Блок питания для автомобильного усилителя – 500 Ватт импульсный блок питания для аудиоусилителей. Блок питания для аудио усилителя

Блоки питания автомобильных усилителей звука, схемотехника и принцип работы

Рис. 1 моноплата автомобильного усилителя звука с раздельными преобразователями напряжения питания

Преобразователь напряжения в схеме блоков питания автомобильных усилителей, как и любой источник питания, имеет некоторое выходное сопротивление. При питании от общего источника между каналами многоканальных усилителей звука возникает взаимосвязь, которая тем больше, чем выше выходное сопротивление источника питания. Оно, обратно пропорционально мощности преобразователя.

Одной из составляющих выходного сопротивления блока питания становится и сопротивление питающих проводов. В моделях высокого класса для питания выходных каскадов усилителя мощности звука используют медные шины сечением 3…5 мм. Это наиболее простое решение проблем с питанием усилителя звука, улучшающее динамику и качество звучания.

Конечно, повысив мощность источника питания, взаимное влияние каналов можно уменьшить, но полностью исключить его нельзя. Если же использовать для каждого канала отдельный преобразователь, проблема снимается. Требования к отдельным источникам питания при этом можно заметно снизить. Обычно уровень переходного затухания автомобильных усилителей с общим блоком питания составляет для бюджетных моделей 40…55 дБ, для более дорогих — 50…65 дБ. Для автомобильных усилителей звука с раздельными блоками питания этот показатель превышает 70 дБ.

Преобразователи напряжения питания делятся на две группы — стабилизированные и нестабилизированные. Нестабилизированные заметно проще и дешевле, но им свойственны серьезные недостатки. На пиках мощности выходное напряжение преобразователя снижается, что приводит к увеличению искажений. Если увеличить мощность преобразователя, это снизит экономичность при малой выходной мощности. Поэтому нестабилизированные преобразователи применяются, как правило, в недорогих усилителях с суммарной мощностью каналов не более 100… 120 Вт. При более высокой выходной мощности усилителя предпочтение отдается стабилизированным преобразователям.

Как правило, блок питания смонтирован в одном корпусе с усилителем (на рис. 1 показана моноплата автомобильного усилителя звука с раздельными преобразователями напряжения питания), но в некоторых конструкциях он может быть выполнен в виде внешнего блока или отдельного модуля. Для включения автомобильного усилителя в рабочий режима усилителя используется управляющее напряжение от головного аппарата (вывод Remote). Потребляемый по этому выводу ток минимален — несколько миллиампер — и никак не связан с мощностью усилителя. В автомобильных усилителях обязательно используется защита от короткого замыкания нагрузки и от перегрева. В ряде случаев имеется также защита акустичеких систем от постоянного напряжения в случае выхода из строя выходного каскада усилителя. Эта часть схемы для современных автомобильных усилителей стала практически типовой и может отличаться незначительными изменениями.

Автомобильные усилители имеют еще одну особенность. Обычно компоненты аудиосистемы удалены друг от друга и для их соединения используются относительно длинные соединительные кабели длина которых в автомобиле может достигать десятка и более метров. Чтобы исключить образование паразитного контура чувствительного к наводкам, приходится принимать специальные меры. Прежде всего нужно стремиться к тому, чтобы в системе была одна точка заземления (точка соединения с «массой» автомобиля), но это условие не всегда можно выполнить. Для уменьшения уровня помех общий провод входных цепей блока питания и общий провод его выходных цепей имеют полную гальваническую развязку или связаны через резистор R1 сопротивлением порядка 1 кОм, как показано на рисунке 2. В зависимости от места и способа монтажа усилителя, линий питания и связи для достижения минимального уровня наводок может понадобиться и непосредственное соединение первичных и вторичных цепей.

Рис. 2 Схема стабилизированного блока питания автомобильного усилителя звука «Monacor НРВ 150»

В первых автомобильных усилителях в блоках питания использовались преобразователи напряжения, выполненные полностью на дискретных элементах. Пример такой схемы стабилизированного блока питания автомобильного усилителя звука «Monacor НРВ 150» (рис. 2). На схеме сохранена заводская нумерация элементов.

Задающий генератор выполнен на транзисторах VT106 и VT107 по схеме симметричного мультивибратора. Работой задающего генератора управляет ключ на транзисторе VT101. Транзисторы VT103, VT105 и VT102, VT104 — двухтактные буферные каскады, улучшающие форму импульсов задающего генератора. Выходной каскад выполнен на параллельно включенных биполярных транзисторах VT111, VT113 и VT110, VT112. Согласующие эмиттерные повторители на VT108 и VT109 питаются пониженным напряжением, снимаемым с части первичной обмотки трансформатора. Диоды VD106 — VD111 ограничивают степень насыщения выходных транзисторов. Для дополнительного ускорения закрывания этих транзисторов введены диоды VD104, VD105. Диоды VD102, VD103 обеспечивают плавный запуск преобразователя. С отдельной обмотки трансформатора напряжение, пропорциональное выходному, подается на выпрямитель (диод VD113, конденсатор С106). Это напряжение обеспечивает быстрое закрывание выходных транзисторов и способствует стабилизации выходного напряжения.

Недостаток биполярных транзисторов — высокое напряжение насыщения при большом токе. При токе 10… 15 А это напряжение достигает 1 В, что значительно снижает КПД преобразователя и его надежность. Частоту преобразования не удается сделать выше 25…30 кГц, в результате растут габариты трансформатора преобразователя и потери в нем.

Применение полевых транзисторов в блоке питания повышает надежность и экономичность. Частота преобразования во многих блоках превышает 100 кГц. Появление специализированных микросхем, содержащих на одном кристалле задающий генератор и цепи управления, значительно упростило конструкцию блоков питания для мощных автомобильных усилителей.

Рис. 3 Упрощенная схема нестабилизированного преобразователя напряжения питания автомобильного усилителя «Jensen»

Упрощенная схема нестабилизированного преобразователя напряжения питания четырехканального автомобильного усилителя «Jensen» приведена на рис. 3 (нумерация элементов на схеме условная).

Задающий генератор преобразователя напряжения собран на микросхеме KIA494P или TL494 (отечественный аналог — КР1114ЕУ4). Цепи защиты на схеме не показаны. В выходном каскаде, помимо указанных на схеме типов приборов, можно использовать мощные полевые транзисторы IRF150, IRFP044 и IRFP054 или отечественные КП812В, КП850. В конструкции использованы отдельные диодные сборки с общим анодом и с общим катодом, смонтированные через изолирующие теплопроводящие прокладки на общем теплоотводе вместе с выходными транзисторами усилителя.

Трансформатор можно намотать на ферритовом кольце типоразмера К42х28х10 или К42х25х11 с магнитной проницаемостью μэ=2000. Первичная обмотка намотана жгутом из восьми проводов диаметром 1,2 мм, вторичная — жгутом из четырех проводов диаметром 1 мм. После намотки каждый из жгутов разделен на две равные части, и начало одной половины обмотки соединено с концом другой. Первичная обмотка содержит 2×7 витков, вторичная — 2×15 витков, равномерно распределенных по кольцу.

Дроссель L1 намотан на ферритовом стержне диаметром 16 мм и содержит 10 витков эмалированного провода диаметром 2 мм. Дроссели L2, L3 намотаны на ферритовых стержнях диаметром 10 мм и содержат по 10 витков провода диаметром 1 мм. Длина каждого стержня 20 мм.

Подобная схема блоков питания с незначительными изменениями используется в автомобильных усилителях с суммарной выходной мощностью до 100… 120 Вт. Варьируются число пар выходных транзисторов, параметры трансформатора и устройство цепей защиты. В преобразователях напряжения более мощных усилителей вводят обратную связь по выходному напряжению, увеличивают число выходных транзисторов.

Для равномерного распределения нагрузки и уменьшения влияния разброса параметров транзисторов в трансформаторе токи мощных транзисторов распределяют на несколько первичных обмоток. Например, в преобразователе блока питания автомобильного усилителя «Lanzar 5.200» использовано 20! мощных полевых транзисторов, по 10 в каждом плече. Повышающий трансформатор содержит 5 первичных обмоток. К каждой из них подключено по 4 транзистора (параллельно по два в плече). Для лучшей фильтрации высокочастотных помех возле транзисторов установлены индивидуальные конденсаторы сглаживающего фильтра суммарной емкостью 22000 мкФ. Выводы обмоток трансформатора подключены непосредственно к транзисторам, без использования печатных проводников.

Поскольку автомобильным усилителям звука приходится работать в очень тяжелом температурном режиме, для обеспечения надежной работы в некоторых конструкциях используются встроенные вентиляторы охлаждения, продувающие воздух через каналы теплоотвода. Управление вентиляторами осуществляется с помощью термодатчика. Встречаются устройства как с дискретным управлением («включен-выключен»), так и с плавной регулировкой скорости вращения вентилятора.

Наряду с этим, во всех усилителях используется термозащита блоков. Чаще всего она реализуется на основе термистора и компаратора. Иногда применяют стандартные компараторы в интегральном исполнении, но в этой роли чаще всего используют обычные микросхемы операционных усилителей ОУ. Пример схемы устройства термозащиты используемой в уже рассмотренном четырехканальном автомобильном усилителе «Jensen» приведен на рис. 4. На схеме, нумерация деталей условная.

Термистор Rt1 имеет тепловой контакт с корпусом усилителя вблизи выходных транзисторов. Напряжение с термистора подано на инвертирующий вход ОУ. Резисторы R1 — R3 вместе с термистором образуют мост, конденсатор С1 предотвращает ложные срабатывания защиты. При длине проводов, которыми термистор подключен к плате, около 20 см уровень наводок от блока питания достаточно велик. Через резистор R4 осуществляется положительная обратная связь с выхода ОУ, превращающая ОУ в пороговый элемент с гистерезисом. При нагреве корпуса до 100 °С сопротивление термистора снижается до 25 кОм, компаратор срабатывает и высоким уровнем напряжения на выходе блокирует работу преобразователя.

Выходные транзисторы усилителя и ключевые транзисторы преобразователя питания чаще всего применяют в пластиковых корпусах, ТО-220. К теплоотводу их крепят либо винтами, либо пружинными клипсами. У транзисторов в металлических корпусах теплоотвод несколько лучше, но поскольку устанавливать их нужно через специальные теплоотводящие прокладки, монтаж их намного сложнее, поэтому используют их в автоусилителях значительно редко, только в самых дорогих моделях.

Блок питания для автомобильного усилителя CAVR.ru

Рассказать в:

БЛОК ПИТАНИЯ ДЛЯ АВТОМОБИЛЬНОГО УСИЛИТЕЛЯ.

   Напряжение питания бортовой сети легко­вого автомобиля составляет 12v. Если задаться сопротивлением акустической сис­темы равным 4 om , то максимальная мощ­ность, которую можно получить при таком напряжении питания составит 36w. Это самый теоретический максимум, предполага­ющий мостовое включение усилителя и нуле­вое сопротивление транзисторов выходного каскада в открытом состоянии, то есть, практически для цифрового импульсного усилителя. Для аналогового усилителя мак­симальная мощность будет не более 20w на канал при мостовом включении. Для полу­чения большей мощности необходимо либо применение импульсного выходного каскада, формирующего аудиосигнал методом широт- но-импульсной модуляции, либо нужно пони­жать сопротивление акустической системы. В первом случае в звуке будет присутствовать ультразвуковая составляющая от ШИМ, а так же, нужны будут более сложные меры борьбы с искажениями сигнала. Во втором случае, сопротивление звуковой катушки уже будет сопроставимо с сопротивлением иду­щих к ней проводов, что в общем, такие меры может свести на нет. Есть еще способ — орга­низация вольт-добавки питания в выходном каскада за счет выпрямления выходного сиг­нала и большой накопительной емкости. Но это тоже не очень хорошо, так как сложно получить достаточно линейную АЧХ, и может быть неравномерной зависимость коэффи­циента передачи по мощности от величины входного сигнала. Конечно, все перечислен­ные выше меры повышения выходной мощ­ности усилителя, питающегося от низко­вольтного источника, имеют право на существование, и при аккуратном и грамот­ном исполнении дают неплохие результаты. Но, есть и более традиционный способ повы­шения мощности УНЧ, — просто повысив его напряжение питания с помощью преобразо­вателя напряжения, и даже организовав с его же помощью двухполярное питание. Этот способ позволяет использовать в автомо­биле не компромиссный автомобильный вариант УНЧ, а практически любую схему УНЧ, применяемую в стационарной аппара­туре, способную обеспечить значительно лучшее качество звучания, чем хитроумные схемы мощных авто-УНЧ, с вольтдобавками на конденсаторах и низкоомными акустичес­кими системами, ведь как скажет любой любитель hl-end, — самое лучшее звучание дает простой одноламповый каскад без цепей обратной связи и с высокоомным вы­ходом. Но это уже конечно другая крайность.

Какова бы не была схема «обычного» УНЧ, который вы планируете использовать в авто­мобиле, для него нужно преобразователь напряжения питания. Этот преобразователь должен выдавать повышенное двухполяр­ное напряжение, в данном случае ±20v при выходном токе до 4А. Такой источник пита­ния сможет питать УНЧ с выходной мощ­ностью до 60-70w, выполненный по тради­ционной схеме.

Принципиальная схема преобразователя показана на рисунке. Схема во многом типо­вая. Задающий генератор со схемой ШИМ стабилизации выходного напряжения выпол­нен на микросхеме А1. Номинальная частота генерации около 50 кГц (регулируется резис­тором r3). Образцовое напряжение с выхода поступает на вход компаратора (вывод 1) и в зависимости от напряжения на выводе 1 компаратор изменяет широту импульсов, генерируемых микросхемой так чтобы под­держивать выходное напряжение стабиль­ным. Величина выходного напряжения точно устанавливается подстроечным резистором r8, который формирует это измерительное напряжение. Цепь vd1-c3-r4-r5 формирует плавный пуск схемы.

Выходные противофазные импульсы сни­маются с выводов 8 и 11 А1 для подачи на выходные каскады, но здесь они сначала поступают на драйвер выходных транзис­торов на микросхеме А2. Задача этой микро­схемы в усилении мощности этих импульсов, так как здесь используются мощные полевые транзисторы с низким сопротивлением открытого канала. Такие транзисторы обла­дают существенной емкостью затворов. Чтобы обеспечить достаточную быстроту открывания транзисторов нужно обеспечить как можно более быструю зарядку и разрядку емкостей их затворов, для этого и служит драйвер на А2 . По цепи питания установлены большие кон­денсаторы С6 и С7, они должны быть рас­паяны толстым проводом непосредственно у точки отвода первичной обмотки трансфор­матора.

Для варианта, дающего двухполярное напряжение питания (как на схеме) вторич­ная обмотка имеет отвод от середины. Этот отвод через индуктивность l2 соединен с общим проводом. На диодах vd2-vd5 (диоды-Шоттки) сделан выпрямитель, даю­щий положительное и отрицательное напря­жения. В схеме с однополярным питанием вторичная обмотка не имеет отвода, и отри­цательный вывод выпрямительного моста нужно соединить с общим минусом. В этом случае, если требуется напряжение 40v сопротивление резистора r9 должно быть увеличено вдвое по сравнению с обозначен­ным на схеме.

    В качестве основы для трансформатора используется аккуратно разобранный и раз­мотанный трансформатор от источника питания старого цветного телевизора моде­лей линейки 3-УСЦТ. Следует заметить, что сердечник трансформатора там склеен довольно прочно и не каждая попытка раз­делить его половины заканчивается успехом. В этом смысле, на мой взгляд, лучше иметь два таких трансформатора (благо, ненужных блоков питания МП-1, МП-3 и др. сейчас предостаток). У одного трансформатора раз­резаете каркас вместе с обмоткой и удаляете его. Остается сердечник, который уже без каркаса и обмотки разделить значительно проще и результативнее. У второго транс­форматора аккуратно разбиваете и разламы­ваете сердечник, так чтобы не повредить каркас. В результате этого «варварства» получаете один хороший сердечник и один хороший каркас.

      Теперь о намотке. Намотка должна держать большой ток, поэтому для неё нужен толстый провод. Для намотки первичной обмотки используется втрое сложенный провод ПЭВ 0,61. Для вторичной такой же провод, но сложенный вдвое. Первичная обмотка — 5+5 витков, вторичная, — 10+10 витков.

     Катушка l1 — не катушка, а ферритовая трубка, надетая на провод.   l2 — 5 витков сложенного втрое ПЭВ 0,61 на ферритовом кольце диаметром 28 мм.

      Редкие транзисторы fdb045an можно заменить другими, причем выбор достаточно велик, так как требуется максимальное напряжение сток-исток не ниже 50v, ток стока не ниже 70А и сопротивление канала в открытом состоянии не более 0,01 Ом. По таким параметрам можно подобрать доста­точно много кандидатов на замену, то есть, практически любой fet-транзистор для автомобильных коммутаторов зажигания и прочего.

Конденсаторы С11 и С12 на напряжение не ниже 25v, остальные конденсаторы на напряжение не ниже 16v.

Горчук Н. В.


Раздел: [Блоки питания (импульсные)]
Сохрани статью в:
Оставь свой комментарий или вопрос:

Блок питания для автомобильного усилителя.

Дешевле и лучше, чем блок от компа не найти. Только одна проблема — стабилизация не на 12 вольт в них сделана.. . и напряжение проседает до 10..8 вольт, не выдав и 10 ампер. его нужно обязательно переделать! Прочитайте статьи как переделать БП от компа для питания ресивера. Напряжение выставте 14.4 вольт! (Для этого нужно отключить защиту по напряжения — выпилить стабилитроны около микросхемы ШИМ, и сделать стабилизацию по шине +12В, немного тем самым добавив напряжения до 14.4В. Стабилизация делается подтягиванием резистора от 1ой ноги ШИМ, если 494 или 7500 стоит, к +12В шине! Предварительно отпаяв резисторы, идущие от 1ой ноги к другим шинам) В итоге должно получится так, что один резистор должен от 1ой ноги на общий (то-есть минус) , второй от 1ой на +12. А так же можно найти трансформатор с двумя одинаковыми обмотками на нужное питание на ампер 5(Почему 5? Потомучто 5А это ватт так 500, хватит сполна…) , диодный мост, конденсаторы на 20 — 50 тыщ микрофарад, и разобрав усилитель припаять провода после преобразователя. Плюсы: — Качество звука — Лучше. Минусы — Вес — Дороже. — Трудно найти такой трансформатор..

по опыту вам говорю, что лучше трансформаторного блока для усилителей вы не найдете . конечно удобно с импульсными например от пк. но.. . не рекомендую. найдите добротный трансформатор. и начинайте туда прикручивать радиаторы с диодами. и ставте туда ооочень большие емкости. потому что на усилитель надо много емкости.

усилитель содержит импульсный преобразователь до «двуполярки»?

Смотри тут: <a href=»/» rel=»nofollow» title=»49914968:##:http://www+.electro-mpo+.ru/card8525.html#.TtSfc3qYKtM»>[ссылка заблокирована по решению администрации проекта]</a> Плюсы в адресе убери.

Если хочешь трансформатор делать, то надо брать ЛАТОР на 9 Ампер. Изолировать обмотку и намотать толстым проводом вторичную. Получится очень тяжёлый БП. Если нужно питать УНЧ для оркестра, то легче и быстрее взять два блока питания для компьютера. Выбирай такие, у которых три по 12V по 15А общее 45А. Выход +12V соединяй через мощные диоды Д-50 Д-100 и на общем выходе ставь кондесатор (эле6ктролит) 1Фарада (такие продают)

500 Ватт импульсный блок питания для аудиоусилителей. Блок питания для аудио усилителя

Многие знают как я люблю разбираться с разными блоками питания. В этот раз у меня на столе несколько необычный блок питания, по крайней мере такой я еще не тестировал. Да и по большому счету вообще не встречал ранее обзоров блоков питания подобной разновидности, хотя вещь по своему интересная и я раньше делал подобные блоки питания сам.
Заказать я его решил из чистого любопытства, решил что может быть полезным. Впрочем подробнее в обзоре.

Вообще стоит наверное начать с небольшого лирического вступления. Много лет назад я довольно сильно увлекался аудиотехникой, прошел как через полностью самодельные варианты, так и &amp;amp;quot;гибриды&amp;amp;quot;, где использовались УМ мощностью до 100 Ватт из магазина Юный техник, и полуразобранная Радиотехника УКУ 010, 101 и Одиссей 010, потом был Феникс 200У 010С.
Даже пробовал собрать УМЗЧ Сухова, но что-то тогда не пошло, уже и не вспомню что именно.

Акустика также разная была, как самодельная, так и готовая, например Романтика 50ас-105, Кливер 150ас-009.

Но больше всего запомнились Амфитон 25АС 027, правда они у меня были несколько доработаны. Попутно к небольшим изменениям схемы и конструкции я заменил родные динамики 50 ГДН на 75 ГДН.
Это и предыдущие фото не мои, так как моя аппаратура давно продана, а я потом перешел на Sven IHOO 5.1, а затем вообще стал слушать только мелкие компьютерные колоночки. Да, вот такой регресс.

Но вот что-то начали бродить в голове мысли, сделать что нибудь, например усилитель мощности, возможно просто так, возможно вообще все делать по другому. Но в итоге решил я заказать блок питания. Конечно я могу его сделать сам, мало того, в одном из обзоров я не только это делал, а и выложил подробную инструкцию, но к этому я еще вернусь, а пока перейду к обзору.

Начну со списка заявленных технических характеристик:
Напряжение питания — 200-240 Вольт
Выходная мощность — 500 Ватт
Выходные напряжения:
Основное — +/-35 Вольт
Вспомогательное 1 — +/- 15 Вольт 1 Ампер
Вспомогательное 2 — 12 Вольт 0.5 Ампера , гальванически отвязано от остальных.
Размеры — 133 x 100 x 42 мм

Каналы +/- 15 и 12 Вольт имеют стабилизацию, основное напряжение +/-35 Вольт не стабилизировано. Здесь я наверное выскажу свое мнение.
Меня часто спрашивают, какой блок питания купить для одного либо другого усилителя. На что я обычно отвечаю — проще собрать самому на базе известных драйверов IR2153 и их аналогов. Первый же вопрос, который следует после этого — так у них же нет стабилизации напряжения.
Да, лично на мой взгляд — стабилизация напряжения питания УМЗЧ не только не нужна, а иногда и вредна. Дело в том, что стабилизированный БП обычно больше шумит на ВЧ и кроме того, могут быть проблемы с цепями стабилизации, потому как усилитель мощности потребляет энергию не равномерно, а всплесками. Мы же слушаем музыку, а не одну частоту.
БП без стабилизации обычно имеет немного выше КПД, так как трансформатор всегда работает в оптимальном режиме, не имеет обратной связи и потому больше похож на обычный трансформатор, но с меньшим активным сопротивлением обмоток.

Вот собственно перед нами и пример БП для усилителей мощности.

Упаковка мягкая, но замотали так, что вряд ли получится его повредить в процессе доставки, хотя противостояние почты и продавцов наверное будет вечным.

Внешне выглядит красиво, особо и не придерешься.

Размер относительно компактный, особенно если сравнивать с обычным трансформатором соответствующей мощности.

Более понятные размеры есть на странице товара в магазине.

1. На входе блока питания установлен разъем, что оказалось довольно удобным.
2. Присутствует предохранитель и полноценный входной фильтр. Вот только про термистор, защищающий от бросков тока как сеть, так и диодный мост с конденсаторами, забыли, это плохо. Также в районе входного фильтра расположены контактные площадки, которые надо замкнуть для перевода БП на напряжение 110-115 Вольт. Перед первым включением лучше проверить, не замкнуты ли площадки если у вас в сети 220-230.
3. Диодный мост KBU810, все бы ничего, но он без радиатора, а при 500 Ватт он уже желателен.
4. Входные фильтрующие конденсаторы имеют заявленную емкость 470 мкФ, реальная около 460 мкФ. Так как они включены последовательно, то общая емкость входного фильтра составляет 230мкФ, маловато для выходной мощности в 500 Ватт. Кстати плата предполагает установку и одного конденсатора. Но в любом случае поднимать емкость без установки термистора я бы не советовал. Причем справа от предохранителя есть даже место для термистора, надо только впаять его и перерезать под ним дорожку.

В инверторе применены транзисторы IRF740, хоть и далеко не новые транзисторы, но раньше я их также широко применял в подобных применениях. Как альтернатива, IRF830.
Транзисторы установлены на отдельных радиаторах, сделано это отчасти не просто так. Радиаторы соединены с корпусом транзистора, причем не только в месте крепления самого транзистора, а и монтажные выводы радиатора соединены на самой плате. На мой взгляд плохое решение, так как будет лишнее излучение в эфир на частоте преобразования, по крайней мере нижний транзистор инвертора (на фото он дальний) я бы отвязал от радиатора, а радиатор от схемы.

Управляет транзисторами неизвестный модуль, но судя по наличию резистора питания, да и просто моему опыту, думаю что не сильно ошибусь, если скажу что внутри стоит банальная IR2153. правда зачем делать такой модуль, для меня осталось загадкой.

Инвертор собран по полумостовой схеме, но в качестве средней точки используется не точка соединения фильтрующих электролитических конденсаторов, а два пленочных конденсатора емкостью 1мкФ (на фото два параллельно трансформатору), а первичная обмотка подключена через третий конденсатор, также емкостью 1мкФ (на фото перпендикулярно трансформатору).
Решение известное и по своему удобное, так как позволяет весьма просто не только увеличить емкость входного фильтрующего конденсатора, а и применить один на 400 Вольт, что может быть полезным при апгрейде.

Габарит трансформатора весьма скромный для заявленной мощности в 500 Ватт. Я конечно протестирую еще его под нагрузкой, но уже могу сказать, что на мой взгляд его реальная длительная мощность на более 300-350 Ватт.

На странице магазина, в перечне ключевых особенностей, было указано —

3. Transformers 0.1 mm * 100 multi-strand oxygen-free enameled wire, heat is very low, efficiency is more than 90%.


Что в переводе означает — в трансформаторе использована обмотка из 100 штук бескислородных проводов диаметром 0.1мм, уменьшен нагрев и КПД выше 90%.
Ну КПД я проверю потом, а вот насчет того, что обмотка многопроволочная, факт. Я конечно их не пересчитывал, но жгут довольно неплохой и данный вариант намотки действительно положительно сказывается на качестве работы трансформатора в частности и всего БП в целом.

Не забыли и про конденсатор, соединяющий &amp;amp;quot;горячую&amp;amp;quot; и &amp;amp;quot;холодную&amp;amp;quot; сторону БП, причем поставили его правильного (Y1) типа.

В выходном выпрямителе основных каналов применены диодные сборки MUR1620CTR и MUR1620CT (16 Ампер 200 Вольт), причем производитель не стал колхозить &amp;amp;quot;гибридные&amp;amp;quot; варианты, а поставил как положено, две комплементарные сборки, одна с общим катодом, а другая с общим анодом. Обе сборки установлены на отдельных радиаторах и также как в случае с транзисторами, они не изолированы от компонентов. Но в данном случае проблема может быть только в плане электробезопасности, хотя если корпус закрыт, то ничего страшного в этом нет.
В выходном фильтре задействовано по паре конденсаторов 1000мкФ х 50 Вольт, что на мой взгляд маловато.

Кроме того, для уменьшения пульсаций между конденсаторами установлен дроссель, а конденсаторы, стоящие после него, дополнительно зашунтированы керамическим 100 нФ.
Вообще на странице товара было написано —

1. All high-frequency low-impedance electrolytic capacitors specifications, low ripple.


В переводе — все конденсаторы имеют низкий импеданс для уменьшения пульсаций. В общем-то так то оно и есть, применены Cheng-X, но это по сути просто немного улучшенный вариант обычных китайских конденсаторов и я бы лучше поставил мою любимую Samwha RD или Capxon KF.

Параллельно конденсаторам нет разрядных резисторов, хотя место на плате для них имеется, потому вас могут ждать &amp;amp;quot;сюрпризы&amp;amp;quot;, так как заряд держится довольно долго.

Дополнительные каналы питания подключены к своим обмоткам трансформатора, причем канал 12 Вольт гальванически отвязан от остальных.
Каждый канал имеет независимую стабилизацию напряжения, дроссели для уменьшения помех и керамические конденсаторы по выходу. Но вы наверное заметили, что диодов в выпрямителе пять. Канал 12 Вольт питается от однополупериодного выпрямителя.

По выходу, как и по входу, стоят клеммники, причем весьма неплохого качества и конструкции.

На странице товара есть фото сверху, где видно все и сразу. Уже потом заметил, что в магазине на всех фото есть монтажные стойки, в моем комплекте их не было 🙁

Печатная плата двухсторонняя, качество весьма высокое, использован стеклотекстолит, а не привычный гетинакс. В одном из узких место сделана защитная прорезь.
Снизу также обнаружилась пара резисторов, предположу, что это примитивная схема защиты от перегрузки, которую иногда добавляют к драйверам на IR2153. Но честно говоря, я бы на нее не рассчитывал.

Также снизу печатной платы присутствует маркировка выходов и варианты выходных напряжений, под которые изготавливаются данные платы. Немного заинтриговали две вещи — два одинаковых варианта +/- 70 Вольт и заказной вариант.

Перед тем, как перейти к тестам, немного расскажу о своем варианте подобного БП.
Примерно три с половиной года назад я выкладывал обзор регулируемого БП, где использовался блок питания собранный примерно по такой же схеме.

В собранном виде он также выглядел довольно похоже, извините за плохое качество фото.

Если убрать из моего варианта все &amp;amp;quot;лишнее&amp;amp;quot;, например узел регулировки оборотов вентилятора в зависимости от температуры, а также умощненный драйвер транзисторов и схему дополнительного питания от выхода инвертора, то мы получим схему обозреваемого БП.
По сути это тот же БП, только выходных напряжений больше. Вообще схемотехника данного БП совсем простая, проще только банальный автогенератор.

Кроме того обозреваемый БП снабжен примитивной схемой ограничения выходной мощности, подозреваю что реализована она так, как показано на выделенном участке схемы.

Но посмотрим на что способна данная схема и ее реализация в обозреваемом блоке питания.
Здесь надо отметить, что так как стабилизация основного напряжения отсутствует, то оно напрямую зависит от напряжения в сети.
При входном напряжении 223 Вольта выходное составляет 35.2 в режиме холостого хода. Потребление при этом 3.3 Ватта.

При этом присутствует заметный нагрев резистора питания драйвера транзисторов. Его номинал 150 кОм, что при 300 Вольт дает рассеиваемую мощность порядка 0.6 Ватта. Данный резистор греется независимо от нагрузки блока питания.
Также заметен небольшой нагрев трансформатора, фото сделано примерно через 15 минут после включения.

Для нагрузочного теста была собрана конструкция, состоящая из двух электронных нагрузок, осциллографа и мультиметра.
Мультиметр измерял один канал питания, второй канал контролировался вольтметром электронной нагрузки, которая была подключена короткими проводами.

Не буду утомлять читателя большим перечислением тестов, потому сразу перейду к осциллограммам.
1, 2. Разные точки выхода БП до диодных сборок, и с разным временем развертки. Частота работы инвертора составляет 70 кГц.
3, 4. Пульсации перед дросселем канала 12 Вольт и после него. После КРЕНки вообще все гладко, но есть проблема, напряжение в этой точке всего около 14.5 Вольта без нагрузки основных каналов и 13.6-13.8 с нагрузкой, что мало для стабилизатора 12 Вольт.

Нагрузочные тесты проходили так:
Сначала нагружал один канал на 50%, затем второй на 50%, потом нагрузку первого поднимал до 100%, а затем и второй. В итоге получалось четыре режима нагрузки — 25-50-75-100%.
Сначала что на выходе по ВЧ, на мой взгляд очень даже неплохо, пульсации минимальны, а при установке дополнительного дросселя их вообще можно свести почти до нуля.

А вот на частоте 100 Гц все довольно грустно, маловата емкость по входу, маловата.
Полный размах пульсаций при 500 Ватт выходной мощности составляет около 4 Вольт.

Нагрузочные тесты. Так как напряжение под нагрузкой проседало, то я по мере этого поднимал тока нагрузки чтобы выходная мощность примерно соответствовала ряду 125-250-375-500 Ватт.
1. Первый канал — 0 Ватт, 42.4 Вольта, второй канал — 126 Ватт, 33.75 Вольта
2. Первый канал — 125.6 Ватта, 32.21 Вольта, второй канал — 130 Ватт, 32.32 Вольта.
3. Первый канал — 247.8 Ватта, 29.86 Вольта, второй канал — 127 Ватт, 30.64 Вольта.
4. Первый канал — 236 Ватт, 29.44 Вольта, второй канал — 240 Ватт, 29.58 Вольта.

Вы наверное заметили, что в первом тесте напряжение не нагруженного канала больше 40 Вольт. Это обусловлено выбросами напряжения, а так как нагрузки нет совсем, то напряжение плавно поднималось, даже небольшая нагрузка возвращала напряжение в норму.

Одновременно измерялось потребление, но так как есть относительно большая погрешность при измерении выходной мощности, то расчетные значения КПД я также буду приводить ориентировочно.
1. 25% нагрузки, КПД 89.3%
2. 50% нагрузки, КПД 91.6%
3. 75% нагрузки, КПД 90%
4. 476 Ватт, около 95% нагрузки, КПД 88%
5, 6. Просто ради любопытства измерил коэффициент мощности при 50 и 100% мощности.

В общем-то результаты примерно похожи на заявленные 90%

Тесты показали довольно неплохую работу блока питания и все было бы замечательно, если бы не привычная &amp;amp;quot;ложка дегтя&amp;amp;quot; в виде нагрева. Еще в самом начале я оценил примерно мощность БП в 300-350 Ватт.
В процессе привычного теста с постепенным прогревом и интервалами по 20 минут я выяснил, что при мощности 250 Ватт Бп ведет себя просто отлично, нагрев компонентов примерно такой:
Диодный мост — 71
Транзисторы — 66
Трансформатор (магнитопровод) — 72
Выходные диоды — 75

Но когда я поднял мощность до 75% (375 Ватт), то через 10 минут картина была совсем другая
Диодный мост — 87
Транзисторы — 100
Трансформатор (магнитопровод) — 78
Выходные диоды — 102 (более нагруженный канал)

Попытавшись разобраться с проблемой, я выяснил, что идет сильный перегрев обмоток трансформатора, в следствие этого прогревается магнитопровод, снижается его индукция насыщения и он начинает входить в насыщение в итоге резко увеличивается нагрев транзисторов (позже я регистрировал температуру до 108 градусов), затем я остановил тест. При этом тесты &amp;amp;quot; на холодную&amp;amp;quot; с мощностью в 500 Ватт проходили нормально.

Ниже пара термофото, первое при мощности нагрузки 25%, второе при 75%, соответственно через пол часа (20+10 минут). Температура обмоток достигла 146 градусов и был заметный запах перегретого лака.

В общем теперь подведу некоторые итоги, отчасти неутешительные.
Общее качество изготовления очень хорошее, но есть некоторые конструктивные нюансы, например установка транзисторов без изоляции от радиаторов. Радует большое количество выходных напряжений, например 35 Вольт для питания усилителя мощности, 15 для предварительного усилителя и независимые 12 Вольт для всяких сервисных устройств.

Есть схемные недоработки, например отсутствие термистора по входу и малая емкость входных конденсаторов.
В характеристиках было заявлено что дополнительные каналы 15 Вольт могут выдать ток до 1 Ампера, реально я бы не ждал больше 0.5 Ампера без дополнительного охлаждения стабилизаторов. Канал 12 Вольт скорее всего вообще не выдаст более 200-300мА.

Но все эти проблемы либо не критичны, либо легко решаются. Самая сложная проблема — нагрев. БП может длительно отдавать до 250-300 Ватт, 500 Ватт только относительно кратковременно, либо придется добавлять активное охлаждение.

Попутно у меня возник небольшой вопрос к уважаемой общественности. Есть мысли сделать свой усилитель, соответственно с обзорами. Но какой был бы интереснее, усилитель мощности, предварительный, если УМ, то на какую мощность и т.п. Лично мне он не особо нужен, но вот поковыряться настроение есть. Обозреваемый БП к этому имеет слабое отношение 🙂

Этот БП на алиэкспресс — ссылка, и еще одна.

На этом у меня все, надеюсь что информация была полезна и как обычно жду вопросов в комментариях.

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *