Зарядный ток трансформатора: 403 — Доступ запрещён – Какой трансформатор нужен для зарядного устройства акб — MOREREMONTA

Содержание

Бросок тока намагничивания трансформатора | Электротехнический журнал

Бросок тока намагничивания трансформатора - это кратковременный ток намагничивания трансформатора, превышающий номинальный ток нагрузки, возникающий при включении трансформатора (автотрансформатора) под напряжение или при его восстановлении. При этом, бросок тока намагничивания раз от раза может отличаться на одном и том же трансформаторе, так как имеет значение вектор и величина напряжения, подаваемая на обмотку трансформатора при включении коммутационного аппарата.

Причины возникновения броска тока намагничивания

Причиной возникновения БНТ в силовых трансформаторах является резкое изменение уровня напряжения намагничивания. Хотя обычно возникновение БНТ связывают с включением трансформатора под напряжение, он также может быть обусловлен:

  • Возникновением внешнего КЗ,
  • Восстановлением уровня напряжения после отключения внешнего КЗ,
  • Переходом КЗ из одного вида в другой (к примеру, переход однофазного КЗ в двухфазное КЗ на землю),
  • Несинхронным подключением генератора к системе.

Поскольку ветвь намагничивания схемы замещения трансформатора, может быть представлена как шунт при его насыщении, ток намагничивания нарушает баланс между токами на выводах трансформатора. Дифференциальная защита воспринимает ток БНТ как дифференциальный, однако должна устойчиво функционировать в таком случае. Отключение трансформатора при БНТ является нежелательным с точки зрения условий обеспечения длительного срока службы трансформатора (отключение тока индуктивного характера вызывает высокие перенапряжения, что может представлять угрозу для трансформатора и быть косвенной причиной возникновения внутреннего КЗ).

Описание процесса

Намагничивание трансформатора изза включения его под напряжение считается самым неблагоприятным случаем, вызывающим БНТ наибольшей амплитуды. Когда производится отключение трансформатора, напряжение намагничивания оказывается равным нулю, ток намагничивания снижается до нуля, в то время как магнитная индукция изменяется согласно характеристике намагничивания сердечника. Указанное обуславливает наличие остаточной индукции в сердечнике. Когда, по истечении некоторого времени, производится повторное включение трансформатора под напряжение, изменяющееся по синусоидальному закону, магнитная индукция начинает изменяться по тому же закону, однако со смещением на значение остаточной индукции. Остаточная индукция может составлять 80–90% номинальной индукции, и, таким образом, точка может переместиться за излом характеристики намагничивания, что, в свою очередь, обуславливает большую амплитуду и искажение формы кривой тока.

На рисунке представлена характерная форма БНТ. Данная осциллограмма отображает наличие длительно затухающей апериодической составляющей, может быть охарактеризована содержанием различных гармоник и большой амплитудой тока в начальный момент времени (до 30 раз превышающей значение номинального тока трансформатора). Кривая значительным образом затухает через десятые секунды, однако полное затухание характерно через несколько секунд. При определенных обстоятельствах БНТ затухает лишь спустя минуты после включения трансформатора под напряжение.

См. также

  • Бросок зарядного тока конденсатора.
  • Пусковой ток асинхронного электродвигателя.

Примечания

  1. Перевод статьи Богдана Каштенни и Ары Кулиджан из компании «General Electric» (английский), перевод был опубликован в журнале Релейщик №1 за 2009 год.

Для справки: http://www.ngpedia.ru/id270514p1.html

Просмотров всего: 6 061, Просмотров за день: 1

Share

Как повысить силу тока, не изменяя напряжения

В статье речь пойдет про то, как повысить силу тока в цепи зарядного устройства, в блоке питания, трансформатора, в генераторе, в USB портах компьютера не изменяя напряжения.

СОДЕРЖАНИЕ (нажмите на кнопку справа):

Что такое сила тока?

Электрический ток представляет собой упорядоченное перемещение заряженных частиц внутри проводника при обязательном наличии замкнутого контура.

Появление тока обусловлено движением электронов и свободных ионов, имеющих положительный заряд.

В процессе перемещения заряженные частицы могут нагревать проводник и оказывать химическое действие на его состав. Кроме того, ток может оказывать влияние на соседние токи и намагниченные тела.

Сила тока — электрический параметр, представляющий собой скалярную величину. Формула:

I=q/t, где I — сила тока, t — время, а q — заряд.

Стоит знать и закон Ома, по которому ток прямо пропорционален U (напряжению) и обратно пропорционален R (сопротивлению).

I=U/R.

Сила тока бывает двух видов — положительной и отрицательной.

Ниже рассмотрим, от чего зависит этот параметр, как повысить силу тока в цепи, в генераторе, в блоке питания и в трансформаторе.

Приведем проверенные рекомендации, которые позволят решить поставленные задачи.

От чего зависит сила тока?

Чтобы повысить I в цепи, важно понимать, какие факторы могут влиять на этот параметр. Здесь можно выделить зависимость от:

  • Сопротивления. Чем меньше параметр R (Ом), тем выше сила тока в цепи.
  • Напряжения. По тому же закону Ома можно сделать вывод, что при росте U сила тока также растет.
  • Напряженности магнитного поля. Чем она больше, тем выше напряжение.
  • Числа витков катушки. Чем больше этот показатель, тем больше U и, соответственно, выше I.
  • Мощности усилия, которое передается на ротор.
  • Диаметра проводников. Чем он меньше, тем выше риск нагрева и перегорания питающего провода.
  • Конструкции источника питания.
  • Диаметра проводов статора и якоря, числа ампер-витков.
  • Параметров генератора — рабочего тока, напряжения, частоты и скорости.

Как повысить силу тока в цепи?

Бывают ситуации, когда требуется повысить I, который протекает в цепи, но при этом важно понимать, что нужно принять меры по защите электроприборов, сделать это можно с помощью специальных устройств.

Рассмотрим, как повысить силу тока с помощью простых приборов.

Для выполнения работы потребуется амперметр.

Вариант 1.

По закону Ома ток равен напряжению (U), деленному на сопротивление (R). Простейший путь повышения силы I, который напрашивается сам собой — увеличение напряжения, которое подается на вход цепи, или же снижение сопротивления. При этом I будет увеличиваться прямо пропорционально U.

К примеру, при подключении цепи в 20 Ом к источнику питания c U = 3 Вольта, величина тока будет равна 0,15 А.

Если добавить к цепи еще один источник питания на 3В, общую величину U удается повысить до 6 Вольт. Соответственно, ток также вырастет в два раза и достигнет предела в 0,3 Ампера.

Подключение источников питания должно осуществляться последовательно, то есть плюс одного элемента подключается к минусу первого.

Для получения требуемого напряжения достаточно соединить в одну группу несколько источников питания.

В быту источники постоянного U, объединенные в одну группу, называются батарейками.

Несмотря на очевидность формулы, практические результаты могут отличаться от теоретических расчетов, что связано с дополнительными факторами — нагревом проводника, его сечением, применяемым материалом и так далее.

В итоге R меняется в сторону увеличения, что приводит и к снижению силы I.

Повышение нагрузки в электрической цепи может стать причиной перегрева проводников, перегорания или даже пожара.

Вот почему важно быть внимательным при эксплуатации приборов и учитывать их мощность при выборе сечения.

Величину I можно повысить и другим путем, уменьшив сопротивление. К примеру, если напряжение на входе равно 3 Вольта, а R 30 Ом, то по цепи проходит ток, равный 0,1 Ампер.

Если уменьшить сопротивление до 15 Ом, сила тока, наоборот, возрастет в два раза и достигнет 0,2 Ампер. Нагрузка снижается почти к нулю при КЗ возле источника питания, в этом случае I возрастают до максимально возможной величины (с учетом мощности изделия).

Дополнительное снизить сопротивление можно путем охлаждения провода. Такой эффект сверхпроводимости давно известен и активно применяется на практике.

Чтобы повысить силу тока в цепи часто применяются электронные приборы, например, трансформаторы тока (как в сварочниках). Сила переменного I в этом случае возрастает при снижении частоты.

Если в цепи переменного тока имеется активное сопротивление, I увеличивается при росте емкости конденсатора и снижении индуктивности катушки.

В ситуации, когда нагрузка имеет чисто емкостной характер, сила тока возрастает при повышении частоты. Если же в цепь входят катушки индуктивности, сила I будет увеличиваться одновременно со снижением частоты.

Также читают — как действует электрический ток на организм человека.

Вариант 2.

Чтобы повысить силу тока, можно ориентироваться на еще одну формулу, которая выглядит следующим образом:

I = U*S/(ρ*l). Здесь нам неизвестно только три параметра:

  • S — сечение провода;
  • l — его длина;
  • ρ — удельное электрическое сопротивление проводника.

Чтобы повысить ток, соберите цепочку, в которой будет источник тока, потребитель и провода.

Роль источника тока будет выполнять выпрямитель, позволяющий регулировать ЭДС.

Подключайте цепочку к источнику, а тестер к потребителю (предварительно настройте прибор на измерение силы тока). Повышайте ЭДС и контролируйте показатели на приборе.

Как отмечалось выше, при росте U удается повысить и ток. Аналогичный эксперимент можно сделать и для сопротивления.

Для этого выясните, из какого материала сделаны провода и установите изделия, имеющие меньшее удельное сопротивление. Если найти другие проводники не удается, укоротите те, что уже установлены.

Еще один путь — увеличение поперечного сечения, для чего параллельно установленным проводам стоит смонтировать аналогичные проводники. В этом случае возрастает площадь сечения провода и увеличивается ток.

Если же укоротить проводники, интересующий нас параметр (I) возрастет. При желании варианты увеличения силы тока разрешается комбинировать. Например, если на 50% укоротить проводники в цепи, а U поднять на 300%, то сила I возрастет в 9 раз.

Как повысить силу тока в блоке питания?

В интернете часто можно встретить вопрос, как повысить I в блоке питания, не изменяя напряжение. Рассмотрим основные варианты.

Ситуация №1.

Блок питания на 12 Вольт работает с током 0,5 Ампер. Как поднять I до предельной величины? Для этого параллельно БП ставится транзистор. Кроме того, на входе устанавливается резистор и стабилизатор.

Узнайте больше — как проверить транзистор мультиметром на исправность.

При падении напряжения на сопротивлении до нужной величины открывается транзистор, и остальной ток протекает не через стабилизатор, а через транзистор.

Последний, к слову, необходимо выбирать по номинальному току и ставить радиатор.

Кроме того, возможны следующие варианты:

  • Увеличить мощность всех элементов устройства. Поставить стабилизатор, диодный мост и трансформатор большей мощности.
  • При наличии защиты по току снизить номинал резистора в цепочке управления.

Ситуация №2.

Имеется блок питания на U = 220-240 Вольт (на входе), а на выходе постоянное U = 12 Вольт и I = 5 Ампер. Задача — увеличить ток до 10 Ампер. При этом БП должен остаться приблизительно в тех же габаритах и не перегреваться.

Здесь для повышения мощности на выходе необходимо задействовать другой трансформатор, который пересчитан под 12 Вольт и 10 Ампер. В противном случае изделие придется перематывать самостоятельно.

При отсутствии необходимого опыта на риск лучше не идти, ведь высока вероятность короткого замыкания или перегорания дорогостоящих элементов цепи.

Трансформатор придется поменять на изделие большего размера, а также пересчитывать цепочку демпфера, находящегося на СТОКЕ ключа.

Следующий момент — замена электролитического конденсатора, ведь при выборе емкости нужно ориентироваться на мощность устройства. Так, на 1 Вт мощности приходится 1-2 мкФ.

Также рекомендуется поменять диоды с выпрямителями. Кроме того, может потребоваться установка нового диода выпрямителя на низкой стороне и увеличение емкости конденсаторов.

После такой переделки устройство будет греться сильнее, поэтому без установки вентилятора не обойтись.

Как повысить силу тока в зарядном устройстве?

В процессе пользования зарядными устройствами можно заметить, что ЗУ для планшета, телефона или ноутбука имеют ряд отличий. Кроме того, может различаться и скорость, с которой происходит заряд девайсов.

Здесь многое зависит от того, используется оригинальное или неоригинальное устройство.

Чтобы измерить ток, который поступает к планшету или телефону от зарядного устройства, можно использовать не только амперметр, но и приложение Ampere.

С помощью софта удается выяснить скорость заряда и разрядки АКБ, а также его состояние. Приложением можно пользоваться бесплатно. Единственным недостатком является реклама (в платной версии ее нет).

Главной проблемой зарядки аккумуляторов является небольшой ток ЗУ, из-за чего время набора емкости слишком большое. На практике ток, протекающий в цепи, напрямую зависит от мощности зарядного устройства, а также других параметров — длины кабеля, его толщины и сопротивления.

С помощью приложения Ampere можно увидеть, при какой силе тока производится заряд девайса, а также проверить, может ли изделие заряжаться с большей скоростью.

Для использования возможностей приложения достаточно скачать его, установить и запустить.

После этого телефон, планшет или другое устройство подключается к зарядному устройству. Вот и все — остается обратить внимание на параметры тока и напряжения.

Кроме того, вам будет доступна информация о типе батареи, уровне U, состоянии АКБ, а также температурном режиме. Также можно увидеть максимальные и минимальные I, имеющие место в период цикла.

Если в распоряжении имеется несколько ЗУ, можно запустить программу и пробовать делать зарядку каждым из них. По результатам тестирования проще сделать выбор ЗУ, обеспечивающего максимальный ток. Чем выше будет этот параметр, тем быстрее зарядится девайс.

Измерение силы тока — не единственное, на что способно приложение Ampere. С его помощью можно проверить, сколько потребляется I в режиме ожидания или при включении различных игр (приложений).

Например, после отключения яркости дисплея, деактивации GPS или передачи данных легко заметить снижение нагрузки. На этом фоне проще сделать вывод, какие опции в большей степени разряжают аккумулятор.

Что еще стоит отметить? Все производители рекомендуют заряжать девайсы «родными» ЗУ, выдающими определенный ток.

Но в процессе эксплуатации бывают ситуации, когда приходится заряжать телефон или планшет другими зарядными, имеющими большую мощность. В итоге скорость зарядки может оказаться выше. Но не всегда.

Мало, кто знает, но некоторые производители ограничивают предельный ток, который может принимать АКБ устройства.

Например, устройство Самсунг Гэлекси Альфа поставляется вместе с зарядным на ток 1,35 Ампер.

При подключении 2-амперного ЗУ ничего не меняется — скорость зарядки осталась той же. Это объясняется ограничением, которое установлено производителем. Аналогичный тест был произведен и с рядом других телефонов, что только подтвердило догадку.

С учетом сказанного выше можно сделать вывод, что «неродные» ЗУ вряд ли причинят вред аккумулятору, но иногда могут помочь в более быстрой зарядке.

Рассмотрим еще одну ситуацию. При зарядке девайса через USB-разъем АКБ набирает емкость медленнее, чем если заряжать устройство от обычного ЗУ.

Это объясняется ограничением силы тока, которую способен отдавать USB порт (не больше 0,5 Ампер для USB 2.0). В случае применения USB3.0 сила тока возрастает до уровня 0,9 Ампер.

Кроме того, существует специальная утилита, позволяющая «тройке» пропускать через себя больший I.

Для устройств типа Apple программа называется ASUS Ai Charger, а для других устройств — ASUS USB Charger Plus.

Как повысить силу тока в трансформаторе?

Еще один вопрос, который тревожит любителей электроники — как повысить силу тока применительно к трансформатору.

Здесь можно выделить следующие варианты:

  • Установить второй трансформатор;
  • Увеличить диаметр проводника. Главное, чтобы позволило сечение «железа».
  • Поднять U;
  • Увеличить сечение сердечника;
  • Если трансформатор работает через выпрямительное устройство, стоит применить изделие с умножителем напряжения. В этом случае U увеличивается, а вместе с ним растет и ток нагрузки;
  • Купить новый трансформатор с подходящим током;
  • Заменить сердечник ферромагнитным вариантом изделия (если это возможно).

В трансформаторе работает пара обмоток (первичная и вторичная). Многие параметры на выходе зависят от сечения проволоки и числа витков. Например, на высокой стороне X витков, а на другой — 2X.

Это значит, что напряжение на вторичной обмотке будет ниже, как и мощность. Параметр на выходе зависит и от КПД трансформатора. Если он меньше 100%, снижается U и ток во вторичной цепи.

С учетом сказанного выше можно сделать следующие выводы:

  • Мощность трансформатора зависит от ширины постоянного магнита.
  • Для увеличения тока в трансформаторе требуется снижение R нагрузки.
  • Ток (А) зависит от диаметра обмотки и мощности устройства.
  • В случае перемотки рекомендуется использовать провод большей толщины. При этом отношение провода по массе на первичной и вторичной обмотке приблизительно идентично. Если на первичную обмотку намотать 0,2 кг железа, а на вторичную — 0,5 кг, первичка сгорит.

Как повысить силу тока в генераторе?

Ток в генераторе напрямую зависит от параметра сопротивления нагрузки. Чем ниже этот параметр, тем выше ток.

Если I выше номинального параметра, это свидетельствует о наличии аварийного режима — уменьшения частоты, перегрева генератора и прочих проблем.

Для таких случаев должна быть предусмотрена защита или отключение устройства (части нагрузки).

Кроме того, при повышенном сопротивлении напряжение снижается, происходит подсадка U на выходе генератора.

Чтобы поддерживать параметр на оптимальном уровне, обеспечивается регулирование тока возбуждения. При этом повышение тока возбуждения ведет к росту напряжения генератора.

Частота сети должна находиться на одном уровне (быть постоянной величиной).

Рассмотрим пример. В автомобильном генераторе необходимо повысить ток с 80 до 90 Ампер.

Для решения этой задачи требуется разобрать генератор, отделить обмотку и припаять к ней вывод с последующим подключением диодного моста.

Кроме того, сам диодный мост меняется на деталь большей производительности.

После этого требуется снять обмотку и кусок изоляции в месте, где должен припаиваться провод.

При наличии неисправного генератора с него откусывается вывод, после чего с помощью медной проволоки наращиваются ножки такой же толщины.

После припаивания место стыка изолируется термоусадкой.

Следующим этапом требуется купить 8-диодный мост. Найти его — весьма сложная задача, но нужно постараться.

Перед установкой желательно проверить изделие на исправность (если деталь б/у, возможен пробой одного или нескольких диодов).

После установки моста крепите конденсатор, а далее — регулятор напряжения на 14,5 Вольт.

Можно приобрести пару регуляторов — на 14,5 (немецкий) и на 14 Вольт (отечественный).

Теперь высверливаются клепки, отпаиваются ножки и разделяются таблетки. Далее таблетка подпаивается к отечественному регулятору, который фиксируется с помощью винтов.

Остается припаять отечественную «таблетку» к иностранному регулятору и собирать генератор.

Итоги

Как видно из статьи, повысить силу тока, не изменяя напряжение в сети, реально.

Главное — разобраться с особенностями конструкции устройства, которое подлежит корректировке, и иметь практические навыки работы с измерительными приборами и паяльником. Кроме того, важно осознавать потенциальные риски от внесения корректировок.

3.5 / 5 ( 4 голоса )

Какой трансформатор нужен для пускового устройства АКБ: выбор

Если автомобиль все время в эксплуатации, то его аккумулятор заряжен. Но при длительном простое из-за саморазряда напряжение на АКБ падает ниже уровня необходимого для запуска.

Еще одной причиной пониженного тока аккумулятора является мороз. В холодном аккумуляторе повышенное сопротивление электролита и замедленные химические реакции, в результате которых батарея вырабатывает электрическое напряжение. Кроме того, холодный двигатель стартеру труднее провернуть из-за загустевшей смазки.

В этих ситуациях необходимо подать на стартер дополнительное питание. Чтобы сделать такой аппарат самостоятельно необходимо знать, какой трансформатор нужен для пускового устройства АКБ.

акб

Пусковые и зарядные устройства

Для запуска автомобиля и зарядки АКБ используются различные приспособления:

  • Зарядные. Имеют мощность до 150Вт, более сложную схему и возможность регулировки выходного тока и напряжения.
  • Пусковые. Мощность таких аппаратов более 1,5кВт при выходном напряжении 12В, конструкция не предусматривает регулировок выходных параметров.
  • Пуско-зарядные. Фактически это аппараты для зарядки, только большой мощности.

Выходные параметры пускового устройства

Ток, потребляемый стартером легкового автомобиля во время вращения коленвала, зависит от марки машины и составляет 80-100А при напряжении 12В. Однако для того, чтобы привести его в движение, стартер кратковременно потребляет ток до 200А. Поэтому в ремонтных мастерских используются для запуска двигателей легковых автомобилей устройства мощностью Р=12Вх200А=2400Вт. Необходимые параметры для пуска грузовых машин зависят от конкретной модели автомобиля.

Устройство трансформатора

В домашних условиях аппарат подключается параллельно АКБ. Мощность его достаточно выбрать 1500 Вт при токе 125А и определяется тем, какую мощность имеет трансформатор пуско-зарядного устройства. Схема намотки может быть простой или со средней точкой.

Информация! Некоторые магазинные аппараты имеют мощность всего 700Вт и ток 60А.

Устройство пусковой установки

Пусковая аппаратура состоит из трех частей:

  • понижающий трансформатор 220/12В;
  • диодный мост;
  • соединительные кабеля с клеммами.

Совет! Для подключения аппарата к АКБ допускается применение проводов “прикуривателя”.

Изготовление понижающего трансформатора

Самой сложной в изготовлении частью этого аппарата является трансформатор для пуско-зарядного устройства. Наибольшее распространение получили самодельные схемы пуско-зарядных на трансформаторе 1500 ватт.

Понижающий трансформатор

Конструкция трансформатора

В качестве него используется любой трансформатор с сечением магнитопровода не менее 36мм². Этого достаточно для мощности аппарата в 1,5 кВт.

Первичная обмотка трансформатора для пускового устройства используется готовая, если она рассчитана на напряжение 220 В или мотается заново, медным проводом сечением 1,5-2мм². При ее отсутствии необходимое число витков определяется по таблицам или при помощи онлайн-калькуляторов.

Вторичная обмотка удаляется и мотается заново нужная, медной шиной. Ее сечение зависит от используемой схемы выпрямления:

  • в обычной, с четырьмя диодами – 20 мм²;
  • в схеме из двух диодов и двух катушек со средней точкой 10 мм².

При выборе алюминиевых намоточных проводов их сечение увеличивается вдвое.

Важно! Если взять магнитопровод большего сечения, то это увеличит мощность аппарата, но приведет к пропорциональному увеличению сечения обмоточных проводов и уменьшению количества витков в катушках.

Трансформатор в зарядном устройстве

Расчет вторичной обмотки

Для намотки вторичной обмотки пускового трансформатора для автомобиля своими руками необходимо определить количество витков. Оно зависит от числа витков в первичной обмотке Nперв. Если оно известно, то необходимое количество определяется по формуле Nвтор=(Nперв/220)*12. При неизвестных параметрах число витков определяется опытным путем:

  • намотать временную вторичную катушку проводом любого сечения из 10 витков;
  • измерить выходное напряжение;
  • определить необходимое количество витков для вторичной обмотки Nвтор=(Nврем/Uврем)*12;
  • удалить временную обмотку и намотать постоянную проводом или шиной необходимого сечения.

Совет! Для упрощения работы можно намотать несколько лишних витков, а после сборки аппарата и измерения выходного напряжения их отмотать.

Вторичная обмотка трансформатора

Схема с двумя диодами

Классическая схема выпрямления однофазного напряжения состоит из четырех диодов. Но в некоторых случаях при отсутствии нужного количества диодов или провода необходимого сечения применяют схему, в которой два диода:

  • используются две одинаковых обмотки, включенных согласно – конец первой подключается к началу второй;
  • к началу первой катушки и концу второй подключаются включенные встречно-последовательно диоды, обычно установленные на общем радиаторе;
  • постоянное напряжение снимается с мест соединения диодов и соединения обмоток.

Эта схема применима также при наличии двух одинаковых аппаратов 220/12 мощностью от 700Вт. Такое пусковое зарядное из двух трансформаторов в работе не отличается от обычного аппарата.

Схема акб с двумя диодами

Пусковой аппарат из сварочного

Трансформатор для пуско-зарядного устройства своими руками можно сделать также из катушечного сварочника – определить необходимое число витков и намотать дополнительную катушку. Диоды допускается использовать уже установленные, но для пуска автомобиля они переключаются на пусковую обмотку перемычками или перекидным рубильником.

Диоды и соединительные кабеля

Кроме трансформатора, в устройстве используются диоды, выпрямляющие переменное напряжение, и кабеля, по которым к аппарату поступает переменное напряжение 220В и к автомобилю постоянное 12В.

Диоды

Устройство выпрямителя

В выпрямителе используются диоды с номинальным напряжением от 25В. Это связано с тем, что 12В – это действующее значение напряжения на клеммах вторичной обмотки. Максимальное значение в √3 выше и составляет больше 20В.

Номинальный ток диодов нужен не меньше, чем 1/2 тока устройства. Это связано с тем, что через каждый из диодов проходит только одна полуволна переменного напряжения, а вторая идет через другой диод. В пусковых агрегатах мощностью 1500 Ватт ток диодов составляет от 60А. Таких не существует, поэтому берутся более мощные элементы 100А. Для лучшего охлаждения они устанавливаются на радиаторах.

Выпрямитель

Информация! Некоторые автомобилисты для лучшего охлаждения устанавливают аппарат без корпуса. При его наличии делается перфорация для циркуляции воздуха.

Соединительные кабеля

Питание 220В подается по трехжильному кабелю, например, ПВС 3*1. Ток при запуске составляет 7-10А, поэтому этого сечения провода достаточно, третья жила необходима для заземления металлических частей. Подключать его допускается при помощи обычной вилки и розетки.

Питание к машине подается двумя проводами или двухжильным кабелем с клеммами ПВС 2*16. При использовании проводов от “прикуривателя” на корпусе аппарата устанавливаются клеммы от старого аккумулятора.

Знание того, как сделать пусковое для машины из трансформатора избавит от необходимости приобретать дорогое магазинное устройство.

Соединительный кабель

пример расчета трансформатора | Электрознайка. Домашний Электромастер.


   В домашнем хозяйстве бывает необходимо оборудовать освещение в сырых помещениях: подвале или погребе и т.д. Эти помещения имеют повышенную степень опасности поражения электичческим током.
В этих  случаях  следует пользоваться электрооборудованием рассчитанным на пониженное напряжение питания, не более 42 вольт.

    Можно пользоваться электрическим фонарем с батарейным питанием или воспользоваться понижающим трансформатором с 220 вольт на 36 вольт.
    Рассчитаем и изготовим однофазный  силовой трансформатор 220/36 вольт, с выходным напряжением 36 вольт с питанием от электрической сети переменного тока напряжением 220 вольт.

    Для освещения таких помещений подойдет электрическая лампочка на 36 Вольт и мощностью 25 — 60 Ватт. Такие лампочки с  цоколем под обыкновенный электропатрон продаются в магазинах электротоваров.
Если вы найдете лампочку на другую мощнось, например на 40 ватт, нет ничего страшного —  подойдет и она. Просто трансформатор будет выполнен с запасом по мощности.
 

Сделаем упрощенный расчет трансформатора 220/36 вольт.

   Мощность во вторичной цепи: Р_2 = U_2 · I_2 = 60 ватт 

Где:
Р_2 – мощность на выходе трансформатора, нами задана 60 ватт;

U_2 — напряжение на выходе трансформатора, нами задано 36 вольт;

I_2 — ток во вторичной цепи, в нагрузке.

КПД  трансформатора  мощностью до 100 ватт обычно равно не более  η = 0,8.
КПД определяет, какая часть мощности потребляемой от сети идет в нагрузку. Оставшаяся часть идет на нагрев проводов и сердечника. Эта мощность безвозвратно теряется.

Определим мощность потребляемую трансформатором  от сети с учетом потерь:

Р_1 = Р_2 /  η  = 60 / 0,8 = 75 ватт.

   Мощность передается из первичной обмотки во вторичную через магнитный поток в магнитопроводе. Поэтому от значения   Р_1,   мощности потребляемой от сети 220 вольт,  зависит площадь поперечного сечения магнитопровода S.

   Магнитопровод – это сердечник  Ш – образной или  О – образной формы, набранный из листов трансформаторной стали. На сердечнике будут располагаться первичная и вторичная обмотки провода. 

   Площадь поперечного сечения  магнитопровода рассчитывается по формуле:

 S = 1,2 · √P_1.  

  Где:
S — площадь в квадратных сантиметрах,

P_1 — мощность первичной сети в ваттах.

 S = 1,2 · √75 = 1,2 · 8,66 = 10,4  см².

По значению   S определяется число витков w на один вольт по формуле:

w = 50/S   

 В нашем случае площадь сечения сердечника равна  S = 10,4 см.кв.

 w = 50/10,4 = 4,8  витка на 1 вольт.

Рассчитаем число витков в первичной и вторичной обмотках.

Число витков в первичной обмотке на 220 вольт:

W1 = U_1 · w = 220 · 4.8 = 1056 витка.

Число витков во вторичной обмотке на 36 вольт:

W2 = U_2 · w = 36 · 4,8 =  172.8 витков,

округляем до 173 витка.

   В режиме нагрузки может быть заметная потеря части напряжения на активном сопротивлении провода вторичной обмотки. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного. Возьмем W2 = 180 витков.

 Величина тока в первичной обмотке трансформатора:

I_1 = P_1/U_1 = 75/220 = 0,34 ампера.

Ток во вторичной обмотке трансформатора:

I_2 = P_2/U_2 = 60/36 = 1,67 ампера.

   Диаметры проводов первичной и вторичной  обмоток определяются по значениям токов в них исходя из допустимой плотности тока, количества ампер на 1 квадратный миллиметр площади проводника. Для трансформаторов плотность тока,  для медного провода, принимается 2 А/мм² . 

   При такой плотности тока диаметр провода без изоляции в миллиметрах определяется по формуле:  d = 0,8√I .

Для первичной обмотки диаметр провода будет:

d_1 = 0,8 · √1_1 = 0,8 · √0,34 = 0,8 · 0,58 = 0,46 мм.     Возьмем 0,5 мм.

Диаметр провода для вторичной обмотки:

d_2 = 0,8 · √1_2 = 0,8 · √1,67 = 0,8 · 1,3 = 1,04 мм.      Возьмем 1,1 мм.

   ЕСЛИ НЕТ ПРОВОДА НУЖНОГО ДИАМЕТРА, то можно взять несколько, соединенных параллельно, более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу.

    Площадь поперечного сечения провода определяется по формуле:

s = 0,8 · d².    

где: d — диаметр провода.

   Например: мы не смогли найти провод для вторичной обмотки диаметром 1,1 мм. 

Площадь поперечного сечения провода диаметром 1,1 мм. равна:

s = 0,8 · d² = 0,8 · 1,1² = 0,8 · 1,21 = 0,97  мм².  

Округлим до 1,0 мм².

   Из таблицы выбираем диаметры двух проводов сумма площадей сечения которых равна 1.0 мм².

   Например, это два провода диаметром по   0,8 мм. и площадью по 0,5 мм². 

Или два провода:
 - первый диаметром 1,0 мм. и площадью сечения 0,79 мм²,
— второй диаметром 0,5 мм. и площадью сечения 0,196 мм².
что в сумме дает: 0,79 + 0,196 = 0,986 мм².

   Намотка катушки ведется двумя проводами одновременно, строго выдерживается равное количество витков обоих проводов. Начала этих проводов соединяются между собой. Концы этих проводов также соединяются.

    Получается как бы один провод с суммарным поперечным сечением двух проводов.

 Смотрите статьи:
— «Как намотать трансформатор на Ш-образном сердечнике».
— «Как изготовить каркас для Ш — образного сердечника».

Силовые трансформаторы, простой расчет — Радиомастер инфо

Заставка vВ статье на конкретном примере приводится простой метод расчета силового трансформатора для блока питания или зарядного устройства.

 

 

  1. Перед тем, как использовать силовой трансформатор необходимо определиться с его мощностью.

Например, нужно рассчитать силовой трансформатор для зарядного устройства, которым будем заряжать автомобильные аккумуляторы емкостью до 60 А/час.

Как известно, ток заряда равен 0,1 от емкости аккумулятора, в нашем случае это 6 Ампер.

Напряжение для заряда аккумулятора должно быть не менее 15 В, плюс падение напряжения на диодах и  токоограничивающем резисторе, примем его около 5 В.

Итого, напряжение вторичной обмотки должно быть около 20 В, при токе до 6 А. Мощность при этом, будет равна Р = 6 А х 20 В = 120 Вт.

Схема 3нv

К.п.д. силового трансформатора при мощности до 60 Вт составляет 0,75. При мощности до 150 Вт 0,8 и при больших мощностях 0,85.

В нашем случае принимаем к.п.д. равным 0,8.

При мощности вторичной обмотки 120 Вт, с учетом к.п.д. мощность первичной обмотки равна:

120 Вт : 0,8 = 150 Вт.

  1. По этой мощности определяем площадь поперечного сечения сердечника, на котором будут расположены обмотки.

S (см2) = (1,0 ÷1,2) √Р

Коэффициент перед корнем квадратным из мощности зависит от качества электротехнической стали сердечника.

Принимаем его равным среднему значению 1,1 и получаем площадь сердечника равной 13,5 см2.

Сердечник 1v

  1. Теперь нужно определить дополнительную величину – количество витков на вольт. Обозначим ее N.

N = (50 ÷70)/S (см2)

Коэффициент от 50 до 70 зависит от качества стали. Возьмем среднее значение 60. Получаем количество витков на вольт равным:

N = 60/13,5 = 4,44

Округлим это значение до 4,5 витка на вольт.

Первичная обмотка будет работать от 220 В. Ее количество витков равно 220 х 4,5 = 990 витков.

Вторичная обмотка должна выдавать 20 В. Ее количество витков равно 20 х 4,5 = 90 витков.

  1. Осталось определить диаметр провода обмоток.

Для этого нужно знать ток каждой обмотки. Для вторичной обмотки ток нам известен, его величина 6 А.

Ток первичной обмотки определим, как мощность, деленную на напряжение. (Сдвиг фаз для упрощения расчета учитывать не будем).

I1 = 150 Вт / 220 В = 0,7 А

Диаметр провода определяем по формуле:

D(мм) = (0,7÷0,8)√I(А)

Коэффициент перед корнем квадратным влияет на плотность тока в проводе. Чем больше его значение, тем меньше будет греться провод при работе. Примем среднее значение.

Для меди плотность тока до 3,2 А/мм кв, для алюминиевых проводов до 2А/мм кв.

Диаметр провода первичной обмотки:

D1 = 0,75 √0,7 = 0,63 мм

Диаметр провода вторичной обмотки:

D2 = 0,75 √6 = 1,84 мм

Для намотки выбираем ближайший больший диаметр. Если нет толстого провода для вторичной обмотки, можно намотать ее в два провода. При этом суммарная площадь сечения проводов должна быть не меньше площади сечения для рассчитанного диаметра провода. Как известно, площадь сечения равна πr² , где π это 3,14, а r — радиус провода.

Вот и весь расчет.

Если вторичных обмоток несколько, сумма их мощностей не должна превышать величину, равную мощности первичной обмотки, умноженной на к.п.д. Количество витков на вольт одинаково для всех обмоток конкретного трансформатора. Если известно количество витков на вольт, можно намотать обмотку на любое напряжение, главное, чтобы она влезла в окно магнитопровода. Диаметр провода каждой обмотки определяется исходя из величины тока этой обмотки.

Овладев этой простой методикой, вы сможете не только изготовить нужный вам силовой трансформатор, но и подобрать уже готовый.

Материал статьи продублирован на видео:

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *