Двигатель ванкель – Что случилось с двигателем Ванкеля и куда он исчез с авторынка: Движение: Ценности: Lenta.ru

Содержание

Роторно-поршневой двигатель — Энциклопедия журнала "За рулем"

Роторно-поршневой двигатель(РПД), или двигатель Ванкеля. Двигатель внутреннего сгорания, разработанный Феликсом Ванкелем в 1957 году в соавторстве с Вальтером Фройде. В РПД функцию поршня выполняет трехвершинный (трехгранный) ротор, совершающий вращательные движения внутри полости сложной формы. После волны экспериментальных моделей автомобилей и мотоциклов, пришедшейся на 60-е и 70-е годы ХХ века, интерес к РПД снизился, хотя ряд компаний по-прежнему работает над совершенствованием конструкции двигателя Ванкеля. В настоящее время РПД оснащаются легковые автомобили компании Mazda. Роторно-поршневой двигатель находит применение в моделизме.

Принцип работы

Сила давления газов от сгоревшей топливо-воздушной смеси приводит в движение ротор, насаженный через подшипники на эксцентриковый вал. Движение ротора относительно корпуса двигателя (статора) производится через пару шестерен, одна из которых, большего размера, закреплена на внутренней поверхности ротора, вторая, опорная, меньшего размера, жестко прикреплена к внутренней поверхности боковой крышки двигателя. Взаимодействие шестерен приводит к тому, что ротор совершает круговые эксцентричные движения, соприкасаясь гранями с внутренней поверхностью камеры сгорания. В результате между ротором и корпусом двигателя образуются три изолированные камеры переменного объема, в которых происходят процессы сжатия топливо-воздушной смеси, ее сгорания, расширения газов, оказывающих давление на рабочую поверхность ротора и очищения камеры сгорания от отработанных газов. Вращательное движение ротора передается на эксцентриковый вал, установленный на подшипниках и передающий вращающий момент на механизмы трансмиссии. Таким образом в РПД одновременно работают две механические пары: первая - регулирующая движение ротора и состоящая из пары шестерен; и вторая - преобразующая круговое движение ротора во вращение эксцентрикового вала. Передаточное соотношение шестерен ротора и статора 2:3, поэтому за один полный оборот эксцентрикового вала ротор успевает провернуться на 120 градусов. В свою очередь за один полный оборот ротора в каждой из трех образуемых его гранями камер производится полный четырехтактный цикл двигателя внутреннего сгорания.

схема РПД
1 - впускное окно; 2 выпускное окно; 3 - корпус; 4 - камера сгорания; 5 – неподвижная шестерня; 6 - ротор; 7 – зубчатое колесо; 8 - вал; 9 – свеча зажигания

Достоинства РПД

Главным достоинством роторно-поршневого двигателя является простота конструкции. В РПД на 35-40 процентов меньше деталей, чем в поршневом четырехтактном двигателе. В РПД отсутствуют поршни, шатуны, коленчатый вал. В «классическом» варианте РПД нет и газораспределительного механизма. Топливо-воздушная смесь поступает в рабочую полость двигателя через впускное окно, которое открывает грань ротора. Отработанные газы выбрасываются через выпускное окно, которое пересекает, опять же, грань ротора (это напоминает устройство газораспределения двухтактного поршневого двигателя).
Отдельного упоминания заслуживает система смазки, которая в простейшем варианте РПД практически отсутствует. Масло добавляется в топливо - как при эксплуатации двухтактных мотоциклетных моторов. Смазка пар трения (прежде всего ротора и рабочей поверхности камеры сгорания) производится самой топливо-воздушной смесью.
Поскольку масса ротора невелика и легко уравновешивается массой противовесов эксцентрикового вала, РПД отличается небольшим уровнем вибраций и хорошей равномерностью работы. В автомобилях с РПД легче уравновесить двигатель, добившись минимального уровня вибраций, что хорошо сказывается на комфортабельности машины в целом. Особой плавностью хода отличаются двухроторные двигатели, в которых роторы сами являются снижающими уровень вибраций балансирами.

Еще одно привлекательное качество РПД - высокая удельная мощность при высоких оборотах эксцентрикового вала. Это позволяет добиться от автомобиля с РПД отличных скоростных характеристик при относительно небольшом расходе топлива. Малая инерционность ротора и повышенная по сравнению с поршневыми двигателями внутреннего сгорания удельная мощность позволяют улучшить динамику автомобиля.
Наконец, немаловажным достоинством РПД являются небольшие размеры. Роторный двигатель меньше поршневого четырехтактного мотора той же мощности примерно вдвое. И это позволяет рациональней использовать пространство моторного отсека, более точно рассчитывать расположение узлов трансмиссии и нагрузку на переднюю и заднюю ось.

Недостатки РПД

Главный недостаток роторно-поршневого двигателя - невысокая эффективность уплотнений зазора между ротором и камерой сгорания. Имеющий сложную форму ротор РПД требует надежных уплотнений не только по граням (а их четыре у каждой поверхности - две по вершинным, две по боковым граням), но и по боковой поверхности, соприкасающейся с крышками двигателя. При этом уплотнения выполнены в виде подпружиненных полосок из высоколегированной стали с особо точной обработкой как рабочих поверхностей, так и торцов. Заложенные в конструкцию уплотнений допуски на расширение металла от нагрева ухудшают их характеристики - избежать прорыва газов у торцевых участков уплотнительных пластин практически невозможно (в поршневых двигателях используют лабиринтовый эффект, устанавливая уплотнительные кольца зазорами в разные стороны).

В последние годы надежность уплотнений резко возросла. Конструкторы нашли новые материалы для уплотнений. Однако, говорить о каком-то прорыве пока не приходится. Уплотнения до сих пор остаются самым узким местом РПД.
Сложная система уплотнений ротора требует эффективной смазки трущихся поверхностей. РПД потребляет больше масла, чем четырехтактный поршневой двигатель (от 400 граммов до 1 килограмма на 1000 километров). При этом масло сгорает вместе с топливом, что плохо сказывается на экологичности моторов. В выхлопных газах РПД опасных для здоровья людей веществ больше, чем в выхлопных газах поршневых двигателей.
Особые требования предъявляются и к качеству масел, используемых в РПД. Это связано, во-первых, со склонностью к повышенному износу (из-за большой площади соприкасающихся деталей - ротора и внутренней камеры двигателя), во-вторых, к перегреву (опять же из-за повышенного трения и из-за небольших размеров самого двигателя). Для РПД смертельно опасны нерегулярная смена масла - поскольку абразивные частицы в старом масле резко увеличивают износ двигателя, и переохлаждение мотора. Запуск холодного двигателя и недостаточный его прогрев приводят к тому, что в зоне контакта уплотнений ротора с поверхностью камеры сгорания и боковыми крышками оказывается мало смазки. Если поршневой двигатель заклинивает при перегреве, то РПД чаще всего - во время запуска холодного двигателя (или при движении в холодную погоду, когда охлаждение оказывается избыточным).
В целом рабочая температура РПД выше, чем у поршневых двигателей. Самая термонапряженная область - камера сгорания, которая имеет небольшой объем и, соответственно, повышенную температуру, что затрудняет процесс поджига топливо-воздушной смеси (РПД из-за протяженной формы камеры сгорания склонны к детонации, что тоже можно отнести к недостаткам этого типа двигателей). Отсюда требовательность РПД к качеству свечей. Обычно их устанавливают в эти двигатели попарно.
Роторно-поршневые двигатели при великолепных мощностных и скоростных характеристиках оказываются менее гибкими (или менее эластичными), чем поршневые. Они выдают оптимальную мощность только на достаточно высоких оборотах, что вынуждает конструкторов использовать РПД в паре с многоступенчатыми КП и усложняет конструкцию автоматических коробок передач. В конечном итоге РПД оказываются не такими экономичными, какими должны быть в теории.

Практическое применение в автопромышленности

Наибольшее распространение РПД получили в конце 60-х и начале 70-х годов прошлого столетия, когда патент на двигатель Ванкеля был куплен 11 ведущими автопроизводителями мира.
В 1967 году немецкая компания NSU выпустила серийный легковой автомобиль бизнес-класса NSU Ro 80. Эта модель выпускалась в течение 10 лет и разошлась по миру в количестве 37204 экземпляров. Автомобиль пользовался популярностью, но недостатки установленного в нем РПД, в конце концов, испортили репутацию этой замечательной машины. На фоне долговечных конкурентов модель NSU Ro 80 выглядела «бледно» - пробег до капитального ремонта двигателя при заявленных 100 тысячах километров не превышал 50 тысяч.

С РПД экспериментировали концерн Citroen, Mazda, ВАЗ. Наибольших успехов добилась Mazda, которая выпустила свой легковой автомобиль с РПД еще в 1963 году, на четыре года раньше появления NSU Ro 80. Сегодня концерн Mazda оснащает РПД спорткары серии RX. Современные автомобили Mazda RX-8 избавлены от многих недостатков РПД Феликса Ванкеля. Они вполне экологичны и надежны, хотя среди автовладельцев и специалистов по ремонту считаются «капризными».

Практическое применение в мотопромышленности

В 70-е и 80-е годы с РПД экспериментировали некоторые производители мотоциклов - Hercules, Suzuki и другие. В настоящее время мелкосерийное производство «роторных» мотоциклов налажено только в компании Norton, выпускающей модель NRV588 и готовящей к серийному выпуску мотоцикл NRV700.
Norton NRV588 - спортбайк, оснащенный двухроторным двигателем общим объемом в 588 кубических сантиметров и развивающим мощность в 170 лошадиных сил. При сухом весе мотоцикла в 130 кг энерговооруженность спортбайка выглядит в буквальном смысле запредельной. Двигатель этой машины оснащен системами впускного тракта переменной величины и электронного впрыска топлива. О модели NRV700 известно лишь то, что мощность РПД у этого спортбайка будет достигать 210 л.с.

Любопытные факты

1. Роторно-поршневые двигатели получили распространение среди авиамоделистов. Поскольку в модельном двигателе требования к надежности и экономичности снижены до предела, производство этих моторов оказывается недорогим. В этих двигателях уплотнений ротора либо нет вообще, либо эти уплотнения имеют простейшую конструкцию. Главное достоинство авиамодельного РПД в том, что его можно легко встроить в летающую масштабную модель. В частности, модельные РПД применяются при создании копий реактивных самолетов.
2. Получив патент на РПД в 1936 году Феликс Ванкель стал изобретателем не только двигателя внутреннего сгорания, но еще и роторно-поршневых насоса и компрессора. И эти устройства можно встретить гораздо чаще, чем РПД - на производстве, в ремонтных мастерских, в быту. Например, портативные электрические компрессоры для автомобилистов очень часто устроены по принципу роторно-поршневого насоса.

Статья в журнале "За рулем" №2, 1960

Статья в журнале об РПД польского инженера Рожицкого, "За рулем" №12, 1961

Статья в журнале "За рулем" №12, 1965

Статья в журнале "За рулем" №12, 1970

Двигатель Ванкеля: устройство, принцип работы

Двигатель внутреннего сгорания – гениальное изобретение человечества. Благодаря ДВС стал существенно развиваться технический прогресс. Существует несколько видов данных установок. Но наиболее известные – шатунно-поршневые и роторно-поршневые. Последний был изобретен немецким инженером Ванкелем в сотрудничестве с Вальтером Фройде. Данный силовой агрегат имеет другое устройство и принцип работы, если сравнивать с классическим шатунно-поршневым ДВС. Каков принцип работы двигателя Ванкеля и почему данный ДВС не стал таким популярным? Все это мы рассмотрим в нашей сегодняшней статье.

Характеристика

Итак, что это за мотор? Это двигатель внутреннего сгорания, который был разработан Феликсом Ванкелем в 1957 году. Функцию поршня в данном агрегате выполнял трехвершинный ротор. Он совершал вращательные движения внутри полости особой формы.

поршневой двигатель ванкеля

После ряда экспериментальных моделей мотоциклов и автомобилей, которые пришлись на 70-е годы прошлого века, спрос на двигатель Ванкеля существенно снизился. Хотя на сегодняшний день ряд компаний все равно работает над совершенствованием данного ДВС. Так, можно встретить двигатель Ванкеля на «Мазде» серии РХ. Также данный агрегат нашел свое применение в моделизме.

Устройство двигателя Ванкеля

Данный силовой агрегат состоит из нескольких компонентов:

  • Корпуса (статора).
  • Камеры сгорания.
  • Впускного и выпускного окна.
  • Неподвижной шестерни.
  • Зубчатого колеса.
  • Ротора.
  • Вала.
  • Свечи зажигания.
ДВС ванкеля принцип работы фото

Какой имеет двигатель Ванкеля принцип работы? Это мы рассмотрим ниже.

Принцип работы

Данный ДВС действует следующим образом. Ротор, насаженный на эксцентриковый вал через подшипники, приводится в действие от силы давления газов, что образовалась в результате сгорания топливновоздушной смеси. Ротор двигателя относительно статора посредством пары шестерен. Одна из них (большого размера) находится на внутренней поверхности ротора. Вторая (опорная) имеет меньшие размеры и намертво прикреплена к боковой крышке двигателя. Благодаря взаимодействию шестерен, ротор производит эксцентричные круговые движения. Таким образом, его грани соприкасаются с внутренней поверхностью камеры сгорания.

В результате между корпусом двигателя и ротором образуется несколько изолированных камер переменного объема. Их количество всегда составляет 3. В данных камерах происходит процесс сжатия смеси, ее горение, расширение газов (которые впоследствии оказывают давление на рабочую поверхность ротора) и их удаление. В результате воспламенения топлива, ротор приводится в действие, передавая усилия крутящего момента на эксцентриковый вал. Последний устанавливается на подшипниках и далее передает мощность на узлы трансмиссии. А уже затем момент сил двигателя Ванкеля идет на колеса по классической схеме – посредством карданной передачи и полуосей к ступицам. Таким образом, в роторном моторе работают одновременно несколько механических пар. Первая отвечает за движение ротора и состоит из нескольких шестерен. Вторая де преобразует движение ротора в обороты эксцентрикового вала.

двигатель ванкеля принцип работы фото

Передаточное отношение статора (корпуса) и шестерен всегда стабильное и составляет 3:2. Таким образом, ротор успевает провернуться за полный оборот вала на 120 градусов. В свою очередь, за полный оборот ротора производится четырехтактный цикл работы двигателя внутреннего сгорания в каждой из трех камер, образуемых гранями.

Преимущества

Какие имеет плюсы данный ДВС? Роторно-поршневой двигатель Ванкеля имеет более простую конструкцию, нежели шатунно-поршневой. Так, число деталей в нем на 40 процентов меньше, чем в поршневом четырехтактном ДВС. Но все же создать двигатель Ванкеля своими руками не представляется возможным без сложного оборудования. Ведь ротор имеет очень сложную форму. Те, кто пытался сделать самодельный двигатель Ванкеля своими руками, терпели многочисленные неудачи.

Но продолжим о преимуществах. В конструкции роторного агрегата отсутствует коленчатый вал, газораспределительный механизм. Также здесь нет шатунов и поршней. Горючая смесь попадает в камеру через впускное окно, открывающееся гранью ротора. А отработанные газы в конце рабочего такта освобождаются корпус через выпускное окно. Опять же, роль клапана здесь выполняет грань самого ротора. Также в конструкции отсутствует распределительный вал (коих сейчас используется несколько на шатунных агрегатах). Роторно-поршневой двигатель Ванкеля по принципу работы газораспределительного механизма схож с двухтактным.

двигатель ванкеля принцип работы

Отдельно стоит сказать о смазочной системе. По сути, она отсутствует в роторном двигателе Ванкеля. Но как же тогда работают пары трения? Все просто: масло добавляется в саму горючую смесь (как в примитивных мотоциклетных моторах). Таким образом, смазка трущихся деталей производится самой топливовоздушной смесью. В конструкции отсутствует привычный всем масляный насос, который забирает смазку из поддона и разбрызгивает под особым давлением.

Еще одно преимущество двигателя Ванкеля – это его легкий вес и размеры. Поскольку здесь отсутствует почти половина деталей, которые являются обязательными в поршневых моторах, роторный агрегат более компактный и способен разместиться в любом подкапотном пространстве. компактные размеры позволяют использовать пространство моторного отсека более рационально, а также обеспечить более равномерную нагрузку на переднюю и заднюю ось (ведь в авто с обычными моторами более 70 процентов нагрузки приходится именно на переднюю часть). А за счет малого веса достигается высокая стабильность работы. Так, двигатель имеет минимальный уровень вибрации, что положительно сказывается на комфортабельности машины.

Следующий плюс данного агрегата – высокая удельная мощность, которая достигается при больших оборотах вала. Данная особенность позволяет достичь хороших технических характеристик. Вот почему двигатель Ванкеля используется на спортивных автомобилях «Мазда». Мотор легко раскручивается до семи и более тысяч оборотов. При этом обеспечивает намного больший крутящий момент и мощность при малом объеме. Все это положительно сказывается на разгонной динамике автомобиля. Для примера можно взять автомобиль «Мазда РХ-8». При объеме в 1,3 литра, мотор выдает 210 лошадиных сил мощности.

Конструктивные недостатки

Рассматривая устройство и принцип работы роторного двигателя Ванкеля, стоит отметить главный конструктивный недостаток. Это малая эффективность уплотнений зазора между камерой сгорания и ротором. Последний имеет довольно сложную форму, из-за чего требует надежного уплотнения не только по граням (коих четыре в сумме), но и по боковой поверхности (которые соприкасаются с крышкой двигателя). При этом они выполнены в виде стальных подпружиненных полосок с особо точной обработкой как с торцов, так и с рабочих поверхностей. Все допуски на расширение при нагреве, заложенные в конструкцию, ухудшают данные характеристики. Из-за этого невозможно избежать прорыва газов в торцевых местах уплотнительных пластин. В поршневых же двигателях применен эффект лабиринта. Так, в конструкции применены три уплотнительных кольца с зазорами в разные стороны.

роторно поршневой двигатель ванкеля

Но стоит отметить, что в последние годы качество уплотнений возросло. Конструкторы произвели усовершенствование двигателя Ванкеля, применяя новые материалы для уплотнений. Но все же прорыв газов считается самым слабым местом в роторном ДВС.

Расход масла

Как мы уже сказали ранее, системы смазки как таковой в данном двигателе нет. Ввиду того что масло поступает вместе с горючей смесью, расход его существенно увеличивается. И если на шатунных двигателях естественный уход смазки исключен либо составляет не более 100 грамм на 1 тысячу километров, то на роторных данный параметр составляет от 0,4 до 1 литра на тысячу километров. Это объясняется тем, что сложная система уплотнений требует более эффективной смазки поверхностей. Также ввиду высокого расхода масла, эти моторы не могут соответствовать современным экологическим стандартам. В выхлопных газах автомобилей с двигателем Ванкеля содержится много опасных для организма и окружающей среды веществ.

Кроме этого, роторный мотор мог работать только на высококачественных и дорогих маслах. Это связано с несколькими факторами:

  • Склонность соприкасающихся деталей камеры двигателя и ротора к высокому износу.
  • Склонность пар трения к перегреву.

Другие проблемы

Нерегулярная замена масла грозила уменьшением ресурса ДВС, так как частицы старой смазки действовали как абразив, увеличивая зазоры и вероятность прорыва выхлопных газов в камере. Данный агрегат также клинит при перегреве. А при движении в холодную погоду, охлаждение могло оказаться избыточным.

Сам по себе РПД имеет более высокую рабочую температуру, нежели любой поршневой мотор. Наиболее нагруженной считается камера сгорания. она имеет небольшой объем. А из-за протяженной формы, камера склонна к детонации. Кроме масла, двигатель Ванкеля требователен к качеству свечей. Их устанавливают попарно и меняют строго по техническому регламенту. Среди прочих моментов стоит отметить недостаточную эластичность роторного мотора. Так, данные ДВС могут выдавать отличные скоростные и мощностные характеристики только при высоких оборотах ротора – от 6 до 10 и более тысяч в минуту. Эта особенность вынуждает конструкторов дорабатывать конструкцию коробок передач, делая их многоступенчатыми.

Еще один недостаток – высокий расход топлива. К примеру, если взять 1,3-литровый роторно-поршневой двигатель «Мазды РХ-8», по паспортным данным, она потребляет от 14 до 18 литров топлива. Причем к использованию рекомендуется только высокооктановый бензин.

О применении РПД в автомобильной промышленности

Наибольшую популярность данный двигатель получил в конце 60-х и начале 70-х годов прошлого века. Патент на РПД Ванкеля был приобретен 11 ведущими автопроизводителями. Так, в 67-м году компания NSU разработала первый автомобиль бизнес-класса с роторным мотором, который назывался NSU RO 80. Данная модель производилась серийно 10 лет. Всего было выпущено более 37 тысяч экземпляров. Автомобиль пользовался популярностью, однако недостатки роторного мотора в конце концов подмочили репутацию этой машины. На фоне других моделей NSU, седан NSU RO 80 был самым ненадежным. Пробег до капитального ремонта составлял всего 50 тысяч при заявленных 100.

двигатель ванкеля

Также с роторными моторами экспериментировали концерны «Пежо-Ситроен», компания «Мазда» и завод ВАЗ (об этом случае мы поговорим отдельно ниже). Наибольшего успеха добились японцы, выпустив легковой автомобиль с роторным мотором в 63-м году. На данный момент японцы до сих пор оснащают РПД на свои спорткары серии RX. К сегодняшнему дню они избавлены от многих «детских болезней», что были присущи РПД того времени.

РПД Ванкеля и мотопромышленность

В 70-е и 80-е годы прошлого века с роторными двигателями экспериментировали некоторые мотопроизводители. Это «Геркулес» и «Сузуки». Сейчас же серийное производство роторных мотоциклов налажено только в компании «Нортон». Данная марка выпускает спортбайки NRV588, оснащенные двухроторными двигателями с общим объемом в 588 кубических сантиметров. Мощность байка «Нортон» составляет 170 лошадиных сил. при снаряженной массе в 130 килограмм, этот мотоцикл имеет превосходные динамические характеристики. Дополнительно данные РПД оснащены системой электронного впрыска топлива и впускным трактом переменной величины.

Интересные факты

Данные силовые агрегаты получили широкое распространение среди авиамоделистов. Так как в модельном ДВС нет требований к экономичности и надежности, выпуск таких моторов оказался недорогим. В подобных ДВС уплотнений ротора нет вовсе, либо они имеют самую примитивную конструкцию. Основной плюс такого авиамодельного агрегата в том, что его легко установить в летающую масштабную модель. ДВС легкий и компактный.

Еще один факт: Феликс Ванкель, получив патент на РПД в 1936 году, стал изобретателем не только роторных двигателей, но и компрессоров, а также насосов, действовавших по такой же схеме. Такие агрегаты можно встретить в ремонтных мастерских и на производстве. Кстати, портативные электрические насосы для подкачки шин авто устроены именно по такому принципу.

РПД и автомобили ВАЗ

Во времена СССР также занимались созданием роторно-поршневого двигателя и его установкой на отечественные автомобили ВАЗ. Так, первым РПД в СССР стал мотор ВАЗ-311 мощностью в 70 лошадиных сил. Он создавался на базе японского агрегата 13В. Но поскольку создание мотора велось по нереальным планам, агрегат оказался ненадежным после запуска в серийное производство. Первым автомобилем с данным двигателем стал ВАЗ-21018.

роторно поршневой двигатель

Но на этом история установки двигателя Ванкеля на ВАЗ не заканчивается. Вторым по счету стал силовой агрегат ВАЗ-415, который мелкими партиями использовался на «восьмерке» в 80-х годах. Данный силовой агрегат имел более лучшие технические характеристики. Мощность при объеме в 1308 кубических сантиметров увеличилась до 150 лошадиных сил. Благодаря этому советский ВАЗ-2108 с роторным двигателем ускорялся до сотни за 9 секунд. А максимальная скорость ограничивалась 190 километрами в час. Но данный двигатель не был лишен недостатков. В частности, это малый ресурс. Он едва доходил до 80 тысяч километров. Также среди минусов стоит отметить высокую себестоимость создания такого автомобиля. Расход масла составлял 700 грамм на каждую тысячу километров. Расход топлива – около 20 литров на сотню. Поэтому применялся роторный агрегат только на автомобилях спецслужб, мелкими партиями.

Заключение

Итак, мы выяснили, что собой представляет двигатель Ванкеля. Данный роторный агрегат сегодня применяется серийно лишь на автомобилях «Мазда», причем только на одной модели. Несмотря на многочисленные доработки и попытки японских инженеров усовершенствовать конструкцию РПД, он все равно имеет довольно малый ресурс и отличается высоким расходом масла. Также новые 1,3-литровые «Мазды» не отличаются топливной экономичностью. Все эти недостатки роторного мотора делают его непрактичными и малоиспользуемым в автомобильной промышленности.

Двигатель Ванкеля - это... Что такое Двигатель Ванкеля?

Роторно-поршневой двигатель в разрезе.

Ро́торно-поршнево́й дви́гатель внутреннего сгорания (РПД, двигатель Ва́нкеля), конструкция которого разработана в 1957 инженером компании NSU Вальтером Фройде (англ.), ему же принадлежала идея этой конструкции. Двигатель разрабатывался в соавторстве с Феликсом Ванкелем, работавшим над другой конструкцией роторно-поршневого двигателя. [1]

Особенность двигателя — применение трёхгранного ротора (поршня), имеющего вид треугольника Рело, вращающегося внутри цилиндра специального профиля, поверхность которого выполнена по эпитрохоиде.

Конструкция

Установленный на валу ротор жёстко соединён с зубчатым колесом, которое входит в зацепление с неподвижной шестернёй - статором. Диаметр ротора намного превышает диаметр статора, несмотря на это ротор с зубчатым колесом обкатывается вокруг шестерни. Каждая из вершин трёхгранного ротора совершает движение по эпитрохоидальной поверхности цилиндра и отсекают переменные объёмы камер в цилиндре с помощью трёх клапанов.

Цикл двигателя Ванкеля: впуск (голубой), сжатие (зелёный), рабочий ход (красный), выпуск (жёлтый)

Роторно-поршневой двигатель

Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. Герметизация камер обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаемыми к цилиндру центробежными силами, давлением газа и ленточными пружинами. Отсутствие механизма газораспределения делает двигатель значительно проще четырехтактного поршневого (экономия составляет около тысячи деталей), а отсутствие сопряжения (картерное пространство, коленвал и шатуны) между отдельными рабочими камерами обеспечивают необычайную компактность и высокую удельную мощность. За один оборот ванкель выполняет три полных рабочих цикла, что эквивалентно работе шестицилиндрового поршневого двигателя.

Смесеобразование, зажигание, смазка, охлаждение, запуск принципиально такие же, как и у обычного поршневого двигателя внутреннего сгорания.

Практическое применение получили двигатели с трёхгранными роторами, с отношением радиусов шестерни и зубчатого колеса: R:r = 2:3, которые устанавливают на автомобилях, лодках и т. п.

Преимущества, недостатки и их разрешение

Преимущества перед обычными бензиновыми двигателями

  • низкий уровень вибраций. РПД полностью механически уравновешен, что позволяет повысить комфортность лёгких транспортных средств типа микроавтомобилей, мотокаров и юникаров;
  • главным преимуществом роторно-поршневого двигателя являются отличные динамические характеристики: на низкой передаче возможно без излишней нагрузки на двигатель разогнать машину выше 100 км/ч на более высоких оборотах двигателя (8000 об/мин и более), чем в случае конструкции обычного двигателя внутреннего сгорания.
  • Малая удельная масса при высокой удельной мощности, причины:
  1. Масса движущихся частей в РПД гораздо меньше, чем в аналогичных по мощности «нормальных» поршневых двигателях, так как в его конструкции отсутствуют коленчатый вал и шатуны.
  2. К тому же однороторный двигатель выдаёт мощность в течение трёх четвертей каждого оборота выходного вала. В отличии от одноцилиндрового поршневого двигателя, который выдаёт мощность только в течение одной четверти каждого оборота выходного вала. (современный серийный РПД с объёмом рабочей камеры 1300 см³ имеет мощность 220 л.с., а с турбокомпрессором — 350 л.с.)
  • меньшие в 1,5—2 раза габаритные размеры.
  • меньшее на 35—40 % число деталей

За счёт отсутствия преобразования возвратно-поступательного движения во вращательное двигатель способен выдерживать бо́льшие обороты с меньшими вибрациями, по сравнению с традиционными двигателями. Роторно-поршневые двигатели обладают более высокой мощностью при небольшом объёме камеры сгорания, сама же конструкция двигателя сравнительно мала и содержит меньше деталей. Небольшие размеры улучшают управляемость, облегчают оптимальное расположение трансмиссии и позволяют сделать автомобиль более просторным для водителя и пассажиров.

Соединение ротора с выходным валом через эксцентриковый механизм, являясь характерной особенностью РПД Ванкеля, вызывает давление между трущимися поверхностями, что в сочетании с высокой температурой, приводит к дополнительному износу и нагреву двигателя.

В связи с этим возникает повышенное требование к периодической замене масла. При правильной эксплуатации периодически производится капитальный ремонт, включающий в себя замену уплотнителей. Ресурс при правильной эксплуатации достаточно велик, но не заменённое вовремя масло неизбежно приводит к необратимым последствиям, и двигатель выходит из строя.

Важной проблемой считается состояние уплотнителей. Площадь пятна контакта очень невелика, а перепад давления очень высокий. Следствием этого, неразрешимого для двигателей Ванкеля, противоречия являются высокие утечки между отдельными камерами и, как следствие, падение коэффициента полезного действия и токсичность выхлопа.

Проблема быстрого износа уплотнителей на высокой скорости вращения была разрешена применением высоколегированной стали.

При всех преимуществах (высокая удельная мощность, простота устройства, несложный ремонт при правильной эксплуатации), важной проблемой является меньшая экономичность на низких оборотах по сравнению с обычными ДВС.

Другой особенностью двигателей Ванкеля является его склонность к перегреву. Камера сгорания имеет линзовидную форму, то есть при маленьком объёме у неё относительно большая площадь. При температуре горения рабочей смеси основные потери энергии идут через излучение. Интенсивность излучения пропорциональна четвёртой степени температуры, таким образом идеальная форма камеры сгорания — сферическая. Лучистая энергия не только бесполезно покидает камеру сгорания, но и приводит к перегреву рабочего цилиндра. Эти потери не только снижают эффективность преобразования химической энергии в механическую, но и вызывают проблемы с воспламенением рабочей смеси, поэтому в конструкции двигателя часто предусматривают 2 свечи.

Высокие требования к точности исполнения деталей делают его сложным в производстве. Оно требует высокотехнологичного и высокоточного оборудования — станков, способных перемещать инструмент по сложной траектории эпитрохоидальной поверхности камеры объёмного вытеснения.

Применение

NSU Ro80.

Двигатель разрабатывался изначально именно для применения на автотранспорте. Первый серийный автомобиль с роторным двигателем — немецкий спорткар NSU Wankelspider.

Первый массовый (37,204 экземпляра) — немецкий седан бизнес-класса NSU Ro80. Автомобиль имел достаточно инноваций и помимо двигателя — в частности, кузов с рекордно-низким аэродинамическим сопротивлением, полуавтоматическую коробку передач с гидротрансформатором, блок-фары, и так далее. Ro80 отличалась не только уникальной конструкцией, но и передовым дизайном, который оказался непонятен публике середины шестидесятых; через десять лет именно он был положен в основу стиля моделей «Ауди» 100 и 200 поколения C2.

К сожалению, ресурс двигателя оказался весьма мал (ремонт требовался уже после пробега порядка 50 тыс. км), поэтому автомобиль заслужил плохую репутацию и относительно малоизвестен. На многих сохранившихся автомобилях оригинальный двигатель заменён на поршневой V4 «Essex» фирмы Ford.

Citroën также экспериментировал с РПД — проект Citroën M35.

После этого серийное и мелкосерийное производство роторно-поршневых двигателей Ванкеля производились только фирмой ВАЗ, в конечном счёте взявшим за основу конструкцию двигателя

Современные двигатели

Инженерам фирмы Euro IV. Двухцилиндровый двигатель «Renesis» объёмом всего 1,3 л выдаёт мощность в 250 л. с. и занимает гораздо меньше места в моторном отсеке. Следующая модель двигателя Renesis 2 16X имеет меньший объём, но бо́льшую мощность, меньше нагревается.

Автомобили марки [2] могут использовать в качестве топлива как бензин, так и водород. Это явилось вторым витком роста внимания к РПД двигателю со стороны разработчиков. Двигатель успешно может использовать водород, так как менее чувствителен к детонации, чем обычный двигатель, использующий возвратно-поступательное движение поршня.

Автомобили с РПД потребляют от 7 до 20 литров топлива на 100 км, в зависимости от режима движения, и масла от 0,4 л до 1 л на 1000 км (для двигателей Mazda 0,4 — 0,6 л.). В настоящее время исследование этого типа двигателя активно ведёт японский автоконцерн

Авиационные двигатели

В начале 50-х годов была создана серия авиадвигателей ВП-760, ВП-1300, ВП-2650 — пятилучевых двухтактных звёзд мощностью от 40 до 130 л. с. и весом от 25 до 100 кг авиационного инженера В.Полякова, созданных для лёгкой авиационной техники и прошедших успешные испытания в небольшой серии в ДОСААФ. [3]

Сноски

  1. Иван Пятов. РПД изнутри и снаружи, Журнал Двигатель, № 5-6 (11-12) сентябрь-декабрь 2000
  2. первые буквы от названия «Renesis», производным от слов (англ. Rotary Engine:роторный двигатель и Genesis:процесс становления, название говорящее о появлении нового класса двигателей)
  3. альманах АэроМастер, №1/98г, Новосибирск.

Литература

  • Роторно-поршневой двигатель // Большая советская энциклопедия

Ссылки

РПД СССР/России

Авиационные РПД

См. также

Wikimedia Foundation. 2010.

Двигатель Ванкеля: особенности и характеристики

Паровые машины, как и традиционные ДВС отличаются общим недостатком — возвратно-поступательные движения поршня должны преобразовываться во вращательные движения колес. Это и является причиной низкого КПД, высокого износа основных элементов.

Многие инженеры пытались решить эту проблему, придумав двигатель внутреннего сгорания, все детали которого бы только вращались. Однако изобрести такой агрегат смог механик-самоучка, не окончивший ни высшего, ни даже средне-специального учебного заведения.

Немного истории

В 1957 году малоизвестный механик-изобретатель Феликс Ванкель и ведущий инженер NSU Вальтер Фреде стали первыми, кто решил установить роторно-поршневой мотор на автомобиль. «Подопытным» стал на NSU Prinz. Первоначальная конструкция была далекой от совершенства. К примеру, свечи приходилось менять практически после полной разборки агрегата. К тому же, надежность мотора оставалась под сомнением, а про экономичность можно было не упоминать.

После множества испытаний концерн занялся выпуском машин с традиционным ДВС. Однако первый роторно-поршневой DKM-54 мог продемонстрировать великий потенциал.

Именно так оригинальная разновидность ДВС получил свой шанс на внедрение в производство авто. В дальнейшем он постоянно дорабатывался, однако перспективы роторно-поршневого мотора уже тогда были очевидны. РПД входит в классификацию роторных моторов как один из 5 представителей линейки.

К 80-м годам 20 века роторные двигатели Ванкеля исследовались лишь японской компанией Mazda. Еще к этому мотору проявлял внимание ВАЗ. В СССР бензин стоил достаточно дешево, а такой агрегат имел достаточно большую мощность. Однако к 2004 году производство машин с таким двигателем прекратилось. Япония стала единственной страной, в которой продолжается разработка роторного двигателя.

Есть множество разновидностей роторных агрегатов. Единственное их отличие — поверхность корпуса и число выполненных на роторе граней. Различные компоновки таких моторов применяются в авто- и судостроении.

Достоинства

Двигатель Ванкеля с момента создания имел множество выгодных преимуществ перед поршневыми моторами. Агрегат постоянно дорабатывался,что позволило повысить его экономичность и производительность.

Среди преимуществ»Ванкеля» выступают:

  1. Небольшие габариты и вес. «Ванкель» практически в 2 раза меньшепоршневого ДВС, что положительно сказывается на управляемости машины, способствует оптимальному монтажукоробки передач, позволяет сделать салон намного просторнее.
  2. В сравнении с двухтактным мотором, двигатель Ванкеля имеет гораздо меньше деталей. Это более выгодно с точки зрения ремонта.
  3. Вдвое большая мощность, чем у стандартных ДВС.
  4. Большая плавность работы — отсутствие поступательно-возвратных движений благоприятно сказывается на комфорте езды.
  5. Возможность заправки низкооктановым бензином.

Все элементы мотора вращаются в одну сторону. Это улучшает внутренний баланс агрегата и снижает вибрации. «Ванкель» выдает мощность равномерно и плавно. За время пока ротор оборачивается 1 раз, выходной вал совершает 3 оборота. Каждое сгорание осуществляется за 90 фазу вращение ротора.

Это говорит о том, что роторный двигатель с 1 ротором способен выдавать мощностьза ¾ каждого поворота выходного вала. Двигатель с 1 цилиндром может выдавать мощность лишь за ¼ каждого витка выходного вала.

Недостатки

К недостаткам двигателя относятся непривычность для владельцев и механиков. Такой агрегат требует изменить многие привычки. К примеру, тормозить РПД не получится, а штурм подъемов «внатяг» обречен на неудачу. Компактный мотор обладает малой инерцией, чего не скажешь о массивных поршневых ДВС. При частыхзапусках-выключениях «забрасываются» свечи.Звук мотора некоторые автолюбители также относят к недостаткам.

Более серьезными являются органические изъяны роторно-поршневого агрегата. Во-первых, он обладает увеличенным расходом горючего. Это легко объяснить неоптимальной формой камеры, теряющей тепло через стенки. К тому же, мотор «съедает» достаточно много масла. Срок эксплуатации Ванкеля ниже, чем у стандартного ДВС —роторные уплотнениярегулярно изнашиваются.

Значительная роль отведена жесткости внешней характеристики роторно-поршневого мотора. Для управления машиной с таким двигателем требуется достаточно часто манипулировать рычагом коробки передач. Это объясняется тем, что необходим короткий передаточный ряд и увеличенное количество передач.

Идеальным вариантом является монтаж вариатора. Однако на спорткарах автоматы не приживаются, а для авто семейного типа требуется больше экономичности.

Недостатки РПД схожи с недостатками двухтактных поршневых агрегатов. Интересно, что вылечить это можно одними и теми же способами. Увеличенное потребление топлива сбивается непосредственным впрыском, нехватка эластичности — установкой изменяемых фаз. Это повышает экономичность и управляемость. Также для повышения эластичности меняется конфигурация трубопроводов. Такие изменения и были выполнены на моторе Mazda RX-8.

Как работает

Работает двигатель Ванкеляпо принципу, который достаточно просто объяснить даже несведущему в механике человеку. Агрегат обладает минимумом деталей, что позволяет быстро понять, какие системы задействуются в определенные промежутки времени.

Поршень двигателя в РПД заменяется ротором с 3 гранями, который передает силу давления сгораемых газов на вал эксцентрика.

Статор обладает эпитрохоидальной конфигурацией внутренних поверхностей. Он отличается высокой износостойкостью, поскольку имеет специальное покрытие. В вершинах ротора находятсяуплотнения, а на поверхности статораимеются выемки — они являются своеобразными камерами, в которых происходит сгорание. Вал вращается на специальных подшипниках. Они помещены на корпус. Также валоснащенэксцентриком — на нем и вращается ротор.

Шестерня вмонтирована в корпус. Она сцеплена с шестерней ротора. Взаимное действие этих шестерен создает движение ротора. Это позволяет образовать 3 камеры, которые постоянно изменяют свой объем.

Отношение передач шестерен равно 2:3, что обеспечивает один оборот вала за поворот ротора на 120 градусов. Когда ротор совершает полный оборот,все камерывыполняют четырехтактный цикл. Сгораемые газы действуют на эксцентрик вала через ротор — так возникает крутящий момент.

Между ротором и статором имеется 3 камеры. Впуск происходит, когда одна из вершин ротора начинает пересекать впускное отверстие для впрыска топлива. Объем камеры увеличивается, что заставляет смесь ее заполнить. Следующая вершина закрывает окно. Как и поршень двигателя традиционного исполнения, ротор сдавливает рабочую смесь перед воспламенением.

Она сжимается, при наибольшем сжатии в камере возникает искра. В результате осуществляется рабочий ход. После выпускное окно под давлением отработавших газов открывается, и они покидают камеру.

При одном обороте ротора двигатель совершает 3 цикла — это делает ненужным применение уравновешивающих устройств.

В рабочем процессе есть слабые звенья. Первое — повышенная нагрузка на уплотнения, а второе — избыток динамического перекрытия фаз.Не является оптимальной и конфигурация камеры сгорания. Однако есть и положительный момент — если повышать обороты, скорость распространения факела пламени увеличивается быстрее, чем перетекает топливная смесь.

Это позволяет применять для РПД бензин с пониженным октановым числом. Принцип работы Ванкеля достаточно прост, что в свое время привлекло к изобретению внимание многих производителей авто.

Интересные факты

Не каждый автолюбитель знает, что Ванкель является одним из 5 подтипов в классификации роторных моторов.

Компактность, оборотистость, высокая производительность — не этого ли добиваются практически все производители мотоциклов? Однозначно, это так. Однако роторный мотор в мотомире таки не прижился. Все ставки делаются на классические поршневые двигатели.

Однако в истории производства мотоциклов существовало несколько исключений. К примеру, в 1974 году Hercules выпускает массовую серию Wankel, которые оборудованы двигателем KC-27. Это были роторные агрегаты, которые оснащались воздушным охлаждением. Двигатель имел объем294 куб. см. Мощность агрегатов составляла 25л.с. Для смазки агрегата, масло нужно было самостоятельно заливать в топливный бак.

В начале1980 роторный мотор использовали для оснащения мотоциклов Norton. Несмотря на то, что опытные прототипы таких двигателей появились еще в 1970-х.Инженеры Norton успешно внедрили РПД в спорт. К концу 80-х им не было равных.

Сегодня компания производит 588-кубовую модельдвумя роторами NRV588. Также инженерами Norton ведется разработка 700сс версии, которая называется NRV700. Она представляет собой мощный спортбайк, оснащенный инжекторным 170-сильным двигателем Ванкеля.

Как видно, эпоха роторных моторов еще не наступила. Поршневые системы так и остались лидирующими в сфере авто- и мотостроения. Обладатели байков с роторными двигателями могут образовать лишь небольшой круг фанатов Ванкеля. Возобновившийся интерес к «Ванкелю» компании Norton говорит о скором подъеме разработок и достижений в этой сфере.

Одной из причин, по которым двигатель не производится для оснащения автомобилей и мотоциклов — необходимость точного оборудования при его производстве. Малейший брак становится причиной выхода мотора из строя. Это пока не позволяет роторному агрегату заменить поршневой двигатель даже в узкихотраслях производства.

Феликс Ванкель — Энциклопедия журнала "За рулем"

Феликс Генрих Ванкель (13 августа 1902 года, Лар, Германия - 9 октября 1988 года, Хайдельберг, Германия). Один из авторов идеи роторно-поршневого двигателя внутреннего сгорания, создатель конструкции РПД, производящегося серийно в настоящее время. В наши дни модернизированными «двигателями Ванкеля» оснащаются легковые автомобили Mazda RX-8.

Ранние годы
Феликс Ванкель появился на свет 13 августа 1902 года в немецком городе Лар, земля Баден-Вюртемберг, Германия. Его родителями были Рудольф Ванкель, служащий, и Герти Ванкель, в девичестве Хайдлауфф, домохозяйка.
Феликс рос болезненным, слабым ребенком. Он был почти слеп, страдая сильной близорукостью. Поэтому получил преимущественно домашнее образование. Гимназию он посещал нерегулярно, даже эпизодически. Мальчику трудно было читать и писать.
В 1914 году Рудольф Ванкель был призван в германскую армию и погиб в первый же год войны. Мать Феликса осталась одна с больным ребенком и почти без средств к существованию. В 1915 году она переехала ближе к родственникам в соседний Хайдельберг.
В 1921 году Феликс сдал выпускные экзамены в хайдельбергской гимназии, но поступить в университет не смог. После долгих поисков работы юноше, не имевшему никакой профессии (из-за крайне слабого зрения его не приняли ни в одно училище, дающее рабочую специальность), удалось устроиться в книжное издательство мелким служащим. На протяжение последующих трех лет Феликс Ванкель занимался самообразованием, изучая технические учебники, и копил средства на открытие собственного дела. В 1924 году он уволился из издательства и открыл маленькую автомастерскую, которая стала не столько ремонтным предприятием, сколько частным конструкторским бюро.

Политические взгляды
Этому скромному, тихому, совершенно не воинственному человеку, Феликсу Ванкелю, дважды в жизни довелось побывать в тюрьме. В 1921 году (по другим сведениям, в 1924 году) Ванкель вступил в ряды НСДАП, поверив в идею крайнего национализма. В условиях послевоенного кризиса, когда немцы, проигравшие войну, чувствовали себя униженными и нищими, подобные настроения молодого инженера-самоучки легко понять. Однако, Ванкель был трезвым человеком. И в 1933 году, когда фашисты пришли к власти, он демонстративно покинул ряды партии. И это не прошло для него даром - в том же 1933 году Ванкель, как враг правящего режима, полгода провел в немецкой тюрьме. Но, поскольку он не совершал никаких преступлений, был отпущен на волю. Второй раз Ванкель попал в тюрьму после войны - как человек активно сотрудничавший с нацистским режимом.
С 1936 года Феликс Ванкель работал по заказу компании BMW над разработкой опытных авиадвигателей для Люфтваффе. В 1945 году лаборатория в Линдау, в которой он трудился, была уничтожена американской авиацией. После войны Ванкель был осужден и посажен в тюрьму на два года.
В послевоенные годы Феликс Ванкель избегал какой-либо политической деятельности.

Становление
В том же злосчастном для Ванкеля 1933 году в его жизни произошли важные перемены. Начав в 1924 году разработку роторно-поршневого двигателя, Феликс, выйдя на свободу из тюрьмы, подал заявку на патент. Свой двигатель он назвал «машиной с вращающимися поршнями». Рассмотрение патентной заявки заняло три года. Вместе с патентом в 1936 году Ванкель получил приглашение от компании BMW перебраться в Баварию, в город Линдау, чтобы заняться разработкой золотников и уплотнений для авиационных моторов уже в условиях хорошо оснащенной лаборатории.
Это предложение совпало с женитьбой Ванкеля на Эмме Кирн. В 1936 году супруги переехали в Баварию, забрав с собой все оборудование мастерской. За Ванкелем последовали и немногочисленные сотрудники его компании. Любопытно, что работая по заказу крупного концерна, предприятие Ванкеля, тем не менее, сохраняло независимость.
В 30-е годы Ванкель отошел от разработки РПД, сосредоточившись на авиационных моторах. Но уже к началу 40-х годов он вернулся к старым идеям и построил несколько рабочих прототипов роторно-поршневого двигателя. Главная проблема РПД состояла в том, что Ванкель никак не мог отыскать оптимальную форму ротора и внутренней полости мотора. Экспериментируя с эллипсовидными и овальными формами, он не мог добиться нужной степени уплотнения между ротором и камерой сгорания. Успех пришел только в 50-е годы. Но до этого времени Ванкелю пришлось пережить серьезные испытания.
В 1942 году лаборатория Ванкеля в Линдау была распущена, а сам изобретатель был переведен на работу в конструкторское бюро DVL, занимавшееся разработкой моторов для военной авиации и быстроходных катеров. В последние годы войны Ванкель тесно сотрудничал со специалистами японской компании Hitachi, благодаря чему в Японии было выпущено несколько моделей скоростных истребителей. Судьба довоенных и военных разработок Ванкеля неизвестна. По версии самого изобретателя, вся документация и опытные образцы погибли во время налета на Линдау американской авиации. По другой версии, все оборудование лаборатории Ванкеля было вывезено во Францию по репарациям.

После войны
Выйдя на свободу в 1947 году Феликс Ванкель несколько лет в буквальном смысле бедствовал. Жить приходилось мелкими частными заказами и ремонтом автомобилей. Большую поддержку Ванкелю оказала супруга Эмма. Этот брак, несмотря на бездетность, оказался счастливым.
В 1951 году усилия Ванкеля были вознаграждены. Помощь оказала компания «Гётце», которая выделила средства на воссоздание частной лаборатории в Линдау. В том же году Феликс Ванкель возобновил разработку РПД.
Главным заказчиком Ванкеля стала немецкая компания NSU , выпускавшая мотоциклы и автомобили. Заинтересовавшись идеей РПД, NSU заказала Ванкелю мотор для легкого мотоцикла.

С Вальтером Фройде
Подлинным разработчиком «двигателя Ванкеля» стал вовсе не Феликс Ванкель, а вдохновленный его идеями конструктор компании NSU Вальтер Фройде. Именно он в 1957 году нашел оптимальное сочетание формы ротора и камеры сгорания. Однако, в истории осталось имя Ванкеля - как наиболее последовательного разработчика РПД. Хотя в пятидесятые годы Ванкель работал над другим двигателем, который так и не был запущен в серийное производство.
Толчком к изменению конструкции РПД стали испытания очередного варианта двигателя. Опытный образец мотора для легкого мотоцикла имел рабочий объем всего 50 см3 и выдавал мощность в 14 л.с. Установленный на раму спортивного мотоцикла этот двигатель принес команде NSU мировой рекорд скорости - 193 км/ч.
Однако двигатель оказался ненадежен и капризен. Ванкелю стоило немалых усилий уговорить руководство NSU продолжить финансирование разработок. Тогда-то в команде Ванкеля и появился Вальтер Фройде.
1 февраля 1957 года новый роторно-поршневой двигатель Ванкеля-Фройде был установлен на стенде. В бак была залита смесь метанола и касторового масла. Одна попытка завести мотор. Вторая... Двигатель завелся с третьей попытки. И проработал более 100 часов. Год спустя в свет вышел спортивный автомобиль NSU Spider, оснащенный доработанным двигателем Ванкеля-Фройде. Так началась эпоха РПД.

Успех
В 1960 году финансовое положение Ванкеля настолько упрочилось, что он перестроил лабораторию в Линдау, превратив ее в исследовательский центр. Набрав штат инженеров, он сосредоточился на доработке двигателя Ванкеля-Фройда. При абсолютно разумном подходе к выбору формы ротора и камеры сгорания, соавторам не удалось решить главную проблему РПД - надежного уплотнения ротора, которое препятствовало бы прорыву газов.
Простой в производстве мотор для NSU Spider на практике был недолговечен и неэкономичен - и это при том, что одним из достоинств роторно-поршневого двигателя по идее авторов должна быть именно экономичность. Экспериментируя с легированными сталями, Ванкелю удалось сконструировать достаточно надежный ленточный уплотнитель, работающий не хуже традиционного поршневого кольца. В 1964 году руководству NSU был представлен автомобильный РПД улучшенной конструкции. Он и пошел в серийное производство. Эти двигатели устанавливались на самой удачной модели компании - автомобиле NSU Ro 80.
К 1970 году патент на двигатель Ванкеля приобрели все ведущие автомобильные компании мира. Многие из них взялись за разработку, но до практической реализации дошли лишь считанные единицы.

Первый массовый автомобиль с РПД
Легковой автомобиль бизнес-класса NSU Ro 80 выпускался компанией NSU , а затем компанией Volkswagen , которая в 1969 году купила NSU, с 1967 по 1977 годы. Всего за 10 лет производства было выпущено 37204 экземпляра этой модели. Ro 80 стал первой успешной массовой моделью, в которой применялся РПД.
В NSU Ro 80 были применены и другие революционные для своего времени решения. В этом автомобиле впервые появились блок-фары, полуавтоматическая КП с гидротрансформатором, кузов машины имел небывало низкое аэродинамическое сопротивление. И все же необыкновенный автомобиль был достаточно быстро забыт, и виной тому стала ненадежность мотора. Из-за быстрого износа уплотнений ротора двигатель требовал капитального ремонта каждые 50 тысяч км. Зачастую в ремонтных центрах изношенный РПД на этих автомобилях заменяли поршневым фордовским двигателем V4 «Essex». До нашего времени дожили именно такие, «переделанные» экземпляры.

Последние годы жизни
После того, как в 1969 году компания NSU перешла под контроль концерна Volkswagen, Феликс Ванкель продолжил работу в своем центре в Линдау над совершенствованием РПД по заказам японской компании Toyo Kogyo, позднее сменившей имя на Mazda, и советской компании «ВАЗ». В результате Mazda выпускает двигатели Ванкеля серийно, устанавливая их на суперкары серии RX. А «ВАЗ» ограничился мелкосерийным производством легковых автомобилей для силовых структур СССР, а потом и России. С 1998 года разработкой и производством РПД занимается только Mazda.
Феликс Ванкель работал над конструкцией роторно-поршневого двигателя до самой смерти. Он умер 9 октября 1988 года в Хайдельберге в возрасте 86 лет. Всю жизнь он был женат на одной женщине - Эмме Кирн. Детей у них не было.
Как это ни странно, но Феликс Ванкель никогда в жизни не садился за руль автомобиля. У него было очень слабое зрение. По этой же причине он старался не проводить математических расчетов, полагаясь на интуицию.

Ванкеля двигатель - это... Что такое Ванкеля двигатель?

Роторно-поршневой двигатель в разрезе.

Ро́торно-поршнево́й дви́гатель внутреннего сгорания (РПД, двигатель Ва́нкеля), конструкция которого разработана в 1957 инженером компании NSU Вальтером Фройде (англ.), ему же принадлежала идея этой конструкции. Двигатель разрабатывался в соавторстве с Феликсом Ванкелем, работавшим над другой конструкцией роторно-поршневого двигателя. [1]

Особенность двигателя — применение трёхгранного ротора (поршня), имеющего вид треугольника Рело, вращающегося внутри цилиндра специального профиля, поверхность которого выполнена по эпитрохоиде.

Конструкция

Установленный на валу ротор жёстко соединён с зубчатым колесом, которое входит в зацепление с неподвижной шестернёй - статором. Диаметр ротора намного превышает диаметр статора, несмотря на это ротор с зубчатым колесом обкатывается вокруг шестерни. Каждая из вершин трёхгранного ротора совершает движение по эпитрохоидальной поверхности цилиндра и отсекают переменные объёмы камер в цилиндре с помощью трёх клапанов.

Цикл двигателя Ванкеля: впуск (голубой), сжатие (зелёный), рабочий ход (красный), выпуск (жёлтый)

Роторно-поршневой двигатель

Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. Герметизация камер обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаемыми к цилиндру центробежными силами, давлением газа и ленточными пружинами. Отсутствие механизма газораспределения делает двигатель значительно проще четырехтактного поршневого (экономия составляет около тысячи деталей), а отсутствие сопряжения (картерное пространство, коленвал и шатуны) между отдельными рабочими камерами обеспечивают необычайную компактность и высокую удельную мощность. За один оборот ванкель выполняет три полных рабочих цикла, что эквивалентно работе шестицилиндрового поршневого двигателя.

Смесеобразование, зажигание, смазка, охлаждение, запуск принципиально такие же, как и у обычного поршневого двигателя внутреннего сгорания.

Практическое применение получили двигатели с трёхгранными роторами, с отношением радиусов шестерни и зубчатого колеса: R:r = 2:3, которые устанавливают на автомобилях, лодках и т. п.

Преимущества, недостатки и их разрешение

Преимущества перед обычными бензиновыми двигателями

  • низкий уровень вибраций. РПД полностью механически уравновешен, что позволяет повысить комфортность лёгких транспортных средств типа микроавтомобилей, мотокаров и юникаров;
  • главным преимуществом роторно-поршневого двигателя являются отличные динамические характеристики: на низкой передаче возможно без излишней нагрузки на двигатель разогнать машину выше 100 км/ч на более высоких оборотах двигателя (8000 об/мин и более), чем в случае конструкции обычного двигателя внутреннего сгорания.
  • Малая удельная масса при высокой удельной мощности, причины:
  1. Масса движущихся частей в РПД гораздо меньше, чем в аналогичных по мощности «нормальных» поршневых двигателях, так как в его конструкции отсутствуют коленчатый вал и шатуны.
  2. К тому же однороторный двигатель выдаёт мощность в течение трёх четвертей каждого оборота выходного вала. В отличии от одноцилиндрового поршневого двигателя, который выдаёт мощность только в течение одной четверти каждого оборота выходного вала. (современный серийный РПД с объёмом рабочей камеры 1300 см³ имеет мощность 220 л.с., а с турбокомпрессором — 350 л.с.)
  • меньшие в 1,5—2 раза габаритные размеры.
  • меньшее на 35—40 % число деталей

За счёт отсутствия преобразования возвратно-поступательного движения во вращательное двигатель способен выдерживать бо́льшие обороты с меньшими вибрациями, по сравнению с традиционными двигателями. Роторно-поршневые двигатели обладают более высокой мощностью при небольшом объёме камеры сгорания, сама же конструкция двигателя сравнительно мала и содержит меньше деталей. Небольшие размеры улучшают управляемость, облегчают оптимальное расположение трансмиссии и позволяют сделать автомобиль более просторным для водителя и пассажиров.

Соединение ротора с выходным валом через эксцентриковый механизм, являясь характерной особенностью РПД Ванкеля, вызывает давление между трущимися поверхностями, что в сочетании с высокой температурой, приводит к дополнительному износу и нагреву двигателя.

В связи с этим возникает повышенное требование к периодической замене масла. При правильной эксплуатации периодически производится капитальный ремонт, включающий в себя замену уплотнителей. Ресурс при правильной эксплуатации достаточно велик, но не заменённое вовремя масло неизбежно приводит к необратимым последствиям, и двигатель выходит из строя.

Важной проблемой считается состояние уплотнителей. Площадь пятна контакта очень невелика, а перепад давления очень высокий. Следствием этого, неразрешимого для двигателей Ванкеля, противоречия являются высокие утечки между отдельными камерами и, как следствие, падение коэффициента полезного действия и токсичность выхлопа.

Проблема быстрого износа уплотнителей на высокой скорости вращения была разрешена применением высоколегированной стали.

При всех преимуществах (высокая удельная мощность, простота устройства, несложный ремонт при правильной эксплуатации), важной проблемой является меньшая экономичность на низких оборотах по сравнению с обычными ДВС.

Другой особенностью двигателей Ванкеля является его склонность к перегреву. Камера сгорания имеет линзовидную форму, то есть при маленьком объёме у неё относительно большая площадь. При температуре горения рабочей смеси основные потери энергии идут через излучение. Интенсивность излучения пропорциональна четвёртой степени температуры, таким образом идеальная форма камеры сгорания — сферическая. Лучистая энергия не только бесполезно покидает камеру сгорания, но и приводит к перегреву рабочего цилиндра. Эти потери не только снижают эффективность преобразования химической энергии в механическую, но и вызывают проблемы с воспламенением рабочей смеси, поэтому в конструкции двигателя часто предусматривают 2 свечи.

Высокие требования к точности исполнения деталей делают его сложным в производстве. Оно требует высокотехнологичного и высокоточного оборудования — станков, способных перемещать инструмент по сложной траектории эпитрохоидальной поверхности камеры объёмного вытеснения.

Применение

NSU Ro80.

Двигатель разрабатывался изначально именно для применения на автотранспорте. Первый серийный автомобиль с роторным двигателем — немецкий спорткар NSU Wankelspider.

Первый массовый (37,204 экземпляра) — немецкий седан бизнес-класса NSU Ro80. Автомобиль имел достаточно инноваций и помимо двигателя — в частности, кузов с рекордно-низким аэродинамическим сопротивлением, полуавтоматическую коробку передач с гидротрансформатором, блок-фары, и так далее. Ro80 отличалась не только уникальной конструкцией, но и передовым дизайном, который оказался непонятен публике середины шестидесятых; через десять лет именно он был положен в основу стиля моделей «Ауди» 100 и 200 поколения C2.

К сожалению, ресурс двигателя оказался весьма мал (ремонт требовался уже после пробега порядка 50 тыс. км), поэтому автомобиль заслужил плохую репутацию и относительно малоизвестен. На многих сохранившихся автомобилях оригинальный двигатель заменён на поршневой V4 «Essex» фирмы Ford.

Citroën также экспериментировал с РПД — проект Citroën M35.

После этого серийное и мелкосерийное производство роторно-поршневых двигателей Ванкеля производились только фирмой ВАЗ, в конечном счёте взявшим за основу конструкцию двигателя

Современные двигатели

Инженерам фирмы Euro IV. Двухцилиндровый двигатель «Renesis» объёмом всего 1,3 л выдаёт мощность в 250 л. с. и занимает гораздо меньше места в моторном отсеке. Следующая модель двигателя Renesis 2 16X имеет меньший объём, но бо́льшую мощность, меньше нагревается.

Автомобили марки [2] могут использовать в качестве топлива как бензин, так и водород. Это явилось вторым витком роста внимания к РПД двигателю со стороны разработчиков. Двигатель успешно может использовать водород, так как менее чувствителен к детонации, чем обычный двигатель, использующий возвратно-поступательное движение поршня.

Автомобили с РПД потребляют от 7 до 20 литров топлива на 100 км, в зависимости от режима движения, и масла от 0,4 л до 1 л на 1000 км (для двигателей Mazda 0,4 — 0,6 л.). В настоящее время исследование этого типа двигателя активно ведёт японский автоконцерн

Авиационные двигатели

В начале 50-х годов была создана серия авиадвигателей ВП-760, ВП-1300, ВП-2650 — пятилучевых двухтактных звёзд мощностью от 40 до 130 л. с. и весом от 25 до 100 кг авиационного инженера В.Полякова, созданных для лёгкой авиационной техники и прошедших успешные испытания в небольшой серии в ДОСААФ. [3]

Сноски

  1. Иван Пятов. РПД изнутри и снаружи, Журнал Двигатель, № 5-6 (11-12) сентябрь-декабрь 2000
  2. первые буквы от названия «Renesis», производным от слов (англ. Rotary Engine:роторный двигатель и Genesis:процесс становления, название говорящее о появлении нового класса двигателей)
  3. альманах АэроМастер, №1/98г, Новосибирск.

Литература

  • Роторно-поршневой двигатель // Большая советская энциклопедия

Ссылки

РПД СССР/России

Авиационные РПД

См. также

Wikimedia Foundation. 2010.

Двигатель Ванкеля принцип работы

Единственная на данный момент выпускаемая в промышленном масштабе модель мотора роторного типа — это двигатель Ванкеля. Его относят роторным разновидностям движков, имеющим планетарное круговое движение основного рабочего элемента. Благодаря такой конструктивной компоновке, решение может похвастаться предельно простым техническим устройством, но не характеризуется оптимальностью в способах организации рабочего процесса и потому обладает своими неотъемлемыми и серьезными недостатками.

Двигатель Ванкеля роторный представлен во множестве вариаций, но, по сути, они различны между собой разве что численностью роторных граней и соответствующей формой внутренних поверхностей корпуса.

В общих чертах рассмотрим конструктивные особенности данного решения и углубимся немного в историю его создания и область использования.

История решений такого типа стартует в 1943 году. Именно тогда изобретателем Майларом была предложена первая аналогичная схема. После спустя некоторое время было подано еще ряд патентов на движки такой схемы. Также и разработчиком немецкой фирмы NSU. Но основным минусом, от которого страдал роторно поршневой двигатель Ванкеля, была система из уплотнений, расположенная между ребер на стыках соседствующих граней элемента треугольного типа и поверхностями неподвижных корпусных частей. Для решения столь трудной задачи подключился Феликс Ванкель, специализирующийся на уплотнениях. После, за счет своей устремленности и инженерному складу ума он возглавил разрабатывающую группу. И уже к 57-у году в недрах немецкой лаборатории был собран первый вариант, оснащенный основным вращающимся элементом треугольного типа и рабочей капсульной камерой, где вращательный элемент был намертво закреплен, в то время как вращение осуществлялось корпусом.

Куда более практичная вариация характеризовалась неподвижной рабочей камерой, в которой осуществлялось вращение треугольника. Такой вариант дебютировал годом позднее. К ноябрю 59-го года прошлого столетия фирмой были объявлены работы по созданию функционального решения роторного типа. За кратчайшие сроки множеством компаний по всему миру была приобретена лицензия на эту разработку, и из сотни фирм, около трети были из Японии.

Решение оказалось довольно компактным, мощным, с малым числом деталей. Европейские салоны пополнились машинами с роторными вариациями движков, но, увы, они обладали малым вращающим ресурсом, стремительным потреблением топлива и токсичным выхлопом.

Из-за нефтяного кризиса семидесятых попытки улучшить разработку до нужного уровня были свернуты. Лишь японской Маздой все также продолжались работы в этой области. Также трудился и ВАЗ, поскольку топливо в стране был очень дешевым, а мощные, хотя и с низким ресурсом, моторы были нужны силовым министерствам.

Но спустя тридцать лет ВАЗ закрыл производство и только Мазда до сих пор серийно запускает транспорт с моторами роторного типа. На данный момент выпускается лишь одна модель с таким решением – это Мазда RX-8.

После небольшого экскурса в историю стоит подробно остановиться на достоинствах и недостатках.

Плюсы роторного двигателя

Высокая мощность, почти вдвое превышающая показатели поршневых вариаций с четырьмя тактами. Массы неравномерно движущихся элементов в нем сравнительно ниже, чем в случае поршневых вариаций, и амплитуда движения значительно ниже. Это возможно из-за того, что в поршневых решениях происходят возвратно-поступательные движения, в то время как в рассматриваемом типе применяются планетарной схемы.

На большую мощность влияет и то, что она выдается в течение троих четвертей при каждом обороте вала. Для сравнения, одноцилиндровый поршневой мотор даёт мощность лишь на протяжении четверти каждого из оборотов. Потому за единицу объема камеры сжигания берется куда больше мощности.

При объёмах камеры в тысячу триста сантиметров, у RX-8 в плане мощности, достигается показатель двести пятьдесят лошадиных сил. У предшественника, а именно у RX-7, с аналогичным объемом, но с турбиной было триста пятьдесят лошадиных сил. Потому особыми чертами автомобиля становится отличная динамика: при низких передачах можно без лишних нагрузок на мотор разогнать транспортное средство до сотни на больших оборотах движка.

Рассматриваемый тип движка куда проще уравновешивается механически и избавляется от вибрации, что способствует повышению комфортности лёгкого транспортного средства;

По части размеров рассматриваемый тип движка в полтора-два раза меньше по сравнению с равными по мощности поршневыми моторами. Число деталей меньше примерно на сорок процентов.

Недостатки двигателя

Небольшая длительность рабочего хода роторных граней. Хоть данный показатель нельзя в чистую сравнивать с другими вариантами из-за разных типов хода поршней и вращающегося элемента, у рассматриваемой разновидности данный показатель примерно на 20% меньше. Тут имеется один существенный нюанс — у поршневых решений происходит линейное увеличение объемов, которое аналогично направлению расстояния от ВМТ до НМТ. Но вот в случае рассматриваемого типа агрегатов данное действие происходит сложнее и лишь отрезок траектории передвижения оказывается непосредственно линией хода.

Потому решение характеризуется меньшей топливной эффективностью, нежели у поршневых вариаций. Потому малая длительность способствует очень высокой температуре выходящих газов – рабочим газам не удается во время передать большую часть давления треугольнику, поскольку выполняется открытие окна выхлопа и горячие массы с еще не прекратившимся горением объемных фрагментов выходят по выхлопной трубе. Потому их температура крайне высокая.

Сложность формы камеры горения. У данной камеры серповидная форма и солидная область, где газов контактируют со стенами и ротором. Потому крупная тепловая доля приходится на нагрев элементов движка, а это уменьшает коэффициент полезного действия тепла, но при этом возрастает нагрев движка. Также такие формы камеры приводят к ухудшенному смесеобразованию и замедленному горению рабочих смесей. Потому на движке RX-8 ставят две зажигательные свечи на одну роторную секцию. Такие свойства негативно влияют и на термодинамический коэффициент полезного действия.

Малый вращательный момент. Дабы снималось вращение с работающего ротора, вращательный центр которого непрерывным образом выполняет вращение планетарного типа, в данном моторе применяют на основном валу диски с цилиндровым расположением. Проще говоря — это все является элементами преобразователя. То есть, решение рассматриваемого типа так и не смогло в полной мере избавиться от основного минуса поршневых вариаций, а именно КШМ.

Хоть он и являет собой облегченный вариант, но основные минусы этого механизма: пульсация вращающего момента, малые размеры плеча основного элемента также присутствуют и в рассматриваемом типе.

Именно потому вариация с одной секцией не эффективен, и их нужно увеличивать до двух или трех секций, с целью получения приемлемых характеристик работы, еще рекомендуется устанавливать на вале и маховое колесо.

Кроме присутствия в движке рассматриваемого типа механизма преобразователя, на недостаточный для такого мотора вращающий момент может повлиять и тот нюанс, что кинематические схемы в таких решениях устроены слишком мало рационально в плане восприятия поверхностью вращающегося элемента давления рабочих расширительных масс. Потому только определенная часть давления, а это порядка одной трети – пере компилируется в рабочее вращение элемента, тем самым создавая вращающий момент.

Наличие вибраций внутри корпуса. Проблема в том, что рассматриваемый в статье тип систем подразумевает неравномерное по массе движение. То есть во время вращения массовый центр агрегата выполняет непрерывное передвижение вращательного типа вокруг массового центра, а радиус этого движения соответствует цилиндровому плечу основного моторного вала. Потому на движковый корпус внутри влияет вращающийся постоянным образом силовой вектор, соответствующий силе центробежного типа, появляющейся на находящемся во вращении элементе. То есть он в процессе вращения на также находящемся в движении цилиндрическому валу характеризуется неизбежными и выраженными элементами движения колебательного типа.

Что и является причиной неизбежных вибраций.

Низкая устойчивость к износу в торце уплотнений радиального типа по углам вращающегося треугольника. Поскольку к ним поступает существенная нагрузка радиального типа, свойственная из-за того, что таков двигатель Ванкеля принцип работы.

Высокая вероятность прорыва газовых масс с высоким давлением из зоны одного такта работы в другой такт. Причина кроется в том, что роторный ребровой контакт уплотнителя и стенок камеры сжигания выполняется по единой линии небольшой толщины. Также имеется вероятность прорыва по гнездам, в которые устанавливают свечи, в момент прохода ребра основного вращающегося элемента.

Сложность смазочной системы вращающегося элемента. Как пример, в уже ранее упомянутой модели японского производителя особыми форсунками впрыскивается масло в камеры сжигания, дабы трущиеся в процессе вращения о стенки камеры ребер смазывались. За счет этого усиливается выхлопная токсичность и параллельно с этим повышает необходимость движка в качественном масле.

Также, во время высоких оборотов повышаются запросы к смазке поверхности цилиндрического типа цилиндрического элемента основного вала, вокруг которого осуществляется вращение, и которое занято снятием главного усилия с вращающегося элемента, также переводя во вращательное движение вала. Из-за этих двух технических трудностей, разрешить которые довольно проблематично, проявлялась недостаточная смазка в случае высоких оборотов наиболее загруженных трением элементов движка, а значит, резким образом уменьшался движущий ресурс движка. Из-за этого недостаточного решения выходит очень малый ресурс движков рассматриваемого типа, которые были выпущены отечественным АвтоВАЗом.

Большая требовательность к точности выполнения элементов со сложной формой делают таков движок трудным в производстве. Для его производства требуется высокоточное и дорогое оборудование — станки, способные выполнить рабочую камеру с криволинейной поверхностью.

Если говорить о вращающемся элементе, то у него так же имеется форма треугольника, у которого выпуклые поверхности.

Сделав выводы из всего вышеописанного можно отметить, что рассматриваемый тип обладает не только выраженными преимуществами, но и большим количеством фактически непреодолимых минусов, не позволяющих ему победить поршневые вариации. Однако такая перспектива всерьез обсуждалось сорок или пятьдесят лет назад, и аналитические обзоры пестрили мнениями, что уже к началу девяностых годов прошлого столетия роторные решения разнообразных типов будут доминировать на автомобильном рынке.

Однако, даже с учётом негативных сторон и технических проблем, такое решение смогло неплохо себя зарекомендовать в техническом плане и даже вырвать свою долю на рынке, поскольку минусы конкурентного решения – поршневого мотора с КШМ еще серьёзнее сказываются на работе. И это с учётом того, что поршневой движок долгое время пытались улучшить.

Самостоятельное изготовление двигателя

Одним из самых проблематичных моментов при выполнении любого роторного движка — это воссоздание эффективной уплотняющей системы, необходимой для создания замкнутого объёма в рабочих камерах рассматриваемого типа решений. Пока что в схемах это считается одним из главных препятствий. Тут предстоит выполнить сложную в изготовлении уплотнительную систему.

Дабы набить руку и набраться положительного опыта в данном занятии, можно попробовать выполнить компактный рабочий вариант решения рассматриваемого типа непосредственно с «нуля».

Ориентировочный показатель мощности одной из роторных секцией будет находиться в районе сорока лошадиных. А значит, движок рассматриваемого типа, скажем, с двумя секциями, достигнет показателя в восемьдесят лошадиных сил. И так далее по схожему принципу.

В целом, изготовление такого типа решений всегда идет с оптимальным ритмом, при том что можно и вовсе отказаться от сторонних элементов. Как правило, корпусная часть таких решений выполняется из конструкционной стали легированного типа, подвергнутой упрочнению термохимического типа и стойкой к высоким температурам.

Как вариант, оптимальной твердостью поверхностного слоя можно подобрать показатель в районе семидесяти HRC. По части глубины, термически упроченный слой находится в районе полтора миллиметров. Аналогичным образом обрабатываются и до того же показателя твердости и устойчивости к износам уплотнения радиального и торцевого типа.

Такое решение обладает воздушным охлаждением, а смазочное масло будет поступать к камере сжатия посредством двух специальных форсунок. То есть, в данном случае не потребуется смешивать масло и бензин, как это бывает в двухтактных вариациях.

Движок рассматриваемого типа ставят на токарный станок, где он в течение нескольких часов подвергается обкатке без воздействиями температуры. Таким образом, можно оценить эффективность уплотнений и герметичность выполняемых секций как достаточно приемлемую.

Впоследствии можно измерить уровень давления, который наблюдается в зоне сжатия.

Если статья была Вам полезна, можете поделиться материалом в социальных сетях:

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *