Зарядное устройство с регулировкой тока и напряжения своими руками: АВТОМОБИЛЬНОЕ ЗАРЯДНОЕ СВОИМИ РУКАМИ

Содержание

АВТОМОБИЛЬНОЕ ЗАРЯДНОЕ СВОИМИ РУКАМИ

   Доброго времени суток господа радиолюбители! В этой статье хочу описать сборку несложного зарядного устройства. Даже совсем простого, потому что оно не содержит ничего лишнего. Ведь часто усложняя схемы мы снижаем её надёжность. В общем тут будет рассмотрено пару вариантов таких простейших автомобильных зарядных, которые можно спаять любому, кто хоть раз чинил кофемолку или менял выключатель в коридоре)) По своему опыту могу предположить что оно будет полезным каждому, кто имеет хоть какое-то отношение к технике или электронике. Давно меня посетила идея собрать простейшее зарядное устройство для АКБ своего мотоцикла, так как генератор иногда попросту не справляется с зарядкой последнего, особенно тяжело ему приходится зимним утром, когда нужно завести его со стартера. Конечно многие будут говорить что с кик стартера много проще, но тогда АКБ можно вообще выкинуть.

Электрическая схема самодельного зарядного


   Что нужно для того, чтоб АКБ зарядился? Источник стабильного тока, который бы не превышал некоторое безопастное значение.

В простейшем случае им будет обычный сетевой трансформатор. Он должен выдавать на вторичке такой ток, который нужен для стандартного зарядного режима (1/10 ёмкости аккумулятора). И если в начале зарядного цикла нагрузка начнёт тянуть ток бОльшего значения — произойдёт просадка напряжения на выходной обмотке трансформатора, а значит ток снизится. Есть два варианта выпрямителей:


Выпрямитель с регулировкой напряжения-тока


   Последняя схема позволит менять значение зарядного тока, за счёт изменения напряжения на АКБ. Если вы не доверяете трансформатору, то функцию стабилизатора тока можно возложить на обычную автомобильную лампочку 12 вольт.

Схема зарядного с балластной лампой

   В общем для себя решил сделать зарядку довольно мощной, как основу взял трансформатор ТС-160 от советского лампового телека, перемотал под свои нужды, на выходе вышло 14 вольт на 10 ампер, что позволяет заряжать АКБ достаточно большой ёмкости, в том числе любые автомобильные.

Корпус для зарядного устройства


   Корпус был собран из цинковой жести, так как хотел сделать как можно проще.


   Сзади корпуса было выпилено отверстие под вентилятор, для большей надёжности решил добавить активное охлаждение, да и вентилей поднакопилось, пусть не лежат без дела.


   Затем начал делать начинку, прикрутил трансформатор, диодный мост тоже взял с запасом — КРВС-3510, благо они не много стоят:


   В передней панели сделал отверстие для вольтметра, также прикрутил гнездо для крокодилов.


   Вышло как раз то что я хотел-простенько и надёжно. В основном этот блок используется для зарядки АКБ и питания 12 вольтовых светодиодных лент.


   Ну и в крайнем случае для настройки автомобильных преобразователей. А чтобы было меньше помех, после моста поставил пару конденсаторов общей ёмкостью около 5 тыс. мкФ.


   Внешне конечно можно было сделать и более аккуратно, но мне здесь главное надёжность, следующим на очереди стоит лабораторный блок питания, в нем то и буду воплощать все свои дизайнерские умения. Всего доброго, с вами был Колонщик!.)

   Форум по простым ЗУ

   Форум по обсуждению материала АВТОМОБИЛЬНОЕ ЗАРЯДНОЕ СВОИМИ РУКАМИ





ПРИСТАВКИ К МУЛЬТИМЕТРУ

Сборник из 10 конструкций и схем приставок к цифровым мультиметрам, расширяющих функционал измерительных приборов.



простые схемы Как сделать зарядное устройство для аккумулятора 12в

26 ноября 2016

Автолюбители, не меняющие машины каждые 2 года, рано или поздно сталкиваются с разрядкой аккумуляторной батареи. Это случается как по причине ее износа, так и по вине других элементов бортовой электросети. Чтобы и дальше эксплуатировать аккумулятор, нужно постоянно его подзаряжать. Вариантов здесь два: купить для этой цели прибор заводского изготовления либо собрать зарядное устройство (ЗУ) для автомобиля своими руками.

Кратко о заводских моделях зарядников

В торговой сети продается 3 вида приборов, предназначенных для восстановления источников питания авто:

  • импульсные;
  • автоматические;
  • трансформаторные зарядно-пусковые аппараты.

Первый тип ЗУ способен полностью заряжать батареи с помощью импульсов в двух режимах – сначала при постоянном напряжении, а потом – при неизменном токе. Это наиболее простые и доступные по цене изделия, пригодные для подзарядки всех типов автомобильных аккумуляторов. Автоматические модели устроены сложнее, зато не требуют присмотра в процессе работы. Невзирая на более высокую цену, подобные ЗУ – лучший выбор для водителя – новичка, поскольку благодаря системам защиты никогда не перегреют и не испортят батарею.

Недавно в продаже появились мобильные приборы, оснащенные собственным аккумулятором, передающим заряд автомобильному при необходимости. Но их тоже придется периодически заряжать от электросети 220 В.

Мощные трансформаторные аппараты, способные не только подзаряжать источник питания, но и вращать стартер машины, больше относятся к профессиональным установкам. Такой зарядник, хоть и обладает широкими возможностями, стоит немалых денег, поэтому рядовым пользователям малоинтересен.

Но как поступить, когда аккумулятор уже разрядился, зарядки дома еще нет, а завтра нужно ехать на работу? Разовый вариант – обратиться к соседям или знакомым за помощью, но лучше смастерить примитивное ЗУ своими руками.

Из чего должен состоять прибор?

Основными элементами любого заряжающего устройства являются:

  1. Преобразователь сетевого напряжения 220 В – катушка либо трансформатор. Его задача – обеспечить напряжение, приемлемое для подзарядки батареи, составляющее 12-15 В.
  2. Выпрямитель. Он превращает переменный ток бытовой электросети в постоянный, необходимый для восстановления заряда аккумулятора.
  3. Выключатель и предохранитель.
  4. Провода с клеммами.

Заводские аппараты дополнительно оснащаются приборами для измерения напряжения и тока, защитными элементами и таймерами. Самодельное зарядное устройство тоже можно усовершенствовать до уровня заводского при условии, что вы владеете познаниями в электротехнике. Если вам знакомы только азы, то в домашних условиях сможете собрать следующие примитивные конструкции:

  • зарядку из адаптера для ноутбука;
  • зарядник из деталей от старой бытовой техники.

Подзарядка с помощью адаптера для ноутбука

В устройствах для питания ноутбуков уже встроен преобразователь и выпрямитель. Вдобавок там есть элементы стабилизации и сглаживания выходного напряжения. Чтобы использовать их в качестве заряжающего прибора, следует проверить величину этого напряжения.

Она должна составлять не менее 12 В, иначе автомобильный аккумулятор на зарядится.

Для проверки необходимо вставить вилку адаптера в розетку и соединить плюсовую клемму вольтметра с контактом, находящимся внутри круглого штекера. Минусовый контакт расположен снаружи. Если вольтметр показал 12 В и более, то подключите адаптер к батарее следующим образом:

  1. Возьмите 2 медных провода, зачистите их концы и прикрепите к контактам штекера.
  2. «Минусовую» клемму аккумулятора присоедините к проводу от наружного контакта адаптера.
  3. Провод от внутреннего контакта подключите к «плюсовой» клемме.
  4. В разрыв «плюсового» провода поставьте маломощную автомобильную лампочку на 12 В, она послужит балластным сопротивлением.
  5. Откройте крышку батареи либо отвинтите пробки и включите адаптер в сеть.

Такая зарядка для аккумулятора автомобиля не способна восстановить полностью «севший» источник питания. Но если заряд был утрачен частично, то за несколько часов батарею удастся подзарядить, чтобы завести двигатель.

В качестве заряжающего устройства допускается применение других типов адаптеров, дающих на выходе напряжение 12-15 В.

Негативный момент: если внутри батареи замкнули «банки», то маломощный адаптер может быстро выйти из строя, а вы останетесь без машины и ноутбука. Поэтому стоит внимательно наблюдать за процессом первые полчаса и при перегреве немедленно отключить зарядку.

Сборка ЗУ из старых радиодеталей

Вариант с адаптерами не годится для постоянного применения, поскольку есть риск испортить приспособление, притом, что скорость зарядки довольно низкая. Более мощный и надежный зарядник получится из деталей старых телевизоров и ламповых радиоприемников, хотя для его изготовления придется потрудиться. Для сборки схемы понадобится:

  • силовой трансформатор, понижающий напряжение до 12-15 В;
  • диоды серий Д214…Д243 – 4 шт.;
  • конденсатор электролитический номиналом 1000 мкФ, рассчитанный на 25 В;
  • старый тумблер (220 В, 6 А) и гнездо для предохранителя на 1 А;
  • провода с разъемами типа «крокодил»;
  • подходящий металлический корпус.

Первым делом необходимо проверить напряжение на выходе трансформатора, подключив первичную (силовую) обмотку к электросети и снимая показания с концов других обмоток (их бывает несколько). Выбрав контакты с подходящим напряжением, остальные откусите либо заизолируйте.

Подойдет вариант с напряжением 24…30 В, если 12 В отсутствует. Его удастся снизить наполовину, изменив схему.

Самодельное зарядное устройство для аккумулятора собирайте в таком порядке:

  1. Установите трансформатор в металлический корпус, туда же поместите 4 диода, прикрученных гайками к листу гетинакса либо текстолита.
  2. К силовой обмотке трансформатора через выключатель и предохранитель подключите сетевой кабель.
  3. Спаяйте диодный мост по схеме и присоедините его проводами ко вторичной обмотке трансформатора.
  4. На выходе диодного моста поставьте конденсатор, соблюдая полярность.
  5. Подключите зарядные провода с «крокодилами».

Для контроля напряжения и тока желательно установить в ЗУ показывающий амперметр и вольтметр . Первый включается в цепь последовательно, второй – параллельно. Впоследствии вы сможете усовершенствовать аппарат, добавив ручной регулятор напряжения, контрольную лампу и реле безопасности.

Если трансформатор выдает до 30 В, то вместо диодного моста поставьте 1 диод, подключенный последовательно. Он «выпрямит» переменный ток и уменьшит его вдвое – до 15 В.

Скорость зарядки аккумулятора самодельным аппаратом зависит от мощности трансформатора, но она будет намного выше, чем при подзарядке адаптером. Недостаток устройства, сделанного своими руками, заключается в отсутствии автоматики, отчего процесс придется контролировать, чтобы не выкипел электролит и батарея не перегрелась.

Одно из главных подручных средств в лаборатории радиолюбителя — это конечно же блок питания, а как известно, основа большинства блоков питания — силовой трансформатор напряжения. Иногда в руки попадаются отличные трансформаторы, но после проверки обмоток становится ясно, что нужное нам напряжение отсутствует по причине перегорания первички или вторички. Выход из такой ситуации один — перемотать трансформатор и мотать вторичную обмотку своими руками. В радиолюбительской технике обычно нужно иметь напряжение от 0 до 24 вольт, для питания разнообразный устройств.

Поскольку блок питания будет работать от бытовой сети 220 вольт, то при проведении небольших расчетов становится ясно, что в среднем каждые 4-5 витков во вторичной обмотке трансформатора дают напряжение 1 вольт.

Как сделать зарядное устройство для автомобильного аккумулятора своими руками?

Это значит, для блока питания с максимальным напряжением 24 вольт, вторичная обмотка должна содержать 5*24 итого получаем 115-120 витков. Для мощного блока питания также нужно подобрать для перемотки провод нужного сечения, в среднем диаметр провода выбирают для блока питания средней мощности составляет 1 миллиметр (от 0,7 до 1,5 мм).

Для создания мощного блока питания под рукой нужно иметь мощный трансформатор, отлично подойдет трансформатор от черно-белого телевизора производства советского союза. Трансформатор нужно разобрать, вынуть сердечек (железки) и отмотать все вторичные обмотки оставляя только сетевую, весь процесс занимает не более 30 минут.

Далее берем указанный провод и мотаем на каркас трансформатора с расчетом 5 витков 1 вольт. Таким образом можно своими руками собрать например зарядное устройство для автомобильного аккумулятора, для зарядки автомобильного аккумулятора вторичная обмотка должна содержать 60-70 витков (напряжение зарядки должно быть не менее 14 вольт, сила тока 3-10 ампер), потом нужен мощный диодный мост для выпрямления переменного тока и все готово.

Но для зарядки автомобильного аккумулятора провод вторичной обмотки трансформатора нужно подобрать с диаметром не менее 1,5 миллиметров (от 1,5 до 3 миллиметров, чтобы иметь зарядный ток от 3 до 10 ампер). Таким же образом можно спроектировать сварочный аппарат и другие силовые приборы.

Зарядное устройство 12в аккумулятора своими руками

Это зарядное устройство я сделал для зарядки автомобильных аккумуляторов, выходное напряжение 14.5 вольт, максимальный ток заряда 6 А. Но им можно заряжать и другие аккумуляторы, например литий-ионные, так как выходное напряжение и выходной ток можно регулировать в широких пределах. Основные компоненты зарядного устройства были куплены на сайте АлиЭкспресс.

Вот эти компоненты:

Еще потребуется электролитический конденсатор 2200 мкФ на 50 В, трансформатор для зарядного устройства ТС-180-2 (как распаивать трансформатор ТС-180-2 посмотрите в этой статье), провода, сетевая вилка, предохранители, радиатор для диодного моста, крокодилы. Трансформатор можно использовать другой, мощностью не менее 150 Вт (для зарядного тока 6 А), вторичная обмотка должна быть рассчитана на ток 10 А и выдавать напряжение 15 – 20 вольт. Диодный мост можно набрать из отдельных диодов, рассчитанных на ток не менее 10А, например Д242А.

Провода в зарядном устройстве должны быть толстые и короткие.

Как сделать зарядку для автомобильного аккумулятора

Диодный мост нужно закрепить на большой радиатор. Необходимо нарастить радиаторы DC-DC преобразователя, или использовать для охлаждения вентилятор.

Схема зарядного устройства для автомобильного аккумулятора

Сборка зарядного устройства

Подсоедините шнур с сетевой вилкой и предохранителем к первичной обмотке трансформатора ТС-180-2, установите диодный мост на радиатор, соедините диодный мост и вторичную обмотку трансформатора. Припаяйте конденсатор к плюсовому и минусовому выводам диодного моста.

Подключите трансформатор к сети 220 вольт и произведите замеры напряжений мультиметром. У меня получились такие результаты:

  1. Переменное напряжение на выводах вторичной обмотки 14.3 вольта (напряжение в сети 228 вольт).
  2. Постоянное напряжение после диодного моста и конденсатора 18. 4 вольта (без нагрузки).

Руководствуясь схемой, соедините с диодным мостом DC-DC понижающий преобразователь и вольтамперметр.

Настройка выходного напряжения и зарядного тока

На плате DC-DC преобразователя установлены два подстроечных резистора, один позволяет установить максимальное выходное напряжение, другим можно выставить максимальный зарядный ток.

Включите зарядное устройство в сеть (к выходным проводам ничего не подсоединено), индикатор будет показывать напряжение на выходе устройства, и ток равный нулю. Потенциометром напряжения установите на выходе 5 вольт. Замкните между собой выходные провода, потенциометром тока установите ток короткого замыкания 6 А. Затем устраните короткое замыкание, разъединив выходные провода и потенциометром напряжения, установите на выходе 14.5 вольт.

Защита от переполюсовки

Данное зарядное устройство не боится короткого замыкания на выходе, но при переполюсовке может выйти из строя. Для защиты от переполюсовки, в разрыв плюсового провода идущего к аккумулятору можно установить мощный диод Шоттки. Такие диоды имеют малое падение напряжения при прямом включении. С такой защитой, если перепутать полярность при подключении аккумулятора, ток протекать не будет. Правда этот диод нужно будет установить на радиатор, так как через него при заряде будет протекать большой ток.

Подходящие диодные сборки применяются в компьютерных блоках питания. В такой сборке находятся два диода Шоттки с общим катодом, их нужно будет запараллелить. Для нашего зарядного устройства подойдут диоды с током не менее 15 А.

Нужно учитывать, что в таких сборках катод соединен с корпусом, поэтому эти диоды нужно устанавливать на радиатор через изолирующую прокладку.

Необходимо еще раз отрегулировать верхний предел напряжения, с учетом падения напряжения на диодах защиты. Для этого, потенциометром напряжения на плате DC-DC преобразователя нужно выставить 14.5 вольт измеряемых мультиметром непосредственно на выходных клеммах зарядного устройства.

Как заряжать аккумулятор

Протрите аккумулятор тряпицей смоченной в растворе соды, затем насухо. Выверните пробки и проконтролируйте уровень электролита, если необходимо, долейте дистиллированную воду. Пробки во время заряда должны быть вывернуты. Внутрь аккумулятора не должны попадать мусор и грязь. Помещение, в котором происходит заряд аккумулятора должно хорошо проветриваться.

Подключите аккумулятор к зарядному устройству и включите устройство в сеть. Во время заряда напряжение будет постепенно расти до 14.5 вольт, ток будет со временем уменьшаться. Аккумулятор можно условно считать заряженным, когда зарядный ток упадет до 0.6 – 0.7 А.

DC-DC понижающий преобразователь TC43200 — ссылка на товар.

Обзор понижающего преобразователя DC-DC CC CV TC43200.

Устройство можно использовать для дозарядки автомобильных аккумуляторных батарей емкостью до 100 Ач, для зарядки в режиме, близком к оптимальному, мотоциклетных батарей, а также (при несложной доработке) в качестве лабораторного блока питания.

Зарядное устройство выполнено на основе двухтактного транзисторного преобразователя напряжения с автотрансформаторной связью и может работать в двух режимах — источника тока и источника напряжения. При выходном токе, меньшем некоторого предельного значения, оно работает как обычно — в режиме источника напряжения. Если пoпытaтьcя увеличить ток нагрузки сверх этого значения, выходное напряжение будет резко уменьшаться — устройство перейдет в режим источника тока.

Зарядные устройства для автомобильного аккумулятора своими руками

Режим источника тока (обладающего большим внутренним сопротивлением) обеспечен включением балластного конденсатора в первичную цепь преобразователя.

Принципиальная схема зарядного устройства представлена на рис. 2.94.


Рис. 2.94. Принципиальная схема зарядного устройства с гасящим конденсатором в первичной цепи.

Сетевое напряжение через балластный конденсатор С1 поступает на выпрямительный мост VD1. Конденсатор С2 сглаживает пульсации, а стабилитрон VD2 стабилизирует выпрямленное напряжение. Стабилитрон VD2 одновременно защищает от перегрузки по напряжению транзисторы преобразователя на холостом ходе, а также при замыкании выхода устройства, когда напряжение на выходе моста VD1 повышается. Последнее связано с тем, что при замыкании выходной цепи генерация преобразователя может срываться, при этом ток нагрузки выпрямителя уменьшается, а его выходное напряжение увеличивается. В таких случаях стабилитрон VD2 ограничивает напряжение на выходе моста VD1.

Преобразователь напряжения собран на транзисторах VT1, VT2 и трансформаторе Т1. Преобразователь работает на частоте 5 ÷ 10 кГц.

Диодный мост VD3 выпрямляет напряжение, снимаемое со вторичной обмотки трансформатора. Конденсатор С3 — сглаживающий.

Экспериментально снятая нагрузочная характеристика зарядного устройства изображена на рис. 2.95. При увеличении тока нагрузки до 0,35 ÷ 0,4 А выходное напряжение изменяется незначительно, а при дальнейшем увеличении тока резко уменьшается. Если к выходу устройства подключить недозаряженную батарею аккумуляторов, напряжение на выходе моста VD1 уменьшается, стабилитрон VD2 выходит из режима стабилизации и, поскольку во входной цепи включен конденсатор С1 с большим реактивным сопротивлением, устройство работает в режиме источника тока.

Если зарядный ток уменьшился, то устройство плавно переходит в режим источника напряжения. Это дает возможность использовать зарядное устройство в качестве маломощного лабораторного блока питания. При токе нагрузки менее 0,3 А уровень пульсаций на рабочей частоте преобразователя не превышает 16 мВ, а выходное сопротивление источника уменьшается до нескольких Ом. Зависимость выходного сопротивления от тока нагрузки показана на рис. 2.95.

Рис. 2.95. Нагрузочная характеристика зарядного устройства с гасящим конденсатором в первичной цепи.

Настройка зарядного устройства с гасящим конденсатором в первичной цепи

Налаживание начинают с проверки правильности монтажа. Затем убеждаются в работоспособности устройства при замыкании выходной цепи. Ток замыкания должен быть не менее 0,45 0,46 А. В противном случае следует подобрать резисторы R1, R2 с целью обеспечения надежного насыщения транзисторов VT1, VT2. Больший ток замыкания соответствует меньшему сопротивлению резисторов.

При необходимости использования устройства для зарядки малогабаритных аккумуляторов емкостью до единиц ампер-часов и регенерации гальванических элементов целесообразно обеспечить регулировку тока зарядки. Для этого вместо одного конденсатора С1 следует предусмотреть набор конденсаторов меньшей емкости, коммутируемых переключателем. С достаточной для практики точностью максимальный ток зарядки — ток замыкания выходной цепи — пропорционален ёмкости балластного конденсатора (при 4 мкФ ток равен 0,46 А).

Если нужно уменьшить выходное напряжение лабораторного источника питания, достаточно стабилитрон VD2 заменить другим, с меньшим напряжением стабилизации.

Трансформатор Т1 намотан на кольцевом магнитопроводе типоразмера К40х25х11 из феррита 1500НМ1. Первичная обмотка содержит 2×160 витков провода ПЭВ-2 0,49, вторичная — 72 витка провода ПЭВ-2 0,8. Обмотки изолированы между собой двумя слоями лакоткани.

Стабилитрон VD2 установить на теплоотводе с полезной площадью 25 см 2

Транзисторы преобразователя в дополнительных теплоотводах не нуждаются, так как работают в ключевом режиме.

Конденсатор С1 — бумажный, рассчитанный на номинальное напряжение не менее 400 В.

Сейчас нет смысла собирать самостоятельно зарядное устройство для автомобильных аккумуляторов: в магазинах огромный выбор готовых устройств, цены на них приемлемы. Однако не будем забывать о том, что приятно что-то сделать полезное своими руками, тем более что простое зарядное устройство для автомобильного аккумулятора вполне можно собрать из подручных деталей, и цена его будет копеечной.

Единственное, о чем сразу стоит предупредить: схемы без точной регулировки тока и напряжения на выходе, которые не имеют отсечки тока по окончании заряда, пригодны для зарядки только свинцово-кислотных аккумуляторов. Для AGM и использование подобных зарядок приводит к повреждению аккумуляторной батареи!

Как сделать простейшее трансформаторное устройство

Схема этого зарядного устройства из трансформатора примитивна, но работоспособна и собирается из доступных деталей – таким же образом сконструированы и заводские зарядные устройства простейшего типа.

По своей сути – это двухполупериодный выпрямитель, отсюда и требования к трансформатору: так как на выходе таких выпрямителей напряжение равно номинальному напряжению переменного тока, помноженному на корень из двух, то при 10В на обмотке трансформатора мы получим 14,1 В на выходе зарядного устройства. Диодный мост берётся любой с прямым током более 5 ампер или собрать его из четырех отдельных диодов, с теми же требованиями к току подбирается и измерительный амперметр. Главное – разместить его на радиаторе, который в простейшем случае представляет собой алюминиевую пластину не менее 25 см2 площадью.

Примитивность такого устройства – не только минус: за счет того, что у него нет ни регулировки, ни автоматического отключения, оно может использоваться для «реанимации» сульфатированных аккумуляторов. Но не нужно забывать и об отсутствии защиты от переполюсовки в этой схеме.

Главная проблема – где найти трансформатор подходящей мощности (не менее 60 Вт) и с заданным напряжением. Можно использовать, если подвернется советский накальный трансформатор. Однако его выходные обмотки имеют напряжение 6,3В, поэтому придется соединять две последовательно, одну из них отмотав так, чтобы в сумме на выходе получить 10В. Подойдет недорогой трансформатор ТП207-3, у которого вторичные обмотки соединяются следующим образом:

Отматываем при этом обмотку между клеммами 7-8.

Простое зарядное устройство с электронной регулировкой

Однако можно обойтись и без отмотки, дополнив схему электронным стабилизатором напряжения на выходе. К тому же такая схема будет удобнее в гаражном применении, так как позволит скорректировать ток заряда при просадках напряжения питания, ее используют и для автомобильных аккумуляторов небольшой емкости при необходимости.

Роль регулятора здесь выполняет составной транзистор КТ837-КТ814, переменный резистор регулирует ток на выходе устройства. При сборке зарядки стабилитрон 1N754A можно заменить советским Д814А.

Схема регулируемого зарядного устройства проста для повторения, и легко собирается навесным монтажом без необходимости в травлении печатной платы. Однако учтите, что полевые транзисторы размещаются на радиаторе, нагрев которого будет ощутим. Удобнее воспользоваться старым компьютерным кулером, подключив его вентилятор к выходам зарядного устройства. Резистор R1 должен иметь мощность не менее 5 Вт, его проще намотать из нихрома или фехраля самостоятельно или соединить параллельно 10 одноваттных резисторов по 10 ом. Его можно и не ставить, но нельзя забывать, что он защищает транзисторы в случае замыкания выводов.

При выборе трансформатора ориентируйтесь на выходное напряжение 12,6-16В, берите либо накальный трансформатор, соединив последовательно две обмотки, либо подбирайте готовую модель с нужным напряжением.

Видео: Самое простое зарядное устройство для АКБ

Переделка зарядного устройства от ноутбука

Однако можно обойтись и без поисков трансформатора, если под руками есть ненужное зарядное устройство от ноутбука – при простой переделке мы получим компактный и легкий импульсный блок питания, способный заряжать автомобильные аккумуляторы. Поскольку нам потребуется получить напряжение на выходе 14,1-14,3 В, ни один готовый блок питания не подойдет, однако переделка проста.
Посмотрим на участок типовой схемы, по которой собраны устройства такого рода:

В них поддержание стабилизированного напряжения осуществляет цепь из микросхемы TL431, управляющей оптопарой (на схеме не показана): как только напряжение на выходе превышает значение, которое задают резисторы R13 и R12, микросхема зажигает светодиод оптопары, сообщает ШИМ-контроллеру преобразователя сигнал на снижение скважности подаваемых на трансформатор импульсов. Сложно? На самом деле все просто смастерить своими руками.

Вскрыв зарядное устройство, находим недалеко от выходного разъема TL431 и два резистора, связанные с ножкой Ref. Удобнее настраивать верхнее плечо делителя (на схеме – резистор R13): уменьшая сопротивление, мы уменьшаем и напряжение на выходе зарядного устройства, увеличивая – поднимаем его. Если у нас ЗУ на 12 В, нам понадобится резистор с большим сопротивлением, если зарядное на 19 В – то с меньшим.

Видео: Зарядка для аккумуляторов авто. Защита от короткого замыкания и переполюсовки. Своими руками

Выпаиваем резистор и вместо него устанавливаем подстроечный, заранее настроенный по мультиметру на то же сопротивление. Затем, подключив к выходу зарядного устройства нагрузку (лампочку из фары), включаем в сеть и плавно вращаем движок подстроечника, одновременно контролируя напряжение. Как только мы получим напряжение в пределах 14,1-14,3 В, отключаем ЗУ из сети, фиксируем движок подстроечного резистора лаком (хотя бы для ногтей) и собираем корпус обратно. Это займет не больше времени, чем Вы потратили на чтение этой статьи.

Есть и более сложные схемы стабилизации, причем их уже можно встретить и в китайских блоках. Например, здесь оптопарой управляет микросхема TEA1761:

Однако принцип настройки тот же: меняется сопротивление резистора, впаянного между плюсовым выходом блока питания и 6 ножкой микросхемы. На приведенной схеме для этого использованы два запараллеленных резистора (таким образом получено сопротивление, выходящее из стандартного ряда). Нам нужно так же впаять вместо них подстроечник и настроить выход на нужное напряжение. Вот пример одной из таких плат:

Путем прозвонки можно понять, что нас интересует на этой плате одиночный резистор R32 (обведен красным) – его нам и надо выпаивать.

В Интернете часто встречаются похожие рекомендации, как сделать самодельное зарядное устройство из компьютерного блока питания. Но учитывайте, что все они по сути – перепечатки старых статей начала двухтысячных, и подобные рекомендации к более-менее современным блокам питания неприменимы. В них уже нельзя просто поднять напряжение 12 В до нужной величины, так как контролируются и другие напряжения на выходе, а они неизбежно «уплывут» при такой настройке, и сработает защита блока питания. Можно использовать зарядные устройства ноутбуков, выдающие единственное напряжение на выходе, они гораздо удобнее для переделки.

Для автомобильных аккумуляторов, так как промышленные образцы имеют довольно высокую стоимость. А сделать самому такое устройство можно довольно быстро, причем из подручных материалов, которые имеются практически у каждого. Из статьи вы узнаете, как самостоятельно изготовить зарядные устройства с минимальными затратами. Рассмотрены будут две конструкции — с автоматической регулировкой тока заряда и без нее.

Основа зарядчика — трансформатор

В любом зарядчике вы найдете основной компонент — трансформатор. Стоит заметить, что есть схемы устройств, построенных по бестрансформаторной схеме. Но они являются опасными, так как нет защиты от сетевого напряжения. Следовательно, во время изготовления можно получить удар электрическим током. Намного эффективнее и проще оказываются трансформаторные схемы, в них имеется гальваническая развязка от сетевого напряжения. Для изготовления зарядного устройства вам потребуется мощный трансформатор. Его можно найти, разобрав непригодную микроволновую печку. Впрочем, запчасти от этого электроприбора можно использовать, чтобы сделать зарядное устройство для аккумулятора своими руками.

В старых ламповых телевизорах применялись трансформаторы ТС-270, ТС-160. Эти модели прекрасно подойдут для конструирования зарядчика. Их использовать оказывается даже эффективнее, так как на них уже имеются две обмотки по 6,3 вольт. Причем с них можно собрать ток до 7,5 ампер. А при зарядке автомобильного аккумулятора необходим ток, равный 1/10 от емкости. Следовательно, при емкости батареи 60 а*ч вам необходимо заряжать ее силой тока 6 ампер. Но если нет обмоток, удовлетворяющих условию, потребуется ее сделать. А теперь о том, как изготовить самодельное зарядное устройство для автомобиля как можно быстрее.

Перемотка трансформатора

Итак, если вы решили использовать преобразователь от микроволновой печи, то нужно убрать вторичную обмотку. Причина кроется в том, что на трансформаторы эти повышающие, они преобразуют напряжение до значения около 2000 вольт. Магнетрону необходимо питание в 4000 вольт, поэтому используется схема удвоения. Вам же такие значения не потребуются, поэтому безжалостно избавляйтесь от вторичной обмотки. Вместо нее наматываете провод с сечением 2 кв. мм. Но вы же не знаете, какое количество витков необходимо? Это нужно выяснить, воспользоваться можно несколькими способами. И это нужно обязательно делать, когда изготавливается зарядное устройство для аккумулятора своими руками.

Самый простой и надежный — это экспериментальный. Производите намотку десяти витков провода, который будете использовать. Зачищаете его края и включаете в сеть трансформатор. Производите замер напряжения на вторичной обмотке. Допустим, эти десять витков выдают 2 В. Следовательно, с одного витка собирается 0,2 В (десятая часть). Вам необходимо не менее 12 В, а лучше, если на выходе будет значение, близкое к 13. Один вольт дадут пять витков, теперь нужно 5*12=60. Искомое значение — 60 витков провода. Второй способ более сложный, придется считать сечение магнитопровода трансформатора, нужно знать число витков первичной обмотки.

Выпрямительный блок

Можно сказать, что самые простые самодельные зарядные устройства для автомобильных аккумуляторов состоят из двух узлов — преобразователя напряжения и выпрямителя. Если не желаете тратить много времени на сборку, то можно использовать однополупериодную схему. Но если решили собрать зарядчик, что называется, на совесть, то лучше воспользоваться мостовой. Желательно выбирать диоды, обратный ток которых 10 ампер и выше. Они, как правило, имеют металлический корпус и крепление с гайкой. Стоит также отметить, что каждый полупроводниковый диод следует устанавливать на отдельный радиатор, чтобы улучшить охлаждение его корпуса.

Небольшая модернизация

Впрочем, на этом можете остановиться, простое самодельное зарядное устройство готово к использованию. Но его можно дополнить измерительными приборами. Собрав в едином корпусе все компоненты, надежно закрепив их на своих местах, можно заняться и дизайном лицевой панели. На ней можно расположить два прибора — амперметр и вольтметр. С их помощью вы сможете производить контроль напряжения и тока зарядки. Если есть желание, то установите светодиод или лампу накаливания, которую подключите к выходу выпрямителя. С помощью такой лампы вы будете видеть, включен ли зарядчик в сеть. При необходимости дополните малогабаритным выключателем.

Автоматическая регулировка тока зарядки

Неплохие результаты показывают самодельные зарядные устройства для автомобильных аккумуляторов, имеющие функцию автоматической регулировки тока. Несмотря на кажущуюся сложность, эти устройства очень просты. Правда, потребуются некоторые компоненты. В схеме используются стабилизаторы тока, например LM317, а также его аналоги. Стоит отметить, что этот стабилизатор заслужил доверие у радиолюбителей. Он безотказный и долговечный, характеристики у него превосходят отечественные аналоги.

Кроме него, также потребуется регулируемый стабилитрон, например TL431. Все микросхемы и стабилизаторы, используемые в конструкции, необходимо монтировать на отдельные радиаторы. Принцип работы LM317 заключается в том, что «лишнее» напряжение преобразуется в тепло. Следовательно, если у вас с выхода выпрямителя идет не 12 В, а 15 В, то «лишние» 3 В будут уходить в радиатор. Многие самодельные зарядные устройства для автомобильных аккумуляторов делаются без соблюдения строгих требований к внешней оболочке, но лучше, если они будут заключены в алюминиевый корпус.

Заключение

В завершении статьи хотелось бы отметить, что такое устройство, как автомобильный зарядчик, нуждается в качественном охлаждении. Поэтому следует предусмотреть установку кулеров. Использовать лучше всего те, которые монтируются в компьютерных блоках питания. Только обратите внимание на то, что им необходимо питание 5 вольт, а не 12. Поэтому придется дополнять схему, внедрять в нее стабилизатор напряжения на 5 вольт. Еще много можно говорить про зарядные устройства. Схема автозарядчика проста для повторения, а устройство будет полезно в любом гараже.

Вам понадобится

  • Трансформатор силовой ТС-180-2, провода сечением 2,5 мм2, четыре диода Д242А, сетевая вилка, паяльник, припой, предохранители 0,5А и 10А;
  • бытовая лампочка мощностью до 200 Вт;
  • полупроводниковый диод, проводящий электричество только в одном направлении. В качестве такого диода можно использовать зарядку от ноутбука.

Инструкция

Простое зарядное устройство для можно сделать из старого блока питания компьютера. Так как для нужен ток в размере 10% от всей емкости батареи, любой блок питания с мощностью более 150 вольт может стать эффективным источником заряда. Почти у всех блоков питания стоит ШИМ-контроллер на микросхеме TL494 (или аналогичной KA7500). В первую очередь нужно выпаять лишние провода (с источников -5В, -12B, +5B, +12B). Затем убрать R1 и заменить на подстроечный резистор с наивысшим значением 27 кОм. От основного провода отключается также шестнадцатый вывод, четырнадцатый и пятнадцатый перерезаются на месте соединения.

На задней планке блока нужно установить потенциометр-регулятор тока R10. Там же проводятся 2 шнура: один для сети, другой – для клемм АКБ.

Теперь нужно заняться выводами 1, 14,15 и 16. Сначала их необходимо облудить. Для этого провод очищается от изоляции и прижигается паяльником. Это уберет оксидную пленку, после чего провод прикладывается к кусочку канифоли, а затем опять прижимается паяльником. Провод должен приобрести желто-коричневый цвет. Теперь необходимо приложить его к кусочку припоя и в третий, последний раз прижать паяльником. Провод должен стать серебристым. После окончания этой процедуры осталось подпаять многожилистые тонкие провода.

Холостой ход нужно выставить переменным резистором при среднем положении потенциометра R10. Напряжение холостого хода будет задавать полный заряд в пределах от 13,8 до 14,2 вольт. На концы клемм устанавливаются зажимы. Изоляционные трубки лучше сделать разноцветными, чтобы не путаться в проводах. Это может привести к порче прибора. Красный цвет обычно относится к «плюсу», а черный – к «минусу».

Если устройство будет использоваться только для заряда аккумулятора, можно обойтись без вольтметра и амперметра. Достаточно будет использовать отградуированную шкалу потенциометра R10 со значением 5,5-6,5 ампера. Процесс зарядки от такого устройства должен быть легким, автоматическим и не требовать ваших дополнительных усилий. Это зарядное устройство практически исключает возможность перегрева или перезарядки АКБ.

Еще один способ изготовления автомобильного аккумулятора основан на использовании приспособленного двенадцативольтного адаптера. Для него не потребуется зарядного устройства для автомобильного аккумулятора. Важно помнить, что напряжение аккумулятора и напряжение источника питания должны быть равны, иначе зарядное устройство будет бесполезным.

Сначала нужно обрезать и оголить до 5 см конец провода адаптера. Затем разноименные провода разводятся на 40 см. Теперь нужно на каждый из проводов надеть зажим типа «крокодил». Не забудьте взять разноцветные зажимы, чтобы не перепутать полярности. Нужно последовательно подключить каждый зажим к аккумулятору, следуя принципу «от плюса к плюсу» и «от минуса к минусу». Теперь осталось включить адаптер. Этот способ довольно прост, единственная сложность – в выборе верного источника питания. Такой аккумулятор может перегреться в процессе зарядки, поэтому важно следить за ним и прерывать на время в случае перегрева.

Зарядное устройство для автомобильного аккумулятора можно сделать из обычной лампочки и диода. Такое устройство будет совсем простым и для нужно совсем немного исходных элементов: лампочка, полупроводниковый диод, провода с клеммами и штекер. Лампочка должна быть мощностью до 200 вольт. Чем выше ее мощность – тем быстрее будет процесс зарядки. Полупроводниковый диод должен проводить электричество только в одном направлении. Можно взять, например, зарядку от ноутбука.

Лампочка должна гореть в половину накала, если же она совсем не горит, нужно доработать схему. Есть возможность, что лампочка будет выключаться при полном заряде автомобильного аккумулятора, но это маловероятно. Зарядка с таким устройством займет около 10 часов. Затем обязательно нужно отключить его от сети, иначе неизбежен перегрев, который выведет аккумулятор из строя.

Если ситуация экстренная, и времени на сооружение более сложных зарядных приборов нет, можно зарядить аккумулятор с помощью мощного диода и обогревателя, используя ток от сети. Подключать к сети нужно в такой последовательности: диод, затем обогреватель, затем аккумулятор. Такой способ малоэффективен, потому что на него уходит много электроэнергии, а коэффициент полезного действия составлять всего 1%. Поэтому это зарядное устройство является самым ненадежным, но и самым простым в изготовлении.

Для того чтобы сделать самое простое зарядное устройство, потребуются значительные усилия и технические знания. Лучше всегда иметь под рукой надежную фабричную зарядку, но при необходимости и достаточных технических умениях, можно сделать ее и своими руками.

Наверняка каждый из вас хоть раз видел или имел дело с никель-кадмиевыми аккумуляторами (аккумуляторными батареями). Если не можете вспомнить, что же это такое, достаточно вспомнить, от каких батареек работали первые цифровые фотоаппараты. Современные модели работают также на аккумуляторах, но другого состава. Никель-кадмиевые аккумуляторы используются в большом количестве устройств, самым распространенным из которых является беспроводная мышь.

Инструкция

Среди известных способов зарядки такого типа выделяется покупка зарядного устройства. А если руки на месте и в кладовке лежит с десяток старых радиодеталей, нет смысла тратить на то, что можно сделать , тем более абсолютно . Основным преимуществом данной схемы (показана на рисунке) зарядки никель-кадмиевых аккумуляторов является автоматическое подачи питания при полной зарядке и защите от короткого замыкания.

По данной схеме необходимо запастись всеми радиодеталями, присутствующими на схеме, которые наверняка есть в вашей кладовке. Возможно, потребуется сходить до ближайшего магазина радиодеталей. Также вам потребуется печатная плата, бокс для батареек и пластиковый корпус. Если вы и раньше занимались разработкой схем, вам не составит труда собрать и эту схему.

Для начала возьмите кусок текстолита и нанесите контрольные точки на него. Воспользуйтесь дрелью с очень тонким сверлом. Отличной заменой будет шуруповерт – он дает возможность сверлить в разные стороны и при разных скоростях.

После сверления отверстий необходимо нанести все дорожки нитроглицерином, а затем протравить схему зарядного устройства. После полного высыхания вооружитесь паяльником и подходящими деталями. Осталось пропаять все соединения, а также закрепить бокс для аккумуляторных батареек. Зарядное устройство готово.

Аккумулятор автомобильный — электрический аккумулятор для автотранспорта. Аккумулятор обеспечивает работу ряда автомобильных систем, таких, как блок управления двигателем, инжектор, стартер, световое оборудование. Для зарядки аккумуляторов используются различные зарядные устройства. Если вы умеете работать с паяльником и разбираетесь в обозначениях принципиальных электрических схем, то сможете собрать простое зарядное устройство за один вечер.

Вам понадобится

  • -трансформатор от лампового телевизора — 1;
  • -диоды КД 2010 — 4;
  • -резистор на 600 ом, 5 ватт — 1;
  • -тумблер на 15 А, 250 В — 1;
  • -cветодиод на 12-15 В — 1;
  • -предохранитель сетевой на 1 А — 1;
  • -вилка сетевая — 1.

Инструкция

Приобретите на радиорынке мощный трансформатор от блока питания лампового черно-белого отечественного . Если у вас завалялся такой телевизор дома, демонтируйте трансформатор из него. Разберите трансформатор, освободив обмотки от сердечника. Определите, где у трансформатора сетевая обмотка. Для этого проверьте сопротивления всех обмоток. У сетевой обмотки будет самое большое омическое сопротивление. Снимите с трансформатора все обмотки и оставьте только cетевую. Среди проводов, которые вы удалите, будет длинный медный провод диаметром 2 миллиметра. Намотайте им вторичную обмотку трансформатора в количестве 55 витков с отводом от 10-го витка.

Приобретите в магазине радиотоваров мощные полупроводниковые диоды, например, КД 2010. Они потребуются для изготовления диодного моста — сетевого выпрямителя. На фотографии слева приведен рекомендуемый вид монтажа диодного моста. Если в процессе работы диоды будут чрезмерно нагреваться, установите каждый из них на отдельном небольшом радиаторе. Там же купите сетевую , сетевой предохранитель на 1 ампер, резистор сопротивлением 600 ом и мощностью 5 ватт, а также светодиод любой, рассчитанный на напряжение не ниже 12 вольт.

Начните собирать зарядное устройство согласно приведенной на фото слева принципиальной электрической схеме. Присоедините к сетевой вилке сетевой предохранитель FU1. Припаяйте получившуюся защиту от короткого замыкания к первичной обмотке сетевого трансформатора Tr1. Дальше, в соответствии с фотографией выше, соберите на отдельной плате сетевой выпрямитель — диодный мост. Подсоедините его ко вторичной обмотке трансформатора согласно принципиальной схеме. Через тумблер скоммутируйте подключение диодного моста к выходам трансформатора 10 вольт и 15 вольт. На выход выпрямителя припаяйте цепочку, состоящую из резистора R1 и светодиода La1. Резистор ограничивает ток, проходящий через светодиод. Светодиод служит для индикации работы устройства. Если светодиод не будет гореть, поменяйте местами его выводы.

Зардные устройства — Самоделкин — сделай сам своими руками

Главная » Зардные устройства



Раздел сайта «электроника схемы» содержит большое количество схем приборов, собранных на возможных открытых источниках интернета. Приборы, которые непременно будут вам полезны, приборы на все случаи жизни и для каждого, их можно сделать своими руками. В инструкциях по сборке подробно описан монтаж, приведены схемы, фотографии. Прочитав инструкции, вам будет намного проще собирать те или иные приборы. В этом разделе вы найдете схемы раций, блоков питания, преобразователей напряжения 12в 220в, инверторы, автомобильны, радиотехнические, и другие полезные схемы. Все что вам потребуется для сбора устройств — это паяльник и немного терпения.



      

Предлагаю несложное автоматическое зарядное устройство для аккумуляторных батарей, в схеме которого использована идея, опубликованная в сборнике «В помощь радиолюбителю» (ВРЛ) N100, c. 91-94. Зарядка батарей прекращается при достижении на клеммах напряжения выше 12,5 В.

Преимуществом устройства является возможность автоматического … Читать дальше »



 Просмотров: [7074] | Рейтинг: 3.4/8

       Рассмотрим устройство для зарядки маломощных аккумуляторных батарей на 9 вольт, типа 15F8K. Схема позволяет заряжать батарею постоянным током около 12 мА, а по окончании — автоматически отключается.

   В ЗУ есть защита от короткого замыкания в нагрузке. Устройство представляет собой простейший источник тока, включает дополнительно индикатор опорного напряжения на светодиоде и автоматическую схе . .. Читать дальше »



 Просмотров: [8844] | Рейтинг: 5.0/1

      

 

мы рассмотрели схему простого автономного зарядного для мобильной техники, работающего по принципу простого стабилизатора с понижением напряжения батарей. На этот раз попробуем собрать чуть более сложное, но более удобное ЗУ. Встроенные в миниатюрные мобильные мультимедийные устройства аккумуляторы обычно имеют небольшую ёмкость, и, как правило, рассчитаны на воспроизведение аудиозаписей в течение не более нескольких десятков часов при выключенном дисплее или на … Читать дальше »



 Просмотров: [7948] | Рейтинг: 5. 0/3

      

 

Автоматическое зарядное устройство предназначено для зарядки и десульфатации 12-ти вольтовых АКБ ёмкостью от 5 до 100 Ач и оценки уровня их заряда. Зарядное имеет защиту от переполюсовки и от короткого замыкания клемм. В нём применено микроконтроллерное управление, благодаря чему осуществляются безопасные и оптимальные алгоритмы зарядки: IUoU или IUIoU, с последующей дозарядкой до полного уровня зарядки. Параметры зарядки можно подстроить под конкретный аккумулят … Читать дальше »



 Просмотров: [18065] | Рейтинг: 4.1/22

      

TOPы прекрасно подходят для простых гальванически развязанных преобразователей с питанием от 18 вольт и выше. Они при э … Читать дальше »



 Просмотров: [6750] | Рейтинг: 5.0/1

      

Ключевой транзистор VT1, диод VD5 и силовые диоды VD1 — VD4 через слюдяные прокладки необходимо установить на об … Читать дальше »



 Просмотров: [10434] | Рейтинг: 4.3/3

      

Доброе время суток. Сегодня речь пойдет об ЗУ для АКБ. ( автоматическом зарядном устройстве для свинцово-кислотных аккумуляторных батарей) После поездки по городу на своей машине, я поставил ее в гараж и забыл выключить подфарники, и только на третье сутки когда нужно было срочно  ехать по делам, я обратил внимание что ак … Читать дальше »



 Просмотров: [9665] | Рейтинг: 3.9/7

      

Обратите внимание, приставка включается между зарядным устройством и аккумулятором. При этом провода от приставки к аккумулятору должны быть не тоньше проводов от зарядного устройства к приставке и желательно короче. Иначе пульсации зарядного устройства будут вмешиваться в нормальную работу приставки.

… Читать дальше »



 Просмотров: [8921] | Рейтинг: 3.0/2

      

 

Простое зарядное устройство с регулятором зарядного тока можно собрать по схеме приведенной на рис.1. Резистором R3 регулируют ток зарядки аккумуляторной батареи. Светодиод индицирует включение п … Читать дальше »



 Просмотров: [9966] | Рейтинг: 3.2/4

       У каждого автолюбителя есть зарядное устройство для АКБ 12В. Все эти старые зарядки с различным успехом работают и выполняют свои функции, но есть у них общий недостаток — слишком большие габариты и вес. Это не удивительно, ведь один только силовой трансформатор на 200 ватт может весить до … Читать дальше »


 Просмотров: [16054] | Рейтинг: 3.6/20

Автомобильное зарядное устройство своими руками

ЗАРЯДНЫЕ УСТРОЙСТВА ДЛЯ АВТОМОБИЛЬНЫХ АККУМУЛЯТОРОВ

ЗАРЯДНОЕ УСТРОЙСТВО С ТАЙМЕРОМ

    Пуск зарядного устройства производится нажатием кнопки «пуск» на лицевой панели, при этом на схему подаётся питающее напряжение, реле К1 срабатывает и обеспечивает «самоподхват».
   По окончании зарядки реле К1 срабатывает, и схема полностью отключается от сети. Настройка схемы очень похожа на настройку предыдущей схемы и здесь не описывается — собственно, это вариант предыдущей схемы.
    В качестве переключателя режима работы SA1 можно использовать подходящий тумблер с тремя фиксированными состояниями. Реле К1 типа РП-21 или аналогичное с катушкой на 24 В. и контактами, способными коммутировать переменный ток 5 А., 220 В.

 

 

ЗАРЯДНОЕ УСТРОЙСТВО СО СТАБИЛИЗАТОРОМ ТОКА
И КОНТРОЛЕМ НАПРЯЖЕНИЯ ЗАРЯДКИ

    Ещё одно зарядное устройство собрано по схеме ключевого стабилизатора тока с узлом контроля достигнутого напряжения на аккумуляторе для обеспечения его отключения по окончании зарядки. Для управления ключевым транзистором используется широко распространённая специализированная микросхема TL494 (KIA494, КА7500В, К1114УЕ4).
   Устройство обеспечивает регулировку тока заряда в пределах 1- б А. (10 A. max) и выходного напряжения 2 — 20 В. Ключевой транзистор VT1, диод VD5 и силовые диоды VD1 — VD4 через слюдяные прокладки необходимо установить на общий радиатор площадью 200 — 400 кв. см.
   Наиболее важным элементом в схеме является дроссель L1. От качества его изготовления зависит КПД схемы. Требования к его изготовлению описаны в предыдущей схеме. В качестве сердечника можно использовать импульсный трансформатор от блока питания телевизоров ЗУСЦТ или аналогичный.
   Очень важно, чтобы магнитопровод имел щелевой зазор примерно 0,5 . .. 1,5 мм для предотвращения насыщения при больших токах. Количество витков зависит от конкретного магнитопровода и может быть в пределах 15 — 100 витков провода ПЭВ-2 2,0 мм. Если количество витков избыточно, то при работе схемы в режиме номинальной нагрузки будет слышен негромкий свистящий звук. Как правило, свистящий звук бывает только при средних токах, а при большой нагрузке индуктивность дросселя за счёт подмагничивания сердечника падает и свист прекращается.
   Если свистящий звук прекращается при небольших токах и при дальнейшем увеличении тока нагрузки резко начинает греться выходной транзистор, значит площадь сердечника магнитопровода недостаточна для работы на выбранной частоте генерации — необходимо увеличить частоту работы микросхемы подбором резистора R4 или конденсатора СЗ или установить дроссель большего типоразмера.

 

    При отсутствии силового транзистора структуры p-n-р в схеме можно использовать мощные транзисторы структуры n-p-п, как показано на рисунке.

    В качестве диода VD5 перед дросселем L1 желательно использовать любые доступные диоды с барьером Шоттки, рассчитанные на ток не менее 10 А. и напряжение 50В, в крайнем случае, можно использовать среднечастотные диоды КД213 , КД2997 или подобные импортные. Для выпрямителя можно использовать любые мощные диоды на ток 10А или диодный мост, например КВРС3506, МР3508 или подобные. Сопротивление шунта в схеме желательно подогнать под требуемое.
    Диапазон регулировки выходного тока зависит от соотношения сопротивлений резисторов в цепи вывода 15 микросхемы. В нижнем по схеме положении движка переменного резистора регулировки тока напряжение на выводе 15 микросхемы должно совпадать с напряжением на шунте при протекании через него максимального тока.
   Переменный резистор регулировки тока R3 можно установить с любым номинальным сопротивлением, но потребуется подобрать смежный с ним постоянный резистор R2 для получения необходимого напряжения на выводе 15 микросхемы. Переменный резистор регулировки выходного напряжения R9 также может иметь большой разброс номинального сопротивления 2 — 100 кОм.
   Подбором сопротивления резистора R10 устанавливают верхнюю границу выходного напряжения. Нижняя граница определяется соотношением сопротивлений резисторов R6 и R7, но её нежелательно устанавливать меньше 1 В.
   Микросхема установлена на небольшой печатной плате 45 х 40 мм., остальные элементы схемы установлены на основании устройства и радиаторе. Монтажная схема подключения печатной платы приведена на рисунке справа.

   В схеме использовался перемотанный силовой трансформатор ТС180, но в зависимости от величины требуемых выходных напряжений и тока мощность трансформатора можно изменить. Если достаточно выходного напряжения 15 В. и тока б А., то достаточно силового трансформатора мощностью 100 Вт. Площадь радиатора, также можно уменьшить до 100 — 200 кв. см.
   Устройство может использоваться как лабораторный блок питания с регулируемым ограничением выходного тока. При исправных элементах схема начинает работать сразу и требует только подстройки.

 

ЗАРЯДНОЕ УСТРОЙСТВО ПОВЫШЕННОЙ МОЩНОСТИ

    Наибольшие проблемы вызывает изготовление накопительного дросселя L1, выбор ключевого транзистора и выходного диода. Параллельное включение нескольких мощных транзисторов проблему не очень решает, т. к. требуется выровнять падения напряжения на каждом транзисторе, в противном случае, основную нагрузку по току возьмёт на себя один из транзисторов и быстро перегреется. Если в качестве ключевого транзистора использовать мощные силовые N- канальные полевые транзисторы, например, IRFP264, потребуется дополнительный узел, обеспечивающий превышение напряжения на затворе на 15 В. В относительно истока, подключенного к накопительному дросселю.
   Номенклатура Р — канальных силовых полевых транзисторов, которые проще внедрить в схему, достаточно мала и не позволяет найти приемлемый вариант. Можно использовать силовые n-p-п транзисторы BUX20, специально предназначенные для таких устройств и обеспечивающие ток коммутации до 50 А., но схему придётся усложнить, т. к. эти транзисторы имеют малый коэффициент усиления и иную структуру. Наиболее просто увеличить выходной ток в ранее рассмотренной схеме — это применить двухтактное ключевое регулирование, дополнив схему ещё одним накопительным дросселем, ключевым транзистором и диодом. Предлагаемая схема обеспечивает такие возможности. Требования к изготовлению накопительных дросселей аналогичны.
   Транзисторы VI, VT2, выходные диоды VD3, VD4 и диодный мост VD1 устанавливаются через слюдяные прокладки на общий радиатор, в качестве которого можно использовать металлическое днище прибора. Настройка схемы ничем не отличается от ранее описанной и не приводится.
   Из-за повышенных рассеиваемых мощностей в качестве накопительных конденсаторов CI, С5 следует использовать только конденсаторы больших размеров и с повышенным рабочим напряжением.

 

   По материалам сайта http://kravitnik. narod. ru

   


Адрес администрации сайта: [email protected]
   

 

Зарядное устройство для автомобильного аккумулятора своими руками

Иногда случается так, что аккумулятор в машине садиться и завести ее уже не получается, так как стартеру не хватает напряжения и соответственно тока, чтобы провернуть вал двигателя. В этом случае можно «прикурить» от другого владельца авто, чтобы двигатель заработал и аккумулятор стал заряжаться от генератора, однако для этого нужны специальные провода и человек, желающий вам помочь. Можно так же зарядить аккумулятор самостоятельно посредством специализированного зарядного устройства, однако они достаточно дорогие, и пользоваться ими приходится не особо часто. Поэтому в данной статье мы подробно рассмотрим устройство самоделки, а также инструкцию о том, как сделать зарядное устройство для автомобильного аккумулятора своими руками.

Устройство самоделки

Нормальное напряжение на аккумуляторе, отключенном от автомобиля, находится в пределах между 12,5 в и 15 в. Поэтому зарядное устройство должно выдавать такое же напряжение. Ток заряда должен быть равен примерно 0,1 от емкости, он может быть и меньше, но это увеличит время зарядки. Для стандартной батареи емкостью 70-80 а/ч ток должен быть равен 5-10 амперам в зависимости от конкретного аккумулятора. Наше самодельное зарядное устройство для АКБ должно соответствовать этим параметрам. Для сборки зарядного устройства для автомобильного аккумулятора нам потребуются следующие элементы:

Трансформатор. Нам подойдет любой из старого электроприбора или купленный на рынке с габаритной мощностью порядка 150 Ватт, можно больше, но не меньше, иначе он будет сильно нагреваться и может выйти из строя. Отлично, если напряжение его выходных обмоток составляет 12,5-15 В, а ток порядка 5-10 ампер. Посмотреть эти параметры можно в документации к вашей детали. Если же нужной вторичной обмотки нет, то необходимо будет перемотать трансформатор под другое выходное напряжение. Для этого:

  1. Удалите все ненужные вторичные обмотки, оставив только первичную.
  2. Выполните расчёт необходимого числа витков и сечения проволоки для подходящего напряжения и тока. Для этого есть специальные калькуляторы и формулы из курса физики. Необходимый диаметр проволоки рассчитывается по таблице ниже. Проволока обязательно должна быть в лаковой изоляции. А число витков определяется соотношением: U1/U2=N1/N2. Отсюда следует, что если у вас первичная обмотка состоит из 480 витков, то для получения 13 Вольт на выходе необходимо намотать всего 26 витков, так как напряжение сети – 220 Вольт.
  3. После этого уложите проволоку на основу виток к витку, делая изоляцию между слоями бумагой или изолентой в несколько слоев. Конец и начало обмоток выведите и надежно закрепите на корпусе. Чтобы припаять к ним провода, зачистите изоляцию ножом.
  4. Для уменьшения шума и вибраций, а также улучшения изоляции, можно пропитать устройство парафином.

Таким образом мы нашли или собрали идеальный трансформатор, чтобы сделать зарядное устройство для аккумулятора своими руками.

Нам также понадобятся:

  • 4 Диода. Подойдут любые диоды с током не менее 10 ампер. Одни из самых популярных: импортные – 10A10, отечественные – Д242А, 2Д203А, КД213Б. Или диодные мосты, например: КВРС1001, КВРС1002 и их аналоги.
  • 4 радиатора для диодов. Можно, конечно, обойтись и без них на малых токах порядка 3-5 Ампер. Но это может привести к их быстрому выходу из строя, поэтому необходимы радиаторы площадью 32 кв. см или 128 кв. см для диодного моста. Их можно сделать из листового алюминия или использовать кулеры от компьютера и материнских плат.
  • Разборная электрическая вилка или сетевой шнур.
  • Медные провода сечением не меньше 2,5 кв. мм.
  • Предохранители на 0,5А и на 10А.
  • Термоусадочная трубка или изолента.
  • Пластина из диэлектрика, а еще лучше – корпус, например фанерный или пластиковый.
  • Кусок нихромовой проволоки от электроплитки.
  • Мультиметр или вольтметр с амперметром.
  • Паяльник, припой и флюс (канифоль или ЛТИ-120).
  • Еще несколько радиокомпонентов, если мы хотим сделать устройство с защитой и автоматическим отключением.

Подготовив все материалы можно переходить к самому процессу сборки автомобильного ЗУ.

Технология сборки

Чтобы сделать зарядное устройство для автомобильного аккумулятора своими руками, необходимо следовать пошаговой инструкции:

  1. Создаем схему самодельной зарядки для АКБ. В нашем случае она будет выглядеть следующим образом:
  2. Используем трансформатор ТС-180-2. Он имеет несколько первичных и вторичных обмоток. Для работы с ним нужно соединить последовательно две первичные и две вторичные обмотки, чтобы получить нужное напряжения и ток на выходе.
  3. С помощью медного провода соединяем между собой выводы 9 и 9’.
  4. На стеклотекстолитовой пластине собираем диодный мост из диодов и радиаторов (как показано на фото).
  5. Выводы 10 и 10’ подключаем к диодному мосту.
  6. Между выводами 1 и 1’ устанавливаем перемычку.
  7. К выводам 2 и 2’ с помощью паяльника крепим сетевой шнур с вилкой.
  8. В первичную цепь подключаем предохранитель на 0,5 А, 10-амперный соответственно во вторичную.
  9. В разрыв между диодным мостом и аккумулятором подключаем амперметр и отрезок нихромовой проволоки. Один конец которой закрепляем, а второй должен обеспечивать подвижный контакт, таким образом будет меняться сопротивление и ограничиваться ток, подаваемый на аккумулятор.
  10. Изолируем все соединения термоусадкой или изолентой и помещаем устройство в корпус. Это необходимо, чтобы избежать поражения электрическим током.
  11. Устанавливаем подвижный контакт на конец проволоки, чтобы ее длинна и соответственно сопротивление были максимальны. И подключаем аккумулятор. Уменьшая и увеличивая длину проволоки, необходимо выставить нужное значение тока для вашего аккумулятора (0,1 от его емкости).
  12. В процессе зарядки сила тока, подаваемая на аккумулятор, будет сама уменьшаться и когда она достигнет 1 ампера можно сказать, что аккумулятор зарядился. Желательно также контролировать непосредственно напряжение на батарее, однако для этого его необходимо отключить от з/у, так как при зарядке оно будет немного выше реальных значений.

Первый запуск собранной схемы любого источника питания или ЗУ всегда производят через лампу накаливания, если она загорелась в полный накал — или где-то ошибка, или первичная обмотка замкнута! Лампу накаливания устанавливают в разрыв фазного или нулевого провода, питающих первичную обмотку.

Данная схема самодельного зарядного устройства для АКБ имеет один большой недостаток – она не умеет самостоятельно отключать аккумулятор от зарядки после достижения нужного напряжения. Поэтому вам придется постоянно следить за показаниями вольтметра и амперметра. Есть конструкция, лишенная этого недостатка, однако для ее сборки потребуется дополнительные детали и больше усилий.

Наглядный пример готового изделия

Правила эксплуатации

Недостаток самодельного зарядного устройства для аккумулятора 12В заключается в том, что после полной зарядки АКБ автоматическое отключение прибора не происходит. Именно поэтому Вам придется периодически поглядывать на табло, чтобы вовремя выключить его. Еще один важный нюанс – проверять ЗУ «на искру» категорически запрещается.

Среди дополнительных мер предосторожности следует выделить такие:

  • при подключении клемм следите за тем, чтобы не перепутать «+» и «-», иначе простое самодельное зарядное устройство для АКБ выйдет из строя;
  • подключение к клеммам нужно осуществлять только в выключенном положении;
  • мультиметр должен иметь шкалу измерения свыше 10 А;
  • при зарядке следует выкручивать пробки на аккумуляторе, во избежание его взрыва из-за закипания электролита.

Мастер-класс по созданию более сложной модели

Вот, собственно, и все что хотелось рассказать Вам о том, как правильно сделать зарядное устройство для автомобильного аккумулятора своими руками. Надеемся, что инструкция была для Вас понятной и полезной, т.к. этот вариант является одним из простейших видов самодельной зарядки для АКБ!

Также читают:

Все своими руками Зарядное со стабилизацией тока

Опубликовал admin | Дата 25 декабря, 2013

     Эта статья является ответом на вопрос одного из посетителей сайта. Схема зарядного устройства для аккумуляторов приведена на рисунке 1.


     Вообще схема является одной из типовых схем включения трехвыводного, регулируемого интегрального стабилизатора положительного напряжения LM317, российский аналог — КР142ЕН12А.

     Схема работает следующим образом. При небольшом токе, протекающем через сопротивление нагрузки, схема ведет себя, как обычный стабилизатор напряжения, выходное напряжение, которого выставляется резистором R3. Сопротивление данного резистора можно рассчитать по приведенным формулам. При уменьшении сопротивления нагрузки, т.е. увеличении тока, протекающего через микросхему, увеличивается падение напряжения на резисторе R1. Когда напряжение на этом резисторе приблизится в напряжению открывания транзистора VT2, это примерно, где то 0,6 В, через последний начнет протекать часть тока нагрузки. Это значит, что после определенной величины нагрузочного тока, весь основной ток примет на себя мощный транзистор. Максимальный ток стабилизатора в данном случае будет ограничиваться максимальным током коллектора примененного транзистора. Но в схеме есть система ограничения тока, состоящая из транзистора VT1 и резистора R2. В данном случае резистор R2 является датчиком тока и от его величины будет зависеть уровень его ограничения. Схема ограничения тока работает следующим образом. Допустим, по какой-то причине увеличился ток, протекающий через транзистор VT2, увеличилось и падение напряжения на резисторе R2 – датчике тока. Когда это напряжение достигнет примерно опять-таки же 0,6 В, начнет открываться транзистор VT1 и собой шунтировать переход база-эмиттер транзистора VT2, уменьшая тем самым его ток коллектора. Наступает режим ограничения тока. При сопротивлении резистора R2 0,1 Ом и учитывая, что для открывания кремниевых транзисторов необходимо напряжение примерно 0,6 В, получим, что ограничение тока наступит примерно на уровне 6 А. I = U/R = 0,6/0,1 = 6.
Недостатком этой схемы является невозможность плавной регулировки выходного стабильного тока, но если это зарядное будет использоваться для зарядки однотипных аккумуляторов, то этим можно пренебречь. Выбор диодов зависит, конечно, от тока нагрузки. Если зарядное будет использоваться для автомобильных аккумуляторов, то в качестве сетевого трансформатора можно использовать ТС-180. Как его перемотать прочитайте здесь. Успехов. К.В.Ю.

Просмотров:68 494


Делаем самостоятельно зарядные устройства для автомобильного аккумулятора. Как сделать зарядку для автомобильного аккумулятора из трансформатора Зарядное устройство свитязь своими руками

Сейчас нет смысла собирать самостоятельно зарядное устройство для автомобильных аккумуляторов: в магазинах огромный выбор готовых устройств, цены на них приемлемы. Однако не будем забывать о том, что приятно что-то сделать полезное своими руками, тем более что простое зарядное устройство для автомобильного аккумулятора вполне можно собрать из подручных деталей, и цена его будет копеечной.

Единственное, о чем сразу стоит предупредить: схемы без точной регулировки тока и напряжения на выходе, которые не имеют отсечки тока по окончании заряда, пригодны для зарядки только свинцово-кислотных аккумуляторов. Для AGM и использование подобных зарядок приводит к повреждению аккумуляторной батареи!

Как сделать простейшее трансформаторное устройство

Схема этого зарядного устройства из трансформатора примитивна, но работоспособна и собирается из доступных деталей – таким же образом сконструированы и заводские зарядные устройства простейшего типа.

По своей сути – это двухполупериодный выпрямитель, отсюда и требования к трансформатору: так как на выходе таких выпрямителей напряжение равно номинальному напряжению переменного тока, помноженному на корень из двух, то при 10В на обмотке трансформатора мы получим 14,1 В на выходе зарядного устройства. Диодный мост берётся любой с прямым током более 5 ампер или собрать его из четырех отдельных диодов, с теми же требованиями к току подбирается и измерительный амперметр. Главное – разместить его на радиаторе, который в простейшем случае представляет собой алюминиевую пластину не менее 25 см2 площадью.

Примитивность такого устройства – не только минус: за счет того, что у него нет ни регулировки, ни автоматического отключения, оно может использоваться для «реанимации» сульфатированных аккумуляторов. Но не нужно забывать и об отсутствии защиты от переполюсовки в этой схеме.

Главная проблема – где найти трансформатор подходящей мощности (не менее 60 Вт) и с заданным напряжением. Можно использовать, если подвернется советский накальный трансформатор. Однако его выходные обмотки имеют напряжение 6,3В, поэтому придется соединять две последовательно, одну из них отмотав так, чтобы в сумме на выходе получить 10В. Подойдет недорогой трансформатор ТП207-3, у которого вторичные обмотки соединяются следующим образом:

Отматываем при этом обмотку между клеммами 7-8.

Простое зарядное устройство с электронной регулировкой

Однако можно обойтись и без отмотки, дополнив схему электронным стабилизатором напряжения на выходе. К тому же такая схема будет удобнее в гаражном применении, так как позволит скорректировать ток заряда при просадках напряжения питания, ее используют и для автомобильных аккумуляторов небольшой емкости при необходимости.

Роль регулятора здесь выполняет составной транзистор КТ837-КТ814, переменный резистор регулирует ток на выходе устройства. При сборке зарядки стабилитрон 1N754A можно заменить советским Д814А.

Схема регулируемого зарядного устройства проста для повторения, и легко собирается навесным монтажом без необходимости в травлении печатной платы. Однако учтите, что полевые транзисторы размещаются на радиаторе, нагрев которого будет ощутим. Удобнее воспользоваться старым компьютерным кулером, подключив его вентилятор к выходам зарядного устройства. Резистор R1 должен иметь мощность не менее 5 Вт, его проще намотать из нихрома или фехраля самостоятельно или соединить параллельно 10 одноваттных резисторов по 10 ом. Его можно и не ставить, но нельзя забывать, что он защищает транзисторы в случае замыкания выводов.

При выборе трансформатора ориентируйтесь на выходное напряжение 12,6-16В, берите либо накальный трансформатор, соединив последовательно две обмотки, либо подбирайте готовую модель с нужным напряжением.

Видео: Самое простое зарядное устройство для АКБ

Переделка зарядного устройства от ноутбука

Однако можно обойтись и без поисков трансформатора, если под руками есть ненужное зарядное устройство от ноутбука – при простой переделке мы получим компактный и легкий импульсный блок питания, способный заряжать автомобильные аккумуляторы. Поскольку нам потребуется получить напряжение на выходе 14,1-14,3 В, ни один готовый блок питания не подойдет, однако переделка проста.
Посмотрим на участок типовой схемы, по которой собраны устройства такого рода:

В них поддержание стабилизированного напряжения осуществляет цепь из микросхемы TL431, управляющей оптопарой (на схеме не показана): как только напряжение на выходе превышает значение, которое задают резисторы R13 и R12, микросхема зажигает светодиод оптопары, сообщает ШИМ-контроллеру преобразователя сигнал на снижение скважности подаваемых на трансформатор импульсов. Сложно? На самом деле все просто смастерить своими руками.

Вскрыв зарядное устройство, находим недалеко от выходного разъема TL431 и два резистора, связанные с ножкой Ref. Удобнее настраивать верхнее плечо делителя (на схеме – резистор R13): уменьшая сопротивление, мы уменьшаем и напряжение на выходе зарядного устройства, увеличивая – поднимаем его. Если у нас ЗУ на 12 В, нам понадобится резистор с большим сопротивлением, если зарядное на 19 В – то с меньшим.

Видео: Зарядка для аккумуляторов авто. Защита от короткого замыкания и переполюсовки. Своими руками

Выпаиваем резистор и вместо него устанавливаем подстроечный, заранее настроенный по мультиметру на то же сопротивление. Затем, подключив к выходу зарядного устройства нагрузку (лампочку из фары), включаем в сеть и плавно вращаем движок подстроечника, одновременно контролируя напряжение. Как только мы получим напряжение в пределах 14,1-14,3 В, отключаем ЗУ из сети, фиксируем движок подстроечного резистора лаком (хотя бы для ногтей) и собираем корпус обратно. Это займет не больше времени, чем Вы потратили на чтение этой статьи.

Есть и более сложные схемы стабилизации, причем их уже можно встретить и в китайских блоках. Например, здесь оптопарой управляет микросхема TEA1761:

Однако принцип настройки тот же: меняется сопротивление резистора, впаянного между плюсовым выходом блока питания и 6 ножкой микросхемы. На приведенной схеме для этого использованы два запараллеленных резистора (таким образом получено сопротивление, выходящее из стандартного ряда). Нам нужно так же впаять вместо них подстроечник и настроить выход на нужное напряжение. Вот пример одной из таких плат:

Путем прозвонки можно понять, что нас интересует на этой плате одиночный резистор R32 (обведен красным) – его нам и надо выпаивать.

В Интернете часто встречаются похожие рекомендации, как сделать самодельное зарядное устройство из компьютерного блока питания. Но учитывайте, что все они по сути – перепечатки старых статей начала двухтысячных, и подобные рекомендации к более-менее современным блокам питания неприменимы. В них уже нельзя просто поднять напряжение 12 В до нужной величины, так как контролируются и другие напряжения на выходе, а они неизбежно «уплывут» при такой настройке, и сработает защита блока питания. Можно использовать зарядные устройства ноутбуков, выдающие единственное напряжение на выходе, они гораздо удобнее для переделки.

Это зарядное устройство я сделал для зарядки автомобильных аккумуляторов, выходное напряжение 14. 5 вольт, максимальный ток заряда 6 А. Но им можно заряжать и другие аккумуляторы, например литий-ионные, так как выходное напряжение и выходной ток можно регулировать в широких пределах. Основные компоненты зарядного устройства были куплены на сайте АлиЭкспресс.

Вот эти компоненты:

Еще потребуется электролитический конденсатор 2200 мкФ на 50 В, трансформатор для зарядного устройства ТС-180-2 (как распаивать трансформатор ТС-180-2 посмотрите в ), провода, сетевая вилка, предохранители, радиатор для диодного моста, крокодилы. Трансформатор можно использовать другой, мощностью не менее 150 Вт (для зарядного тока 6 А), вторичная обмотка должна быть рассчитана на ток 10 А и выдавать напряжение 15 – 20 вольт. Диодный мост можно набрать из отдельных диодов, рассчитанных на ток не менее 10А, например Д242А.

Провода в зарядном устройстве должны быть толстые и короткие. Диодный мост нужно закрепить на большой радиатор. Необходимо нарастить радиаторы DC-DC преобразователя, или использовать для охлаждения вентилятор.




Сборка зарядного устройства

Подсоедините шнур с сетевой вилкой и предохранителем к первичной обмотке трансформатора ТС-180-2, установите диодный мост на радиатор, соедините диодный мост и вторичную обмотку трансформатора. Припаяйте конденсатор к плюсовому и минусовому выводам диодного моста.


Подключите трансформатор к сети 220 вольт и произведите замеры напряжений мультиметром. У меня получились такие результаты:

  1. Переменное напряжение на выводах вторичной обмотки 14.3 вольта (напряжение в сети 228 вольт).
  2. Постоянное напряжение после диодного моста и конденсатора 18.4 вольта (без нагрузки).

Руководствуясь схемой, соедините с диодным мостом DC-DC понижающий преобразователь и вольтамперметр.

Настройка выходного напряжения и зарядного тока

На плате DC-DC преобразователя установлены два подстроечных резистора, один позволяет установить максимальное выходное напряжение, другим можно выставить максимальный зарядный ток.

Включите зарядное устройство в сеть (к выходным проводам ничего не подсоединено), индикатор будет показывать напряжение на выходе устройства, и ток равный нулю. Потенциометром напряжения установите на выходе 5 вольт. Замкните между собой выходные провода, потенциометром тока установите ток короткого замыкания 6 А. Затем устраните короткое замыкание, разъединив выходные провода и потенциометром напряжения, установите на выходе 14.5 вольт.

Данное зарядное устройство не боится короткого замыкания на выходе, но при переполюсовке может выйти из строя. Для защиты от переполюсовки, в разрыв плюсового провода идущего к аккумулятору можно установить мощный диод Шоттки. Такие диоды имеют малое падение напряжения при прямом включении. С такой защитой, если перепутать полярность при подключении аккумулятора, ток протекать не будет. Правда этот диод нужно будет установить на радиатор, так как через него при заряде будет протекать большой ток.


Подходящие диодные сборки применяются в компьютерных блоках питания. В такой сборке находятся два диода Шоттки с общим катодом, их нужно будет запараллелить. Для нашего зарядного устройства подойдут диоды с током не менее 15 А.


Нужно учитывать, что в таких сборках катод соединен с корпусом, поэтому эти диоды нужно устанавливать на радиатор через изолирующую прокладку.

Необходимо еще раз отрегулировать верхний предел напряжения, с учетом падения напряжения на диодах защиты. Для этого, потенциометром напряжения на плате DC-DC преобразователя нужно выставить 14.5 вольт измеряемых мультиметром непосредственно на выходных клеммах зарядного устройства.

Как заряжать аккумулятор

Протрите аккумулятор тряпицей смоченной в растворе соды, затем насухо. Выверните пробки и проконтролируйте уровень электролита, если необходимо, долейте дистиллированную воду. Пробки во время заряда должны быть вывернуты. Внутрь аккумулятора не должны попадать мусор и грязь. Помещение, в котором происходит заряд аккумулятора должно хорошо проветриваться.

Подключите аккумулятор к зарядному устройству и включите устройство в сеть. Во время заряда напряжение будет постепенно расти до 14.5 вольт, ток будет со временем уменьшаться. Аккумулятор можно условно считать заряженным, когда зарядный ток упадет до 0.6 – 0.7 А.

Здравствуйте ув. читатель блога «Моя лаборатория радиолюбителя».

В сегодняшней статье речь пойдет о давно «заюзаной», но очень полезной схеме тиристорного фазоимпульсного регулятора мощности, которое мы будем использовать как зарядное устройство для свинцовых аккумуляторных батарей.

Начнем с того, что зарядное на КУ202 имеет целый ряд преимуществ:
— Способность выдерживать ток заряда до 10 ампер
— Ток заряда импульсный, что, по мнению многих радиолюбителей, помогает продлить жизнь аккумулятору
— Схема собрана с не дефицитных, недорогих деталей, что делает ее очень доступной в ценовой категории
— И последний плюс- это легкость в повторении, что даст возможность ее повторить, как новичку в радиотехнике, так и просто владельцу автомобиля, вообще не имеющего знания в радиотехнике, которому нужна качественная и простая зарядка.

Со временем попробовал доработанную схему с автоматическим отключением аккумулятора, рекомендую почитать
В свое время я собирал эту схему на коленке за 40 минут вместе с травкой платы и подготовкой компонентов схемы. Ну хватит рассказов, давайте рассмотрим схему.

Схема тиристорного зарядного устройства на КУ202

Перечень используемых компонентов в схеме
C1 = 0,47-1 мкФ 63В

R1 = 6,8к — 0,25Вт
R2 = 300 — 0,25Вт
R3 = 3,3к — 0,25Вт
R4 = 110 — 0,25Вт
R5 = 15к — 0,25Вт
R6 = 50 — 0,25Вт
R7 = 150 — 2Вт
FU1 = 10А
VD1 = ток 10А, желательно брать мост с запасом. Ну на 15-25А и обратное напряжение не ниже 50В
VD2 = любой импульсный диод, на обратное напряжение не ниже 50В
VS1 = КУ202, Т-160, Т-250
VT1 = КТ361А, КТ3107, КТ502
VT2 = КТ315А, КТ3102, КТ503

Как было сказано ранее схема является тиристорным фазоимпульсным регулятором мощности с электронным регулятором тока зарядки.
Управление электродом тиристора осуществляется цепью на транзисторах VT1 и VT2. Управляющий ток проходит через VD2, необходимый для защиты схемы от обратных скачков тока тиристора.

Резистором R5 определяется ток зарядки аккумулятора, который должен быть 1/10 от емкости АКБ. К примеру АКБ емкостью 55А надо заряжать током 5.5А. Поэтому на выходе перед клемами зарядного устройства желательно поставить амперметр, для контроля за током зарядки.

По поводу питания, для данной схемы подбираем трансформатор с переменным напряжением 18-22В, желательно по мощности без запаса, ведь используем тиристор в управлении. Если напряжение больше- R7 поднимаем до 200Ом.

Так же не забываем что диодный мост и управляющий тиристор надо ставить на радиаторы через теплопроводящую пасту. Так же если вы используете простые диоды типа как Д242-Д245, КД203, помните что их надо изолировать от корпуса радиатора.

На выход ставим предохранитель на нужные вам токи, если вы не планируете заряжать АКБ током выше 6А, то предохранителя на 6,3А вам хватит с головой.
Так же для защиты вашего аккумулятора и зарядного устройства, рекомендую поставить мою или , которая помимо защиты от переполюсовки защитит зарядное от подключения дохлых аккумуляторов с напряжением менее 10,5В.
Ну вот в принципе рассмотрели схемку зарядного на КУ202.

Печатная плата тиристорного зарядного устройства на КУ202

В собранном виде от Сергея

Удачи вам с повторением и жду ваших вопросов в комментариях

Для безопасной, качественной и надежной зарядки любых типов аккумуляторов, рекомендую

Что бы не пропустить последние обновления в мастерской, подписывайтесь на обновления в Вконтакте или Одноклассниках , так же можно подписаться на обновления по электронной почте в колонке справа

Не хочется вникать в рутины радиоэлектроники? Рекомендую обратить внимание на предложения наших китайских друзей. За вполне приемлемую цену можно приобрести довольно таки качественные зарядные устройства

Простенькое зарядное устройство с светодиодным индикатором зарядки, зеленый батарея заряжается, красный батарея заряжена.

Есть защита от короткого замыкания, есть защита от переполюсовки. Отлично подойдет для зарядки Мото АКБ емкостью до 20А\ч, АКБ 9А\ч зарядит за 7 часов, 20А\ч — за 16 часов. Цена на это зарядное всего 403 рубля,доставка бесплатна

Этот тип зарядного способен автоматически заряжать практически любые типы автомобильных и мото аккумуляторов 12В до 80А\Ч. Имеет уникальный способ зарядки в три этапа: 1. Зарядка постоянным током, 2. Зарядка постоянным напряжением, 3. Капельная дозарядка до 100%.
На передней панеле два индикатора, первый указывает напряжение и процент зарядки, второй указывает ток зарядки.
Довольно качественный прибор для домашних нужд, цена всего 781,96 руб, доставка бесплатна. На момент написания этих строк количество заказов 1392, оценка 4,8 из 5. При заказе не забудьте указать Евровилку

Зарядное устройство для самых разнообразных типов аккумуляторов 12-24В с током до 10А и пиковым током 12А. Умеет заряжать Гелиевые АКБ и СА\СА. Технология зарядки как и у предыдущего в три этапа. Зарядное устройство способно заряжать как в автоматическом режиме, так и в ручном. На панеле есть ЖК индикатор указывающий напряжение, ток заряда и процент зарядки.

Иногда случается так, что аккумулятор в машине садиться и завести ее уже не получается, так как стартеру не хватает напряжения и соответственно тока, чтобы провернуть вал двигателя. В этом случае можно «прикурить» от другого владельца авто, чтобы двигатель заработал и аккумулятор стал заряжаться от генератора, однако для этого нужны специальные провода и человек, желающий вам помочь. Можно так же зарядить аккумулятор самостоятельно посредством специализированного зарядного устройства, однако они достаточно дорогие, и пользоваться ими приходится не особо часто. Поэтому в данной статье мы подробно рассмотрим устройство самоделки, а также инструкцию о том, как сделать зарядное устройство для автомобильного аккумулятора своими руками.

Устройство самоделки

Нормальное напряжение на аккумуляторе, отключенном от автомобиля, находится в пределах между 12,5 в и 15 в. Поэтому зарядное устройство должно выдавать такое же напряжение. Ток заряда должен быть равен примерно 0,1 от емкости, он может быть и меньше, но это увеличит время зарядки. Для стандартной батареи емкостью 70-80 а/ч ток должен быть равен 5-10 амперам в зависимости от конкретного аккумулятора. Наше самодельное зарядное устройство для АКБ должно соответствовать этим параметрам. Для сборки зарядного устройства для автомобильного аккумулятора нам потребуются следующие элементы:

Трансформатор. Нам подойдет любой из старого электроприбора или купленный на рынке с габаритной мощностью порядка 150 Ватт, можно больше, но не меньше, иначе он будет сильно нагреваться и может выйти из строя. Отлично, если напряжение его выходных обмоток составляет 12,5-15 В, а ток порядка 5-10 ампер. Посмотреть эти параметры можно в документации к вашей детали. Если же нужной вторичной обмотки нет, то необходимо будет перемотать трансформатор под другое выходное напряжение. Для этого:

Таким образом мы нашли или собрали идеальный трансформатор, чтобы сделать зарядное устройство для аккумулятора своими руками.

Нам также понадобятся:


Подготовив все материалы можно переходить к самому процессу сборки автомобильного ЗУ.

Технология сборки

Чтобы сделать зарядное устройство для автомобильного аккумулятора своими руками, необходимо следовать пошаговой инструкции:

  1. Создаем схему самодельной зарядки для АКБ. В нашем случае она будет выглядеть следующим образом:
  2. Используем трансформатор ТС-180-2. Он имеет несколько первичных и вторичных обмоток. Для работы с ним нужно соединить последовательно две первичные и две вторичные обмотки, чтобы получить нужное напряжения и ток на выходе.

  3. С помощью медного провода соединяем между собой выводы 9 и 9’.
  4. На стеклотекстолитовой пластине собираем диодный мост из диодов и радиаторов (как показано на фото).
  5. Выводы 10 и 10’ подключаем к диодному мосту.
  6. Между выводами 1 и 1’ устанавливаем перемычку.
  7. К выводам 2 и 2’ с помощью паяльника крепим сетевой шнур с вилкой.
  8. В первичную цепь подключаем предохранитель на 0,5 А, 10-амперный соответственно во вторичную.
  9. В разрыв между диодным мостом и аккумулятором подключаем амперметр и отрезок нихромовой проволоки. Один конец которой закрепляем, а второй должен обеспечивать подвижный контакт, таким образом будет меняться сопротивление и ограничиваться ток, подаваемый на аккумулятор.
  10. Изолируем все соединения термоусадкой или изолентой и помещаем устройство в корпус. Это необходимо, чтобы избежать поражения электрическим током.
  11. Устанавливаем подвижный контакт на конец проволоки, чтобы ее длинна и соответственно сопротивление были максимальны. И подключаем аккумулятор. Уменьшая и увеличивая длину проволоки, необходимо выставить нужное значение тока для вашего аккумулятора (0,1 от его емкости).
  12. В процессе зарядки сила тока, подаваемая на аккумулятор, будет сама уменьшаться и когда она достигнет 1 ампера можно сказать, что аккумулятор зарядился. Желательно также контролировать непосредственно напряжение на батарее, однако для этого его необходимо отключить от з/у, так как при зарядке оно будет немного выше реальных значений.

Первый запуск собранной схемы любого источника питания или ЗУ всегда производят через лампу накаливания, если она загорелась в полный накал — или где-то ошибка, или первичная обмотка замкнута! Лампу накаливания устанавливают в разрыв фазного или нулевого провода, питающих первичную обмотку.

Данная схема самодельного зарядного устройства для АКБ имеет один большой недостаток – она не умеет самостоятельно отключать аккумулятор от зарядки после достижения нужного напряжения. Поэтому вам придется постоянно следить за показаниями вольтметра и амперметра. Есть конструкция, лишенная этого недостатка, однако для ее сборки потребуется дополнительные детали и больше усилий.

Наглядный пример готового изделия

Правила эксплуатации

Недостаток самодельного зарядного устройства для аккумулятора 12В заключается в том, что после полной зарядки АКБ автоматическое отключение прибора не происходит. Именно поэтому Вам придется периодически поглядывать на табло, чтобы вовремя выключить его. Еще один важный нюанс – проверять ЗУ «на искру» категорически запрещается.

4 простых схемы зарядного устройства для литий-ионных аккумуляторов — использование LM317, NE555, LM324

В следующем сообщении объясняются четыре простых, но безопасных способа зарядки литий-ионного аккумулятора с использованием обычных микросхем, таких как LM317 и NE555, которые можно легко собрать дома любым новым любителем.

Хотя литий-ионные аккумуляторы являются уязвимыми устройствами, их можно заряжать с помощью более простых схем, если скорость зарядки не вызывает значительного нагревания аккумулятора, и если пользователь не возражает против небольшой задержки в периоде зарядки элемента.

Пользователи, которым требуется быстрая зарядка аккумулятора, не должны использовать описанные ниже концепции, вместо этого они могут использовать один из этих профессиональных интеллектуальных устройств.

Основные сведения о зарядке литий-ионных аккумуляторов

Прежде чем изучать процедуры построения литий-ионных зарядных устройств, нам было бы важно знать основные параметры, связанные с зарядкой литий-ионных аккумуляторов.

В отличие от свинцово-кислотных аккумуляторов, литий-ионные аккумуляторы можно заряжать при очень высоких начальных токах, которые могут достигать номинальной емкости аккумулятора в ампер-часах.Это называется зарядкой со скоростью 1С, где С — значение емкости аккумулятора в ампер-часах.

При этом никогда не рекомендуется использовать эту экстремальную скорость, так как это будет означать зарядку аккумулятора в очень напряженных условиях из-за повышения его температуры. Поэтому скорость 0,5C считается стандартным рекомендуемым значением.

0,5C означает, что зарядный ток составляет 50% от значения Ач батареи. В условиях тропического лета даже такая скорость может превратиться в неблагоприятную для батареи из-за существующей высокой температуры окружающей среды.

Требует ли зарядка литий-ионного аккумулятора сложных факторов?

Абсолютно нет. На самом деле это чрезвычайно удобная форма батареи, и ее можно заряжать с минимальными усилиями, хотя эти минимальные соображения важны и должны соблюдаться в обязательном порядке.

Несколько важных, но легко реализуемых соображений: автоматическое отключение при полном уровне заряда, постоянное напряжение и постоянный ток на входе.

Следующее объяснение поможет лучше понять это.

На следующем графике показана идеальная процедура зарядки стандартного литий-ионного элемента 3,7 В, рассчитанного на 4,2 В в качестве полного уровня заряда.

Этап № 1 : На начальном этапе № 1 мы видим, что напряжение батареи повышается с уровня 0,25 В до 4,0 В примерно за один час при скорости зарядки постоянным током 1 А. На это указывает СИНЯЯ линия. 0,25 В используется только для ориентировочных целей, фактический элемент 3,7 В никогда не должен разряжаться ниже 3 В.

Этап № 2: На этапе № 2 зарядка переходит в состояние заряда насыщения , где напряжение достигает максимального уровня заряда 4.2 В, и потребление тока начинает падать. Это падение текущего показателя продолжится в течение следующих нескольких часов. Зарядный ток обозначен КРАСНОЙ пунктирной линией.

Этап № 3 : По мере того, как ток падает, он достигает самого низкого уровня, который ниже 3% от номинального значения Ач ячейки.

Как только это произойдет, питание на входе отключается, и ячейке дают возможность успокоиться еще на 1 час.

Через час напряжение ячейки показывает реальное состояние заряда или SoC ячейки. SoC элемента или аккумулятора — это оптимальный уровень заряда, которого он достиг после курса полной зарядки, и этот уровень показывает фактический уровень, который можно использовать для данного приложения.

В этом состоянии мы можем сказать, что состояние ячейки готово к использованию.

Этап № 4 : В ситуациях, когда ячейка не используется в течение длительных периодов, время от времени применяется дополнительная зарядка, при этом ток, потребляемый ячейкой, составляет менее 3% от ее значения Ач.

Помните, хотя график показывает, что ячейка заряжается даже после того, как она достигла 4.2 В, , то есть категорически не рекомендуется при практической зарядке литий-ионного элемента . Электропитание должно автоматически отключаться, как только в аккумуляторе достигается уровень 4,2 В.

Итак, что в основном предлагает график?

  1. Используйте входной источник питания с фиксированным током и фиксированным выходным напряжением, как описано выше. (Обычно это может быть = Напряжение на 14% выше указанного значения, Ток на 50% от значения Ач, меньший ток, чем это, также будет хорошо работать, хотя время зарядки будет пропорционально увеличиваться)
  2. Зарядное устройство должно иметь автоматическое отключение при рекомендуемый уровень полной зарядки.
  3. Управление температурой или контроль для батареи может не потребоваться, если входной ток ограничен значением, которое не вызывает нагревания батареи

Если у вас нет автоматического отключения, просто ограничьте постоянное напряжение входное напряжение 4,1 В.

1) Простейшее зарядное устройство для литий-ионных аккумуляторов с использованием одного полевого МОП-транзистора

Если вы ищете самую дешевую и простую схему зарядного устройства для литий-ионных аккумуляторов, то лучшего варианта не может быть.

ПРИМЕЧАНИЕ. В данной конструкции отсутствует регулирование температуры, поэтому рекомендуется более низкий входной ток.

Один полевой МОП-транзистор, предустановка или подстроечный резистор и резистор на 470 Ом 1/4 Вт — это все, что вам нужно для создания простой и безопасной схемы зарядного устройства.

Перед подключением выхода к литий-ионному аккумулятору убедитесь в нескольких вещах.

1) Поскольку вышеуказанная конструкция не включает регулирование температуры, входной ток должен быть ограничен до уровня, который не вызывает значительного нагрева элемента.

2) Отрегулируйте предустановку, чтобы получить ровно 4,1 В на клеммах зарядки, к которым предполагается подключить элемент.Отличный способ исправить это — подключить точный стабилитрон вместо предустановленного и заменить 470 Ом резистором 1 кОм.

Для тока обычно подходит постоянный ток на входе около 0,5 ° C, то есть 50% от значения мАч ячейки.

Добавление контроллера тока

Если входной источник не управляется током, в этом случае мы можем быстро модернизировать вышеуказанную схему с помощью простого каскада управления током BJT, как показано ниже:

RX = 07 / Max Charging Current

Advantage литий-ионных аккумуляторов

Основным преимуществом литий-ионных элементов является их способность быстро и эффективно принимать заряд. Однако литий-ионные элементы имеют плохую репутацию из-за того, что они слишком чувствительны к неблагоприятным воздействиям, таким как высокое напряжение, большой ток и, что наиболее важно, чрезмерная зарядка.

При зарядке в любых из вышеперечисленных условий аккумулятор может стать слишком теплым, и, если условия сохранятся, это может привести к утечке жидкости из элемента или даже к взрыву, что в конечном итоге приведет к необратимому повреждению элемента.

При любых неблагоприятных условиях зарядки первое, что происходит с аккумулятором, — это повышение его температуры, и в предлагаемой концепции схемы мы используем эту характеристику устройства для выполнения требуемых операций безопасности, при которых аккумулятор никогда не может достигнуть высокого уровня. температуры, сохраняющие параметры в пределах требуемых характеристик ячейки.

2) Использование LM317 в качестве контроллера IC

В этом блоге мы встретили множество схем зарядного устройства, использующих микросхемы LM317 и LM338, которые являются наиболее универсальными и наиболее подходящими устройствами для обсуждаемых операций.

Здесь мы также используем микросхему LM317, хотя это устройство используется только для генерации необходимого регулируемого напряжения и тока для подключенного литий-ионного элемента.

Фактическая функция считывания выполняется парой NPN-транзисторов, которые расположены таким образом, что они входят в физический контакт с заряженным элементом.

Глядя на данную принципиальную схему, мы получаем три типа защиты одновременно:

Когда питание подается на установку, IC 317 ограничивает и генерирует выходной сигнал, равный 3,9 В для подключенной литий-ионной батареи. .

  1. Резистор на 640 Ом гарантирует, что это напряжение никогда не превысит предел полного заряда.
  2. Два транзистора NPN, подключенные в стандартном режиме Дарлингтона к выводу ADJ IC, контролируют температуру ячейки.
  3. Эти транзисторы также работают как ограничители тока, предотвращая перегрузки по току в литий-ионном элементе.

Мы знаем, что если контакт ADJ IC 317 заземлен, ситуация полностью отключает выходное напряжение с него.

Это означает, что если проводящие транзисторы вызовут короткое замыкание контакта ADJ на землю, что приведет к отключению выхода на батарею.

Используя указанную выше функцию, пара Darlingtom выполняет несколько интересных функций безопасности.

Резистор 0,8, подключенный между его базой и землей, ограничивает максимальный ток примерно до 500 мА, если ток имеет тенденцию превышать этот предел, напряжение на 0.Резистора 8 Ом становится достаточно для активации транзисторов, которые «заглушают» выход ИС и препятствуют дальнейшему увеличению тока. Это, в свою очередь, помогает предохранить аккумулятор от нежелательного тока.

Использование определения температуры в качестве параметра

Однако основная функция безопасности, выполняемая транзисторами, — это определение повышения температуры литий-ионной батареи.

Транзисторы, как и все полупроводниковые устройства, имеют тенденцию проводить ток более пропорционально с повышением температуры окружающей среды или их тела.

Как уже говорилось, эти транзисторы должны находиться в непосредственном физическом контакте с батареей.

Теперь предположим, что в случае, если температура элемента начнет расти, транзисторы отреагируют на это и начнут проводить, проводимость немедленно приведет к тому, что контакт ADJ IC будет больше подвержен воздействию потенциала земли, что приведет к снижению выходного напряжения.

При уменьшении зарядного напряжения также уменьшится температура подключенного литий-ионного аккумулятора.Результатом является контролируемая зарядка ячейки, гарантирующая, что ячейка никогда не перейдет в аварийные ситуации, и поддерживает безопасный профиль зарядки.

Вышеупомянутая схема работает по принципу температурной компенсации, но не включает функцию автоматического отключения избыточного заряда, и поэтому максимальное напряжение зарядки фиксируется на уровне 4,1 В.

Без температурной компенсации

Если вы хотите избежать Из-за проблем с контролем температуры вы можете просто проигнорировать пару Дарлингтона BC547 и использовать вместо нее один BC547.

Теперь он будет работать только как источник питания с регулируемым током / напряжением для литий-ионного элемента. Вот необходимый модифицированный дизайн. Трансформатор

может быть трансформатором 0-6 / 9 / 12В.

Поскольку здесь не используется регулирование температуры, убедитесь, что значение Rc правильно выбрано для диапазона 0,5 C. Для этого вы можете использовать следующую формулу:

Rc = 0,7 / 50% от значения Ач

Предположим, что значение Ач напечатано как 2800 мАч. Тогда указанная выше формула может быть решена как:

Rc = 0.7/1400 мА = 0,7 / 1,4 = 0,5 Ом

Мощность будет 0,7 x 1,4 = 0,98, или просто 1 ватт.

Аналогичным образом убедитесь, что предустановка 4k7 настроена на точное значение 4,1 В на выходных клеммах.

После выполнения вышеуказанных настроек вы можете безопасно зарядить предполагаемый литий-ионный аккумулятор, не беспокоясь о любых нежелательных ситуациях.

Так как при 4,1 В нельзя считать аккумулятор полностью заряженным.

Чтобы преодолеть вышеуказанный недостаток, автоматическое отключение становится более предпочтительным, чем описанная выше концепция.

В этом блоге я обсуждал много схем автоматического зарядного устройства операционных усилителей, любая из них может быть применена для предлагаемой конструкции, но, поскольку мы заинтересованы в том, чтобы конструкция оставалась дешевой и простой, можно попробовать альтернативную идею, которая показана ниже. .

Использование SCR для отсечки

Если вас интересует только автоматическое отключение без контроля температуры, вы можете попробовать описанную ниже конструкцию на основе SCR. SCR используется через ADJ и землю IC для операции фиксации.Затвор оснащен выходом таким образом, что, когда потенциал достигает примерно 4,2 В, SCR срабатывает и фиксируется, отключая питание батареи навсегда.

Порог можно отрегулировать следующим образом:

Изначально оставьте предустановку 1K равной уровню земли (крайний правый), подайте внешний источник напряжения 4,3 В на выходные клеммы.
Теперь медленно отрегулируйте предустановку, пока SCR не сработает (загорится светодиод).

Устанавливает схему для автоматического отключения.

Как настроить вышеуказанную схему

Изначально держите центральный рычаг ползунка предустановки касанием шины заземления схемы.

Теперь, не подключая выключатель батареи к источнику питания, проверьте выходное напряжение, которое, естественно, покажет полный уровень заряда, установленный резистором 700 Ом.

Затем очень умело и осторожно отрегулируйте предустановку до тех пор, пока SCR не сработает, отключив выходное напряжение до нуля.

Вот и все, теперь вы можете считать, что схема полностью настроена.

Подключите разряженную батарею, включите питание и проверьте реакцию, предположительно, SCR не сработает, пока не будет достигнут установленный порог, и отключится, как только батарея достигнет установленного порога полной зарядки.

3) Схема зарядного устройства литий-ионной батареи с использованием IC 555

Вторая простая конструкция объясняет простую, но точную схему автоматического зарядного устройства литий-ионной батареи с использованием широко распространенной микросхемы IC 555.

Зарядка литий-ионной батареи может быть критической

A Литий-ионный аккумулятор, как мы все знаем, необходимо заряжать в контролируемых условиях, если он заряжается обычными средствами, это может привести к повреждению или даже взрыву аккумулятора.

Обычно литий-ионные аккумуляторы не любят перезаряжать свои элементы. Как только элементы достигают верхнего порога, напряжение зарядки должно быть отключено.

Следующая схема зарядного устройства для литий-ионных аккумуляторов очень эффективно соответствует указанным выше условиям, так что подключенному аккумулятору никогда не разрешается превышать предел избыточного заряда.

Когда IC 555 используется в качестве компаратора, его контакты №2 и №6 становятся эффективными входами считывания для определения нижнего и верхнего пределов порогового напряжения в зависимости от настройки соответствующих предварительных настроек.

Контакт № 2 контролирует пороговый уровень низкого напряжения и переключает выход на высокий логический уровень в случае, если уровень падает ниже установленного предела.

И наоборот, контакт № 6 контролирует верхний порог напряжения и переключает выходной сигнал на низкий при обнаружении уровня напряжения, превышающего установленный верхний предел обнаружения.

В основном действия верхнего выключателя и нижнего переключателя должны быть установлены с помощью соответствующих предустановок, удовлетворяющих стандартным спецификациям IC, а также подключенной батареи.

Предустановка, относящаяся к выводу № 2, должна быть установлена ​​так, чтобы нижний предел соответствовал 1/3 от Vcc, и аналогичная предустановка, связанная с выводом № 6, должна быть установлена ​​так, чтобы верхний предел отсечки соответствовал 2/3 от Vcc. , в соответствии со стандартными правилами IC 555.

Как это работает

Полное функционирование предлагаемой схемы зарядного устройства Li-Ion с использованием IC 555 происходит, как поясняется в следующем обсуждении:

Предположим, что батарея полностью разряжена. ионный аккумулятор (около 3. 4В) подключается к выходу схемы, показанной ниже.

Предполагая, что нижний порог установлен где-то выше уровня 3,4 В, контакт № 2 немедленно определяет ситуацию низкого напряжения и подтягивает выходной сигнал к высокому уровню на контакте № 3.

Высокий уровень на контакте № 3 активирует транзистор, который включает входное питание подключенной батареи.

Теперь аккумулятор постепенно начинает заряжаться.

Как только аккумулятор достигнет полной зарядки (при 4,2 В), предполагается, что верхний порог отключения на контакте № 6 будет установлен на уровне 4.2v, уровень измеряется на выводе №6, который немедленно переключает выходной сигнал на низкий.

Низкий выходной сигнал мгновенно отключает транзистор, что означает, что вход для зарядки теперь заблокирован или отключен от батареи.

Наличие транзисторного каскада также обеспечивает возможность зарядки литий-ионных аккумуляторов более высокого тока.

Трансформатор должен быть выбран с напряжением не выше 6 В и номинальным током, составляющим 1/5 от номинала батареи AH.

Принципиальная схема

Если вы чувствуете, что вышеприведенная конструкция очень сложна, вы можете попробовать следующую схему, которая выглядит намного проще:

Как настроить схему

Подключите полностью заряженную батарею в показанных точках и отрегулируйте предустановка, при которой реле просто деактивируется из положения N / C в положение N / O…. делайте это без подключения к цепи зарядного входа постоянного тока.

Как только это будет сделано, можно предположить, что цепь настроена и может использоваться для автоматического отключения питания от батареи при полной зарядке.

Во время фактической зарядки убедитесь, что входной ток зарядки всегда ниже, чем номинал батареи AH, то есть, если предположить, что батарея AH составляет 900 мАч, входной ток не должен превышать 500 мА.

Аккумулятор должен быть удален, как только реле выключится, чтобы предотвратить саморазряд аккумулятора через предустановку 1K.

IC1 = IC555

Все резисторы 1/4 Вт CFR

Распиновка IC 555

Заключение

Хотя конструкции, представленные выше, все технически правильны и будут выполнять задачи в соответствии с предложенными спецификациями, они фактически выглядят как перебор.

Простой, но эффективный и безопасный способ зарядки литий-ионных аккумуляторов описан в этом посте , и эта схема может быть применима ко всем формам батарей, поскольку она отлично заботится о двух важнейших параметрах: постоянном токе и полном заряде. автоматическое отключение заряда.Предполагается, что от источника заряда поступает постоянное напряжение.

4) Зарядка большого количества литий-ионных аккумуляторов

В статье объясняется простая схема, которую можно использовать для быстрой одновременной параллельной зарядки не менее 25 литий-ионных элементов от одного источника напряжения, такого как аккумулятор 12 В или Солнечная панель 12В.

Идея была предложена одним из ярых последователей этого блога, давайте послушаем ее:

Зарядка нескольких литий-ионных батарей вместе

Можете ли вы помочь мне разработать схему для зарядки 25 литий-ионных батарей (3.7в-800мА каждый) одновременно. Мой источник питания от батареи 12v- 50AH. Также дайте мне знать, сколько ампер 12-вольтовой батареи будет потребляться с этой настройкой в ​​час … заранее спасибо.

Конструкция

Что касается зарядки, литий-ионные элементы требуют более строгих параметров по сравнению со свинцово-кислотными аккумуляторами.

Это становится особенно важным, потому что литий-ионные элементы имеют тенденцию выделять значительное количество тепла в процессе зарядки, и если это тепловыделение выходит из-под контроля, это может привести к серьезному повреждению элемента или даже к возможному взрыву.

Однако одна хорошая вещь в литий-ионных элементах заключается в том, что они могут быть заряжены с полной скоростью 1С на начальном этапе, в отличие от свинцово-кислотных аккумуляторов, которые не позволяют заряжать более чем со скоростью С / 5.

Вышеупомянутое преимущество позволяет литий-ионным элементам заряжаться в 10 раз быстрее, чем свинцово-кислотный счетчик.

Как обсуждалось выше, поскольку управление теплом становится решающей проблемой, при надлежащем управлении этим параметром все остальное становится довольно простым.

Это означает, что мы можем заряжать литий-ионные элементы с полной скоростью 1С, не беспокоясь ни о чем, если у нас есть что-то, что контролирует тепловыделение от этих элементов и инициирует необходимые корректирующие меры.

Я попытался реализовать это, подключив отдельную цепь датчика тепла, которая контролирует тепло от ячеек и регулирует ток заряда в случае, если тепло начинает отклоняться от безопасного уровня.

Контроль температуры со скоростью 1 ° C имеет решающее значение

На первой схеме ниже показана точная схема датчика температуры с использованием микросхемы LM324. Здесь были задействованы три ее операционных усилителя.

Диод D1 представляет собой 1N4148, который эффективно действует как датчик температуры.Напряжение на этом диоде падает на 2 мВ при повышении температуры на каждый градус.

Это изменение напряжения на D1 побуждает A2 изменить свою выходную логику, которая, в свою очередь, заставляет A3 постепенно увеличивать свое выходное напряжение соответственно.

Выход A3 подключен к светодиоду оптрона. Согласно настройке P1, выходной сигнал A4 имеет тенденцию увеличиваться в ответ на тепло от элемента, пока, в конце концов, не загорится подключенный светодиод, а внутренний транзистор оптического сигнала не станет проводящим.

Когда это происходит, оптранзистор подает напряжение 12 В на схему LM338 для инициирования необходимых корректирующих действий.

На второй схеме показан простой регулируемый источник питания на микросхеме LM338. Поток 2k2 отрегулирован так, чтобы на подключенных литий-ионных элементах вырабатывалось ровно 4,5 В.

Предыдущая схема IC741 представляет собой схему отключения при избыточном заряде, которая контролирует заряд по элементам и отключает питание, когда оно достигает значения выше 4,2 В.

BC547 слева рядом с ICLM338 вводится для применения соответствующих корректирующих действий, когда ячейки начинают нагреваться.

В случае, если элементы становятся слишком горячими, питание от оптопары датчика температуры попадает на транзистор LM338 (BC547), транзистор проводит ток и мгновенно отключает выход LM338 до тех пор, пока температура не упадет до нормального уровня, этот процесс продолжается. пока элементы не будут полностью заряжены, когда IC 741 активируется и навсегда отключит элементы от источника.

Все 25 ячеек могут быть подключены к этой цепи параллельно, каждая положительная линия должна включать отдельный диод и резистор 5 Ом 1 Вт для равномерного распределения заряда.

Весь пакет ячеек должен быть закреплен на общей алюминиевой платформе, чтобы тепло равномерно рассеивалось по алюминиевой пластине.

D1 следует надлежащим образом приклеить к этой алюминиевой пластине, чтобы рассеиваемое тепло оптимально воспринималось датчиком D1.

Цепь автоматического зарядного устройства и контроллера литий-ионных аккумуляторов.

Заключение

  • Основными критериями, которые необходимо соблюдать для любого аккумулятора, являются: зарядка при удобных температурах и отключение источника питания, как только он достигнет полной зарядки.Это основная вещь, которой вам нужно следовать, независимо от типа батареи. Вы можете контролировать это вручную или сделать это автоматически, в обоих случаях ваша батарея будет заряжаться безопасно и иметь более длительный срок службы.
  • Ток зарядки / разрядки отвечает за температуру батареи, если она слишком высока по сравнению с температурой окружающей среды, ваша батарея сильно пострадает в долгосрочной перспективе.
  • Второй важный фактор — никогда не позволять аккумулятору сильно разряжаться. Продолжайте восстанавливать полный уровень заряда или увеличивайте его, когда это возможно.Это гарантирует, что аккумулятор никогда не достигнет нижнего уровня разряда.
  • Если вам сложно контролировать это вручную, вы можете выбрать автоматический контур, как описано на этой странице.

Есть еще сомнения? Пожалуйста, дайте им возможность заполнить поле для комментариев ниже 🙂

How to Power a Project

Добавлено в избранное Любимый 64

Обзор

Это руководство расскажет о различных способах реализации ваших электронных проектов.В нем будут подробно описаны параметры напряжения и тока, которые вы, возможно, захотите сделать. Также будут учтены дополнительные соображения, которые вы должны учесть, если ваш проект является мобильным / удаленным или, другими словами, вы не собираетесь сидеть рядом с розеткой на стене.

Если это действительно ваш первый электронный проект, у вас есть возможность прочитать это руководство или придерживаться рекомендованных материалов для проекта или платы разработки по вашему выбору. Комплект SparkFun Inventor’s Kit содержит USB-кабель, необходимый для питания, и отлично подходит для всех проектов в комплекте, а также для многих более сложных проектов.Если вы чувствуете себя подавленным, лучше всего начать с этого комплекта.

Рекомендуемая литература

Вот соответствующие уроки, которые вы можете проверить перед чтением этого:

Способы реализации проекта

Вот некоторые из наиболее распространенных методов, используемых для поддержки проекта:

  • USB-питание
  • Настольный источник питания переменного тока
  • Настенный адаптер переменного тока в постоянный (как в компьютере или ноутбуке)
  • Батареи

Четыре распространенных способа электроснабжения вашего проекта

Какой вариант мне выбрать для поддержки моего проекта?

Ответ на этот вопрос во многом зависит от конкретных требований вашего проекта.

Питание через USB

Если вы начинаете с SparkFun Inventor’s Kit или другой базовой платы для разработки, вам, скорее всего, понадобится только USB-кабель. Arduino Uno — это пример, для которого требуется только кабель USB A — B для подачи питания на работу схем из комплекта. Вот несколько USB-кабелей из нашего каталога для питания вашего проекта от USB-порта.

Кабель USB micro-B — 6 футов

В наличии CAB-10215

USB 2.0 типа A на 5-контактный micro USB. Это новый разъем меньшего размера для USB-устройств. Разъемы Micro USB примерно вдвое дешевле…

14

Кабель USB от A до B — 6 футов

В наличии CAB-00512

Это стандартная проблема USB 2. 0 кабель. Это наиболее распространенный периферийный кабель типа «папа / папа» от А до В, из тех, что обычно…

1
Настольный источник питания переменного тока

Если вы занимаетесь строительными проектами и регулярно тестируете схемы, настоятельно рекомендуется приобрести настольный источник питания переменного тока. Это позволит вам установить напряжение на определенное значение в зависимости от того, что вам нужно для вашего проекта.Это также дает вам некоторую защиту, поскольку вы можете установить максимально допустимый ток. Затем, если в вашем проекте произойдет короткое замыкание, источник питания скамейки будет отключен, и мы надеемся, что это предотвратит повреждение некоторых компонентов в вашем проекте.

Вот несколько настольных источников питания переменного тока из нашего каталога.

Настенные адаптеры переменного тока в постоянный

Определенный источник питания переменного тока в постоянный часто используется после проверки цепи. Этот вариант также хорош, если вы часто используете одну и ту же доску разработки снова и снова в своих проектах.Эти настенные адаптеры обычно имеют заданное выходное напряжение и ток, поэтому важно убедиться, что выбранный вами адаптер имеет правильные характеристики для проекта, который вы будете использовать, и не превышать эти характеристики. Вот несколько настенных адаптеров из каталога, которые предлагают несколько усилителей.

Для более актуальных проектов, ознакомьтесь с некоторыми из этих источников питания в нашем каталоге. Просто убедитесь, что в списке рекомендованных продуктов на странице продукта вы найдете кабель, подходящий для вашего региона.

Аккумуляторы

Если вы хотите, чтобы ваш проект был мобильным или базировался в удаленном месте, вдали от того, где вы можете получить настенное питание переменного тока из сети, батареи — это то, что вам нужно. Батарейки бывают самых разных, поэтому обязательно ознакомьтесь с последующими частями этого руководства, чтобы вы могли точно определить, что выбрать. Обычно выбираются щелочные аккумуляторы NiMH AA и литий-полимерные. Вот несколько батареек из каталога.

Литий-ионный аккумулятор — 2 Ач

В наличии PRT-13855

Это очень тонкие и чрезвычайно легкие батареи, основанные на химическом составе литий-ионных аккумуляторов.Каждая ячейка выдает номинальное напряжение 3,7 В при 200…

. 7

Щелочная батарея 9 В

В наличии PRT-10218

Это ваши стандартные щелочные батарейки на 9 вольт от Rayovac. Даже не думайте пытаться перезарядить их.Используйте их с…

1

Никель-металлгидридный аккумулятор 2500 мАч — AA

В наличии PRT-00335

Никель-металлогидридные аккумуляторные батареи AA емкостью 2500 мАч, 1,2 В. [Технология NiMH] (http://en.wikipedia.org/wiki/Nickel_metal_hy…

Если вашему проекту требуется определенное напряжение или немного больше тока от батареи, попробуйте добавить повышающий преобразователь или импульсный стабилизатор.Вы можете снимать переменное напряжение с батареи и выдавать заданное напряжение 5 В. В зависимости от платы и компонентов, используемых в вашем проекте, вы потенциально можете выводить 9 В или 10 В в зависимости от конфигурации. Вам просто нужно убедиться, что вы получили необходимые компоненты для построения вашей схемы, чтобы выходное напряжение превышало 5 В. Вот несколько конвертеров из нашего каталога.

Рекомендации по напряжению / току

Сколько напряжения мне нужно для Project X?

Это во многом зависит от схемы, поэтому на этот вопрос нет простого ответа.Однако большинство плат для разработки микропроцессоров, таких как Arduino Uno, имеют на борту регулятор напряжения. Это позволяет нам подавать напряжение в указанном диапазоне выше регулируемого. Многие микропроцессоры и микросхемы на платах разработки работают от 3,3 В или 5 В, но имеют регуляторы напряжения, которые могут работать от 6 до 12 В.

Питание поступает от источника питания и затем регулируется регулятором напряжения, так что каждая микросхема получает постоянное напряжение, даже если потребляемый ток может колебаться в разное время.Здесь, в SparkFun, мы используем блоки питания 9 В для многих наших продуктов, которые работают в диапазоне от 3,3 В до 5 В. Однако, чтобы проверить, какое напряжение является безопасным, рекомендуется проверить техническое описание регулятора напряжения на плате разработки, чтобы узнать, какой диапазон напряжения рекомендуется производителем.

Сколько тока мне нужно для Project X?

Этот вопрос также зависит от макетной платы и микропроцессора, которые вы используете, а также от того, какие схемы вы планируете подключать к ним.Если ваш блок питания не может дать вам количество энергии, необходимое для проекта, схема может начать работать странным и непредсказуемым образом. Это также известно как потемнение.

Как и в случае с напряжением, рекомендуется проверить таблицы данных и оценить, что может понадобиться различным частям схемы. Также лучше округлить и предположить, что вашей схеме потребуется больше тока, чем для обеспечения достаточного тока. Если ваша схема включает элементы, требующие большого количества тока, такие как двигатели или большое количество светодиодов, вам может потребоваться большой источник питания или даже отдельные источники питания для микропроцессора и дополнительных двигателей. В противном случае падение мощности может привести к перезагрузке микропроцессора, недостаточному крутящему моменту двигателя или неполному горению светодиодных индикаторов. Опять же, всегда в ваших интересах получить блок питания, рассчитанный на более высокий ток, и не использовать дополнительные по сравнению с блоком, который не может обеспечить достаточно.

Светильники со светодиодными лентами, соединенными ромбовидной цепью

Не знаете, насколько актуален ваш проект?

После того, как вы некоторое время поиграете со схемами, вам будет легче оценить количество тока, которое требуется вашему проекту.Однако распространенные способы выяснить это экспериментально — это либо использовать настольный источник питания переменного тока постоянного тока, который имеет считывание тока, либо использовать цифровой мультиметр для измерения тока, идущего в вашу схему во время ее работы. Это даст вам общее представление о том, какой блок питания выбрать для вашего проекта.

Если вы не знаете, как измерить ток с помощью мультиметра, обратитесь к нашему руководству по мультиметру.

Мы настоятельно рекомендуем иметь цифровой мультиметр в вашем электронном ящике.Он отлично подходит для измерения силы тока или напряжения.

Подключения

Как подключить аккумулятор или источник питания к цепи?

Есть много способов подключить источник питания к вашему проекту.

Общие способы подключения питания к вашей цепи

Настольные переменные блоки питания обычно подключаются к цепям напрямую с помощью банановых разъемов или проводов. Они также похожи на разъемы на кабелях щупов мультиметра.

Кабели с крючками от банана к микросхеме

В наличии CAB-00506

Это различные кабели с выводами для подключения к мультиметрам, источникам питания, осциллографам, функциональным генераторам и т. Д. Кабели…

7

Кабели из банана в банан

Распродано CAB-00507

Это различные кабели с выводами для подключения к мультиметрам, источникам питания, осциллографам, генераторам функций и т. Д.Кабели…

2

Кабель от банана к аллигатору

В наличии CAB-00509

Это различные кабели с выводами для подключения к мультиметрам, источникам питания, осциллографам, генераторам функций и т. Д.Кабели…

2

Многие проекты сначала строятся на макетной плате с использованием проводов в качестве прототипа, прежде чем они станут конечным продуктом. Существует множество способов питания вашей макетной платы, многие из которых включают те же разъемы, которые упоминаются здесь.

После завершения фазы прототипирования проект обычно попадает на печатную плату. Если вы планируете сделать схему один или два раза, можно перенести схему на макетную плату и вручную подключить схему для защиты проекта.Если вы планируете создавать схему более нескольких раз, вы можете рассмотреть возможность ее проектирования с помощью программного обеспечения САПР (например, Eagle), чтобы сэкономить время на монтажную схему проекта или если вы планируете уменьшить размер всей схемы.

Комплект SparkFun ProtoShield

В наличии DEV-13820

SparkFun ProtoShield Kit позволяет вам настроить свой собственный щит Arduino, используя любую схему, которую вы можете придумать, а затем . ..

3

Одним из наиболее распространенных разъемов питания, используемых на готовой печатной плате, как в бытовой, так и в любительской электронике, является цилиндрический разъем, также известный как цилиндрический разъем.Они могут различаться по размеру, но все они работают одинаково и обеспечивают простой и надежный способ поддержки вашего проекта. В зависимости от вашего дизайна вы также можете получать питание от USB-порта компьютера или настенного адаптера.

Разъем SparkFun USB-C

В наличии BOB-15100

SparkFun USB-C Breakout обеспечивает в 3 раза больше энергии, чем предыдущая плата USB, при этом каждый вывод на соединении размыкается…

5

Батареи обычно хранятся в футляре, который удерживает батареи и подключает цепь с помощью проводов или цилиндрического разъема. В некоторых батареях, таких как литий-полимерно-ионные батареи, часто используется разъем JST. Вот несколько из нашего каталога.

Держатель батареи 9 В

В наличии PRT-10512

Этот держатель батареи 9 В позволяет вашей батарее плотно защелкнуться и удерживать ее на месте, что отлично подходит в ситуациях, когда вы надеваете…

3

Чтобы узнать больше о различных разъемах питания, см. Наше руководство по разъемам.

Основные сведения о разъеме

18 января 2013 г.

Разъемы — главный источник путаницы для людей, только начинающих заниматься электроникой. Количество различных опций, терминов и названий соединителей может сделать выбор одного или найти тот, который вам нужен, сложной задачей. Эта статья поможет вам окунуться в мир разъемов.

Удаленное / Мобильное питание

Какую батарею мне выбрать?

Когда вы запитываете удаленную цепь, все еще возникают те же проблемы с поиском батареи, которая обеспечивает правильное напряжение и ток.Срок службы или емкость аккумулятора — это показатель общего заряда аккумулятора. Емкость аккумулятора обычно оценивается в ампер-час, (Ач) или миллиампер-час (мАч), и это говорит вам, сколько ампер может обеспечить полностью заряженный аккумулятор за период в один час. Например, аккумулятор емкостью 2000 мАч может обеспечивать ток до 2 А (2000 мА) в течение одного часа.

Размер, форма и вес аккумулятора также следует учитывать при создании мобильного проекта, особенно если он будет летать на чем-то вроде небольшого квадрокоптера.Вы можете получить общее представление о разнообразии, посетив этот список в Википедии. Узнайте больше о типах аккумуляторов в нашем руководстве по аккумуляторным технологиям.

Батареи последовательно и параллельно

Вы можете добавлять батареи последовательно или параллельно, чтобы получить желаемое напряжение и ток, необходимые для вашего проекта. Когда две или более батареи помещаются в серии , напряжения батарей складываются. Например, свинцово-кислотные автомобильные аккумуляторы фактически состоят из шести одноэлементных свинцово-кислотных аккумуляторов, соединенных последовательно; шестерка 2.Ячейки 1 В в сумме дают 12,6 В. При последовательном соединении двух батарей рекомендуется, чтобы они были одного химического состава. Кроме того, будьте осторожны при последовательной зарядке аккумуляторов, так как многие зарядные устройства рассчитаны только на одноэлементную зарядку.

При подключении двух или более батарей в параллельно емкости увеличиваются. Например, четыре батареи AA, соединенные параллельно, по-прежнему будут вырабатывать 1,5 В, однако емкость батарей увеличится в четыре раза.

Какая емкость аккумулятора мне нужна для моего проекта?

На этот вопрос легче ответить, если вы определили величину тока, который обычно потребляет ваша цепь.В следующем примере мы будем использовать оценку. Однако рекомендуется измерять ток, потребляемый вашей схемой, с помощью цифрового мультиметра, чтобы получить точные результаты.

В качестве примера давайте начнем со схемы, оценим ее текущий выходной ток, затем выберем батарею и вычислим, как долго схема будет работать от батареи. Давайте выберем микроконтроллер ATmega 328, который станет нашим мозгом для схемы. В нормальных условиях он потребляет около 20 мА. Давайте теперь подключим три красных светодиода и стандартные резисторы ограничения тока 330 Ом к цифровым контактам ввода / вывода микроконтроллера.В этой конфигурации каждый добавленный светодиод заставляет схему потреблять примерно на 10 мА больше тока. Теперь давайте подключим к микроконтроллеру два мотора Micro Metal. Каждый из них при включении потребляет примерно 25 мА. Наш общий возможный текущий розыгрыш сейчас составляет:

Давайте выберем для этого стандартную щелочную батарею AA, потому что она имеет более чем достаточный ток (до 1 А), имеет приличную емкость батареи (обычно в диапазоне от 1,5 Ач до 2,5 Ач) и очень распространена. Мы предположим, что в этом примере среднее значение составляет 2 Ач.Обратной стороной использования AA является то, что он имеет выходное напряжение только 1,5 В, а поскольку остальные наши компоненты будут работать от 5 В, нам необходимо увеличить напряжение. Мы можем использовать этот повышающий разрыв на 5 В, чтобы получить необходимое нам напряжение, или мы можем использовать три батареи AA последовательно, чтобы приблизить нас к необходимому напряжению. Три последовательно включенных АА дают нам напряжение 4,5 В (3 раза по 1,5 В). Вы также можете добавить еще одну батарею на 6 В и отрегулировать напряжение до уровня, необходимого для вашей схемы.

Чтобы рассчитать, как долго цепь будет работать от батареи, мы используем следующее уравнение:

Для схемы, запитанной параллельно от 3 AA и подключенной к цепи с постоянным потребляемым током 100 мА, это соответствует:

В идеале мы могли бы получить 60 часов автономной работы от этих трех щелочных батарей AA в этой параллельной конфигурации. Однако рекомендуется «снижать номинальные характеристики» аккумуляторов, что означает предполагать, что время автономной работы будет ниже идеального. Давайте консервативно скажем, что мы получим 75% идеального времени автономной работы и, следовательно, около 45 часов автономной работы для нашего проекта.

Срок службы батареи также может варьироваться в зависимости от фактического потребляемого тока. Вот график для батареи Energizer AA, показывающий ожидаемое время автономной работы при постоянном потреблении тока.

Energizer AA, ток и время работы от батареи

Это лишь одна из многочисленных конфигураций, которые вы можете использовать для удаленного управления вашим проектом.

Ищете другие примеры? Ознакомьтесь с Powering LilyPad LED Projects, чтобы увидеть еще один пример расчета того, сколько энергии потребуется вашему проекту для светодиодов!

Стресс-тестирование

Теперь, когда вы выбрали блок питания и разъем, обязательно протестируйте свой проект и понаблюдайте за его поведением. В зависимости от производителя блоки питания могут иметь разную производительность. Обязательно протестируйте сетевой адаптер в течение определенного периода времени, чтобы убедиться, что микроконтроллер не отключится, а блок питания не сбросится под нагрузкой.Для определенных проектов, использующих емкостные сенсорные датчики, обязательно проверьте наличие задержек, вызванных шумными источниками питания.

Если вы управляете своим проектом удаленно, обязательно проверяйте его с аккумулятором. Батареи могут обеспечивать разную мощность в зависимости от подключенной нагрузки и химического состава батареи. Это также может привести к отключению микроконтроллера или прекращению подачи питания.

Ресурсы и дальнейшее развитие

Теперь вы должны знать наиболее распространенные способы питания вашей цепи и узнать, какой из них лучше всего подходит для вас, в зависимости от конкретных требований вашего проекта.Теперь вы можете сделать лучшее суждение, исходя из соображений тока, напряжения, разъема и мобильности для вашего проекта. Ознакомьтесь с этими другими замечательными руководствами для мониторинга, управления или поддержки вашего проекта!

Или посмотрите несколько идей в блогах:

Зарядка через USB и подача питания

4 Протокол подачи питания

USB Power Delivery (USB-PD) относится к протоколу, который позволяет «поставщику энергии», кабелю и «потребителю энергии» согласовывать уровни тока и напряжения.Поскольку мощность может течь в любом направлении, роль поставщика и потребителя может измениться в любой момент.

Этот протокол интеллектуальной зарядки позволяет устройствам согласовывать напряжение, ток и направление питания и передачи данных по USB-кабелю. Переговоры регулируются правилами питания и предлагают ряд конфигураций напряжения и тока. Например, телефон, которому требуется 18 Вт, может согласовывать 9 В и 3 А с источником питания.

USB-PD используется Apple® iPhone®, iPad®, MacBook Pro®, Google Pixel ™ и другими смартфонами и портативными устройствами.

Все ли кабели USB-C поддерживают PD?
Да. Все кабели USB-C — USB-C имеют канал конфигурации (CC), необходимый для поддержки связи PD, но не обязательно поддерживают полный диапазон уровней напряжения / тока, указанных в USB-PD. Ток на пассивном кабеле USB-C ограничен 3 А, поэтому максимальная мощность, которую он может поддерживать, составляет 3 А x 20 В = 60 Вт. Длина пассивного кабеля также ограничена 4 метрами (13 футов). Кабели, рассчитанные на мощность более 3 А, имеют электронную маркировку и рассчитаны на мощность до 100 Вт (5 А x 20 В).

Все ли порты USB-C имеют одинаковую функциональность?
Нет. Несмотря на то, что все порты USB-C выглядят одинаково, поддерживаемые ими функции могут сильно различаться. Например, порт USB-C на настенном зарядном устройстве будет заряжать только устройства. Порты на ноутбуках могут различаться по уровню питания и скорости передачи данных. Некоторые порты USB-C для портативных компьютеров поддерживают только передачу данных, только питание или их комбинацию, поэтому перед покупкой периферийных устройств проверьте характеристики вашего устройства.

Что такое быстрая смена ролей?
Подача питания через USB 2.0 включает Fast Role Swap (FRS), функцию, которая гарантирует, что подключенные устройства могут продолжать работать при отключении питания. Как следует из названия, Fast Role Swap позволяет провайдеру энергии (Источнику) быстро и автоматически становиться потребителем энергии (Источником). Например, предположим, что концентратор, выступающий в качестве источника, обеспечивает питание портативного компьютера и внешнего жесткого диска (HDD), когда он неожиданно отключается от розетки переменного тока. Концентратор сигнализирует другим устройствам, что ему необходимо поменяться ролями и стать приемником.Ноутбук, обнаружив сигнал Fast Swap от концентратора, переключает свою роль с Sink на Source и начинает подавать питание от своей батареи на концентратор и (косвенно) HHD.

Контроллер заряда от солнечных батарей DIY | Hackaday.io

  1. Винтовые клеммы × 2
  2. 1N4148 — Универсальное быстрое переключение × 1
  3. P600G Диод × 1
  4. Конденсатор 0,1 мкФ × 2
  5. 5 мм светодиод: красный × 1
  6. 5 мм светодиод: зеленый × 1
  7. FQP27P06 МОП-транзистор с каналом P 60 В × 1
  8. 2N3904 BJT × 3
  9. Резистор 10 кОм × 3
  10. Резистор 4. 75 кОм × 2
  11. Резистор со сквозным отверстием, 20 кОм × 2
  12. Резистор со сквозным отверстием, 18 кОм × 1
  13. Резистор 10 кОм × 1
  14. Резистор со сквозным отверстием, 3,9 кОм × 1
  15. Резистор 1 кОм × 1
  16. 1N4735A Одинарный диод Зенера × 1
  17. Поворотный потенциометр (общий) × 1

Простое солнечное зарядное устройство должно иметь встроенные 3 основные функции:

  • Стоит невысокая стоимость.
  • Непрофессионал дружелюбен и прост в сборке.
  • Должен быть достаточно эффективным, чтобы удовлетворить основные потребности в зарядке аккумулятора.

Основное свойство этого устройства — преобразование солнечной энергии в электрическую — сделало его очень популярным, и теперь оно прочно рассматривается как будущее решение всех кризисов или дефицитов электроэнергии.

Солнечная энергия может использоваться непосредственно для питания электрического оборудования или просто храниться в соответствующем запоминающем устройстве для дальнейшего использования.

Обычно есть только один эффективный способ хранения электроэнергии — использование аккумуляторов.

Перезаряжаемые батареи, вероятно, являются лучшим и наиболее эффективным способом сбора или хранения электроэнергии для дальнейшего использования.

Энергия от солнечного элемента или солнечной панели также может эффективно храниться, чтобы ее можно было использовать по своему усмотрению, обычно после захода солнца или когда стемнело, и когда накопленная мощность становится очень необходимой для работы освещения. .

Хотя это может показаться довольно простым, зарядка аккумулятора от солнечной панели никогда не бывает легкой по двум причинам:

Напряжение от солнечной панели может сильно варьироваться в зависимости от падающих солнечных лучей, а ток также меняется по тем же причинам, указанным выше.

Две вышеуказанные причины могут сделать параметры зарядки типичной аккумуляторной батареи очень непредсказуемыми и опасными.

Об этой схеме солнечного зарядного устройства

Это солнечное зарядное устройство на самом деле является зарядным устройством Low Dropout Voltage (LDO). Он использует линейный стабилизатор P-канального MOSFET и простой дифференциальный усилитель. Хотя он в основном предназначен для зарядки свинцово-кислотных аккумуляторов 12 В, выходное напряжение зарядки можно регулировать с помощью потенциометра.

  • Мощность солнечной панели: 50 Вт (4 А, номинальное напряжение 12 В) (напряжение холостого хода: от 18 до 20 В)
  • Диапазон выходного напряжения: от 7 до 14 В (регулируемое) (не рекомендуется для приложений 6 В)
  • Макс.рассеиваемая мощность: 16 Вт (включая рассеиваемая мощность D3)
  • Типичное падение напряжения: 1,25 В при 4 А
  • Максимальный ток: 4 А (ограничение тока обеспечивается характеристиками солнечной панели)
  • Регулировка напряжения: 10 мВ (без нагрузки до полной нагрузки)
  • Разряд аккумулятора: 1 мА ( Китайцы контролируют разряд, как правило, при 5 мА)
  • Светодиодные индикаторы:
  • КРАСНЫЙ: Солнечная панель активна
  • ЗЕЛЕНЫЙ: ограничивающий ток серийного регулятора (полностью заряжен или доливается)
  • Светодиодные индикаторы:
    КРАСНЫЙ: Солнечная панель активна
    ЗЕЛЕНЫЙ: Последовательный регулятор ограничение тока (полностью заряжен или долит)
  • Защита аккумулятора от обратного тока: система управления отключается, если аккумулятор непреднамеренно подключен к обратной стороне.

Схема цепи контроллера заряда от солнечной батареи 12 В

R4 и D1 образуют шунтирующее опорное напряжение стабилитрона 6 В. Q1 и Q2 составляют классический дифференциальный усилитель, который усиливает разницу между опорным напряжением и напряжением обратной связи от плеча потенциометра R6. Выходной сигнал снимается с коллектора Q1 и управляет затвором полевого МОП-транзистора P-канала Q3. Коэффициент усиления дифференциального напряжения, вероятно, составляет от 100 до 200. Для достижения наилучших характеристик я выбрал Q1 и Q2 для согласованного hFE.Когда напряжение обратной связи увеличивается на плече R6, Q2 включается сильнее и отбирает часть эмиттерных токов от Q1. Коллекторный ток Q1 следует за током эмиттера и падает меньше напряжения на R1, тем самым уменьшая Vgs Q3 и выключая его. C2 обеспечивает частотную компенсацию для предотвращения колебаний усилителя.

Q3 бездействует, если батарея не …

Читать далее »

DIY Контроллер солнечного заряда — Hackster.io

Солнечное зарядное устройство — это зарядное устройство, использующее солнечную энергию для подачи электричества к устройствам или батареям. Солнечные зарядные устройства могут заряжать свинцово-кислотные или никель-кадмиевые батареи до 48 В и емкостью до сотен ампер-часов (до 4000 Ач). В таких типах солнечных зарядных устройств обычно используется интеллектуальный контроллер заряда.

Простое солнечное зарядное устройство должно иметь 3 встроенных базовых функции:

  • Оно должно быть недорогим.
  • Непрофессионал дружелюбен и прост в сборке.
  • Должен быть достаточно эффективным, чтобы удовлетворить основные потребности в зарядке аккумулятора.

Основное свойство этого устройства — преобразование солнечной энергии в электрическую — сделало его очень популярным, и теперь оно прочно рассматривается как будущее решение всех кризисов или дефицитов электроэнергии.

Солнечная энергия может использоваться непосредственно для питания электрического оборудования или просто храниться в соответствующем накопителе для дальнейшего использования.

Обычно есть только один эффективный способ хранения электроэнергии — это использование аккумуляторных батарей.

Перезаряжаемые батареи, вероятно, являются лучшим и наиболее эффективным способом сбора или хранения электроэнергии для дальнейшего использования.

Энергия от солнечного элемента или солнечной панели также может эффективно храниться, чтобы ее можно было использовать по своему усмотрению, обычно после захода солнца или когда стемнело, и когда накопленная мощность становится очень необходимой для работы огни.

Хотя это может показаться довольно простым, зарядка аккумулятора от солнечной панели никогда не бывает легкой по двум причинам:

Напряжение от солнечной панели может сильно варьироваться в зависимости от падающих солнечных лучей, а также меняется ток из-за по тем же причинам, указанным выше.

Две вышеуказанные причины могут сделать параметры зарядки типичной аккумуляторной батареи очень непредсказуемыми и опасными.

Об этой схеме солнечного зарядного устройства

Это солнечное зарядное устройство на самом деле является зарядным устройством Low Dropout Voltage (LDO). Он использует линейный стабилизатор P-канального MOSFET и простой дифференциальный усилитель. Хотя он в основном предназначен для зарядки свинцово-кислотных аккумуляторов 12 В, выходное напряжение зарядки можно регулировать с помощью потенциометра.

Технические характеристики

  • Мощность солнечной панели: 50 Вт (номинальное значение 4 А, 12 В) (напряжение холостого хода: от 18 до 20 В)
  • Диапазон выходного напряжения: от 7 до 14 В (регулируемое) (не рекомендуется для приложений 6 В)
  • Макс. рассеиваемая мощность: 16 Вт (включая рассеиваемую мощность D3)
  • Типичное падение напряжения: 1,25 В при 4 А
  • Максимальный ток: 4 А (ограничение тока обеспечивается характеристиками солнечной панели)
  • Регулировка напряжения: 10 мВ (без нагрузки до полной нагрузки)
  • Разряд батареи: 1 мА (китайцы контролируют разряд, как правило, 5 мА)
  • Светодиодные индикаторы:
  • КРАСНЫЙ: Солнечная панель активна
  • ЗЕЛЕНЫЙ: ограничивающий ток последовательного регулятора (полностью заряжен или доливается)
  • Светодиодные индикаторы: КРАСНЫЙ: Солнечная панель активна ЗЕЛЕНЫЙ : Предельный ток последовательного регулятора (полностью заряжен или долит)
  • Защита аккумулятора от обратного хода: Система управления отключается, если аккумулятор случайно подключается в обратном направлении.

Схема цепи контроллера заряда от солнечной батареи 12 В

Работа цепи управления зарядом от солнечной батареи

LDO

R4 и D1 образуют шунтирующее опорное напряжение стабилитрона 6 В. Q1 и Q2 составляют классический дифференциальный усилитель, который усиливает разницу между опорным напряжением и напряжением обратной связи от плеча потенциометра R6. Выходной сигнал снимается с коллектора Q1 и управляет затвором полевого МОП-транзистора P-канала Q3. Коэффициент усиления дифференциального напряжения, вероятно, составляет от 100 до 200.Для лучшей производительности я выбрал Q1 и Q2 для согласованного hFE. Когда напряжение обратной связи увеличивается на плече R6, Q2 включается сильнее и отбирает часть эмиттерных токов от Q1. Коллекторный ток Q1 следует за током эмиттера и падает меньше напряжения на R1, тем самым уменьшая Vgs Q3 и выключая его. C2 обеспечивает частотную компенсацию для предотвращения колебаний усилителя.

Q3 неактивен, если батарея не подключена реверсом — в этом случае Q3 включается и снижает входное опорное напряжение до нуля, таким образом поворачивая Q1 и Q3 и предотвращая повреждение тока батареи.

D3 предотвращает появление напряжения батареи на неактивной солнечной панели.

Ограничение тока

Ограничение тока обеспечивается солнечной панелью — это не общепризнанный факт, что солнечная панель имеет тенденцию быть устройством постоянного тока. По этой причине солнечная панель может выдержать короткое замыкание. Следовательно, управление не требует ограничения тока.

Регулировка напряжения

Чтобы установить напряжение, отсоедините аккумулятор и подключите к выходу нагрузочный резистор 1 кОм.Резистор необходим для шунтирования потенциального тока утечки полевого МОП-транзистора, а также тока зеленого светодиода.

Падение напряжения

Входное напряжение превышает входное напряжение на 1,25 В при максимальной скорости зарядки — чем ниже, тем лучше. Низкое падение напряжения (LDO) — это модная фраза для всего, что ниже примерно 2 В. Это потенциально может быть уменьшено до уровня ниже 1 В, если сделать D3 выпрямителем Шоттки.

Плавающий заряд свинцово-кислотных аккумуляторов

Этот элемент управления заряжает аккумулятор при постоянном напряжении, а также поддерживает заряженный аккумулятор (плавающий заряд).Спецификация напряжения плавающего заряда немного ниже, чем напряжение заряда, поэтому для согласования обоих напряжений компромисс достигается простым незначительным снижением напряжения — так работают ВСЕ автомобильные системы. Чтобы получить максимальный заряд аккумулятора 12 В, установите регулятор от 14 до 14,6 В. Автомобильные системы дополнительно снижают напряжение до 13–13,5 В, чтобы приспособиться к работе при высоких температурах, поскольку аккумулятор обычно находится в горячем моторном отсеке — аккумулятор имеет отрицательный тепловой коэффициент напряжения.

Thermal Management

Это линейный последовательный регулятор, который рассеивает значительную мощность, когда проходной транзистор одновременно проводит ток и понижает напряжение — во время максимальной скорости заряда, когда падение напряжения низкое, радиатор нагревается — когда батарея полностью заряжен и имеет низкий ток заряда, радиатор холодный — но когда батарея начинает заряжаться до максимального напряжения, радиатор становится очень горячим — такова природа линейного регулятора.При 4А на Q3 падает 3,3 В (при условии, что напряжение на солнечной панели составляет 18 В) (оставшиеся 0,7 В — это падение напряжения на D3. P = 4 А * 3,3 В = 13,2 Вт. Радиатор рассчитан на 3,9 ° C / Вт, поэтому температура радиатора Подъем = 13,2 Вт * 3,9 ° C / Вт = 51,5 ° C. Добавление температуры окружающей среды 25 ° C приводит к температуре радиатора 76,5 ° C.Хотя это может показаться очень ГОРЯЧИМ на ощупь, это все же прохладно для транзистора, который рассчитан на температуру перехода 175 ° C.

Собираем все вместе

Чтобы легко собрать устройство дома, выполните следующие действия:

  • Загрузите файлы Gerber для печатной платы отсюда или ниже.
  • Зайдите на PCBWay.com и загрузите файлы и получите свои печатные платы дома по очень низкой цене. Также вы можете получить приветственный бонус в размере 5 долларов США. Они являются наиболее экономичными и ориентированными на качество производителями печатных плат. Вы можете заказать свои прототипы печатных плат в небольшом количестве, всего 5 штук печатных плат. В дополнение к стандартным печатным платам мы также можем поддерживать расширенные печатные платы, печатные платы FPC / жестко-гибкие и другие сопутствующие услуги.
  • Припаяйте компоненты на печатной плате в соответствии со схемой и дизайном, показанными ниже.
  • Подключите входной источник питания (DC) к входным клеммам от солнечных панелей и с помощью мультиметра отрегулируйте выходное напряжение, отрегулировав винт на потенциометре.
  • Подключите выходные клеммы к аккумуляторам для зарядки.

Примечание: Будьте осторожны при зарядке аккумуляторов, поскольку они могут привести к серьезным несчастным случаям при неправильном обращении. Автор или спонсоры не несут ответственности за какие-либо инциденты. Этот проект предназначен только для образовательных целей.

A Руководство по созданию зарядных устройств для аккумуляторов

В этом руководстве мы рассмотрим схемы зарядки герметичных свинцово-кислотных (SLA), никель-кадмиевых (NiCd), никель-металлогидридных (NiMH) и литий-полимерных (LiPo) аккумуляторов.Мы предоставим схемы и инструкции по их созданию.

Но прежде чем мы начнем, учтите, что очень важно правильно заряжать аккумуляторы. Использование неправильного напряжения или тока либо неправильного типа цепи зарядки аккумулятора может привести к возгоранию или даже взрыву аккумулятора. Соблюдайте осторожность при использовании цепей зарядки аккумуляторов своими руками и не оставляйте заряжаемые аккумуляторы без присмотра.

Свинцово-кислотный герметичный

Герметичные свинцово-кислотные батареи

(SLA) отлично подойдут, если у вас есть место.Их большой размер позволяет им долго сохранять заряд на полке. Батареи SLA обычно заряжаются от источника постоянного напряжения. Зарядное устройство настраивается на определенное напряжение, которое остается неизменным на протяжении всего цикла зарядки. Это позволяет батарее сначала потреблять высокий ток, который затем спадает по мере зарядки. Начальный ток должен быть ограничен, чтобы предотвратить повреждение и перегрев.

На стороне SLA-аккумулятора обычно есть этикетка со списком напряжений, используемых для зарядки:

На изображении выше представлены характеристики напряжения и тока для зарядки аккумулятора в «режиме ожидания» или «циклическом использовании».Использование в режиме ожидания относится к аккумуляторам, которые большую часть времени проводят на зарядном устройстве в режиме поддерживающего заряда. Под циклическим использованием подразумеваются батареи, которые используются часто и часто заряжаются.

Начальный зарядный ток показан для использования в режиме ожидания и цикла. Ток заряда не должен превышать указанное значение (в данном случае 2,1 А). Напряжение зарядки различается для режима ожидания и циклического использования.

В зарядном устройстве SLA частота циклов должна контролироваться как на этой скорости; аккумулятор будет перезаряжаться, как только он достигнет своей емкости.Зарядку можно производить от настольного источника питания с ограничением тока. Просто установите напряжение на значение, которое вы будете использовать, и установите ограничение тока на значение, указанное на батарее.

Ниже показана схема зарядного устройства SLA, которое автоматически переключает скорость, когда аккумулятор полностью заряжен:

Никель-кадмий и никель-металлогидрид

Никель-кадмиевые (NiCd) батареи

были популярны в течение последних нескольких десятилетий, но их постепенно заменяют никель-металлогидридными (NiMH) батареями.Причина в том, что у никель-металлгидридных аккумуляторов меньше памяти для заряда по сравнению с никель-кадмиевыми аккумуляторами.

Батареи

NiCd и NiMH имеют схожие требования к зарядке. Оба типа предлагают возможность заряжать столько, сколько хотите, последовательно. Оба могут заряжаться постоянным током.

Это схема построения дискретного транзисторного зарядного устройства, которое можно использовать для зарядки никель-кадмиевых и никель-металлгидридных аккумуляторов:

Эта схема предназначена для зарядки аккумулятора 12 В при токе 50 мА, но ее можно легко масштабировать до более высоких напряжений и токов с помощью подходящих компонентов.

Диоды D1 и D2 и резистор R2 обеспечивают постоянное напряжение 1,2 В на базе Q1, так как напряжение база-эмиттер всегда будет составлять 0,6 В. Правильно подобрав R1, мы получаем программируемый источник постоянного тока. Чтобы вычислить значение R1, которое будет обеспечивать определенный ток, используйте эту формулу:

R = V / I

В этом случае V составляет 0,6 В, а ток заряда будет 50 мА, поэтому:

R = 0,6 В / 50 мА

R1 = 12 Ом

На схеме ниже показан регулируемый регулятор напряжения LM317, сконфигурированный как источник постоянного тока.Это зарядное устройство может заряжать как NiCd, так и NiMH аккумуляторы:

Схема предназначена для зарядки аккумулятора 12 В при токе 50 мА.

LM317 устанавливает опорное напряжение 1,25 В между Vadj и Vout. Чтобы рассчитать значение R3 для получения определенного зарядного тока, используйте эту формулу:

R = V / I

Таким образом, с V на 1,25 В и I на 50 мА,

R = 1,25 В / 50 мА

R3 = 25 Ом

Литий-полимерный

Литий-полимерные (LiPo) батареи

популярны в моделях RC, ноутбуках и блоках питания, поскольку они могут иметь высокое напряжение и большую емкость для своего размера.

Аккумуляторы LiPo

требуют тщательной и контролируемой зарядки. LiPo аккумуляторы не следует заряжать последовательно. Правильный цикл зарядки LiPo состоит из четырех последовательных этапов зарядки:

После подключения полностью разряженного LiPo аккумулятора к зарядному устройству первым этапом является этап предварительной зарядки. На этом этапе зарядный ток устанавливается на 10% от максимального зарядного тока. На следующем этапе к батарее подается постоянный ток, в то время как напряжение резко увеличивается.В конечном итоге напряжение стабилизируется до третьей ступени, где на батарею подается постоянное напряжение. На заключительном этапе ток начинает спадать. Когда зарядный ток становится 10% от максимального зарядного тока, заряд прекращается:

Аккумуляторы LiPo

можно заряжать с помощью модуля зарядки литиевых аккумуляторов TP4056. Модуль может питаться от 5 В через кабель micro USB или через контакты на печатной плате.

Когда аккумулятор полностью заряжен, загорится зеленый светодиод.Батарея подключается к контактам B + и B-. Также имеются контакты OUT, которые можно использовать для включения зарядного устройства в другую схему. Модуль контролирует и предотвращает чрезмерную разрядку.

Хотя сделать зарядное устройство не так уж сложно, всегда помните, что будьте осторожны. Аккумуляторы, которые не заряжены должным образом, могут загореться или взорваться. Тем не менее, изготовление зарядных устройств для аккумуляторов, указанных выше, может быть чрезвычайно полезным в самых разных проектах в области электроники, сделанных своими руками.

Спасибо за чтение и не стесняйтесь оставлять комментарии ниже, если у вас есть вопросы по чему-либо!


Создание зарядного устройства, управляемого Arduino

Arduino и подключенная цепь зарядки могут использоваться для контроля и управления зарядкой NiMH аккумуляторных батарей, вот как это сделать:

Готовый прибор

Аккумуляторы — отличный способ питания вашей портативной электроники.Они могут сэкономить вам много денег, а при правильной переработке они намного лучше для окружающей среды. Чтобы максимально использовать возможности аккумуляторных батарей, их необходимо правильно зарядить. Значит, вам нужно хорошее зарядное устройство. Вы можете потратить много денег на коммерческое зарядное устройство, но гораздо интереснее построить его для себя. Итак, вот как построить зарядное устройство, управляемое Arduino.

Во-первых, важно отметить, что не существует универсального метода зарядки, подходящего для всех аккумуляторных батарей.Каждый тип батареи использует свой химический процесс для работы. В результате каждый тип батареи необходимо заряжать по-разному. В этой статье мы не можем охватить все типы аккумуляторов и способы зарядки. Поэтому для простоты мы сосредоточимся на наиболее распространенном типе аккумуляторных батарей AA — никель-металлогидридных (NiMH).

Диаграмма Фритцинга проекта

Схема для проекта

Материалы:

Детали в порядке слева направо

  • Микроконтроллер Arduino
  • Держатель батареи AA
  • NiMH батарея AA
  • Резистор мощности 10 Ом (рассчитан на мощность не менее 5 Вт)
  • Резистор 1 МОм
  • Конденсатор 1 мкФ
  • IRF510 МОП-транзистор
  • TMP36 Датчик температуры
  • Источник питания с регулируемым напряжением 5 В
  • Макетная плата
  • Провода перемычки

Как заряжать NiMH аккумуляторы AA

Увеличение скорости C заряжает аккумулятор быстрее, но увеличивает риск его повреждения

Есть много разных способов зарядить NiMH аккумулятор.Метод, который вы используете, в основном зависит от того, насколько быстро вы хотите зарядить аккумулятор. Скорость зарядки (или C-rate) измеряется относительно емкости аккумулятора. Если ваш аккумулятор имеет емкость 2500 мАч и вы заряжаете его током 2500 мА, то вы заряжаете его со скоростью 1С. Если вы заряжаете его током 250 мА, то вы заряжаете его со скоростью C / 10.

При быстрой зарядке аккумулятора (с более высокой скоростью C / 10) вам необходимо внимательно следить за напряжением и температурой аккумулятора, чтобы убедиться, что вы не перезарядите его.Это может серьезно повредить аккумулятор. Однако, когда вы заряжаете аккумулятор медленно (со скоростью C / 10 или меньше), гораздо меньше шансов повредить нашу батарею, если вы случайно перезарядите ее. Из-за этого методы медленной зарядки обычно считаются более безопасными и помогают продлить срок службы батареи. Поэтому для своего зарядного устройства, сделанного своими руками, я решил использовать скорость заряда C / 10.

Цепь зарядки

Схема этого зарядного устройства представляет собой базовый источник питания, управляемый Arduino.Схема питается от источника регулируемого напряжения на 5 В, такого как адаптер переменного тока или компьютерный блок питания ATX. Большинство USB-портов не подходят для этого проекта из-за текущих ограничений. Источник 5 В заряжает батарею через силовой резистор 10 Ом и силовой полевой МОП-транзистор. MOSFET устанавливает допустимый ток, протекающий через батарею. Резистор включен как простой способ контролировать ток. Это делается путем подключения каждой клеммы к аналоговым входным контактам на Arduino и измерения напряжения на каждой стороне.MOSFET управляется выходным контактом PWM на Arduino. Импульсы сигнала широтно-импульсной модуляции сглаживаются в сигнал постоянного напряжения с помощью резистора 1 МОм и конденсатора 1 мкФ. Эта схема позволяет Arduino отслеживать и контролировать ток, протекающий в батарею.

Датчик температуры

Датчик температуры предотвращает перезарядку аккумулятора и угрозу безопасности

В качестве дополнительной меры предосторожности я включил датчик температуры TMP36 для контроля температуры батареи.Этот датчик выдает сигнал напряжения, который напрямую соответствует температуре. Таким образом, он не требует калибровки или балансировки, как термистор. Датчик устанавливается на место путем просверливания отверстия в задней части корпуса аккумулятора и приклеивания датчика таким образом, чтобы он находился напротив боковой стороны аккумулятора при установке. Затем контакты датчика подключаются к 5V, GND и аналоговому входу на Arduino.

Держатель батарейки AA до и после установки на макетную плату

Код

Код этого проекта достаточно прост.В верхней части кода есть переменные, которые позволяют настраивать зарядное устройство, вводя значения номинальной емкости аккумулятора и точное сопротивление силового резистора. Также существуют переменные для пороговых значений безопасности зарядного устройства. Максимально допустимое напряжение АКБ выставлено 1,6 вольт. Максимальная температура аккумулятора установлена ​​на 35 градусов Цельсия. Максимальное время зарядки установлено 13 часов. При превышении любого из этих пороговых значений зарядное устройство выключается.

В теле кода вы увидите, что система постоянно измеряет напряжение на выводе силового резистора. Это используется для расчета как напряжения на клеммах батареи, так и тока, протекающего в батарею. Этот ток сравнивается с целевым током, который установлен на C / 10. Если рассчитанный ток отличается от заданного более чем на 10 мА, система автоматически корректирует выходной сигнал для его корректировки.

Arduino использует инструмент серийного монитора для отображения всех текущих данных.Если вы хотите контролировать производительность зарядного устройства, вы можете подключить Arduino к USB-порту компьютера, но в этом нет необходимости, так как Arduino питается от источника питания 5 В зарядного устройства.

Вы можете найти загружаемую версию полного кода ниже:

Arduino_Controlled_Battery_Charger_Code.zip

Теперь, когда у вас есть знания, вы можете приступить к работе с собственным зарядным устройством.

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *