Защита зарядного устройства от переполюсовки: Защита от переполюсовки зарядного устройства АКБ

Содержание

Защита от переполюсовки зарядного устройства АКБ

Существует очень простой способ защиты автомобильного АКБ от переполюсовки.

Если аккумулятор неправильно подключить к зарядке (это явление называют переполюсовкой), может повредиться как зарядное устройство, так и сам АКБ. Причиной этому может стать невнимательность, которая повлекла за собой неправильную полярность подключения. В некоторых случаях причиной переполюсовки также может стать незнание комплектации аккумуляторов зарубежного производства, где выводы расположены не так, как на отечественных.

Существует довольно много устройств, главная функция которых – защита от переполюсовки. Все они имеют свои плюсы и минусы.

Данное устройство разрабатывалось с целью создания очень дешевой, простой в использовании и надежной модели для защиты.

В некоторой мере это получилось.

Устройство дает возможность защитить от возникновения переполюсовки даже аккумуляторы повышенной мощности емкостью до 250 Ач. Все элементы устройства являются максимально надежными.

Надежный рубильник Е203Г25А способен выдержать ток 25 ампер, тогда как зарядное устройство для аккумулятора требует максимум 5 ампер. Также диод 10А10 имеет запас току, который в двадцать раз превышает требуемый – против 5 необходимых он может выдержать целых 100 ампер. В этом случае автомобильная сирена вынуждена работать в не полностью загруженном режиме, беря питание от аккумулятора, который подсел. Ее звучание длится не более нескольких секунд, так как автоматически срабатывает инстинкт, и рука разрывает контакт, когда включается громкий сигнал.

Как работает устройство.

Как видно на схеме, рубильник в исходном состоянии выключен, разомкнуты контакты П1, П2, П3, диод и серена, которые составляют систему сигнализации, отделены от зарядки.

Далее необходимо подключить аккумулятор. Если действия по соединению выполнены неправильно и была перепутана полярность, посредством диода включаются звуки серены. Это своего рода сообщения для владельца аккумулятора: «Эй, уважаемый, ты не те провода подключил! Переделай, быстренько!».

После этого можно исправлять ошибку, включать рубильник и смело заряжать аккумулятор.

Это небольшое компактное устройство поможет не только обезопасить автомобильный аккумулятор, но и сохранить много нервов его владельцу. Очень хорошая задумка, которая является решением острой проблемы.

 

 

 

 

 


 

Защита зарядного устройства и аккумуляторов от переполюсовки

Один добрый человек спросил совета по поводу вариантов схем защиты зарядного устройства и аккумулятора от неверной полярности подключения батареи к устройству.

(Слишком) простое решение

Работают эти схемы довольно просто, рассмотрим первую, что слева на картинке ниже, которая с N-канальным мощным полевым транзистором.

  • В случае, если аккумуляторная батарея не подключена, или подключена в неверной полярности — маломощный управляющий полевик Т2 остаётся закрыт (ноль через R2 или плюс от батареи на затворе относительно истока), а следовательно — и мощный не открывается (ноль на затворе Т1 благодаря R1). Тока нет.
  • При правильном подключении аккумулятора маленький полевик открывается (от аккумулятора минус на затворе p-канального МДП) и открывает большой (через открытый канал T2 на затвор Т1 поступает «+»). Цепь замкнута низким сопротивлением канала мощного полевого транзистора — аккумулятор подключен к зарядному устройству.

Собирать не советую

К сожалению, у обеих схем, как они изображены на картинке выше, есть серьёзные проблемы.

  1. Не предусмотрена защита затворов от перенапряжения. Да, аккумулятор всего лишь на 12 Вольт — всё вроде бы хорошо, да и зарядное устройство скорее всего много большего напряжения не выдаст. Но если при отключенном аккумуляторе коснуться минусовой клеммы в схеме 1 или плюсовой в схеме 2 (весьма вероятное событие, не правда ли?) — с высокой вероятностью затвор маломощного транзистора будет пробит: ёмкость затвора мала, сопротивление в 10кОм и выходная ёмкость мощного полевика не защитят от броска напряжения в сотни вольт, который может быть спровоцирован, скажем, заряженной до нескольких киловольт (от трения о брюки хозяина) ёмкостью тельца кошки, а уж тем более — человека (погладившего своего любимца, или просто вставшего с дивана) 😉
  2. Нету «антизвонных» резисторов в цепях затворов.
    Такое ещё дозволительно, если маломощный полевой транзистор управляется от какой-нибудь быстродействующей логики. Во всех остальных случаях рекомендуется включать резистор (в данном случае, где-нибудь в несколько сотен Ом) в цепь затвора во избежание возникновения паразитной генерации. Генерация может возникнуть при переходных процессах, когда транзистор работает в линейном режиме. В этом случае возможны всяческие «чудеса» в работе схемы, которые порою не отследить даже на хорошем осциллографе, т.к. и частота весьма высока, и при подключении щупа генерация может срываться…
  3. Во второй схеме, что на мощном p-канальном МДП транзисторе, казалось бы, присутствует очень удобная возможность измерять напряжение на батарее без влияния падения напряжения на канале полевого транзистора. Увы, эта возможность может выйти боком: при неподключенной батарее обратная связь разорвана и преобразователь зарядного устройства может пойти в разнос.

Предлагаю

  1. Использовать маломощный биполярный транзистор в качестве управляющего, если, конечно, речь не идёт о зарядке каких-нибудь сверх-миниатюрных аккумуляторов, где каждые 100мкА на счету.
  2. Защитить мощный полевик от возбуда и пробоя затвора, пусть даже пробой и не шибко вероятен для мощников в этих схемах.
  • R1, R2, R4 = 10 кОм
  • R3 = 470 Ом
  • VD1 — стабилитрон на 15 Вольт
  • VT1 — IRFP150N или любой другой подходящий мощный МДП транзистор
  • VT2 и VD2 — маленькие 😉

Схему вполне можно переделать на p-канальном полевом транзисторе и npn биполяре по аналогии. Но если, конечно, нету необходимости измерять с точностью до единиц милливольт напряжение на батарее уже имеющимся зарядным, которое меряет это напряжение относительно своего минусового вывода, т.е. можно пренебречь падением на открытом канале n-канального МДП транзистора (сопротивление лишь несколько миллиОм!), тогда я настоятельно рекомендовал бы запользовать n-канальный мощный полевой транзистор. Т.к. будет он либо раза в 3 лучше, либо раза в 3 дешевле при похожих параметрах, нежели его p-канальный собрат.

Так же допустимо использование МДП транзисторов в качестве управляющих, как в оригинале, но при соблюдении необходимых мер защиты. Правда, я лично не совсем понимаю, зачем это может быть нужно, потому и не нарисовал.

Внимание: данная схема не защищает зарядное устройство от подачи напряжения на выходы при правильно подключенном аккумуляторе и отсутствии напряжения питания зарядного устройства. Для организации такой защиты, из-за наличия структурного диода, шунтирующего канал полевого транзистора, потребуется применить ещё один мощный ключ.

схемы защиты от переполюсовки | MyElectrons.ru

n-канальный MOSFET + стабилитрон на 7.2…15V + резистор в пару десятков килоом = БЕЗОПАСНОСТЬ

[Read in English]

Задачка-то, вроде, тривиальная. Да и зачем кому-либо вообще может понадобиться защищать какие-бы то ни было электронные изделия от переполюсовки источника питания?

Увы, у коварного случая найдётся тысяча и один способ подсунуть вместо плюса минус на устройство, которое ты много дней собирал и отлаживал, и оно вот только что заработало.

Приведу лишь несколько примеров потенциальных убийц электронных макеток, да и готовых изделий тоже:

  • Универсальные источники питания с их универсальными штеккерами, которые можно подключить как с плюсом на внутреннем контакте, так и с минусом.
  • Маленькие блоки питания (такие коробочки на сетевой вилке) — они ведь все выпускаются с плюсом на центральном контакте, разве нет? НЕТ!
  • Любой тип разъёма для подачи питания без жёсткого механического «ключа». К примеру удобные и дешёвые компьютерные «джамперы» с шагом 2.54мм. Или зажимы «под винт».
  • Как вам такой сценарий: позавчера под рукой были только чёрные и синие провода. Сегодня был уверен, что «минус» — это синий провод. Чпок — вот и ошибочка. Сначала-то хотел использовать чёрный и красный.
  • Да просто если уж день на задался — перепутать пару проводов, или воткнуть их наоборот просто потому, что плату держал кверхтормашками…

Всегда найдутся человеки (я знаком как минимум с двумя такими перцами), которые глядя прямо в глаза заявят жёстко и безапелляционно, что уж они то никогда не совершат такой глупости, как переполюсовка источника питания! Бог им судья. Может, после того, как сами соберут и отладят несколько оригинальных конструкций собственной разработки — поумнеют. А пока я спорить не буду. Просто расскажу, что использую сам.

Истории из жизни

Я ещё совсем молоденький был, когда пришлось мне перепаивать 25 корпусов из 27. Хорошо ещё это были старые добрые DIP микросхемы.
С тех самых пор я почти всегда ставлю защитный диодик рядом с разъёмом питания.

Кстати, тема защиты от неверной полярности питания актуальна не только на этапе макетирования.
Совсем недавно мне довелось стать свидетелем героических усилий, предпринимаемых моим другом по восстановлению гигантского лазерного резака. Причиной поломки был горе-техник, перепутавший провода питания сенсора/стабилизатора вертикального перемещения режущей головки. На удивление сама схемка, похоже, выжила (была-таки защищена диодом в параллель). Зато выгорело всё напрочь после: усилители, какая-то логика, контроль сервоприводов…

Защитный диод последовательно с нагрузкой

Это, пожалуй, самый простой и безопасный вариант защиты нагрузки от переполюсовки источника питания.
Одно только плохо: падение напряжения на диоде. В зависимости от того, какой диод применён, на нём может падать от примерно 0.2В (Шоттки) и до 0.7…1В — на обычных выпрямительных диодах с p-n переходом. Такие потери могут оказаться неприемлимыми в случае батарейного питания или стабилизированного источника питания. Так же, при относительно большых токах потребления, потери мощности на диоде могут быть весьма нежелательными.

Защитный диод параллельно с нагрузкой

При таком варианте защиты нету никаких потерь в нормальном режиме работы.
К сожалению, в случае переполюсовки источник питания рискует надорваться. А если источник питания окажется слишком силён — выгорит сначала диод, а за ним и вся защищаемая им схема.
В своей практике я иногда использовал такой вариант защиты от переполюсовки, особенно когда был уверен, что источник питания имеет защиту от перегрузки по току. Тем не менее однажды я заработал весьма чёткие отпечатки на обожженых пальцах коснувшись радиатора стабилизатора напряжения, который пытался бороться супротив толстенного диода Шоттки.

p-channel MOSFET — удачное, но дорогое решение

Это относительно простое решение практически лишено недостатков: ничтожное падение напряжения/мощности на проходном устройстве в нормальном режиме работы, и отсутствие тока в случае переполюсовки.
Единственная проблема: где добыть качественные недорогие мощные p-канальные полевые транзисторы с изолированным затвором? Если знаете — буду благодарен за информацию 😉
При прочих равных p-канальный MOSFET по какому-либо параметру всегда будет примерно в три раза хуже своих n-канальных собратьев. Обычно же хуже одновременно и цена, и что-либо на выбор: сопротивление открытого канала, максимальный ток, входная ёмкость и т.п. Объясняют такое явление примерно втрое меньшей подвижностью дырок, нежели электронов.

n-channel MOSFET — наилучшая защита

Раздобыть мощный низковольтный n-канальный КМОП транзистор в наши дни совсем несложно, ими порою можно разжиться даже совсем забесплатно (об этом — позже;).

Так что обеспечить пренебрежимо малое падение на открытом канале для любых вообразимых токов нагрузки — пустяк.

N-канальный MOSFET + стабилитрон на 7.2…15V + резистор в пару десятков килоом = БЕЗОПАСНОСТЬ

Так же, как и в схеме с p-канальным MOSFET, при ошибочном подключении источника — и нагрузка и незадачливый источник вне опасности.

Единственный «недостаток», который дотошный читатель может углядеть в данной схеме защиты — это то, что защита включена в т.н. «земляной» провод.
Это действительно может быть неудобно, если строится большая система с земляной «звездой». Но в таком случае надо просто предусматривать эту же защиту в непосредственной близости от подвода питания. Если же и такой вариант не подходит — наверняка найдутся способы такую непростую систему либо обеспечить уникальными разъёмами питания с надёжными механическими ключами, либо развести «постоянку», или хотя бы «землю» без разъёмов.

Осторожно: статическое электричество!

Мы все много раз были предупреждены о том, что полевые транзисторы боятся статических разрядов. Это правда. Обычно затвор выдерживает 15…20 Вольт. Немного выше — и необратимое разрушение изолятора неизбежно. При этом бывают случаи, когда полевик вроде ещё работает, но параметры хуже, и прибор может отказать в любой момент.
К счастью (и к великому сожалению) мощные полевые транзисторы обладают большими емкостями затвор — остальной кристалл: от сотен пикофарад, до нескольких нанофарад и больше. Посему разряд человеческого тела часто выдерживают без проблем — ёмкость достаточно велика, чтобы стёкший заряд не вызвал опасного повышения напряжения. Так что при работе с мощными полевиками часто бывает достаточно соблюдать минимальную осторожность в смысле электростатики и всё будет хорошо 🙂

Я не одинок

То, что я описываю здесь, без сомнения, хорошо известная практика. Вот только если бы те разработчики военпрома имели привычку публиковать свои схемные решения в блогах…
Вот что мне попалось на просторах Сети:


> > I believe it is pretty well standard practice to use an N-channel
> > MOSFET in the return lead of military power supplies (28V input).
> > Drain to supply negative, source to the negative of the PSU and
> > the gate driven by a protected derivative of the positive supply.

 

Где добыть MOSFET-ы практически даром

загляните ко мне чуть позже — будет статейка 😉

Примеры применения

Простенький генератор меандра 100 КГц с защитой от переполюсовки питания:

Генераторы пилы и синусоиды 1600 Гц, сидящие на одной плате, тоже защищены:

Удачных эксперементов!

Вам было интересно? Напишите мне!

Друзья мои, собратья по интересам! Пишу и буду развивать этот блог — идей море и опыта уже накоплено предостаточно — есть чем поделиться. Времени как всегда мало. Что было бы интересно лично Вам?

Спрашивайте, предлагайте: в комментариях, или в личку. Спасибо!

Всего Вам доброго!

— Сергей Патрушин.

PS. Мне будет приятно, если вы поделитесь этой заметкой со своими друзьями в соц-сетях. Для этого достаточно кликнуть на соответствующую иконку:

Как защититься от переполюсовки напряжения питания?

Питающее напряжение обратной полярности представляет угрозу для незащищенных электронных устройств. Такая ситуация может возникать как из-за неверной установки батареек, так и из-за переполюсовки клемм источника питания. Чтобы избежать подобных проблем используют разъемы с ключами, которые не позволяют выполнить неправильное подключение. К сожалению, такое решение не всегда возможно. Часто в силовых схемах применяют винтовые разъемы, кольцевые или ножевые клеммы. В качестве примера можно привести подключение аккумуляторной батареи в автомобиле. При смене аккумулятора вполне реально перепутать клеммы, что приводит к тому, что на вход питания электронных блоков поступает напряжение обратной полярности.

Почему переполюсовка питания становится все более серьезной проблемой?

Несколько десятилетий назад в автомобилях практически отсутствовали электронные блоки, за исключением, пожалуй, радио. Даже приборная панель со спидометром представляла собой электромеханическую систему. Очевидно, что в таких условиях ущерб от обратной полярности при переполюсовке аккумулятора был минимальным. Однако в современных машинах все обстоит совсем иначе. На борту у автомобиля присутствует множество электронных систем и блоков: современные системы содействия водителю ADAS (Advanced Driver Assistance Systems), резервные камеры, навигационные системы, антиблокировочные системы ABS, системы защиты от заносов, мультимедийные системы, GPS, беспроводная связь и внутренние сети, включая Ethernet. Многие другие приложения за пределами автомобильной отрасли в последнее время также «обросли» электронными устройствами и функциями.

При переполюсовке аккумулятора или при переходных процессах во время коммутации индуктивной нагрузки на линиях питания возникают напряжения обратной полярности, способные приводить к серьезным сбоям и повреждениям электронных систем и блоков. Обратная полярность при неверном включении аккумулятора опасна еще и тем, что аккумулятор в течение некоторого времени способен без проблем выдавать ток до нескольких сотен ампер.

Как проще всего защититься от переполюсовки?

Самым простым способом защиты будет использование обычного диода, включенного последовательно с нагрузкой (рис. 1). Диод позволяет протекать только прямому току и блокирует обратный ток, тем самым защищая от неправильной полярности входного напряжения питания.

Рис. 1. Для защиты от обратного напряжения может быть использован обычный диод. Однако это решение имеет недостатки: дополнительные потери мощности, падение напряжения, значительные размеры (при больших токах) 

Каковы недостатки диодной защиты?

При использовании защитного диода разработчик может столкнуться с целым рядом сложностей:

  • Во-первых, диод должен обеспечивать не только постоянное, но и пиковое значение нагрузочного тока. Пиковый суммарный ток всех потребителей автомобиля может легко достигать нескольких сотен ампер. Таким образом, для защиты от переполюсовки на системном уровне необходим большой и дорогостоящий диод с массивными контактами. В качестве альтернативного решения могут использоваться индивидуальные диоды на входе каждого электронного блока, но для некоторых блоков нагрузочный ток также оказывается весьма солидным.
  • Во-вторых, диод должен быть надежным и сохранять эффективность в широком диапазоне рабочих температур (особенно, если он находится под капотом). Он также должен выдерживать воздействие различных кондуктивных помех в соответствии с требованиями автомобильных стандартов.
  • В-третьих, диод приводит к возникновению дополнительного падения напряжения 0,3…0,7 В (в зависимости от типа диода). Это достаточно много, если учитывать, что номинальное напряжение бортовой сети автотранспортных средств невелико. Например, для легкового автомобиля номинальное напряжение составляет всего 12 В.
  • Наконец, даже если сопротивление диода оказывается небольшим, на нем рассеивается огромная мощность, что приводит к значительному разогреву. По этой причине нормальная работа диода возможна только при организации эффективного отвода тепла.

Существуют ли более эффективные решения?

К счастью, производители электронных компонентов предлагают альтернативные решения, которые демонстрируют более высокую эффективность. «Умный диод» – это активное устройство, которое обеспечивает те же функции, что и обычный диод, но не имеет перечисленных выше недостатков. Например, интегральный контроллер LM74610-Q1 от Texas Instruments использует схему накачки заряда для управления внешним силовым транзистором (рис. 2). LM74610-Q1 подключается к линии питания с помощью пары выводов «Anode» и «Cathode».

Рис. 2. Контроллер LM74610-Q1 совместно с силовым транзистором выполняют функцию «идеального диода», обеспечивая высокое быстродействие и минимальные потери. Микросхема LM74610-Q1 предназначена для монтажа на печатные платы потребителей различной мощности. 

Как это работает?

Контроллер LM74610 управляет внешним МОП-транзистором, который в свою очередь выполняет коммутацию тока, тем самым имитируя работу диода. При правильной полярности входного напряжения транзистор открывается и пропускает ток. Благодаря низкому сопротивлению открытого канала уровень рассеиваемой мощности оказывается минимальным. Если на вход схемы поступает напряжение обратной полярности, LM74610-Q1 выключает транзистор менее чем за 8 мкс. Высокое быстродействие играет важную роль для защиты от импульсных помех, возникающих при коммутации индуктивной нагрузки. Контроллер способен выдерживать обратное напряжение до 45 В. Этого оказывается достаточно для широкого спектра автомобильных приложений. Большим преимуществом LM74610-Q1 является тот факт, что микросхема отвязана от земли и обеспечивает нулевой ток собственного потребления (Iq).

Где следует размещать схему защиты?

Контроллер LM74610-Q1 выпускается в малогабаритном корпусном исполнении VSSOP-8 размером всего 3×5 мм. В результате, несмотря на наличие внешнего силового транзистора, схема защиты занимает очень мало места на печатной плате. Это позволяет размещать ее в каждом отдельном электронном блоке, вместо того, чтобы делать один общий защитный модуль. Такое решение оказывается более удобным и надежным.

Защита от переполюсовки зарядного устройства своими руками

Многие самодельные блоки имеют такой недостаток, как отсутствие защиты от переполюсовки питания. Даже опытный человек может по невнимательности перепутать полярность питания. И есть большая вероятность что после этого зарядное устройство придет в негодность.

В этой статье будет рассмотрено 3 варианта защит от переполюсовки, которые работают безотказно и не требуют никакой наладки.

Вариант 1

Это защита наиболее простая и отличается от аналогичных тем, что в ней не используются никакие транзисторы или микросхемы. Реле, диодная развязка – вот и все ее компоненты.

Работает схема следующим образом. Минус в схеме общий, поэтому будет рассмотрена плюсовая цепь.

Если на вход не подключен аккумулятор, то реле находится в разомкнутом состоянии. При подключении аккумулятора плюс поступает через диод VD2 на обмотку реле, вследствие чего контакт реле замыкается, и основной ток заряда протекает на аккумулятор.

Одновременно загорается зеленый светодиодный индикатор, свидетельствуя о том, что подключение правильное.

И если теперь убрать аккумулятор, то на выходе схемы будет напряжение, поскольку ток от зарядного устройства будет продолжать поступать через диод VD2 на обмотку реле.

Если перепутать полярность подключения, то диод VD2 окажется заперт и на обмотку реле не поступит питание. Реле не сработает.

В этом случае загорится красный светодиод, который нарочно подключен неправильным образом. Он будет свидетельствовать о том, что нарушена полярность подключения аккумулятора.

Диод VD1 защищает цепь от самоиндукции, которая возникает при отключении реле.

В случае внедрения такой защиты в зарядное устройство автомобильного аккумулятора, стоит взять реле на 12 В. Допустимый ток реле зависит только от мощности зарядника. В среднем стоит использовать реле на 15-20 А.

Вариант 2

Эта схема до сих пор не имеет аналогов по многим параметрам. Она одновременно защищает и от переполюсовки питания, и от короткого замыкания.

Принцип работы этой схемы следующий. При нормальном режиме работы плюс от источника питания через светодиод и резистор R9 открывает полевой транзистор, и минус через открытый переход «полевика» поступает на выход схемы к аккумулятору.

При переполюсовке или коротком замыкании ток в цепи резко возрастает, вследствие чего образуется падение напряжения на «полевике» и на шунте. Такое падение напряжение достаточно для срабатывания маломощного транзистора VT2. Открываясь, последний запирает полевой транзистор, замыкая затвор с массой. Одновременно загорается светодиод, поскольку питание для него обеспечивается открытым переходом транзистора VT2.

Из-за высокой скорости реагирования эта схема гарантированно защитит зарядное устройство при любой проблеме на выходе.

Схема очень надежна в работе и способна оставаться в состоянии защиты бесконечно долгое время.

Вариант 3

Это особо простая схема, которую даже схемой трудно назвать, поскольку в ней использовано всего 2 компонента. Это мощный диод и предохранитель. Этот вариант вполне жизнеспособен и даже применяется в промышленных масштабах.

Питание с зарядного устройства через предохранитель поступает на аккумулятор. Предохранитель подбирается исходя из максимального тока зарядки. Например, если ток 10 А, то предохранитель нужен на 12-15 А.

Диод подключен параллельно и закрыт при нормальной работе. Но если перепутать полярность, диод откроется и случится короткое замыкание.

А предохранитель – это слабое звено в этой схеме, который сгорит в тот же миг. Его после этого придется менять.

Диод следует подбирать по даташиту исходя из того, что его максимальный кратковременный ток был в несколько раз больше тока сгорания предохранителя.

Такая схема не обеспечивает стопроцентную защиту, поскольку бывали случаи, когда зарядное устройство сгорало быстрее предохранителя.

С точки зрения КПД, первая схема лучше других. Но с точки зрения универсальности и скорости реагирования, лучший вариант – это схема 2. Ну а третий вариант часто применяется в промышленных масштабах. Такой вариант защиты можно увидеть, к примеру, на любой автомагнитоле.

Все схемы, кроме последней, имеют функцию самовосстановления, то есть работа восстановится, как только будет убрано короткое замыкание или изменится полярность подключения аккумулятора.

Автор: Эдуард Орлов –

Друзья всем привет в этой записи я решил рассказать про защиту зарядного устройства. Рассмотрю на мой взгляд две самые простые и популярные схемы.

Смотрите также

Метки: sam_электрик, защита от короткого замыкания, защита от переполюсовки, защита зарядного устроиства

Комментарии 57

Привет, в схеме защиты на реле светодиод какого типа стоит?

Самый обычный светодиод. 3мм

А на какое напряжение? Думаю собрать первую схемку, может даже только поставить VD1 иVD2, без индикации будет.

Так они все 2…3 вольта.

В схеме с полевиком, можно убрать шунт если мне не нужна защита от КЗ, а нужна только от переполюсовки?
Или без шунта не будет работать?

Маленькое замечание по релейной схеме защиты. Избыточность (по количеству) диодов трогать не будем.
Если попадётся АКБ с глубокой разрядной( ниже 9V), то реле тупо не сработает, даже при правильном подключении.

По поводу видео, у полевого транзистора НЕ база — затвор.

Да с полевиком та же ситуация получиться (если он конечно не управляется логическим уровнем). Потому что открыть транзистор нужно 10-12 вольт на затворе. При меньших напряжениях будет возрастать сопротивление сток исток и транзистор начнет греться.

VD3 VD4,VD1 тоже не нужен, нигде в машинах я не видел диодов для реле,

я про них и говорил) а параллельно реле по идее можно оставить…

VD3 VD4,VD1 тоже не нужен, нигде в машинах я не видел диодов для реле,

VD1 я так понимаю, защитный диод от бросков тока индуктивности реле. Я видал не мало проблем из за того что не было установлено защитных диодов или RC цепей. Вот VD3 и VD4 ставить со светодиодами, это уже избыточность, зачем диоду диод я не совсем понял. Вот если бы там вместо светодиода стояли лампы или что то полнопроводимое, тогда бы да.
То ли автор рукожоп, то ли стянул схему у рукожопа, чем так же зарукожопил 🙂

У светодиодов есть такой параметр, как предельно допустимое напряжение, видимо для этого и стоят диоды.

И что же они делают?

Возможно, так было реализована защита от пробоя обратным напряжением, хотя более правильно было бы их подключить встречно-параллельно светодиодам. А в том виде, как они сейчас на схеме изображены, боюсь — ничего, просто стоят.

У светодиодов есть такой параметр, как предельно допустимое напряжение, видимо для этого и стоят диоды.

От предельно допустимого напряжения стоят резисторы последовательно со светодиодами. Что не спасёт эти светодиоды от бросков тока…

Резисторы стоят, ограничивающие ток в прямом направлении, от бросков тока защитят, если их взять с запасом по сопротивлению. От пробоя обратным напряжением они никак не спасут, могут лишь впоследствие ограничить ток обратного напряжения.
Когда к светодиоду приложено обратное напряжение, даже через резистор, ток через цепь не течет (при напряжении меньше порогового), а это значит, что на выводах светодиода присутствует полное напряжения питания, так что не надо заблуждаться, если вы используете светодиод в цепи, напряжение где выше предельно допустимого обратного, защищайте светодиод от пробоя обратным напряжением, и не резистором, включенным последовательно.

VD1 я так понимаю, защитный диод от бросков тока индуктивности реле. Я видал не мало проблем из за того что не было установлено защитных диодов или RC цепей. Вот VD3 и VD4 ставить со светодиодами, это уже избыточность, зачем диоду диод я не совсем понял. Вот если бы там вместо светодиода стояли лампы или что то полнопроводимое, тогда бы да.
То ли автор рукожоп, то ли стянул схему у рукожопа, чем так же зарукожопил 🙂

Сто баллов рукожопы все. Видео не смотрим. На плате этих диодов нет, есть только под красным светодиодом и то он там не для него, а для подключения пищалки.

Так перерисуй схему и не нужно каждому объяснять.
Я к примеру зашел с сотика и не буду тратить траффик на видюшки, а схему гляну.

Ок схему перерисую.

Сто баллов рукожопы все. Видео не смотрим. На плате этих диодов нет, есть только под красным светодиодом и то он там не для него, а для подключения пищалки.

Ещё одну звезду рукожопа себе набей. Мы вроде как схему на картинке обсуждали, причём тут видео?

Во заладил рукожоп да рукожоп. Давай еще на личности перейди. Отвлекись, почитай статью «нормальную» успокойся. Если так судить то из любой схемы можно десяток деталей выкинуть.

Ты сначала пишешь спасибо за внимание и за критику, а потом недоволен этой самой критикой, говоришь чтоб мимо проходили. Как ещё то относится к такому, и общаться с таким человеком?
Вот начало твоей записи — «Друзья всем привет в этой записи я решил рассказать про защиту зарядного устройства. Рассмотрю на мой взгляд две самые простые и популярные схемы.» — только где ты что рассказал в записи или рассмотрел я не вижу, а вижу я только ссылку на другой ресурс — видеохостинг с видеороликом. Перепиши статью, опиши конструкции схем, их достоинства и назначение. В конце уже вставь видео, и тогда статья будет полноценна. А так получается просто перепост видеозаписи, насасывание лайков или ещё чего то. Некрасиво это, неприятно и вызывает только раздражение.

Критика нужна адекватная и по сути, это запись, а не статья. Статьи в газетах пишут. Принцип работы, сравнение, демонстрация работы все это здесь есть. И если у вас какие то проблемы с видео, то не надо критиковать людей за это. Правила не запрещают видео ставить, а то что писанину не развел извините не в журнал «радио» пишу.

Вот опять трындишь на тему — «не нравиться иди в другое место». Так создай сообщество с названием перепост видео с ютуба, и делай свои записи. Стати не только в газету пишут, а так же в журнал, блог и т. д. Критика адекватная, я тебе не только указал что твой пост говно, но и расписал почему, а ты брыкаешься, что это я такой неугодный читатель.

Таких «говно» постов сейчас 80% на драйве. Трудно вам придется, почитать почти нечего.

VD3 VD4,VD1 тоже не нужен, нигде в машинах я не видел диодов для реле,

На транзисторном управлении лучше поставить, да и искру они гасят на управлении(если клавиша).
У меня к примеру релюшки в авто все идут с резисторами. С диодами сложнее, т.к. будет влиять полярность.

А тут конечно это всё лишнее.

а вторая схема вообще жуткое усложнение первой) третья походу на ардуине будет)

да чувак просто набрал контента в инете и слепил видос чтобы бабла подзаработать на просмотрах
а тут обсуждают как будто он сам чо-то делал

Самое простое диод и предохранитель. Защищает и от перегрузки по току и от переполюсовки.

один нюанс… его ж надо менять… и где то взять… потом он перерастает в жирного жука и утрачивает свой статус)

Это что же надо сколько раз перепутать?
А предохранитель можно и восстанавливающийся, но он медленее обычного.

за долгую жизнь зарядника можно мульён раз перепутать)

Зато дёшево, надёжно и работает всегда!
ну а от всяких путаников и любителей «жуков» спасёт только гильотина.

про всегда. я б поостерёгся) не всегда есть предаки с собой. тем более, сейчас китайчатина такая, что шипит, плавится, но не сгорает) да и к примеру в 30 мороз предак менять не комильфо совсем)

Езде есть плюсы и минусы, а первую схему попробуйте запустить на севшей АКБ.

Дата: 23.10.2015 // 0 Комментариев

Защита от переполюсовки зарядного устройства вещь очень полезная, а иногда и необходимая. Случайно неправильно подключенная автомобильная АКБ может напрочь угробить зарядное или АКБ. Для защиты от «дурака» на практике применяют основные три вида защиты: схемы на тиристоре, простая защита с помощью реле и схема от переполюсовки на полевом транзисторе.

Защита от переполюсовки зарядного устройства на реле или тиристоре имеют свои недостатки. Схемы на тиристоре довольно практичные и простые, но имеют потери напряжения на самом тиристоре около 2В, а в некоторых автомобильных зарядных при использовании такой схемы уже нечем будет заряжать АКБ. Защита от переполюсовки на реле имеет инертность, что тоже не всегда хорошо, а полностью разряженная батарея может не запустить реле. При сборке зарядного устройства из блока питания компьютера рационально применять схему на полевике.

Схема защиты зарядного устройства

Рассмотрим поближе схему защиты от переполюсовки на полевом транзисторе. Потери напряжения на полевом транзисторе минимальные, а время срабатывания не более 1мкСек.

Работает схема вот таким образом. При правильном подключении полевой транзистор открыт, и весь ток поступает на выход схемы. При коротком замыкании, перегрузке, или переполюсовке падение напряжения на шунте и полевом транзисторе достаточно, что бы сработал маломощный биполярный транзистор. Когда транзистор сработал, он замыкает затвор полевого транзистора на землю, закрывая его полностью.

Через открытый переход маломощного транзистора поступает питание на светодиод. Параллельно светодиоду можно подключить бузер с генератором для звуковой индикации.

При срабатывании защиты полевой транзистор не греется, схема в таком состоянии может находиться довольно долго, пока не устранится короткое замыкание. От сопротивления шунта зависит ток срабатывания защиты.

Защита от переполюсовки зарядного устройства своими руками

Вот таким вот получился блок защиты от переполюсовки зарядного устройства.

Используемый полевой транзистор — IRFZ44N (можно заменить любым аналогом). Маломощный транзистор BC239C (или другой n-p-n аналог). Диод — 1N4007.

Шунт использовался от старого китайского мультиметра, защита при таком шунте срабатывает при токе 10А.

Тест с почти максимальной нагрузкой.

Имитация короткого замыкания.

Как видим эта защита зарядного устройства спасает не только от переполюсовки, но и от короткого замыкания или перегрузки. При использовании данной схемы в трансформаторных зарядных устройствах необходимо исключить скачки напряжение и как можно лучше его сгладить.

Демонстрация работы защиты.

Кому интересен вариант печатки защиты от переполюсовки на полевике, плату в формате lay может скачать в конце статьи. В качестве шунтов в ней используются два резистора по 0,1 Ом; 5 Вт (при таких значениях защита срабатывает при токе 11-12 А). При желании можно самостоятельно дополнить плату бузером с генератором или оставить, как есть.

Защита от переполюсовки и КЗ зарядного устройства

Многие самодельные блоки имеют такой недостаток, как отсутствие защиты от переполюсовки питания. Даже опытный человек может по невнимательности перепутать полярность питания. И есть большая вероятность что после этого зарядное устройство придет в негодность.

В этой статье будет рассмотрено 3 варианта защит от переполюсовки, которые работают безотказно и не требуют никакой наладки.

Вариант 1

Это защита наиболее простая и отличается от аналогичных тем, что в ней не используются никакие транзисторы или микросхемы. Реле, диодная развязка – вот и все ее компоненты.

Работает схема следующим образом. Минус в схеме общий, поэтому будет рассмотрена плюсовая цепь.

Если на вход не подключен аккумулятор, то реле находится в разомкнутом состоянии. При подключении аккумулятора плюс поступает через диод VD2 на обмотку реле, вследствие чего контакт реле замыкается, и основной ток заряда протекает на аккумулятор.

Одновременно загорается зеленый светодиодный индикатор, свидетельствуя о том, что подключение правильное.

И если теперь убрать аккумулятор, то на выходе схемы будет напряжение, поскольку ток от зарядного устройства будет продолжать поступать через диод VD2 на обмотку реле.

Если перепутать полярность подключения, то диод VD2 окажется заперт и на обмотку реле не поступит питание. Реле не сработает.

В этом случае загорится красный светодиод, который нарочно подключен неправильным образом. Он будет свидетельствовать о том, что нарушена полярность подключения аккумулятора.

Диод VD1 защищает цепь от самоиндукции, которая возникает при отключении реле.

В случае внедрения такой защиты в зарядное устройство автомобильного аккумулятора, стоит взять реле на 12 В. Допустимый ток реле зависит только от мощности зарядника. В среднем стоит использовать реле на 15-20 А.

Вариант 2

Эта схема до сих пор не имеет аналогов по многим параметрам. Она одновременно защищает и от переполюсовки питания, и от короткого замыкания.

Принцип работы этой схемы следующий. При нормальном режиме работы плюс от источника питания через светодиод и резистор R9 открывает полевой транзистор, и минус через открытый переход «полевика» поступает на выход схемы к аккумулятору.

При переполюсовке или коротком замыкании ток в цепи резко возрастает, вследствие чего образуется падение напряжения на «полевике» и на шунте. Такое падение напряжение достаточно для срабатывания маломощного транзистора VT2. Открываясь, последний запирает полевой транзистор, замыкая затвор с массой. Одновременно загорается светодиод, поскольку питание для него обеспечивается открытым переходом транзистора VT2.

Из-за высокой скорости реагирования эта схема гарантированно защитит зарядное устройство при любой проблеме на выходе.

Схема очень надежна в работе и способна оставаться в состоянии защиты бесконечно долгое время.

Вариант 3

Это особо простая схема, которую даже схемой трудно назвать, поскольку в ней использовано всего 2 компонента. Это мощный диод и предохранитель. Этот вариант вполне жизнеспособен и даже применяется в промышленных масштабах.

Питание с зарядного устройства через предохранитель поступает на аккумулятор. Предохранитель подбирается исходя из максимального тока зарядки. Например, если ток 10 А, то предохранитель нужен на 12-15 А.

Диод подключен параллельно и закрыт при нормальной работе. Но если перепутать полярность, диод откроется и случится короткое замыкание.

А предохранитель – это слабое звено в этой схеме, который сгорит в тот же миг. Его после этого придется менять.

Диод следует подбирать по даташиту исходя из того, что его максимальный кратковременный ток был в несколько раз больше тока сгорания предохранителя.

Такая схема не обеспечивает стопроцентную защиту, поскольку бывали случаи, когда зарядное устройство сгорало быстрее предохранителя.

Итог

С точки зрения КПД, первая схема лучше других. Но с точки зрения универсальности и скорости реагирования, лучший вариант – это схема 2. Ну а третий вариант часто применяется в промышленных масштабах. Такой вариант защиты можно увидеть, к примеру, на любой автомагнитоле.

Все схемы, кроме последней, имеют функцию самовосстановления, то есть работа восстановится, как только будет убрано короткое замыкание или изменится полярность подключения аккумулятора.

Просмотров: 536

Защита от обратного тока / полярности батареи • Цепи

В устройствах с батарейным питанием и съемными батареями обычно необходимо предотвратить неправильное подключение батарей, чтобы предотвратить повреждение электроники, случайное короткое замыкание или другие несоответствующие операции. Если это невозможно физически, вам необходимо включить некоторую электронную защиту от обратного тока. Физическая защита может означать просто поляризованный разъем или батарею со смещенными соединениями (как в большинстве литиевых батарей мобильных телефонов) в сочетании с инструкционными символами и изображениями.Для батареек размера AAA или AA есть держатели, которые сконструированы таким образом, что при неправильной установке батареи один конец не соприкасается. По-прежнему существуют обстоятельства, когда физические средства невозможны, например, с большинством монетных батарей или если пользователь может подключить питание с помощью проводов к винтовым клеммным колодкам. Следовательно, это может относиться и к устройствам, не работающим от батарей, и, вероятно, применимо к автомобильной электронике.
Следовательно, разработчики и производители электронных продуктов должны обеспечить, чтобы обратный ток, обратный ток, протекающий в обратном направлении, и обратное напряжение смещения были достаточно низкими, чтобы предотвратить повреждение либо самой батареи, либо внутренней электроники продукта.

Почему бы не использовать простой диод?

Использование диода в качестве защиты от обратной полярности мощности, как показано на схеме , схема 1 — очень простое и надежное решение, если вы можете позволить себе потерять энергию. Скорее всего, с устройством с батарейным питанием вы не захотите тратить энергию, особенно если ваше напряжение питания уже достаточно низкое, и поэтому падение напряжения на 0,3 или 0,4 В на диоде Шоттки будет значительным и неприемлемым. Для более высоких напряжений питания в диапазоне 9–48 В и автомобильных приложений небольшое падение напряжения может не иметь значения, особенно при низком токе.При высоких токах, превышающих 5 А, может возникнуть проблема с повышением температуры из-за больших потерь мощности. Вы не хотите, чтобы диод становился слишком горячим, поэтому, скорее всего, потребуется добавить радиатор.

Цена диода Шоттки выше обычного диода, но потери существенно ниже. Имейте в виду, что многие диоды Шоттки имеют довольно высокую утечку обратного тока, поэтому убедитесь, что вы выбираете диоды с низким обратным током (около 100 мкА) в схеме защиты батареи.
При 5 амперах потери мощности в диоде Шоттки обычно составляют: 5 x 0.4 В = 2 Вт по сравнению с обычным диодом: 5 x 0,7 В = 3,5 Вт.

Хорошим кандидатом для использования в системе защиты от обратного тока является диод нового типа под названием Super Barrier Rectifier (SBR) — это запатентованная и запатентованная технология Diodes Inc., в которой используется производственный процесс MOS (традиционный метод Шоттки использует биполярный процесс) создать превосходное двухполюсное устройство, которое имеет более низкое прямое напряжение (VF), чем сопоставимые диоды Шоттки, но при этом обладает термостабильностью и высокими характеристиками надежности эпитаксиальных диодов PN.Диод
Super Barrier Rectifier (SBR) разработан для приложений с высокой мощностью, низкими потерями и быстрым переключением. Наличие МОП-канала в его структуре формирует низкий потенциальный барьер для большинства носителей, поэтому прямое смещение SBR при низком напряжении аналогично работе диода Шоттки. Однако ток утечки ниже, чем у диода Шоттки при обратном смещении из-за перекрытия слоев обеднения P-N и отсутствия снижения потенциального барьера из-за заряда изображения.
TRENCH SUPER BARRIER RECTIFIERS (SBRT).
Trench SBR — это следующая эволюция, которая дает нам высокопроизводительного члена семейства SBR. Благодаря использованию передовой траншейной технологии, SBRT предлагает еще меньший VF для приложений, где очень важно сверхнизкое прямое напряжение. В то время как дальнейшие технологические усовершенствования постоянно применяются к SBRT, эти усилия приводят к еще более продвинутому и экономичному члену — SBRTF. Для получения дополнительной информации посетите веб-сайт Diodes Inc.

Обратная защита с использованием N-канального MOS-FET

Самые последние N-MOSFET имеют ОЧЕНЬ с низким сопротивлением, намного ниже, чем у типов P-Channel, и поэтому идеально подходят для обеспечения защиты от обратного тока с минимальными потерями. Цепь 3 показывает полевой МОП-транзистор нижнего плеча в цепи заземления. Корпусный диод полевого транзистора ориентирован в направлении нормального тока. Когда батарея установлена ​​неправильно, напряжение затвора полевого транзистора NMOS низкое, что не позволяет ему включиться.

Когда аккумулятор установлен правильно и переносное оборудование запитано, напряжение затвора NMOS FET повышается, а его канал закорачивает диод. Падение напряжения RdsOn × ILOAD наблюдается в обратном пути заземления при использовании NMOS FET.Некоторые из последних пороговых напряжений N-FET и RdsOn, используемые для защиты от обратного тока, перечислены в , таблица 1, и более высокие типы тока в , таблица 3, далее на этой странице.

Производитель Тип Пакет RdsOn
IRF (OnSemi) ILRML2502 СОТ – 23 80 мОм при пороговом напряжении 2,7 В
Вишай Si2312 СОТ – 23 51 мОм при 1.Пороговое напряжение 8 В

Таблица 1.
Обратная сторона:
Вставка N-MOSFET в цепь заземления приведет к сдвигу заземления, который может быть неприемлемым для всех приложений. Это может вызвать проблемы для чувствительных приложений (например, автомобильных систем) с одним или несколькими подключениями, возможно, к датчикам, шинам связи и исполнительным механизмам, внешним по отношению к цепи.

Чтобы использовать полевой МОП-транзистор в качестве предохранителя от обратного тока в цепи питания высокого напряжения, необходимо, чтобы напряжение затвора было больше, чем напряжение батареи, чтобы включить полевой МОП-транзистор.Для этого требуется схема подкачки заряда, которая увеличивает сложность схемы и стоимость компонентов, а также может создавать проблемы с электромагнитными помехами. P-канальный МОП-транзистор сравнимого размера будет иметь более высокое значение RdsOn и, следовательно, более высокие потери мощности, но может быть реализован с помощью более простой схемы управления, содержащей стабилитрон и резистор.

Обратная защита с использованием P-канального MOS-FET транзистора

Самые последние полевые МОП-транзисторы имеют очень низкое сопротивление и поэтому идеально подходят для обеспечения защиты от обратного тока с минимальными потерями. Схема 2 показывает полевой PMOS-транзистор верхнего плеча в цепи питания. Корпусный диод полевого транзистора ориентирован в направлении нормального тока. Когда батарея установлена ​​неправильно, напряжение на затворе PMOS FET высокое, что не позволяет ему включиться.

Стабилитрон защищает от превышения рекомендованного напряжения затвор-исток и может не требоваться в зависимости от диапазона входного напряжения и используемого полевого МОП-транзистора. Для защиты от возможных скачков напряжения и переходных процессов из-за разрушения полевого МОП-транзистора на входе можно добавить пару транзорбционных диодов, как показано на рис.3. Добавлен конденсатор между затвором и истоком, чтобы гарантировать правильную работу схемы при быстром изменении полярности входного напряжения.
Когда батарея установлена ​​правильно и переносное оборудование запитано, напряжение затвора PMOS FET становится низким, а его канал закорачивает диод.
В тракте питания наблюдается падение напряжения RdsOn × ILOAD. В прошлом основным недостатком этих схем была высокая стоимость полевых транзисторов с низким значением RdsOn и низким пороговым напряжением. Однако достижения в области обработки полупроводников привели к созданию полевых транзисторов, которые обеспечивают минимальное падение напряжения в небольших корпусах.Некоторые из последних пороговых напряжений P-FET и RdsOn показаны в таблице 2.

Производитель Тип Пакет RdsOn
IRF (OnSemi) ILRML6401 СОТ – 23 85 мОм при пороговом напряжении 2,7 В
Вишай Si2323 СОТ – 23 68мОм при пороговом напряжении 1,8 В

Таблица 2.

Защита от обратного тока батареи с помощью интегральной схемы LM74610

LM74610-Q1 — это контроллер, который можно использовать с N-канальным MOSFET в схеме защиты от обратной полярности. Он предназначен для управления внешним МОП-транзистором для имитации идеального диодного выпрямителя при последовательном подключении к источнику питания. Уникальное преимущество этой схемы состоит в том, что она не привязана к земле и, следовательно, имеет нулевой Iq. Контроллер LM74610-Q1 обеспечивает управление затвором для внешнего N-канального МОП-транзистора и внутренний компаратор с быстрым откликом для разряда затвора МОП-транзистора в случае обратной полярности.Эта функция быстрого понижения ограничивает количество и продолжительность обратного тока, если обнаруживается противоположная полярность. Конструкция устройства также соответствует спецификациям CISPR25 Class 5 EMI и автомобильным требованиям ISO7637 к переходным процессам с подходящим TVS-диодом.

LM74610 — это контроллер с нулевым Iq, который объединен с внешним N-канальным MOSFET для замены диода или P-MOSFET решения обратной полярности в энергосистемах. Напряжение на истоке и стоке MOSFET постоянно контролируется выводами ANODE и CATHODE LM74610-Q1.Внутренний зарядный насос используется для обеспечения привода GATE для внешнего MOSFET. . Эта накопленная энергия используется для управления затвором полевого МОП-транзистора. Падение напряжения зависит от RDSON конкретного используемого полевого МОП-транзистора, который значительно меньше, чем у полевого транзистора. LM74610-Q1 не имеет заземления, что делает его идентичным диоду. TZ1 и TZ2 не требуются для LM74610-Q1. Однако они обычно используются для ограничения выбросов положительного и отрицательного напряжения соответственно. Выходной конденсатор Cout рекомендуется для защиты от немедленного падения выходного напряжения в результате сбоев в линии.C1 и C2 подавляют высокочастотный шум в дополнение к функции фиксаторов ESD.

MOSFET Выбор:

LM74610-Q1 может обеспечивать напряжение затвор-исток до 5 В (VGS). Важными электрическими параметрами полевого МОП-транзистора являются максимальный непрерывный ток стока, максимальное напряжение сток-исток VDS (MAX) и сопротивление сток-исток RDSON. Максимальный непрерывный ток стока, ID, рейтинг должен превышать максимальный непрерывный ток нагрузки. Максимальный ток через основной диод, IS, обычно равен или немного выше, чем ток стока, но ток основного диода протекает только в течение небольшого периода времени, когда конденсатор накачки заряда заряжается.Напряжение на внутреннем диоде полевого МОП-транзистора должно быть выше 0,48 В при низком токе. Напряжение на внутреннем диоде полевого транзистора обычно уменьшается с повышением температуры окружающей среды. Это увеличит требования к току истока для достижения минимального напряжения сток-исток на внутреннем диоде для инициирования подкачки заряда. Максимальное напряжение сток-исток, VDS (MAX), должно быть достаточно высоким, чтобы выдерживать самое высокое дифференциальное напряжение, наблюдаемое в приложении. Это будет включать любые ожидаемые неисправности.LM74610-Q1 не имеет ограничения по положительному напряжению, однако для автомобильных приложений рекомендуется использовать полевые МОП-транзисторы с номинальным напряжением около 45 В.

Таблица 3 показывает примеры рекомендуемых полевых МОП-транзисторов для использования с LM74610:

Деталь № Напряжение
(В)
Ток утечки
@ 25 * C
Rdson мОм
при 4,5 В
Vgs Порог
(В)
Напряжение диода
@ 2A при
125 * C / 175 * C
Корпус,
Площадь основания
Qual
CSD17313Q2 30 5 26 1.8 0,65 SON, 2 x 2 мм Авто
SQJ886EP 40 60 5,5 2,5 0,5 PowerPAK SO-8L, 5 x 6 мм Авто
SQ4184EY 40 29 5,6 2,5 0,5 SO-8, 5 x 6 мм Авто
Si4122DY 40 23,5 6 2.5 0,5 SO-8, 5 x 6 мм Авто
RS1G120MN 40 12 20,7 2,5 0,6 HSOP8, 5 x 6 мм Авто
RS1G300GN 40 30 2,5 2,5 0,5 HSOP8, 5 x 6 мм Авто
CSD18501Q5A 40 22 3.3 2,3 0,53 SON, 5 x 6 мм Промышленное
SQD40N06-14L 60 40 17 2,5 0,5 ТО-252, 6 x 10 мм Авто
SQ4850EY 60 12 31 2,5 0,55 SO8, 5 x 6 мм Авто
CSD18532Q5B 60 23 3.3 2,2 0,53 SON, 5 x 6 мм Промышленное
IPG20N04S4L-07A 40 20 7,2 2,2 0,48 PG-TDSON-8-10, 5 x 6 мм Авто
IPB057N06N 60 45 5,7 3,3 0,55 PG-TO263-3, 10 x 15 мм Авто
IPD50N04S4L 40 50 7.3 2,2 0,5 PG-TO252-3-313, 3 x 6 мм Авто
BUK9Y3R5-40E 40 100 3,8 2,1 0,48 LFPAK56, Power-SO8 5×6 мм Авто
IRF7478PBF-1 60 7 30 3 0,55 SO8, 5 x 6 мм Промышленное
SQJ422EP 40 75 4.3 2,5 0,5 PowerPAK SO-8L, 5 x 6 мм Авто
IRL1004 40 130 6,5 1 0,6 К-220АБ Авто
AUIRL7736 40 112 2,2 3 0,65 DirectFET, 5 x 6 мм Авто

ТАБЛИЦА 3

Защита от обратного тока батареи с помощью интегральной схемы LTC4359

LTC®4359 — это высоковольтный идеальный диодный контроллер с положительным напряжением, который управляет внешним N-канальным полевым МОП-транзистором для замены диода Шоттки.Он контролирует падение прямого напряжения на MOSFET, чтобы обеспечить плавную подачу тока без колебаний даже при небольших нагрузках. Если источник питания выходит из строя или закорочен, быстрое отключение минимизирует переходные процессы обратного тока. Доступен режим отключения для снижения тока покоя до 9 мкА для переключателя нагрузки и 14 мкА для идеальных диодных приложений. При использовании в сильноточных диодах LTC4359 снижает потребление энергии, тепловыделение, потери напряжения и площадь печатной платы. Благодаря широкому диапазону рабочего напряжения, способности выдерживать обратное входное напряжение и высокой температуре, LTC4359 удовлетворяет строгим требованиям как автомобильных, так и телекоммуникационных приложений.LTC4359 также легко подключает источники питания в системах с резервными источниками питания.
Операция:
LTC4359 управляет внешним N-канальным MOSFET для формирования идеального диода. Усилитель GATE (см. Блок-схему) распознает входы и выходы и управляет затвором полевого МОП-транзистора для регулирования прямого напряжения до 30 мВ. По мере увеличения тока нагрузки GATE поднимается выше, пока не будет достигнута точка, в которой MOSFET будет полностью включен. Дальнейшее увеличение тока нагрузки приводит к прямому падению RdsOn x ILOAD.Если ток нагрузки уменьшается, усилитель GATE опускает затвор полевого МОП-транзистора ниже, чтобы поддерживать падение на 30 мВ. Если входное напряжение снижается до точки, при которой прямое падение 30 мВ не может поддерживаться, усилитель GATE отключает MOSFET.
В случае быстрого падения входного напряжения, такого как короткое замыкание на входе или скачок отрицательного напряжения, через полевой МОП-транзистор временно протекает обратный ток. Этот ток обеспечивается любой емкостью нагрузки и другими источниками питания или батареями, которые питают выход в диодных приложениях ИЛИ.FPD COMP (Fast Pull-Down Comparator) быстро реагирует на это условие, выключая полевой МОП-транзистор через 300 нс, тем самым сводя к минимуму помехи выходной шине. Контакты IN, SOURCE, GATE и SHDN защищены от обратных входов до –40 В. Внутренний компаратор обнаруживает отрицательные входные потенциалы на выводе SOURCE и быстро переводит GATE в положение SOURCE, выключая MOSFET и изолируя нагрузку от отрицательного входа. При низком уровне на выводе SHDN отключается большая часть внутренней схемы, снижая ток покоя до 9 мкА и удерживая MOSFET выключенным.На выводе SHDN можно установить высокий уровень или оставить открытым для включения LTC4359. Если оставить открытым, внутренний источник тока 2,6 мкА поднимает SHDN на высокий уровень.
Информация о приложениях:
Блокирующие диоды обычно размещаются последовательно со входами питания с целью объединения резервных источников питания и защиты от реверсирования питания. LTC4359 заменяет диоды в этих приложениях на полевые МОП-транзисторы, чтобы уменьшить как падение напряжения, так и потери мощности, связанные с пассивным решением. Кривая, показанная на странице 1, иллюстрирует резкое снижение потерь мощности, достигаемое на практике.Это дает значительную экономию площади платы за счет значительного снижения рассеиваемой мощности в проходном устройстве. При низких входных напряжениях улучшение потерь напряжения в прямом направлении легко заметить там, где запасы ограничены, как показано на рисунке 2.
LTC4359 работает от 4 до 80 В и выдерживает абсолютный максимальный диапазон от –40 до 100 В без повреждений. В автомобильных приложениях LTC4359 работает через сброс нагрузки, холодный запуск и скачки двух батарей, и он выдерживает обратное подключение батарей, а также защищает нагрузку.
Применение идеального диода на 12 В / 20 А показано в схеме , схема 5 .

В дополнение к MOSFET Q1 включено несколько внешних компонентов. Идеальные диоды, как и их неидеальные аналоги, демонстрируют поведение, известное как обратное восстановление. В сочетании с паразитными или преднамеренно введенными индуктивностями пики обратного восстановления могут генерироваться идеальным диодом во время коммутации. D1, D2 и R1 защищают от этих всплесков, которые в противном случае могли бы превысить рейтинг выживаемости LTC4359 от –40 до 100 В.COUT также играет роль в поглощении энергии обратного восстановления. Пики и схемы защиты подробно обсуждаются в разделе «Ошибки короткого замыкания на входе».
Важно отметить, что вывод SHDN при отключении LTC4359 и снижении его потребления тока до 9 мкА не отключает нагрузку от входа, поскольку внутренний диод Q1 присутствует постоянно. Второй MOSFET требуется для приложений переключения нагрузки.

Заключение

Использование запатентованного чипа, такого как LTC4349 и LM74610, позволяет сэкономить часть проектных работ, поэтому вы получите рабочее решение с меньшими усилиями — но с более высокой стоимостью компонентов по сравнению с дискретным решением.И, если вы проектируете для автомобильной промышленности, вам необходимо убедиться, что ваша конструкция соответствует требованиям соответствующих стандартов, таких как ISO7637-2.

AN013 — Защита от обратной полярности

AN013 — Защита от обратной полярности
Elliott Sound Products АН-013
Род Эллиотт (ESP)
Прил. Индекс банкнот
Основной индекс

Обзор защиты от обратной полярности

Большинство электронных схем будут серьезно раздражены, если питание будет подключено с обратной полярностью.Об этом часто свидетельствует немедленная потеря «волшебного дыма», на который полагаются все электронные компоненты. Если серьезно, то часто возникает непоправимый ущерб, особенно при напряжении питания 5 В и более. Традиционная схема защиты от обратной полярности состоит из диода, подключенного последовательно к входящему источнику питания или параллельно с предохранителем или другим защитным устройством, которое может перегореть.

Последовательный диод снижает напряжение в цепи, на которую подается питание. Если он работает от батарей, снижение напряжения может легко означать, что значительная часть емкости батареи недоступна для схемы.0,7 В — это немного, но это настоящая проблема, если в схеме используется напряжение не менее 5 В, а 4 элемента по 1,5 В обеспечивают только номинальное напряжение 6 В. Последовательный диод также может рассеивать много ватт в цепи, потребляющей большой ток — постоянно или периодически.

Параллельный диод должен быть достаточно прочным, чтобы выдерживать полный ток короткого замыкания от источника до срабатывания предохранителя. Обычно это означает очень большой и дорогой диод. Можно использовать и меньший, но в «жертвенном» режиме.Это означает, что он, скорее всего, выйдет из строя (отказ диода всегда связан с коротким замыканием), но он должен быть достаточно надежным, чтобы гарантировать, что он не станет разрывом цепи во время периода отказа из-за соединения или плавкого предохранителя проводов.

Можно также использовать реле, преимущество которого заключается в практически нулевом падении напряжения на контактах. Однако катушки реле потребляют значительный ток, который может легко превысить ток, потребляемый защищаемой схемой. Если источником питания является большая батарея с возможностью подзарядки по требованию, это не проблема, кроме небольшой стоимости эксплуатации реле.Однако во многих случаях это не жизнеспособный вариант.

Альтернативой является использование полевого МОП-транзистора. Во многих случаях речь идет только о MOSFET, без каких-либо других деталей. Это работает, если напряжение питания ниже, чем максимальное напряжение затвор-исток, но необходимы дополнительные детали с напряжением более 12 В или около того. Преимущество полевого МОП-транзистора заключается в том, что падение напряжения исчезающе мало, если выбрано правильное устройство.

Часто можно использовать BJT (биполярный транзистор) также для защиты от обратной полярности, но они не работают так же хорошо, как полевые МОП-транзисторы и имеют несколько присущих им недостатков, которые делают их гораздо менее подходящими.Для начала, на базу должен подаваться ток, чтобы транзистор включился, а это пустая трата энергии. BJT не может включаться так же сильно, как MOSFET, поэтому падение напряжения на транзисторе больше. Хотя он обычно превосходит диод (даже Шоттки), реального преимущества нет, потому что MOSFET — гораздо лучший вариант.

На следующих чертежах есть раздел, помеченный просто как «Электроника». На нем изображены электролитический конденсатор и операционный усилитель, но это может быть что угодно: от простой аудиосхемы до логических вентилей и т. Д.) или микропроцессор. Потребление тока может быть любым, от нескольких миллиампер до многих ампер, и вам нужно выбрать схему, которая лучше всего подходит для вашего приложения. Это не руководство по дизайну , а скорее собрание идей, которые можно расширять и адаптировать по мере необходимости.


Диодная защита

Диод серии А — самый простой и дешевый вид защиты. В схемах низкого напряжения диод Шоттки означает, что падение напряжения снижается с типичных 0,7 В до примерно 200 мВ или около того.Это очень сильно зависит от тока, и при максимальном номинальном токе падение напряжения может превышать 1 В для стандартного кремниевого диода или около 500 мВ для типов Шоттки. Требуется только диод — никаких других деталей не требуется, так что это самый простой и дешевый вариант.


Рисунок 1 — Диодная защита, последовательная (слева), параллельная (справа)

Хотя последовательный диод очень легко реализовать, как отмечалось выше, минимальная потеря напряжения составляет 650 мВ или около того при низком токе, увеличивающаяся с увеличением тока нагрузки.С диодом на 1 А потеря напряжения будет близка к 900 мВ при 1 А, что почти соответствует снижению напряжения питания. Если схема питается от батарей, это представляет собой серьезную потерю емкости, потому что около 900 мВт доступной мощности тратится впустую без уважительной причины. Если у вас достаточно запасной мощности или при высоком напряжении (25 В или более) потери на диоде незначительны.

Диод Шоттки лучше, но он обычно дороже и недоступен для высоких напряжений. Для диода Шоттки 1 А вы можете ожидать потери около 400 мВ при 1 А.Диоды Шоттки имеют прямое напряжение от 150 мВ до 450 мВ, в зависимости от производственного процесса, номинального тока и фактического тока. Максимальное обратное напряжение составляет около 50 В, но обратная утечка выше, чем у стандартных кремниевых диодов. Это может вызвать проблемы с чувствительными устройствами, но обычно это не так. В скобках указано (более или менее) типичное напряжение на диоде Шоттки. Последовательному диоду может помочь параллельный диод на стороне оборудования, если утечка диода может вызвать проблемы.Это редко требуется или используется на практике.

С параллельным диодом (иногда называемым защитой «ломом») он должен быть рассчитан на более высокий ток, чем может обеспечить источник. Если источником напряжения являются батареи (любая химия), они могут выдавать чрезвычайно высокий ток, поэтому требуются некоторые средства для отключения цепи — желательно до того, как диод перегреется и выйдет из строя. Хотя диоды выходят из строя в 99% случаев, это не то, на что стоит полагаться для защиты дорогой электроники.Некоторые источники питания могут возражать против короткого замыкания на выходе, могут ограничивать ток или выходить из строя.

Предохранитель

А — это самый простой и дешевый способ отключения питания, если он подключен в обратном порядке, и предохранитель должен быть рассчитан на пропускание максимального тока, ожидаемого схемой. В этой схеме нет потери напряжения на диоде, но — это небольшая потеря напряжения на предохранителе. Это падение напряжения обычно незначительно. Естественно, если питание будет подключено в обратном направлении, предохранитель (должен) перегореть, а диод может или не сможет выжить.Это означает, что система должна быть проверена и при необходимости отремонтирована, если в любое время будет отключено питание, включая замену предохранителя и / или диода. Возможно, вы сможете использовать термисторный переключатель PolySwitch с положительным температурным коэффициентом (PTC) — это зависит от многих факторов, которые необходимо изучить в первую очередь.


Релейная защита

Хотя поначалу это может показаться глупой идеей, реле — отличный способ обеспечить защиту от обратной полярности. Это при условии, что источник напряжения может питать реле без снижения его емкости.В оборудовании с батарейным питанием это обычно не вариант, но он может быть полезен для оборудования в легковых или грузовых автомобилях, где аккумулятор имеет большую емкость и постоянно заряжается при работающем двигателе. Реле не следует использовать для любого оборудования, которое постоянно подключено, так как оно со временем разрядит аккумулятор.

Как видно ниже, катушка реле может получать ток только при правильной полярности. При положительном (положительном) входе D1 смещен в прямом направлении, а на катушку поступает около 11.3 В, чего более чем достаточно для втягивания. Когда N.O. (нормально разомкнутые) контакты замыкаются, на электронику подается питание. Если полярность обратная, ток в катушке не течет, и электроника полностью изолирована от источника питания, поскольку реле не может активироваться.


Рисунок 2 — Релейная защита

Преимущество реле в том, что оно может выдерживать чрезвычайно высокий ток без падения напряжения на контактах. Реле надежны и могут работать многие, многие годы без какого-либо вмешательства.Им не нужен радиатор (независимо от потребляемого тока), и они доступны в бесчисленных конфигурациях и практически для любых известных требований. Автомобильные реле также уже прошли все необходимые обязательные испытания, поэтому они могут снизить стоимость испытаний на соответствие, если это требуется.

Присущая реле прочность является огромным преимуществом в автомобильных приложениях, где события «сброса нагрузки» являются обычным явлением. Это происходит, когда большая нагрузка отключается от электрической системы, и генератор не может выполнить исправление достаточно быстро, чтобы предотвратить перенапряжение.Есть и другие причины, и все автомобильное оборудование должно быть спроектировано таким образом, чтобы без сбоев выдерживать значительные перенапряжения. Реле легко справятся с этим.

Реле

доступны с различными напряжениями катушки (например, 5, 12, 24, 36, 48 В), и существуют модели для любых мыслимых требований по току контакта. Если входное напряжение слишком велико для катушки, можно использовать резистор, чтобы снизить напряжение до безопасного значения. Также может быть включена схема «эффективности» (последовательный резистор с параллельным электролитическим конденсатором), которая подает на реле более высокое, чем обычно, напряжение, чтобы втянуть его, а затем снижает ток при зарядке крышки до значения, немного превышающего номинальное. гарантированный ток удержания (определяется резистором).Удерживающий ток может составлять всего 1/3 номинального тока катушки, а иногда и меньше.


Защита MOSFET У полевых МОП-транзисторов

есть очень желанная особенность. Все они имеют обратный диод, который определяет полярность напряжения, но когда полевой МОП-транзистор включен, он одинаково проводит в любом направлении. Таким образом, когда диод смещен в прямом направлении и полевой МОП-транзистор включен, напряжение на полевом МОП-транзисторе определяется R DS на (сопротивление сток-исток включено) и током, а , а не , прямым напряжением диод.Это полезное свойство сделало полевые МОП-транзисторы предпочтительным устройством для схем защиты от обратной полярности.

Тем не менее, вы должны учитывать тот факт, что полевым МОП-транзисторам требуется некоторое напряжение между затвором и истоком для проведения, а в цепи с очень низким напряжением (менее 5 В) может не хватить напряжения для включения полевого МОП-транзистора. МОП-транзисторы логического уровня могут включаться при более низком напряжении, чем стандартные типы, но они также более ограничены с точки зрения R DS на , и доступно меньшее количество устройств, особенно типов с P-каналом.

На чертеже показаны резистор и стабилитрон. Они обеспечивают защиту затвора для затвора полевого МОП-транзистора, если существует или вероятность превышения максимального напряжения затвор-исток. Их можно опустить, но, как правило, это неразумно. Если кратковременный выброс превысит напряжение пробоя затвора (обычно около ± 20 В), полевой МОП-транзистор будет поврежден и почти наверняка будет проводить в обоих направлениях. Это полностью отменяет схему защиты !

Для оборудования, которое питается от батарей, маловероятно, что произойдет «разрушительное событие», но затвор полевого МОП-транзистора может быть поврежден при некоторых обстоятельствах.Это кажется маловероятным, но высокое обратное напряжение (например, статическое) может вызвать поломку, если защита не используется. Некоторые полевые МОП-транзисторы имеют встроенный стабилитрон затвора, и резистор необходим для предотвращения разрушающего тока с напряжениями, превышающими напряжение стабилитрона.


Рисунок 3 — Защита MOSFET — N-канал (слева), P-канал (справа)

Вы можете использовать устройства с N-каналом или P-каналом, в зависимости от полярности цепи и от того, можете ли вы прервать соединение земли / заземления, не вызывая неправильного поведения цепи.В автомобильной среде шасси является отрицательным источником питания, и его трудно или невозможно отключить. Это означает, что схема защиты должна быть на положительной шине питания, что немного менее удобно, поскольку обычно требует P-Channel MOSFET. Обычно они имеют меньшую мощность и ток, чем их N-канальные аналоги. Вы по-прежнему можете использовать устройство с N-каналом, но это более утомительно и требует дополнительных схем (показано ниже).

Если вы используете полевой МОП-транзистор с каналом P, прерывание заземления / заземления (отрицательное) отсутствует.Это особенно полезно для автомобильной электроники. Однако есть некоторые ограничения, о которых вы должны знать. Наиболее важным (и наиболее вероятным источником проблем) является требуемое напряжение затвор-исток. Это не проблема для автомобильных приложений, потому что доступно 12 В, но это проблема для более низких напряжений.

MOSFET с P-каналом логического уровня (5 В), безусловно, доступны, но, как уже отмечалось, они очень ограничены по сравнению с типами с N-каналом. Они также обычно более дороги для эквивалентных номинальных значений тока, и многие из них доступны только в корпусах для поверхностного монтажа (SMD).Это ограничивает их полезность в цепях с низким напряжением и высоким током, где невозможно или нецелесообразно отключать отрицательную шину (что позволяет использовать устройства с N-каналом).

Если в противном случае напряжение слишком низкое для включения полевого МОП-транзистора, существует возможность использования схемы накачки заряда для смещения N-канального устройства. Это добавляет сложности и стоимости, но является приемлемым вариантом, когда другие методы по какой-либо причине не подходят. Зарядный насос используется для генерации напряжения, превышающего входящее напряжение (обычно примерно на 10–12 В или около того), и это напряжение включает полевой МОП-транзистор.Общая идея показана ниже, но подробности о зарядовом насосе не приводятся — это «концептуальная» схема, а не полное решение. Показанные защитные диоды могут понадобиться, а могут и не потребоваться, в зависимости от схемы.


Рисунок 4 — N-канальный МОП-транзистор с нагнетательным насосом

Существует много различных способов создания зарядового насоса, и схема выходит за рамки данной статьи. Однако он должен быть устроен так, чтобы саму зарядовую накачку нельзя было подвергнуть обратной полярности.Когда подается питание правильной полярности, собственный диод в Q1 проводит и подает питание на накачку заряда и остальную цепь. В течение нескольких миллисекунд зарядный насос генерирует напряжение, достаточное для включения Q1, и полевой МОП-транзистор включается и обходит свой собственный диод. Потери напряжения определяются исключительно сопротивлением открытого МОП-транзистора и током, потребляемым схемой. Инкапсулированный преобразователь постоянного тока в постоянный (с плавающим выходом) может заменить зарядный насос, если это необходимо.


Транзистор биполярный

Использование BJT подходит для слаботочных нагрузок, но там, где напряжение может быть слишком низким для полевого МОП-транзистора из-за недостаточного напряжения затвора для его правильного включения. В примерах, показанных ниже, падение напряжения на транзисторе составляет 125–150 мВ при токе нагрузки 40 мА. Падение напряжения намного меньше при меньших токах. R1 следует выбирать так, чтобы обеспечить достаточный базовый ток для насыщения транзистора. Обычно это означает, что вам необходимо обеспечить от трех до пяти раз больше базового тока, чем вы рассчитали бы по бета-версии транзистора.

Например, транзистору с коэффициентом усиления (Beta или h FE ), равным 100, требуется 400 мкА для тока нагрузки 40 мА, но вы должны подавать не менее 5 мА, иначе падение напряжения на транзисторе будет чрезмерным. На чертеже предполагается, что транзистор имеет усиление не менее 65 (из таблицы), а резистор 2,2 кОм обеспечивает базовый ток около 2 мА — это сохраняет потери ниже 50 мВ при 40 мА. Невозможно ожидать гораздо лучшего, чем это, если бы базовый ток не стал чрезмерным.В показанных схемах транзистор рассеивает менее 10 мВт. Вы можете использовать небольшой сигнальный транзистор (например, BC549 или BC559) для слаботочных нагрузок.


Рисунок 5 — Транзистор PNP (слева), NPN (справа)

Существует внутреннее ограничение с использованием BJT, и это напряжение обратного пробоя эмиттер-база. В большинстве случаев напряжение пробоя составляет около 5 В, хотя для некоторых примеров оно может быть больше. Это означает, что входное напряжение выше 5 В, вероятно, неразумно, потому что переход эмиттер-база будет иметь обратное смещение.Это вызывает ухудшение характеристик транзистора и может передать обратное напряжение электронике. Полный пробой может передать полное обратное напряжение на электронику, что приведет к выходу из строя. Похоже, что эта проблема не была обнаружена в большинстве схем, которые я видел.

NPN транзистор предположительно лучше, потому что они обычно имеют более высокое усиление и, следовательно, меньшие потери из-за более высокого сопротивления, используемого для питания базы. На практике разница в лучшем случае будет незначительной.Подобно N-канальному MOSFET, NPN-транзисторы должны использоваться в отрицательном выводе и требуют, чтобы отрицательный вход и шасси могли быть изолированы. Возникает та же проблема обратного пробоя перехода эмиттер-база.


Заключение

Как всегда в электронике, каждая из этих схем имеет свои преимущества и недостатки. Вам необходимо выбрать вариант, наиболее подходящий для вашего приложения, исходя из требуемого тока, доступного напряжения и допустимого падения напряжения.В коммерческих продуктах стоимость может быть решающим фактором, часто за счет повышения производительности.

В некоторых случаях продукту может потребоваться выжить при воздействии импульса высокой энергии в рамках процесса испытаний и / или сертификации. Этого может быть трудно достичь с помощью некоторых из обязательных испытаний импульсами высокой энергии, используемых различными агентствами по всему миру, и это также то, что всегда следует учитывать в автомобильных приложениях, где пики « сброса нагрузки » могут вызвать всплески высокого напряжения на всем протяжении автомобиля. электрическая система.Следовательно, информация здесь будет не более чем отправной точкой для некоторых приложений. Тщательное тестирование необходимо для любого продукта, предназначенного для агрессивной среды.

Вы также должны учитывать вероятность (или нет) применения обратного напряжения. Во многих случаях это может произойти только тогда, когда продукт собран, и если это будет сделано таким образом, чтобы почти полностью исключить ошибки, обратная полярность никогда не возникнет. Большинство продуктов не имеют внутренней защиты от полярности, если они питаются от сети.Это связано с тем, что после сборки оборудования нет никакой возможности изменить полярность, кроме как кто-то неопытный, пытающийся его обслужить. Немногие продукты (если таковые имеются) учитывают ошибки, допущенные во время обслуживания.

Если ваша схема может справиться с падением напряжения на диоде и потребляет малый ток, то, вероятно, достаточно простого блокирующего диода (стандартного или Шоттки). Не думайте, что, поскольку схема MOSFET имеет лучшую производительность, она автоматически становится лучшим выбором.Эта производительность имеет повышенную стоимость и имеет свои особые ограничения. Хорошее проектирование должно минимизировать затраты и сложность и обеспечивать подход, который наилучшим образом соответствует вашим требованиям к дизайну.

Наконец, никогда не стоит недооценивать использование реле. Они являются одними из самых старых известных «электронных» компонентов (на самом деле они электромеханические, но это не относится к делу). Их прочность и универсальность не имеют себе равных среди других компонентов, и тот факт, что они до сих пор используются сотнями миллионов, свидетельствует об этом.Обратной стороной является ток их катушки, но это часто имеет второстепенное значение.


Каталожные номера
  1. Является ли самое низкое прямое падение напряжения реальных диодов Шоттки всегда лучшим выбором — IXYS
  2. Схема защиты от обратного тока / аккумулятора — Texas Instruments
  3. Автомобильные полевые МОП-транзисторы: Защита от обратного тока батареи — Infineon
  4. Защита цепи обратного тока — Примечание по применению — Maxim


Прил.Индекс банкнот
Основной указатель
Уведомление об авторских правах. Эта статья, включая, но не ограничиваясь, весь текст и диаграммы, является интеллектуальной собственностью Рода Эллиотта и защищена авторским правом © 2017. Воспроизведение или повторная публикация любыми способами, электронными, механическими или электромеханическими, строго запрещены. в соответствии с международными законами об авторском праве. Автор (Род Эллиотт) предоставляет читателю право использовать эту информацию только в личных целях, а также разрешает сделать одну (1) копию для справки.Коммерческое использование запрещено без письменного разрешения Рода Эллиотта.

Страница создана и защищена авторскими правами © Род Эллиотт, 9 января 2017 г.


Великобритания стала первой страной, одобрившей вакцину Pfizer-BioNTech против Covid-19 — RT UK News

Великобритания стала первой страной в мире, которая одобрила вакцину Pfizer-BioNTech против коронавируса для широкого использования. Ожидается, что выпуск препарата начнется уже на следующей неделе.

«Сегодня правительство приняло рекомендацию независимого агентства по регулированию лекарственных средств и товаров медицинского назначения (MHRA) одобрить вакцину Covid-19 компании Pfizer-BioNTech», — говорится в заявлении властей Великобритании .

Поскольку на сегодняшний день в Великобритании зарегистрировано более 1,6 миллиона случаев коронавируса и более 59 000 смертей, MHRA продвинулось с рекордной скоростью, чтобы предоставить экстренное разрешение на вакцину всего за неделю. Агентство получило окончательные данные от Pfizer-BioNTech только 23 ноября.

Вакцина, которая, по словам разработчиков, обеспечивает 95-процентную защиту от вируса, но должна храниться при температуре минус 70 градусов по Цельсию, также получит быстрое внедрение в Великобритании.

Также на RT.com Pfizer и BioNTech обращаются в европейский регулирующий орган с просьбой разрешить экстренное использование их вакцины Министр здравоохранения

Мэтт Хэнкок сказал, что вакцинация в стране начнется на следующей неделе, добавив, что «это очень хорошие новости». Ожидается, что первыми сделают выстрелы Уязвимые группы, в том числе жители домов престарелых, которые больше всего пострадали во время пандемии.

Великобритания заказала 40 миллионов доз препарата, совместно разработанного американскими и немецкими биотехнологическими фирмами.Этого хватит на вакцинацию 20 миллионов человек, так как потребуется две инъекции.

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *