Чтобы завершить информацию о системе, мы можем вычислить входное сопротивление всей цепи: Выбирая R 2 = 33 кОм и учитывая приближение серии E12, мы получаем хорошие значения: R 1 = 100 кОм, R z = 22 кОм, R в = 63 кОм.

4.2 — Конденсаторы развязывающие

Конденсатор C P1 блокирует ток поляризации цепи, поэтому он не течет в устройство, подключенное ко входу. Другими словами, это фильтр верхних частот со следующей частотой среза: Мы предполагаем, что частота среза этого фильтра намного ниже минимальной рабочей частоты схемы, например 1 Гц. Поскольку R в = 66 кОм, получаем C = 2,5 мкФ.Конденсатор емкостью 47 мкФ более чем достаточен для развязки. Аналогичные соображения можно сделать для C P2 , заменив на R в сопротивление нагрузки; это сопротивление будет довольно высоким, так как это вход усилителя.

5 — Конструкция: фильтр

Следующий этап — настоящий фильтр. В Интернете существует множество доказательств для вычисления его передаточной функции, среди которых одно из Википедии: топология Саллена-Ки. Вот: где R P — значение, принимаемое потенциометром P 1 .Анализируя этот многочлен, можно извлечь некоторые математические выражения, полезные в процессе проектирования.

5.1 — Расчетные уравнения

Если знаменатель имеет два действительных полюса, диаграмма Боде передаточной функции начнет понижаться на первом полюсе с наклоном -20 дБ / декада; на втором полюсе крутизна уменьшится до конечного значения -40 дБ / декада. Если, наоборот, знаменатель имеет два полюса комплексного сопряжения, будет присутствовать только одна частота среза с асимптотическим наклоном -40 дБ / декада.Это лучшее состояние для фильтра. Чтобы получить это с математической точки зрения, мы предполагаем, что знаменатель имеет отрицательный дискриминант: В этом случае частота среза равна:

Для определения размера компонентов фильтра мы можем использовать выражение его частоты среза. Когда потенциометр находится в конце или в начале, R P будет R до , что является общим сопротивлением потенциометра, или будет 0 Ом. В этих двух случаях результирующие частоты среза будут соответствовать минимальному или максимальному допустимому, то есть f 0 = 20 Гц и f 1 = 200 Гц.Формула частоты среза сводится к: Подставляя предельные частоты и решая систему уравнений, составленную из двух предыдущих уравнений, получаем:

Другое расчетное условие может быть получено с помощью выражения добротности. Если передаточная функция имеет комплексно сопряженные полюса, может возникнуть резонансный пик на частоте среза. Чтобы удалить этот пик, необходимо ограничить добротность фильтра Q:

5.2 — Графический выбор значений компонентов

Вернемся к полезным уравнениям, написанным до сих пор: По порядку, это уравнение, полученное из минимальной и максимальной частоты среза, условия дискриминанта для наличия комплексно сопряженных полюсов и условия добротности для избежания резонансных пиков.

Первое из трех уравнений содержит все значения компонентов, которые необходимо вычислить. Чтобы выбрать их легко и интуитивно, кривая была построена графически, задав параметры C 1 e C 2 , R A по оси абсцисс и R B по оси ординат. На том же графике область, где верно первое неравенство об отрицательном дискриминанте, была окрашена в зеленый и желтый цвета; область, окрашенная только зеленым цветом, — это место, где проверяется второе неравенство об ограничении добротности.Два неравенства оцениваются при условии, что потенциометр имеет максимальное значение, то есть R P = R до = 99R A . Окончательный график, построенный с помощью Производного 6, показан на следующем рисунке для C 1 = 4,7 мкФ и C 2 = 100 нФ: Рис. 8: График, используемый на этапе проектирования для выбора компонентов фильтра. Установив параметрические значения для C 1 и C 2 , можно построить график.Значения R A и R B можно выбрать в зеленой зоне, то есть в зоне, где справедливы оба неравенства. Значения, например, следующие: R A = 1,2 кОм, R B = 1,2 кОм, R до = 120 кОм.

Библиография и другие документы

  1. Пассивный фильтр нижних частот сабвуфера
  2. Топология Саллена-Ки
  3. Европейский стандарт Eurocard
  4. Visual Analyzer
  5. LTSpice

Что такое фильтр нижних частот и как работают фильтры низких частот? — Мой новый микрофон

Изучая и практикуясь в производстве музыки или звукорежиссуры, вы обязательно столкнетесь с фильтрами нижних частот.Фильтры нижних частот — это мощные инструменты, которые используются в эквализации и в общем звуковом дизайне.

Что такое фильтр нижних частот? Фильтр нижних частот (LPF) — это процессор аудиосигнала, который удаляет нежелательные частоты из сигнала выше определенной частоты среза. Он постепенно отфильтровывает (ослабляет) верхние частоты выше его частоты среза, позволяя проходить нижним частотам, в идеале без каких-либо изменений.

В этой статье мы подробно рассмотрим фильтры нижних частот, расскажем, как они работают, как они устроены и как они используются не только в эквалайзере, но и в других приложениях, имеющих отношение к звуку.

По завершении этой статьи я понял, насколько глубока теория фильтров. Стремясь сделать эту статью краткой (она все еще превышает 6000 слов), я включил только самую важную информацию о звуковых фильтрах нижних частот. Пожалуйста, используйте оглавление, чтобы обойти это руководство!


Содержание


Что такое фильтр нижних частот?

Первый абзац ответа — достойное определение фильтра нижних частот, но он оставляет многое для объяснения.Итак, давайте обсудим, что такое фильтр нижних частот и как он работает, начиная с основ.

Итак, мы знаем, что фильтр нижних частот пропускает низкие частоты ниже определенной точки среза, отсюда и название. Фильтры нижних частот иногда называют фильтрами верхних частот, название которых изображает обрезание высоких частот выше определенной точки среза.

Идеальный фильтр нижних частот

В идеале, мы бы хотели, чтобы наш фильтр нижних частот просто отсекал все частоты выше его частоты среза и оставлял все частоты ниже его частоты среза нетронутыми.Этот тип «кирпичной стены» фильтра нижних частот недоступен на практике, но теоретически он будет выглядеть так:

На этой простой диаграмме у нас есть частота (в герцах) по оси абсцисс и относительная амплитуда (в децибелах) по оси ординат.

Герц означает количество циклов в секунду. Поскольку аудиосигналы являются сигналами переменного тока, они имеют циклическую форму волны. При преобразовании в звуковые волны эти формы волны можно услышать как колеблющиеся молекулы воздуха. Общепринятый диапазон слышимости людей составляет от 20 Гц до 20 000 Гц.Таким образом, большинство аудиосигналов попадают в этот диапазон (во избежание обилия непонятной информации).

Децибелы (десятая часть бел) — это относительные единицы измерения, используемые для выражения отношения одной величины к другой в логарифмической шкале. Что касается амплитуды сигнала, разница в 3 дБ будет представлять собой удвоение / уменьшение вдвое значений мощности (мощности и, в конечном итоге, интенсивности звука), а разница в 6 дБ будет удвоением / уменьшением вдвое основных величин мощности (напряжение / ток и, в конечном итоге, уровень звукового давления). ).

Статьи по теме:
• Что такое децибелы? Полное руководство по дБ для аудио и звука
• Единицы измерения и префиксы в звуковой и аудиоэлектронике

На графике выше мы имеем резкую частоту среза на уровне 1 кГц. Никакие частоты выше этого среза не передаются, и все частоты ниже этого среза передаются безупречно.

Хотя это невозможно получить аналоговыми или цифровыми средствами, существуют способы приблизить этот тип фильтра нижних частот.

В аналоговых ФНЧ увеличение порядка фильтрации приближает нас к крутизне идеального фильтра около частоты среза.

Цифровые фильтры

In можно также запрограммировать для приближения к такому идеальному «кирпичному» фильтру.

Подробнее об этом позже.

Реальные фильтры нижних частот

Хотя мы можем довольно близко подойти к идеальным ФНЧ, обычно у нас будет какой-то спад после частоты среза, а не строгий срез.

Таким образом, типичный фильтр нижних частот можно легко визуализировать на следующей диаграмме эквалайзера:

Мы можем видеть на изображении, что выше определенной частоты фильтр начинает ослаблять / фильтровать частоты с устойчивым отрицательным наклоном (амплитуда уменьшается по мере увеличения частоты).Мы также замечаем определенную частоту f H , которая является частотой среза (я определяю ее как f H для «высокой частоты среза», а не f C , которую можно спутать с «центром». частота в других типах фильтров).

Обратите внимание, что частота среза не возникает сразу после начала фильтрации. Скорее, частота среза представляет собой точку -3 дБ затухания фильтра. Как мы вкратце обсуждали, это частота, на которой фильтр снижает мощность сигнала вдвое.Это определение частоты среза используется в фильтрах нижних и верхних частот, полосовых и других фильтрах.

Полоса пропускания, задержка и переходная полоса LPF

Обратите внимание, что технически фильтр нижних частот будет иметь полосу пропускания (диапазон пропускаемых частот), которая находится в диапазоне от 0 Гц до частоты среза.

Полоса задерживания будет в какой-то момент за полосой пропускания, когда затухание достигнет достаточной точки (например, -50 дБ). В идеальном фильтре полоса пропускания идет до частоты среза, а полоса задерживания — это все, что выше этой частоты среза.Однако в реальных условиях фильтры нижних частот работают немного иначе.

LPF обычно имеют полосу перехода между полосой пропускания и полосой задерживания, где фильтр будет эффективно уменьшать амплитуду сигнала. Ширина полосы перехода зависит от крутизны спада, которая определяется порядком и типом фильтра.

Фильтр низких частот Заказ

Фильтры часто определяются их порядком. С простыми фильтрами, такими как фильтр нижних и верхних частот, порядок фильтра в значительной степени относится к крутизне переходной полосы (также известной как скорость спада).

Технически порядок фильтра — это минимальное количество реактивных элементов, используемых в цепи. В аналоговых звуковых фильтрах нижних частот эти реактивные элементы почти всегда будут конденсаторами (хотя в определенных ситуациях могут использоваться катушки индуктивности). Мы обсудим это позже в разделе «Аналоговые против». Цифровые фильтры нижних частот.

Итак, порядок фильтра нижних частот по определению является целым числом (мы не можем иметь долю реактивного компонента в цепи), и он влияет на крутизну спада переходной полосы фильтра.

Для стандартных фильтров нижних частот Баттерворта каждое целое число увеличивает крутизну спада на дополнительные 6 дБ на октаву или 20 дБ на декаду.

Обратите внимание, что октава определяется как удвоение (или уменьшение вдвое) частоты, а декада определяется как десятикратное увеличение (или уменьшение) частоты.

Также обратите внимание, что стандартный фильтр Баттерворта поддерживает указанную выше взаимосвязь между порядком и скоростью спада. Другие типы фильтров предлагают другие отношения.Подробнее об этом позже.

А пока давайте рассмотрим следующий график, который показывает 5 различных фильтров нижних частот Баттерворта с порядками от 1 до 5:

Частота среза (точка -3 дБ) каждого фильтра составляет 1 кГц. Скорость спада и переходная полоса (которая может быть ограничена отметкой ослабления -50 дБ) изменяются в зависимости от порядка фильтра.

Мы видим, что по мере увеличения порядка фильтр нижних частот становится все ближе к идеальному фильтру.

Коэффициент добротности фильтра нижних частот

Некоторые фильтры нижних частот имеют регулировку добротности. Это особенно касается плагинов параметрического эквалайзера и блоков цифрового эквалайзера, где фильтр не предназначен для какого-либо определенного типа (Баттерворт, Бессель, Чебышев, Эллиптический и т. Д.).

Для получения дополнительной информации о параметрическом эквалайзере ознакомьтесь с моей статьей «Полное руководство по параметрической эквализации / эквалайзеру».

Коэффициент добротности несколько произвольный. Хотя у него есть свои определения, у многих производителей есть свои собственные технические расчеты для параметра Q.

Однако, в общем смысле, увеличение добротности ФНЧ приведет к увеличению крутизны спада, вызывая формирование резонансного пика на частоте среза и выше.

И наоборот, уменьшение добротности LPF увеличит затухание на частоте среза и выше, в то же время делая крутизну спада более плавной.

Эквалайзеры, которые предлагают регулировку Q-фактора на фильтре нижних частот, обычно имеют график, показывающий, как фильтр влияет на сигнал.

Фильтры нижних частот и фазовый сдвиг

Важно отметить, что в типичных аналоговых фильтрах, таких как стандартный фильтр Баттерворта, будет частотно-зависимый фазовый сдвиг между входным сигналом фильтра / эквалайзера и его выходным сигналом.

Вообще говоря, каждый реактивный компонент в аналоговом фильтре вносит в сигнал фазовый сдвиг на 90 °. Для аналоговых фильтров нижних частот (и цифровых фильтров, которые стремятся воссоздать их в цифровом виде) это означает, что при целочисленном увеличении порядка фильтрации будет происходить сдвиг фазы на 90 °.

В стандартных фильтрах нижних частот Баттерворта половина общего фазового сдвига приходится на частоту среза.

Вот визуальное представление фильтра нижних частот Баттерворта первого порядка с графиками амплитуды-частоты и фазы-частоты:


Аналог Vs. Цифровые фильтры нижних частот

Ключевое различие между аналоговыми и цифровыми фильтрами нижних частот состоит в том, что аналоговые фильтры работают с аналоговыми аудиосигналами, а цифровые фильтры работают с цифровыми аудиосигналами.

В схемах аналогового аудио LPF используются аналоговые компоненты, такие как резисторы и конденсаторы (в активных схемах LPF используются активные компоненты, такие как операционные усилители). С другой стороны, цифровые фильтры LPF либо встроены в микросхемы цифровых микросхем, либо в программное обеспечение.

Давайте обсудим каждую подробнее, не так ли?

Аналоговые фильтры нижних частот

Аналоговые фильтры проще объяснить, поскольку они сделаны из реальных аналоговых схем, которые относительно легко понять.Обратите внимание, что я не инженер-электрик, и цифровые схемы / программирование выходят за рамки моих знаний.

Итак, в этой статье я постараюсь объяснить, как работают аналоговые фильтры нижних частот. Обратите внимание, что многие цифровые фильтры нижних частот предназначены для воссоздания эффекта аналоговых ФНЧ.

В объяснении будет много уравнений, которые помогут нам понять.

Чтобы действительно понять основы работы фильтра нижних частот, мы можем изучить простой пассивный RC LPF первого порядка.Этот фильтр можно визуализировать с помощью следующего изображения. Обратите внимание, что «RC» относится к резистору и конденсатору, используемым в схеме.

Цепь выше можно представить как делитель напряжения:

На схеме выше мы выводим следующую формулу:

Из этой формулы можно сделать вывод, что по мере увеличения R 2 , V из увеличивается (при условии, что R 1 остается постоянным). Запомни это.

В этом уравнении делителя напряжения постоянного тока R 1 представляет сопротивление резистора, который был бы вместо резистора RC-цепи, а R 2 представляет сопротивление резистора, который был бы вместо конденсатора RC-цепь.Имейте это в виду.

Допустим, аудиосигнал на V в имеет частотное содержание от 20 Гц до 20 000 Гц (диапазон слышимости человека). Это сигнал переменного тока, а не постоянного тока. Сигналы переменного тока зависят от импеданса, который имеет как фазу, так и величину и состоит из сопротивления и реактивного сопротивления цепи.

В идеальном мире (который мы будем использовать для понимания RC-фильтров нижних частот) реактивное сопротивление резистора равно нулю, а сопротивление конденсатора равно нулю.Резистор будет обеспечивать составляющую сопротивления для общего импеданса аудиосигнала, а конденсатор будет составлять составляющую реактивного сопротивления для общего импеданса аудиосигнала.

Итак, со следующей упрощенной схемой RC-фильтра нижних частот:

У нас получилось бы следующее уравнение:

Где:
• X C — емкостное реактивное сопротивление конденсатора
• Z — полное сопротивление цепи

Помните, что полное сопротивление складывается из компонентов сопротивления и реактивного сопротивления цепи.Типичная формула импеданса:

Где X L — индуктивная емкость. Поскольку в RC-цепи нет индуктора, X L равно нулю.

Давайте быстро перепишем наше выходное напряжение RC с новой информацией:

Знакомо? Это почти то же самое, что и простой делитель напряжения.

Итак, наш RC-фильтр нижних частот можно сравнить с делителем напряжения, но для аудиосигналов переменного тока. По мере увеличения X C , также увеличивается V из (опять же, при условии, что R остается постоянным).

Как он на самом деле работает как фильтр нижних частот? Что ж, реактивная емкость уменьшается с увеличением частоты входного сигнала. Формула для этого выглядит следующим образом:

Где:
f — частота сигнала
• C — емкость конденсатора

Итак, мы имеем следующие правила RC-цепи нижних частот:

  • По мере увеличения частоты емкостное реактивное сопротивление уменьшается
  • По мере уменьшения емкостного реактивного сопротивления уровень выходного сигнала уменьшается относительно уровня входного сигнала (при условии, что сопротивление цепи остается неизменным)

В основном, как емкостное реактивное сопротивление уменьшается (по мере увеличения частоты), большая часть сигнала отправляется на землю, а не на выход.

Следовательно, в общем случае RC-цепь нижних частот начнет ослаблять более высокие частоты, и по мере увеличения частоты схема будет ослаблять больше.

Мы уже обсуждали частоту среза. Это точка, в которой полоса пропускания превращается в полосу перехода (или полосу задерживания в идеальных фильтрах). Частота среза находится в точке затухания -3 дБ. Его можно рассчитать с помощью следующего уравнения:

Где:
• R — сопротивление резистора
• C — емкость конденсатора

В качестве дополнительного уравнения мы можем вычислить вышеупомянутый фазовый сдвиг RC-фильтра нижних частот с помощью следующего уравнения:

Надеюсь, в этом есть смысл.Здесь мы рассмотрели самую простую форму аналогового RC-фильтра нижних частот.

Аналоговые фильтры, как правило, просты по конструкции, хотя их сложность увеличивается по мере приближения к характеристикам «идеального фильтра». Многие цифровые фильтры (включая плагины EQ) эмулируют эти аналоговые фильтры.

Помните, что, добавляя дополнительные наборы RC (увеличивая порядок) фильтра нижних частот, мы можем эффективно повысить крутизну спада и сократить полосу перехода.

Существует множество типов фильтров, о которых следует знать.До сих пор мы в основном сосредоточились на популярном фильтре Баттерворта. Однако есть 3 основных типа фильтров (среди многих), о которых мы должны знать, когда дело касается звука. Их:

  • Фильтр Баттерворта
  • Фильтр Бесселя
  • Фильтр Чебышева

Эти «типы» фильтров зависят от значений компонентов, используемых в конструкции фильтра, и коэффициента демпфирования, который входит в конструкцию фильтра. Изучение схем отдельных ФНЧ выходит за рамки данной статьи, но об этих популярных типах стоит знать.

Что такое фильтр Баттерворта в аудио? Фильтр Баттерворта (фильтр с максимально плоской величиной) — это линейный аналоговый фильтр, предназначенный для получения максимально плоской частотной характеристики в полосе пропускания. Фильтры Баттерворта не имеют слишком крутого спада и часто используются в полочных фильтрах низких / высоких частот и низких / высоких частот.

Чтобы узнать больше о полочных фильтрах, ознакомьтесь с моей статьей Audio Shelving EQ: Что такое фильтры для низких и высоких полок?

Что такое фильтр Бесселя в аудио? Фильтр Бесселя — это линейный аналоговый фильтр с максимально плоской групповой или фазовой характеристикой для сохранения формы волны сигналов в полосе пропускания.Фильтры Бесселя обеспечивают плавный спад частоты за пределами частоты среза и в основном предназначены для линейной фазовой характеристики с небольшим выбросом.

Что такое фильтр Чебышева в аудио? Фильтр Чебышева — это линейный аналоговый фильтр , предназначенный для очень крутого спада за счет пульсаций полосы пропускания (тип I) или пульсаций полосы задерживания (тип II / инверсия).

Вот изображение из Википедии, показывающее типичные различия между фильтрами нижних частот Баттерворта, Чебышева I / II и эллиптическими фильтрами нижних частот:

Обратите внимание, что эллиптический фильтр (также известный как фильтр Кауэра) представляет собой линейный аналоговый фильтр с выровненной пульсацией как в полосе пропускания, так и в полосе задерживания.У него очень крутая переходная полоса. Это достигается за счет комбинирования фильтра нижних частот и полосового / режекторного фильтра.

Цифровые фильтры нижних частот

Цифровые фильтры часто бывают более точными и более гибкими по конструкции из-за обширной природы цифровой обработки сигналов (DSP). Точность их конструкции делает их намного более точными по заданным параметрам, тогда как аналоговые фильтры несколько ограничены точностью их компонентов и тракта прохождения сигнала в целом.

Цифровые фильтры

также обладают такими преимуществами, как улучшенное соотношение цены и качества и более постоянный характер изменений температуры и влажности.

Аналоговые фильтры, конечно, выигрывают от работы с непрерывным спектром.

Обратите внимание, что некоторые цифровые фильтры нижних частот предназначены для имитации работы аналоговых ФНЧ. Мы часто находим упомянутые ранее типы фильтров (Баттерворта, Бесселя, Чебышева и т. Д.) В цифровых дизайнах.

Вместо использования аналоговых компонентов (конденсаторы, резисторы, операционные усилители и т. Д.)) цифровые схемы будут встроены в цифровые микросхемы (с сумматорами, вычитателями, задержками и т. д.) или, в качестве альтернативы, могут быть запрограммированы в аудиоплагины.

Цифровой фильтр нижних частот впишется в один из двух лагерей:

  • Бесконечная импульсная характеристика (БИХ)
  • Конечная импульсная характеристика (КИХ)

Что такое фильтр с бесконечной импульсной характеристикой в ​​аудио? БИХ-фильтр — это линейный, не зависящий от времени аналоговый тип фильтра (который также был оцифрован), который работает с импульсной характеристикой, которая продолжается бесконечно, никогда не становясь точно равной нулю.Фильтры Баттерворта, Чебышева, Бесселя и эллиптические фильтры являются примерами БИХ-фильтров.

Что такое фильтр с конечной импульсной характеристикой в ​​аудио? КИХ-фильтр — это фильтр (аналоговый или цифровой, хотя почти всегда цифровой), который работает с импульсной характеристикой конечной длительности, устанавливающейся на ноль в течение некоторого времени. Он хорошо подходит для линейно-фазового эквалайзера.

Говоря о линейно-фазовом эквалайзере, стоит упомянуть и об этих специализированных эквалайзерах.

Линейный фазовый эквалайзер (который почти всегда будет иметь опции фильтра нижних частот) эффективно устраняет любой фазовый сдвиг в аудиопроцессоре.

Вспомните в разделе «Фильтры нижних частот и фазовый сдвиг», как мы обсуждали неизбежный фазовый сдвиг аналоговых ФНЧ (фазовый сдвиг на 90º для каждого реактивного компонента в цепи).

Линейный фазовый эквалайзер (и фильтр нижних частот) использует цифровую обработку сигнала (DSP) для анализа частотного содержания сигнала и применения усиления к соответствующим частотам через фильтры FIR (конечный импульсный отклик), чтобы исключить любой сдвиг фазы. что возникает.

Liny EQ от Blue Cat (ссылка, чтобы узнать цену в магазине плагинов) — отличный пример плагина линейного фазового эквалайзера:

Линия эквалайзера синего кота

Для получения дополнительной информации о линейно-фазовом эквалайзере ознакомьтесь с моей статьей «Полное руководство по линейно-фазовой эквализации / эквалайзеру».

Обзор аналоговых и цифровых фильтров нижних частот

Вот небольшая таблица, обобщающая то, что мы обсуждали в этом разделе.

Аналоговый аудио LPF Цифровой аудио LPF
Фильтрует аналоговые (непрерывные) аудиосигналы Фильтры цифровых (дискретных) аудиосигналов
Изготовлен из аналоговых компонентов Встроен в цифровые микросхемы (с сумматорами, вычитателями, задержками и т. Д.)), или;
Закодировано в ПО
Ограниченная функциональность и адаптируемость Более гибкие возможности программирования
Более чувствительны к изменениям окружающей среды Менее чувствительны к изменениям окружающей среды
Аналоговые компоненты создают тепловой шум Квантование приводит к появлению цифрового шума
Более высокие производственные затраты Более низкие производственные затраты

Актив.Пассивные фильтры нижних частот

Ключевое различие между активными и пассивными фильтрами нижних частот состоит в том, что активные фильтры нижних частот требуют мощности для работы, а пассивные фильтры низких частот — нет.

Это связано с тем, что в цепи активных ФНЧ будет какой-то усилитель. Эти усилители (часто операционные усилители) получают питание от источника и используют его для усиления сигнала, проходящего через фильтр нижних частот или звуковой эквалайзер.

Обратите внимание, что метки «активный» и «пассивный» обычно применяются только к аналоговым фильтрам.Цифровые фильтры по своей конструкции активны (это относится к оборудованию, которое построено на транзисторах и программном обеспечении, требующем вычислений).

С этим праймером давайте обсудим активный и пассивный фильтры нижних частот более подробно, начав с более простого: пассивного ФНЧ.

Пассивные фильтры нижних частот

В моем объяснении аналоговых фильтров нижних частот я сосредоточился исключительно на схеме пассивного RC-фильтра нижних частот. Итак, у нас уже есть четкое представление о пассивных фильтрах нижних частот.

Еще раз, самый простой пассивный фильтр нижних частот первого порядка выглядит примерно так:

Обратите внимание, что мы можем увеличить скорость спада пассивного фильтра, добавив полюса. Однако это происходит за счет потери амплитуды сигнала (поскольку в схеме нет каскадов усиления) и ухудшается передача сигнала внутри схемы из-за плохого импедансного моста (поскольку нет буфера между полюсами или на выходе ФНЧ).

Пассивные фильтры нижних частот просты для понимания.К счастью, поскольку им поручено только срезать частоты (выше частоты среза), они не обязательно нуждаются в активном усилении.

Однако, как уже упоминалось, пассивный ФНЧ может работать плохо, поскольку он естественным образом снижает амплитуду проходящего через него сигнала (даже на нижних частотах). Также труднее найти надлежащий мостовой импеданс между выходом пассивного LPF и следующим аудиоустройством (нагрузкой).

Пассивные фильтры нижних частот все еще используются в определенных приложениях, и на рынке есть даже блоки пассивного эквалайзера, которые по определению будут иметь пассивные фильтры нижних частот (если они включают фильтр нижних частот).

Обратите внимание, что в пассивных эквалайзерах есть каскад усиления для «компенсационного усиления» после схемы (схем) фильтра. Просто в схеме (ах) фильтра нет активных компонентов.

Для получения дополнительной информации об усилении макияжа и пассивном эквалайзере, ознакомьтесь со следующими статьями «Мой новый микрофон», соответственно:
• Сжатие динамического диапазона: что такое регулировка усиления макияжа?
• Полное руководство по пассивной эквализации / EQ

Активные фильтры нижних частот

Чаще всего используется активный фильтр нижних частот.

В активных аналоговых фильтрах нижних частот обычно используются операционные усилители. Эти операционные усилители полезны для фильтров с единичным усилением (фильтров, которые поддерживают амплитуду сигнала, но не увеличивают амплитуду сигнала) и фильтров, которые действительно обеспечивают правильный каскад усиления.

Это усиление позволяет разработчикам LPF увеличивать порядок фильтра, тем самым увеличивая крутизну спада, не беспокоясь о потере общей амплитуды сигнала.

Еще одним огромным преимуществом активной конструкции LPF является улучшение выходного сопротивления фильтра.Включив операционный усилитель, мы можем установить низкий выходной импеданс на всех частотах для улучшения передачи сигнала между LPF и следующим аудиоустройством.

Вот пример активного RC-фильтра нижних частот первого порядка с единичным усилением:

Обратите внимание, что он очень похож на вышеупомянутый пассивный RC-фильтр. Основное отличие, конечно же, в операционном усилителе. В этом случае операционный усилитель не усиливает сигнал. Скорее, он поддерживает единичное усиление и обеспечивает соответствующий выходной импеданс для цепи фильтра нижних частот.

Теперь давайте посмотрим на простой RC-фильтр нижних частот первого порядка, который предлагает усиление:

Коэффициент усиления A В неинвертирующего усилителя рассчитывается по следующему уравнению, включая резистор обратной связи (R 2 ) и соответствующий ему входной резистор (R 1 ):

Коэффициент усиления всей схемы зависит от частоты (поскольку фильтр нижних частот ослабляет более высокие частоты). Это усиление можно определить с помощью следующего уравнения:

С помощью этого уравнения мы можем наблюдать следующее:

  • На низких частотах ( f < f C ): A = V out / V дюйм = A V / {малое число} ≈ A V
  • At частота среза ( f = f C ): A = V out / V in = A V / √2 = 0.707 A V
  • На высоких частотах ( f > f C ): A = V out / V in = A V / {большое количество} «A V

Если подставить 0,707 A V в следующее уравнение для децибел, мы можем подтвердить, что частота среза действительно составляет -3 дБ от единицы:

Если мы посмотрим на фильтр второго порядка (на упрощенной схеме), мы получим следующее:

Имея дело с фильтрами второго порядка (и выше), мы имеем коэффициент демпфирования в цепи.Коэффициент демпфирования этой простой топологии фильтра Саллена-Ки составляет:

Значения R F и R I участвуют в определении коэффициента усиления и демпфирования схемы. R F и R I также определяют, какой у нас фильтр: фильтр Баттерворта, Бесселя или Чебышева. Обратите внимание, что следующее применимо только к фильтру второго порядка:

  • Баттерворта:
    • R F / R I = 0,586
    • DF = 1.414
    • A V = 4 дБ
  • Bessel:
    • R F / R I <0,586
    • DF> 1,414
    • A V <4 дБ
    • Чебышев:
      • R F / R I > 0,586
      • DF <1,414
      • A V > 4 дБ

    Давайте теперь посмотрим на RC-фильтр нижних частот шестого порядка ниже:

    Возможно, первое, что следует отметить, это то, что на каждые две пары резистор-конденсатор (для каждого увеличения на два в порядке фильтра) в схеме будет операционный усилитель.Это стандарт для поддержания надлежащего каскадирования усиления и буферизации по всей схеме.

    Возвращаясь к крутизне спада, этот фильтр нижних частот будет иметь крутизну на 36 дБ / октаву или 120 дБ / декаду выше частоты среза. Этот фильтр может принимать фильтры Баттерворта, Бесселя, Чебышева или любой другой возможный «тип» фильтра нижних частот с учетом топологии. Различные соотношения R F / R I между 3 наборами будут отличаться от тех, которые определены выше для фильтра второго порядка.

    Надеюсь, я вас не запутал. Есть много других подробных ресурсов по фильтрам. Основное внимание в этой статье уделяется разработке и использованию фильтров нижних частот в аудио, поэтому я воздержусь от того, чтобы заходить слишком далеко в кроличью нору!

    Обзор активных и пассивных фильтров нижних частот

    Вот небольшая таблица, обобщающая то, что мы обсуждали в этом разделе.

    Active Audio LPF Passive Audio LPF
    Требуется питание Не требуется питание
    Включает активные и пассивные компоненты (включая операционные усилители) Включает только пассивные компоненты (резисторы, конденсаторы и т. Д.))
    Предлагает усиление выше единичного усиления (повышает в дополнение к сокращению) Не может предложить усиление выше единичного усиления (только срезы)
    Низкое выходное сопротивление (работа независимо от нагрузки) Более высокое выходное сопротивление (работа в зависимости от нагрузки)
    Более высокие производственные затраты Более низкие производственные затраты

    Можно отметить дополнительные моменты, неприменимые к аудио LPF (как и к очень высокочастотным сигналам), но в любом случае их стоит упомянуть:

    • Пассивные фильтры LPF могут включать индукторы.
    • Активные ФНЧ не могут обрабатывать такие высокие амплитуды сигнала, как пассивные фильтры, из-за операционного усилителя.
    • Активные ФНЧ имеют ограниченную полосу пропускания из-за операционного усилителя.

    Смешивание с фильтрами низких частот

    Теперь, когда мы понимаем, что такое фильтр нижних частот и как он работает, давайте рассмотрим его практическое применение, когда дело доходит до микширования звука.

    Фильтры нижних частот используются для микширования следующим образом:

    Уменьшите конкуренцию между инструментами в High-End

    Одна из наиболее важных задач звукового эквалайзера — очистка частотного спектра, чтобы инструменты были слышны.Это означает уменьшение частотных диапазонов некоторых треков, чтобы другие треки могли просвечивать в этих же диапазонах.

    Фильтры нижних частот могут эффективно устранять высокие частоты некоторых выбранных дорожек, тем самым позволяя другой дорожке (дорожкам) занять высокие частоты с улучшенной четкостью. Это также может снизить резкость всего микса.

    В high-end не так много «музыкальной» информации (гармоник). Однако, исключив «яркость» некоторых инструментов, мы можем усилить воспринимаемую яркость / воздушность других инструментов.Также ничто не мешает нам снизить частоту среза ФНЧ до среднего уровня, чтобы начать фильтрацию гармонического содержимого.

    Уменьшить шипение

    Если исходный материал записан неправильно или с использованием некачественного оборудования, шипение (среди прочего) может быть нежелательным слышимым результатом.

    Некоторое количество шипения неизбежно в аналоговом оборудовании, включая микрофоны, из-за природы электричества и электрических компонентов, которые используются в конструкции звукового оборудования.Обычно это называют «собственным шумом».

    Статьи по теме:
    • Что такое самошум микрофона? (Эквивалентный уровень шума)
    • Какое хорошее соотношение сигнал / шум для микрофона?
    • 15 способов эффективного снижения шума микрофона

    Большая часть того, что мы называем «шипением», находится в верхней части частотного спектра. Следовательно, использование фильтра нижних частот может помочь уменьшить уровень шипения в сигнале. Просто убедитесь, что вы помните о любых эффектах, которые LPF будет иметь на тон, когда вы понижаете частоту среза.

    Существуют также звуковые плагины, которые могут помочь уменьшить шум, не затрагивая частотную составляющую сигнала. Waves X-Noise (ссылка, чтобы проверить это на Waves) — отличный пример такого плагина.

    Волны X-Noise

    Waves Audio входит в список лучших мировых брендов аудиоподключаемых модулей (VST / AU / AAX) для моего нового микрофона.

    Добавить глубину

    Глубина — важный параметр при смешивании. По сути, это воспринимаемое расстояние до источника звука в контексте микса.

    В реальном мире акустики увеличение расстояния между источником звука и слушателем может привести к нескольким событиям. Я добавлю в скобки звуковые эффекты, которые помогают имитировать эту психоакустическую воспринимаемую глубину:

    • Звук будет тише (громкость / усиление).
    • Звук дойдет до ушей слушателя позже (задержка).
    • Звук, скорее всего, будет отражаться от других поверхностей в акустическом пространстве и достигать ушей слушателя в разное время (задержка и реверберация).
    • Звук будет менее сфокусированным (модуляция, например, хорус).
    • Звук будет менее высокочастотным, поскольку более высокочастотные звуковые волны теряют энергию первыми из-за трения среды / воздуха (LPF).

    Статья по теме: Полный список: Звуковые эффекты и процессы для сведения / производства.

    Таким образом, уменьшив высокие частоты источника с помощью фильтра нижних частот (или полки верхних частот или другого эквалайзера), мы можем создать иллюзию того, что источник находится еще дальше в миксе.

    Добавить край с резонансом

    Как мы обсуждали ранее, полоса пропускания фильтра нижних частот (особенно около частоты среза) не всегда идеально ровная. Во многих случаях будет какой-то резонансный пик или усиление эквалайзера около / ниже частоты среза.

    Таким образом, мы можем использовать некоторые фильтры нижних частот для усиления определенных резонансных полос, чтобы придать дорожке некоторый край непосредственно перед точкой, в которой отфильтровываются высокие частоты.

    Чтобы получить максимальную «грань» от источника звука, обычно лучше всего иметь резонанс и отсечку в среднем диапазоне, где в сигнале присутствует заметная гармоническая составляющая.

    Автоматизация!

    Автоматизация фильтра нижних частот может быть использована с большим эффектом для создания акустического интереса к источнику звука.

    Если вам нравятся синтезаторы, вы, вероятно, знаете, как автоматизация или иная модуляция фильтра нижних частот может дать отличные результаты.

    Педали эффектов

    Wah-wah и с фильтром огибающей также могут модулировать фильтр нижних частот для достижения своего звукового эффекта, особенно когда есть пик резонанса около среза.

    Статьи по теме:
    • Что такое педали эффектов Wah-Wah для гитары и как они работают?
    • Что такое педали эффектов фильтров огибающих и как они работают?

    Когда дело доходит до автономных фильтров нижних частот, мы можем распространить эти эффекты на любой источник звука, автоматизируя фильтр нижних частот (особенно параметр частоты среза).

    Мы также можем использовать автоматизацию, чтобы эффективно увеличивать или уменьшать воспринимаемую глубину трека, а также уменьшать конкуренцию в high-end, когда другие треки вводятся в аранжировку (или удаляются из нее).


    Другие применения фильтров нижних частот в аудио

    Помимо микширования, фильтры нижних частот используются во многих других звуковых стандартах и ​​оборудовании.

    Фильтры нижних частот используются в аудио:

    Фильтры сглаживания и восстановления

    Если вы какое-то время интересовались звуком, вы знаете, что аудиосигналы могут быть аналоговыми или цифровыми.В то время как аналоговые сигналы обычно используются с преобразователями (громкоговорители, наушники, микрофоны и т. Д.) И некоторыми способами хранения (винил, лента и т. Д.), В современных случаях обычно используется цифровое аудио хранилище (внутри DAW, потоковая передача, облачное хранилище и т. Д.) хранилище на жестком диске и т. д.).

    Записываем ли мы с помощью микрофонов или аналоговых инструментов на цифровую звуковую рабочую станцию ​​или воспроизводим цифровой звук через динамики или наушники, нам потребуется преобразование аналогового и цифрового звука.

    Это преобразование выполняется с помощью точно названных аналого-цифровых преобразователей (АЦП) и цифро-аналоговых преобразователей (ЦАП).

    При переходе от аналогового к цифровому, АЦП будет выполнять выборку звука с высокой частотой дискретизации и назначать амплитуду (в пределах установленной битовой глубины) каждой выборке, пытаясь смоделировать форму волны аналогового сигнала.

    При переходе от цифрового сигнала к аналоговому ЦАП будет пытаться создать плавный непрерывный сигнал на основе отсчетов цифрового сигнала.

    В обоих преобразователях используются аналоговые фильтры нижних частот.

    Фильтр сглаживания

    В АЦП ФНЧ называется фильтром сглаживания. Фильтр сглаживания, как следует из названия, фильтрует аналоговый сигнал перед дискретизацией / преобразованием, чтобы избежать наложения спектров.

    Псевдоним — это ошибка выборки, которая возникает, когда частота дискретизации слишком мала для правильного определения частоты входного сигнала. Когда происходит наложение спектров, дискретизированный сигнал в конечном итоге имеет более низкую частоту, чем входной сигнал.

    Обратите внимание, что типичные аудиосигналы не являются простыми синусоидальными волнами и имеют широкий диапазон частот. Таким образом, псевдонимы вносят искажения и другие артефакты в цифровой аудиосигнал (а не просто изменяют частоту сигнала).

    При этом наложение спектров проще всего визуализировать с помощью простой синусоидальной волны. Давайте посмотрим на несколько иллюстраций, которые помогут нам понять псевдоним:

    На следующем изображении у нас есть синусоидальная волна 12 кГц, дискретизируемая с частотой 48 кГц.Точки представляют каждую точку выборки, а красная форма волны представляет собой дискретизированную форму волны (обратите внимание, что она накладывается поверх исходной формы волны черным цветом). Другими словами, АЦП эффективно преобразует сигнал из аналогового в цифровой.

    На этом следующем изображении у нас есть входной сигнал 36 кГц, дискретизированный с той же частотой 48 кГц. Точки представляют каждую точку выборки, а красный сигнал представляет собой выбранную форму волны. Обратите внимание, что для создания сигнала, который проходит через каждую точку выборки (без прохождения сначала цикла), выбранная форма волны должна принимать другую форму волны, на этот раз с частотой 6 кГц.По сути, это то, что такое алиасинг.

    Обычно цифровой звук дискретизируется с частотой 44,1 кГц или 48 кГц, хотя также распространены более высокие частоты 88,2, 96, 176,4 и 192 кГц.

    Теорема выборки Найквиста-Шеннона по существу утверждает, что во избежание наложения спектров цифровая система дискретизации должна иметь частоту дискретизации, по крайней мере, в два раза выше, чем наивысшая частота дискретизации звука.

    Звуковой диапазон человеческого слуха составляет от 20 Гц до 20 кГц, поэтому мы можем эффективно снизить низкие частоты выше 20 кГц, не оказывая чрезмерного влияния на то, что мы слышим.Обратите внимание, что в случае появления наложения спектров частоты выше диапазона слышимости вызовут искажения и артефакты в диапазоне слышимости.

    Таким образом, при самой низкой общей частоте дискретизации 44,1 кГц нам нужно, чтобы самая высокая частота аудиосигнала составляла 22,05 кГц или 22050 Гц. Это дает нам немного места в частотном спектре для спада частот между (в идеале) 20 кГц и 22,05 кГц.

    Помните, что фильтры нижних частот должны учитывать некоторый переходный период.Спад на 40 дБ обычно считается достаточным, чтобы сделать наложение «несущественным». По этой метрике нам понадобится фильтр очень высокого порядка, приближенный к кирпичному / идеальному фильтру.

    Реконструкция фильтра

    В ЦАП ФНЧ называется реконструкцией фильтра, препятствующего формированию изображения.

    Когда цифровой сигнал преобразуется в аналоговый, это не непрерывный сигнал. Скорее, он имеет дискретные изменения напряжения при заданной частоте дискретизации. Путем низкого прохождения преобразованного сигнала мы можем эффективно сгладить этот дискретный сигнал на высоких частотах, чтобы получить типичный аналоговый сигнал с непрерывным временем.

    Удалив высокочастотные составляющие сигнала, мы можем избавиться от любых искажений или образов в сигнале.

    Обратите внимание, что в идеале эти фильтры нижних частот должны быть идеальными, то есть они должны быть каменными фильтрами. Обычно это достигается (приблизительно) с помощью ФНЧ с импульсной характеристикой sinc.

    Фильтры деактивации

    Фильтры уменьшения выделения используются в системах, где предварительное выделение и ослабление выделения необходимо для улучшенной передачи сигнала.Это, прежде всего, FM-радио и запись / воспроизведение виниловых пластинок.

    Фильтры предыскажения, как правило, представляют собой фильтры высоких частот, обрезных фильтров нижних частот или повышающих фильтров верхних частот. Они используются для улучшения отношения сигнал / шум на высоких частотах (с FM-радио) или для улучшения хранения (как известно, винил плохо хранит низкочастотную информацию в своих канавках).

    Затем при воспроизведении требуется фильтр уменьшения выделения, чтобы отменить действие фильтра предварительного выделения, возвращая сигнал к его исходной частотной характеристике.

    Поскольку фильтры предыскажения относятся к высокочастотному (или аналогичному) разнообразию, фильтры ослабления выделения относятся к низкочастотному (или подобному) разнообразию.

    Для наглядности вот изображение фильтра уменьшения выделения (синим цветом) и фильтра предварительного выделения (розового цвета) для FM-радио (постоянная времени 75 мкс и частота среза 2122 Гц):

    Точно так же стандарт эквализации RIAA — это эквалайзер с предварительным / пониженным акцентом для записи и воспроизведения фонографических / виниловых пластинок. Он представлен на изображении ниже с синей линией, представляющей эквалайзер воспроизведения (уменьшение акцента), и розовой линией, представляющей эквалайзер записи (предыскажение):

    Сабвуфер Кроссоверы

    Сабвуферы — это громкоговорители, специально разработанные для воспроизведения низкочастотных звуковых волн (обычно от 20 Гц до 200 Гц) аудиосигнала.

    Эти громкоговорители важны в системах, предназначенных для воспроизведения всего диапазона слышимых частот, поскольку большинство громкоговорителей не могут точно воспроизводить эту низкочастотную информацию (если вообще).

    Более того, что позволяет нам слышать низкие частоты, сабвуферы позволяют нам почувствовать низкие частоты звука.

    В системах с сабвуферами эти специализированные динамики обычно передают определенную полосу частот общего аудиосигнала.

    Кроссовер громкоговорителей (независимо от того, является ли он автономным устройством или частью усилителя мощности) эффективно снижает низкочастотный сигнал, который будет отправлен на сабвуфер, чтобы не передавать какую-либо информацию среднего / высокого уровня.Отправка сигналов с частотами за пределами выделенного диапазона сабвуфера может привести к неидеальным и «грязным» характеристикам сабвуфера.

    Сабвуферы потребительского уровня, подобные тем, что используются в автомобилях, обычно воспроизводят 20 Гц — 200 Гц, в то время как профессиональные сабвуферы с усилением живого звука предназначены для воспроизведения звука ниже 100 Гц. Системы, одобренные THX, предназначены для работы с частотой ниже 80 Гц.

    Для получения дополнительной информации о кроссоверах для динамиков ознакомьтесь с моей статьей Что такое кроссовер для динамиков? (Активный пассивный).

    Включение в полосовые фильтры

    Что такое полосовой фильтр в аудио? Полосовой фильтр «пропускает» полосу частот (определенный диапазон выше нижнего порога и ниже верхнего порога), постепенно ослабляя частоты ниже нижнего порога и выше верхнего порога.

    Полосовые фильтры можно рассматривать как последовательные / каскадные фильтры верхних и нижних частот. Частота среза фильтра высоких частот ( f H ) будет ниже, чем частота среза фильтра низких частот ( f L ).

    Вот визуальное представление графика частоты полосового фильтра:

    А вот упрощенная схема, представляющая аналоговый полосовой фильтр с фильтром нижних частот первого порядка и фильтром нижних частот первого порядка:

    Для получения дополнительной информации о полосовых фильтрах ознакомьтесь с моей статьей Audio EQ: Что такое полосовой фильтр и как работают BPF?

    Включение в ленточные фильтры

    Что такое полосовой фильтр в аудио? Полосовой фильтр (он же режекторный фильтр или режекторный фильтр) работает, удаляя частоты в указанной полосе в пределах общего частотного спектра.Это позволяет частотам ниже нижней точки отсечки проходить вместе с частотами выше верхней точки отсечки.

    Полосовые фильтры можно рассматривать как параллельные фильтры верхних и нижних частот. Частота среза фильтра высоких частот ( f H ) будет больше, чем частота среза фильтра низких частот ( f L ).

    Вот визуальное представление графика частоты полосового фильтра:

    А вот упрощенная схема, представляющая аналоговый полосовой фильтр с фильтром нижних частот первого порядка и фильтром нижних частот первого порядка:

    Чтобы узнать больше о полосовых фильтрах, ознакомьтесь с моей статьей Audio EQ: Что такое полосовой фильтр и как работают BSF?


    Что такое фильтр высоких частот в звуковом эквалайзере? Фильтр высоких частот (HPF) — это процессор аудиосигнала, который удаляет нежелательные частоты из сигнала ниже определенной частоты среза.Он постепенно отфильтровывает (ослабляет) нижние частоты ниже его частоты среза, позволяя при этом проходить верхним, в идеале без каких-либо изменений.

    Статья по теме: Audio EQ: Что такое фильтр высоких частот и как работают фильтры HPF?

    Что такое полочный эквалайзер? Shelving Eq использует полочные фильтры высоких и / или низких частот для воздействия на все частоты выше или ниже определенной частоты среза соответственно. Шельфинг может использоваться либо для усиления / усиления, либо для ослабления / ослабления и воздействует на все частоты одинаково за пределами определенной точки.

    Что такое дозвуковой фильтр и почему это должно вас волновать?

    Даже среди бывалых аудиофилов дозвуковые фильтры — тема, которая наверняка вызовет путаницу. У некоторых людей есть усилители с кнопками дозвуковых фильтров, которые они никогда не выключают, опасаясь что-то сломать. Другие скорректировали свои на нескольких объемах и не заметили никакой разницы.

    Тем не менее, владельцы усилителей не могут оторваться от темы. Если у вас есть усилитель, предусилитель, сабвуфер или любое другое устройство с дозвуковым фильтром, и вы хотите использовать его таким образом, чтобы не разрушить его преждевременно, вам необходимо знать, что такое ваш дозвуковой фильтр и как его настроить. .

    Мы здесь, чтобы помочь. Наши вопросы и ответы охватывают все важные вопросы, которые могут у вас возникнуть по поводу дозвуковых фильтров. Если у вас есть один, который мы пропустили, дайте нам знать в комментариях!

    Что такое дозвуковой фильтр?

    Дозвуковой фильтр — это компонент вашего сабвуфера, который снижает интенсивность нот, которые звучат на более низких частотах. Он уменьшает амплитуду тех низких нот, которые вы чувствуете больше, чем слышите. (Чтобы узнать больше о частотах и ​​о том, как они работают, ознакомьтесь с нашим Руководством по частотным диапазонам для начинающих.)

    Другими словами, это то, что мы знаем как фильтр верхних частот : фильтр, который пропускает сигналы выше определенного порога в Гц и ослабляет любой сигнал ниже этого порога. Это противоположность фильтра нижних частот , , который ослабляет только сигналы выше определенной линии.

    Как работает дозвуковой фильтр?

    Мы уже назвали основной механизм, который используют эти дозвуковые фильтры: затухание. Не так уж важно понимать, как именно они подключены — это большая часть электротехники, не оказывающая большого влияния на то, что вам нужно знать как конечному пользователю.

    Единственное, что вам нужно знать, прежде чем мы продолжим, это то, что затухание не полностью подавляет звуки определенной частоты. Вместо этого число, которое вы установили для фильтра, представляет частоту, с которой он запускает , чтобы уменьшить интенсивность звука.

    Если ваш дозвуковой фильтр установлен на 40 Гц, ноты 30 Гц все равно будут проходить, но будут намного тише. Думайте о фильтре как о наклоне, а не о переключателе.

    Краткое руководство по басовым частотам
    Октава Диапазон Центр Описание Инструменты Проблема

    1

    20-40 Гц 32 Гц Саб-бас, перфорация Бочка, бас, орган Урчание

    2

    40-80 Гц 64 Гц Низкий бас, глубина Бочка, бас, фортепиано Удар

    3

    80-160 Гц 125 Гц Тело толстое на подъеме Ударные, бас, клавишные Неясно

    Зачем мне дозвуковой фильтр?

    Если вы настоящий бас-гитарист, вас может рассердить идея, что вы хотите вырезать дозвуковые частоты.Вот где все трясущиеся кости и бряцание окнами весело!

    Мы с вами. Нам очень нравится ощущение низких нот, пронизывающих все наше тело. Но есть еще кое-что, что мы так же любим: отсутствие необходимости менять сабвуферы раз в месяц.

    Дозвуковые ноты звучат потрясающе, но они также повреждают ваше оборудование, когда выходят из-под контроля. Слишком большое количество глубоких басов может привести к ограничению возможностей вашего низкочастотного динамика и его износу намного быстрее, чем в противном случае.

    Для тех, кто учится наглядно, приведенное ниже видео является отличной иллюстрацией того, как низкие частоты могут искажать выравнивание конуса сабвуфера без фильтра.

    Уловка состоит в том, чтобы найти правильный баланс: достаточно громкий, чтобы вы могли почувствовать басы, но достаточно ослабленный, чтобы не повредить ваш усилитель.

    А как насчет колонок без дозвуковых фильтров?

    Некоторые низкочастотные динамики не имеют встроенных дозвуковых фильтров. Хотя фильтрация важна, это не обязательно является решающим фактором — все зависит от того, какую музыку вы слушаете.

    Множество жанров никогда не доходят до диапазона 50 Гц. Но если вы поклонник тех, которые есть (и знаете, если да), вам нужен дозвуковой фильтр, чтобы ваши сабвуферы не разбились вдребезги раньше времени. Обратите внимание на автомобильный усилитель MTX Audio THUNDER1000.1 Thunder Series — отличный усилитель с дозвуковым фильтром.

    Как использовать дозвуковой фильтр?

    Мы рассмотрели назначение дозвукового фильтра и то, как он работает. Следующий шаг — узнать, как заставить ваш фильтр высоких частот работать на вас.

    Лучше всего послушать. Сыграйте некоторые из ваших любимых треков с тяжелыми басами и уменьшите порог фильтра, пока низкие ноты не начнут реверберировать. Затем отрегулируйте его до тех пор, пока басовые ноты снова не станут сильнее. Это отличный способ найти тот баланс, о котором мы говорили выше.

    Тем не менее, вы можете быть из тех аудиофилов, которые предпочитают точные цифры — или вы можете просто подсказать, с чего начать. Если одно из этих утверждений верно, читайте дальше, и мы немного рассмотрим сорняки.

    Ваш подход к настройке дозвукового фильтра в наибольшей степени зависит от одного: установлен ли ваш сабвуфер в герметичном или закрытом корпусе.

    Если вы не знаете, какой именно у вас, вы можете определить, просто взглянув на коробку. Отверстие для динамика — единственное отверстие? Если да, то у вас герметичный корпус. Если нет, то он перенесен.

    Как лучше всего настроить дозвуковой фильтр в герметичном корпусе? Герметичные корпуса

    работают точно так же, как мы описали: низкие дозвуковые частоты, особенно 20 Гц и ниже, повреждают структуру, поэтому мы хотим ослабить их, насколько это возможно.Поскольку настройка Гц на дозвуковом фильтре является началом наклона, а не срезом, мы хотим установить ее выше 20 Гц.

    Лучшее место для получения мощных басов без разрушения сабвуфера — это диапазон от 25 Гц до 35 Гц. В пределах этой группы это будет зависеть от выбранной вами музыки и остальной части вашей настройки.

    Что делать, если у меня корпус с переносом?

    Затем все становится немного сложнее. В корпусах с портированными динамиками вам необходимо настроить порт на оптимальную частоту.Объяснение этого выходит за рамки этого вопроса и ответа, хотя, если вы только сейчас учитесь, что должны настраивать свои сабвуферы, это видео станет отличным объяснением.

    Частота настройки действует как второй барьер верхних частот, но она не , а не заменяет функцию дозвукового фильтра. Слишком много дозвуковых нот все равно может повредить сабвуфер.

    Портированный сабвуфер может безопасно играть примерно на половину октавы ниже настроенной частоты, прежде чем возникнет риск повреждения. Это означает, что самая безопасная настройка для его дозвукового фильтра — на половину октавы ниже той частоты, на которую настроен порт.

    Шкала герц логарифмическая. Каждая октава вверх в два раза больше, чем предыдущая, и деление любой частоты на 2 дает ее на одну октаву ниже.

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *