Зарядное устройство с защитой от короткого замыкания в нагрузке
Зарядное устройство для автомобильных аккумуляторных батарей
Предлагаемое вниманию читателей зарядное устройство не имеет каких-либо специфических особенностей и построено по давно зарекомендовавшей себя схеме. Ввиду того, что большинство автолюбителей любит «высекать искру» из зарядного устройства, а это ведет к выходу из строя некоторых его элементов, и было предложено установить защиту от короткого замыкания.
Принцип работы зарядного устройства
При включении аппарата тумблером SA1 на фазоимпульсный генератор VT1, VT2 подается напряжение, ограниченное стабилитроном VD5. С выхода генератора импульсы управления поступают на управляющий электрод тиристора VS2. Переменный резистор R6 служит для плавной установки уровня зарядного тока. Если произошло короткое замыкание или неправильно подключены полюса аккумулятора, происходит увеличение напряжения на резисторе R12. Затем открывается стабилитрон VD8 и тиристор VS1. Тиристор шунтирует конденсатор С1, определяющий частоту импульсов генератора. Прекращается подача импульсов управления на тиристор VS2. Зарядный ток прекращается. Для контроля зарядного тока используется микроамперметр Р1 в режиме вольтметра. Он измеряет падение напряжения на резисторе R12, который служит в качестве датчика тока для схемы защиты от КЗ. Падение напряжения на этом резисторе прямопропорционально значению протекающего через него тока. Микроамперметр в этой схеме измерения тока надежно защищен резистором R13 и даже при зашкаливании не выйдет из строя.
Схему управления с защитой монтируют на плате любым видом монтажа (кто что предпочитает). При правильном монтаже и исправных деталях устройство работоспособно сразу после включения.
Принципиальная схема зарядного устройства
Конструкция
Зарядное устройство
Используемые детали особого дефицита не представляют. В качестве силового трансформатора используется ТС-180 от старого черно-белого телевизора. Трансформатор аккуратно разбирают и сматывают все вторичные обмотки. Затем наматывают на каждую половину проводом диаметром 1,4…1,5 мм в любой изоляции по 34 витка. Трансформатор собирают. Обмотки включают последовательно и проверяют вольтметром переменного тока. Напряжение должно быть в пределах 20…22 В.
Детали
Конденсаторы: С1 — МБМ, К73П-3, К73-17; С2, СЗ — К50-12, К50-35 и др.
Резисторы (кроме R12) типа МЛТ-0,25. R1 — МЛТ-2,0, R2 — МЛТ-1,0, R6 — СП1, СП2, СП2-1 и др. Резистор R12 представляет собой отрезок нихромового провода диаметром 0,8…1,5 мм.
Сигнальная лампа HL1 -МН6,ЗхО,26. Прибор Р1 — микроамперметр на ток не более 300 мА.
Диоды моста VD1 …VD4 — Д242, Д243, КД213 и др. диоды закрепляются на радиаторах из алюминия или дюралевого сплава. Площадь одной стороны не менее 49 см2 (размер 7×7 см) для одного диода при токе 10 А. Диоды VD6, VD7 — Д220, Д223 и другие кремниевые с 11обр не менее 50 В. Стабилитроны VD5 — типов Д814Б, В, Г, Д (не критично), VD8 — КС133, 139, 147, 151,156 (не критично).Тиристор VS1 — типа КУ201 с любой буквой. Тиристор VS2 типа КУ202 от буквы Б и дальше, Т25 и др. Тиристор установлен на радиаторе площадью одной стороны 100 см2 (размер 10×10 см). Транзисторы VT1 — КТ361, КТ209 и т.п., VT2 — КТ315, КТ201 и т.п.
Резистор R13 в цепях микроамперметра подбирают в зависимости от типа использованной головки. Вместо него временно впаивают переменный резистор сопротивлением 33 кОм и устанавливают стрелку прибора на конечную отметку шкалы при токе 10 А. Затем измеряют (предварительно отпаяв один провод)сопротивление и вместо него впаивают постоянный резистор. В случае применения прибора магнитоэлектрической системы шкала будет линейной.
В. И. Журавлев, г. Ефремов
Литература
Газизов М. Автоматическое устройство для зарядки и восстановления аккумуляторных батарей. — Радиолюбитель, 1994.
Зарядное устройство
Зарядное устройство с эффективной защитой — Зарядные устройства (для авто) — Источники питания
Предлагаемое устройство предназначено для зарядки 12-вольтовых аккумуляторных ботарей с защитой от случайного короткого замыкания но выходных зажимах, от неправильного подключения и от перезарядки оккумуляторных батарей. В зарядных устройствах на тиристорах работа устройств защиты от короткого замыкания на выходных зажимах или неправильного подключения аккумуляторной батареи не всегда эффективна. Это связано с тем, что генератор управляющих импульсов в этих устройствах генерирует импульсы независимо от того, подключен аккумулятор к зарядному устройству или нет. Если момент случайного короткого замыкания на выходных зажимах зарядного устройства или момент неправильного подключения аккумуляторной батареи к зарядному устройству совпадоют с приходом управляющего импульса на тиристор, то защита не успевает сработать. Это обстоятельство привело меня к мысли перестроить работу устройства защиты (рис.1).
<
Рис.1
Особенностью электрической схемы является то, что генератор управляющих импульсов, собранный на транзисторе VT1, начиноет робототь только при правильном подключении разряженной аккумуляторной батареи к зажимам АБ зарядного устройства. При этом ток через стабилитрон VD4 не течет, транзистор VT4 закрывается, VT3 открывается (начинает светиться светодиод VD3), закрывается VT2 и генератор начинает генерировать управляющие импульсы. Под влиянием этих импульсов тиристор VS1 открывается, и импульсный ток заряда протекает по цепи: минус выпрямителя VD5…VD8, тиристор VS1, амперметр Р1, клемма Б, аккумуляторная батарея, клемма А, плюс выпрямителя.
По мере заряда аккумуляторной батареи напряжение на ее зажимах увеличивается. Это приводит к срабатыванию стабилитрона VD4, вследствие чего открывается транзистор VT4, зак . рывается транзистор VT3 (светодиод VD3 гаснет), открывается VT2, шунтируя зарядный конденсатор С1, и генератор прекращает работу, в результате чего тиристор переходит в непроводящее состояние, т.е. прекращается зарядка аккумуляторной батареи. Аналогично устройство работает при отключении аккумуляторной батареи, при этом случайное замыкание выходных зажимов АБ зарядного устройства не приводит к неприятным последствиям. Ток заряда аккумуляторной батареи можно регулировать резистором R2, а порог срабатывания защиты от перезарядки — резистором R11.
При неправильном подключении аккумуляторной батареи к зажимом АБ устройства транзистор VT3 закрывается, транзистор VT2 шунтирует зарядный конденсатор С1 и управляющие импульсы на тиристоре отсутствуют, т.е. он находится в непроводящем состоянии. Таким образом, неправильное подключение аккумуляторной батареи токже не приводит к последствиям.
В устройстве использованы следующие детали: транзисторы VT1 типа КТ117Б, VT2—VT4 типа КТ361Е, тиристор КУ202 с любым буквенным индексом, диоды выпрямительного моста типа Д247, светодиод VD3 типа АЛ102БМ, стабилитроны VD2 типа Д814Д, VD4 типа Д813, резисторы типа МЛТ-0,5 (исключение составляет R5 типа МЛТ-1,0), конденсатор С1 типа КМ-6 или КЛС-1. Трансформатор Т унифицированный типа ТС-200. В нем следует убрать все обмотки, кроме сетевой, и намотать обмотку 2 х 25 витков проводом ПЭВ-2 диометром 1,8 мм. Сетевые обмотки включены на 254 В при напряжении сети 220 В. Монтажная схема платы зарядного устройства показана на рис.2.
Рис.2
По материалам публикаций В.Л.Соколовский, г.Бердянск «РадиоАматор 5/97, с.17» и В.ВОЕВОДА, с. Константиновна Амурской обл. «Радио №11/2001г»
Зарядное устройство с защитой от короткого замыкания в нагрузке
Зарядные устройства обычно оборудованы электронной схемой предотвращающей выход из строя зарядника при возникновении короткого замыкания . Но в практике радиолюбителей довольно часто еще попадаются несложные зарядные устройства, построенные на понижающем трансформаторе и диодном выпрямителе.
Нужные же радиодетали для того, чтобы построить электронную автомат, не всегда бывают. В этом случае возможно использовать простую электро-механическую защиту с применением электрореле или авто-выключателей неоднократного действия (например, автоматические предохранители или АВМ в квартирных электросчетчиках).
Плюсы данной защиты: простота и наличие недорогих полупроводниковых компонентов. Но есть и один недостаток — повышенная инерционность.
Описание автомата защиты зарядного устройства
Когда аккумулятор (АБ) подключен к выходу устройства, электрореле К1 активируется и своими выводами К1.1 включает ЗУ (см. схему).
В момент короткого замыкания, выходное напряжение мгновенно снижается и обмотка электрореле будет обесточена, что впоследствии приведет к разрыву контактов реле и отсоединению аккумулятора от ЗУ.
Вторичное подключение после ликвидации неисправности выполняется кнопкой SB1. Емкость С1, заряженная до выходного напряж. выпрямителя, подсоединяется к обмотке реле. Сопротивление R1 уменьшает импульс тока при неверном включении, когда короткое замыкание на выходе не ликвидировано.
Сопротивление R2 ограничивает ток короткого замыкания выпрямительных диодов. Его возможно не использовать в цепи, если диоды выдерживают импульсные токи такой величины. Иначе- сопротивление R2 обязательно. Но необходимо помнить, что выходное напряжение ЗУ должно быть в этом случае выше на величину падения напряж. на сопротивлении R2 при стандартном токе зарядки.
АВМ предохраняет при перегрузках по току, что релейная защита осуществить не может. Автоматический предохранитель (или выключатель) подсоединяют последовательно с выводами реле. величина АВМ — примерно 0,4 Ом. В данном случае сопротивление R2 возможно не использовать.
Характеристики радиоэлементов устройства зависят от марки ЗУ. К примеру, для зарядного устройства автомобильного аккумулятора следует подобрать электрореле на стандартное напряжение 12 вольт с номинальным током не менее 20 А. Этим показателям соответствует электрореле РЭН34 (паспорт ХП4.500.030-01), замыкающие выводы которого необходимо подсоединить параллельно. Для ЗУ с текущим током до 1 А возможно использовать электрореле РЭС22 (паспорт РФ4.523.023-05). Емкость С1 — электролитическая (К50-12,К50-16 и т.д.).
Защита для зарядных устройств автоаккумуляторов
Опубликовал admin | Дата 20 января, 2017В свое время ко мне приходили вопросы, связанные со схемами защиты зарядных устройств от неправильного подключения заряжаемых аккумуляторов. Соображал долго, но все схемы получались какие то…, образно говоря, кривые, косые и не элегантные, пока, при просмотре старых журналов «Радио», на глаза не попался стабилизатор тока на маломощном полевом транзисторе. Вот здесь и схема, показанная на рисунке 1, возникла в голове сама собой.
Сразу оговорюсь, если величина входного напряжения Е будет меньше 20 вольт, то стабилитрон VD1 ставить не обязательно. Его применение обусловлено тем, что максимальное напряжение затвор-исток большинства низковольтных переключательных полевых транзисторов не должно превышать этого значения напряжения.
Блок защиты – схема
И так, на входных клеммах устройства присутствует напряжение с зарядного устройства, аккумулятор к выходу не подключен. При таких условиях напряжение на выходе будет отсутствовать, так как транзистор оптрона будет закрыт, будет закрыт и мощный транзистор. Ни каких КЗ на выходе быть не может. При подключении аккумулятора через последовательную цепь VD3, VD2, U1 и VT2 начнет протекать ток примерно 4ма, стабилизированный транзистором VT2. И это при условии, что напряжение на разряженном аккумуляторе будет не менее 10,5 вольт. Величина этого напряжения обусловлена напряжением пробоя стабилитрона VD2, равного 9В, плюс падения напряжения на других элементах этой цепи. Если напряжение на аккумуляторе будет меньше 10,5 вольт, то для включения схемы придется нажать, а может и немного подержать кнопку SB1. Это сделано для того, что исключить возможные большие токи от зарядного при глубокой разрядке подключаемого аккумулятора или возможном КЗ в его пластинах. И так, ток через светодиод протекает, он светится, сопротивление фототранзистора очень маленькое и напряжение положительной полярности через резистор R2 подается на затвор ключевого транзистора. Транзистор включается и начинается процесс зарядки. Схема включена. Теперь, если аккумулятор отсоединить от схемы, то она останется во включенном состоянии.
При коротком замыкании в выходной цепи, ток в цепи VD3, VD2, U1 и VT2 прекращается, оптрон закрывается, закрывается и ключевой транзистор. То же самое произойдет, если в данных условиях попробовать переполюсовать аккумулятор, что в прицепе для схемы это тоже КЗ. Если неправильно подключить аккумулятор к еще не включенной схеме, то в данном случае вообще ничего не произойдет. Диод VD3 защищает светодиод оптрона от отрицательного напряжения. Таким образом, мы имеем защиту зарядного, как от КЗ, так и от переполюсовки аккумулятора. Если во время эксплуатации ключевой транзистор будет сильно греться, то проверьте падение напряжения на нем. Возможно, не полностью открыт транзистор оптрона из-за малого входного тока светодиода. Тогда придется заменить VT2 на другой, с бо’льшим током стабилизации. В любом случае, ключевой транзистор снабдите соответствующим радиатором. Из-за большого разброса электрических параметров радиоэлементов, возможно, придется заменить и стабилитрон VD2 на другой, с более низким напряжением стабилизации, для получения более низкого порога включения устройства.
Посмотрев на схему, не трудно заметить, что она представляет собой трехполюсник. Если применить детали в SMD исполнении, то можно изготовить данный блок защиты в виде трехвыводного модуля.
Успехов. К.В.Ю.
Скачать статью:
Скачать “Blok-zashity-dlya-zaryadnyx-ustroystv-avtomobilnyx-akkumulyatorov.rar” Blok-zashity-dlya-zaryadnyx-ustroystv-avtomobilnyx-akkumulyatorov.rar – Загружено 567 раз – 27 KB
Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».
Просмотров:4 470