Википедия лямбда зонд – Лямбда-Зонд — Энциклопедия журнала «За рулем»

Лямбда-зонд — Википедия

Лямбда-зонд (λ-зонд) — датчик остаточного кислорода (например, в выпускном коллекторе двигателя или дымоходе отопительного котла). Позволяет оценивать количество оставшегося не сгоревшего топлива либо кислорода в выхлопных газах. Данные показания позволяют приготовлять оптимальную воздушно-топливную смесь, а также снижать количество вредных для человека побочных продуктов процесса сгорания.

Узкополосный лямбда-зонд

Лямбда-зонд порогового типа действует по принципу гальванического элемента/твердооксидного топливного элемента с твердым электролитом в виде керамики из диоксида циркония (ZrO2). Керамика легирована оксидом иттрия, а поверх неё напылены токопроводящие пористые электроды из платины, одновременно являющейся катализатором окислительно-восстановительных реакций. Один из электродов омывается горячими выхлопными газами (внешняя сторона датчика), а второй — воздухом из атмосферы (внутренняя сторона датчика). Эффективное измерение состава отработавших газов лямбда-зонд обеспечивает после разогрева до определенной температуры выше 300°C. Только в таких условиях циркониевый электролит приобретает проводимость, а гальваническая ячейка начинает работать. Для работы датчика атмосферный кислород нужен в очень небольшом количестве, поэтому, в целом герметичный для воды, датчик делается таким образом, чтобы кислород немного попадал внутрь со стороны проводки.

Если при работе двигателя и датчика ионы свободного кислорода присутствуют лишь с внутренней стороны элемента, то есть имеется лишь атмосферный кислород, то разогретая ячейка самостоятельно начинает генерировать ЭДС, а значит, на блок управления с датчика начинает поступать электрический ток с определённым напряжением. Это означает для ЭБУ автомобиля, что смесь была «богатой». На практике этому соответствует примерно 0,8-0,9 вольт. Если свободный кислород появляется в составе выхлопа с внешней стороны датчика, то выработка ЭДС снижается, а если кислорода достаточно много, то полностью прекращается, то есть кислород из выхлопа блокирует работу ячейки. Это означает для ЭБУ, что смесь была «бедной». На практике этому соответствует примерно 0,1-0,2 вольт. Если ЭДС стремится к нулю, то это означает что смесь абсолютно бедная, например в двигатель не поступает топливо. Напряжение с датчика 0,45 вольт считается оптимальным, и свидетельствует, что сжигаемая смесь обладает стехиометрическим соотношением топлива и воздуха.

Конструктивно, датчики делятся по числу проводов и наличию подогревательного элемента. Датчики без нагревательного элемента используют 1 или 2 провода, с нагревательным элементом — 3 или 4 провода. Первое поколение датчиков разогревалось лишь от выхлопных газов, поэтому начинало давать сигнал сравнительно поздно после старта двигателя. Появившиеся позже датчики с нагревательным элементом стали выводить датчик в рабочее состояние очень быстро, что отвечало возросшим требованиям экологии, а также позволяло использовать датчик, когда температуры выхлопных газов оказывалось недостаточно.

В начале работы, после запуска мотора, лямбда-зонд не выдаёт показаний, и ЭБУ вынужден использовать только карты впрыска, прописанные в нём. Это режим работы без обратной связи, и коррекции топливной смеси по лямбда-зонду в этом режиме нет. Когда с датчика появляется сигнал, то ЭБУ автомобиля переходит в режим работы с обратной связью, при котором исходные топливные карты корректируются с учётом показаний с лямбда-зонда в режиме реального времени.

Сигнал используется системой управления для поддержания оптимального (стехиометрического, около 14,7:1) соотношения воздушно-топливной смеси.

  • λ=1 — стехиометрическая (теоретически идеальная) смесь;
  • λ>1 — бедная смесь;
  • λ<1 — богатая смесь (избыток топлива, воздуха не хватает для полного сгорания).

Работа датчика не линейна во времени, показания отклоняются от оптимального очень быстро, поэтому ЭБУ вынужден постоянно корректировать смесь. При этом двигатель редко работает на идеальном стехиометрическом составе смеси, однако смесь постоянно стремится к достижению идеальной пропорции. Лямбда-зонд не сообщает о том, сколько именно кислорода в выхлопных газах, он сигнализирует о том, есть ли свободный кислород в выхлопе или нет. Факт наличия свободного кислорода и означает, что топлива в смеси должно быть больше, поскольку часть кислорода не вступила в реакцию. И наоборот, если кислорода нет или очень мало, то требуется уменьшить подачу топлива, тем более, что если топлива окажется слишком много, то это приведёт к появлению сажи и так называемого «грязного» выхлопа. В реальности, достичь и долго удерживать идеальную стехиометрическую смесь невозможно, так как существует множество факторов, постоянно влияющих на смесеобразование и её сгорание. Поэтому, целью является не само достижение стехиометрического соотношения, а стремление к этому, путём постоянной коррекции смеси и пребывания её поочередно то в "условно-бедном", то в "условно-богатом" состоянии, не отдаляясь от оптимального состава. Правильность работы датчика даёт возможность максимально сократить разницу между реальным соотношением воздуха/топлива и стехиометрическим.

График вольтажа с датчика обычно имеет вид синусоиды с довольно резким переходом от верхних значений к нижним, и наоборот. Принцип цикла таков: датчик сообщил, что смесь "бедная" — ЭБУ начинает постепенно добавлять топлива; далее датчик сообщает, что смесь стала "богатой" — ЭБУ начинает уменьшать подачу топлива, и так постоянно, пока активна обратная связь. Изменение подачи топлива (как реакция на показания лямбда-зонда) обычно выполняется с использованием двух переменных в ЭБУ — «долгая» коррекция и «краткая» коррекция, и они заложены в стандарт диагностики OBD-II. Краткая коррекция позволяет смеси следовать за датчиком сиюсекундно. Долгая коррекция вычисляется ЭБУ на основании анализа краткой коррекции, и нужна для того чтобы сдвигать всю коррекцию, фактически подстраиваясь под особенности и состояние конкретного образца мотора. Каждая коррекция может изменять впрыск в установленных производителем пределах, и если сумма долгой и краткой коррекций выйдет за общий предел, то обычно ЭБУ сигнализирует об ошибке смесеобразования с помощью индикатора «check engine». ЭБУ обычно использует режим работы с обратной связью по лямбда-зонду до определённого процента расчётной нагрузки на мотор. Далее ЭБУ временно прекращает режим коррекции, так как возникает вероятность неэффективной коррекции, и в этих условиях использование карт впрыска оказывается предпочтительным.

Поскольку некоторое количество кислорода должно присутствовать в выхлопе для нормального дожигания СО и СН[неизвестный термин] в катализаторе, для более точного регулирования может использоваться и второй лямбда-зонд, расположенный за катализатором или внутри него.

Широкополосный лямбда-зонд

Разновидность кислородного датчика.

Основная разница зонда с широким диапазоном измерения по отношению к обычным узкополосным λ-зондам — это комбинация сенсорных ячеек и так называемых накачивающих ячеек. Состав его газового содержимого постоянно соответствует λ=1, что для сенсорной ячейки значит напряжение в 450 милливольт. Содержание газа в зазоре и вместе с ним напряжение сенсора поддерживаются посредством различных напряжений, прикладываемых к накачивающей ячейке. При бедной смеси и напряжении сенсора ниже 450 милливольт ячейка выкачивает кислород из диффузионной полости. Если смесь богатая и напряжение лежит выше 450 милливольт, ток меняет своё направление, и накачивающие ячейки транспортируют кислород в диффузионные расщелины. При этом интегрированный нагревающий элемент устанавливает температуру области от 700 до 800 градусов. Датчик типа LSU при погружении в несгоревшую смесь, содержащую одновременно и топливо и кислород, будет указывать «избыток воздуха», в отличие от порогового, сигнал которого надо интерпретировать «избыток топлива».

Выходной сигнал широкодиапазонного датчика зависит от его контроллера управления, может быть токовым или потенциальным. Например, выходной ток контроллера широкополосного датчика Ipn и соответствующие значения λ[1]:

Ipn, мА −5.000 −4.000 −3.000 −2.000 −1.000 −0.500 0.000 0.500 1.000 1.500 2.000 2.500 3.000 4.000
λ 0.673 0.704 0.753 0.818 0.900 0.948 1.000 1.118 1.266 1.456 1.709 2.063 2.592 5.211

Основным преимуществом широкополосного зонда по отношению к узкополосному является устранение циклического перехода дискретных показаний "бедная смесь - богатая смесь". Блок управления получает информацию о степени несоответствия смеси оптимальному значению, и это ему позволяет точнее и быстрее корректировать смесь для достижения её полного сгорания без свободного кислорода.

Примечания

Ссылки

Лямбда-зонд — Википедия

Лямбда-зонд (λ-зонд) — датчик остаточного кислорода (например, в выпускном коллекторе двигателя или дымоходе отопительного котла). Позволяет оценивать количество оставшегося не сгоревшего топлива либо кислорода в выхлопных газах. Данные показания позволяют приготовлять оптимальную воздушно-топливную смесь, а также снижать количество вредных для человека побочных продуктов процесса сгорания.

Узкополосный лямбда-зонд

Лямбда-зонд порогового типа действует по принципу гальванического элемента/твердооксидного топливного элемента с твердым электролитом в виде керамики из диоксида циркония (ZrO2). Керамика легирована оксидом иттрия, а поверх неё напылены токопроводящие пористые электроды из платины, одновременно являющейся катализатором окислительно-восстановительных реакций. Один из электродов омывается горячими выхлопными газами (внешняя сторона датчика), а второй — воздухом из атмосферы (внутренняя сторона датчика). Эффективное измерение состава отработавших газов лямбда-зонд обеспечивает после разогрева до определенной температуры выше 300°C. Только в таких условиях циркониевый электролит приобретает проводимость, а гальваническая ячейка начинает работать. Для работы датчика атмосферный кислород нужен в очень небольшом количестве, поэтому, в целом герметичный для воды, датчик делается таким образом, чтобы кислород немного попадал внутрь со стороны проводки.

Если при работе двигателя и датчика ионы свободного кислорода присутствуют лишь с внутренней стороны элемента, то есть имеется лишь атмосферный кислород, то разогретая ячейка самостоятельно начинает генерировать ЭДС, а значит, на блок управления с датчика начинает поступать электрический ток с определённым напряжением. Это означает для ЭБУ автомобиля, что смесь была «богатой». На практике этому соответствует примерно 0,8-0,9 вольт. Если свободный кислород появляется в составе выхлопа с внешней стороны датчика, то выработка ЭДС снижается, а если кислорода достаточно много, то полностью прекращается, то есть кислород из выхлопа блокирует работу ячейки. Это означает для ЭБУ, что смесь была «бедной». На практике этому соответствует примерно 0,1-0,2 вольт. Если ЭДС стремится к нулю, то это означает что смесь абсолютно бедная, например в двигатель не поступает топливо. Напряжение с датчика 0,45 вольт считается оптимальным, и свидетельствует, что сжигаемая смесь обладает стехиометрическим соотношением топлива и воздуха.

Конструктивно, датчики делятся по числу проводов и наличию подогревательного элемента. Датчики без нагревательного элемента используют 1 или 2 провода, с нагревательным элементом — 3 или 4 провода. Первое поколение датчиков разогревалось лишь от выхлопных газов, поэтому начинало давать сигнал сравнительно поздно после старта двигателя. Появившиеся позже датчики с нагревательным элементом стали выводить датчик в рабочее состояние очень быстро, что отвечало возросшим требованиям экологии, а также позволяло использовать датчик, когда температуры выхлопных газов оказывалось недостаточно.

В начале работы, после запуска мотора, лямбда-зонд не выдаёт показаний, и ЭБУ вынужден использовать только карты впрыска, прописанные в нём. Это режим работы без обратной связи, и коррекции топливной смеси по лямбда-зонду в этом режиме нет. Когда с датчика появляется сигнал, то ЭБУ автомобиля переходит в режим работы с обратной связью, при котором исходные топливные карты корректируются с учётом показаний с лямбда-зонда в режиме реального времени.

Сигнал используется системой управления для поддержания оптимального (стехиометрического, около 14,7:1) соотношения воздушно-топливной смеси.

  • λ=1 — стехиометрическая (теоретически идеальная) смесь;
  • λ>1 — бедная смесь;
  • λ<1 — богатая смесь (избыток топлива, воздуха не хватает для полного сгорания).

Работа датчика не линейна во времени, показания отклоняются от оптимального очень быстро, поэтому ЭБУ вынужден постоянно корректировать смесь. При этом двигатель редко работает на идеальном стехиометрическом составе смеси, однако смесь постоянно стремится к достижению идеальной пропорции. Лямбда-зонд не сообщает о том, сколько именно кислорода в выхлопных газах, он сигнализирует о том, есть ли свободный кислород в выхлопе или нет. Факт наличия свободного кислорода и означает, что топлива в смеси должно быть больше, поскольку часть кислорода не вступила в реакцию. И наоборот, если кислорода нет или очень мало, то требуется уменьшить подачу топлива, тем более, что если топлива окажется слишком много, то это приведёт к появлению сажи и так называемого «грязного» выхлопа. В реальности, достичь и долго удерживать идеальную стехиометрическую смесь невозможно, так как существует множество факторов, постоянно влияющих на смесеобразование и её сгорание. Поэтому, целью является не само достижение стехиометрического соотношения, а стремление к этому, путём постоянной коррекции смеси и пребывания её поочередно то в "условно-бедном", то в "условно-богатом" состоянии, не отдаляясь от оптимального состава. Правильность работы датчика даёт возможность максимально сократить разницу между реальным соотношением воздуха/топлива и стехиометрическим.

График вольтажа с датчика обычно имеет вид синусоиды с довольно резким переходом от верхних значений к нижним, и наоборот. Принцип цикла таков: датчик сообщил, что смесь "бедная" — ЭБУ начинает постепенно добавлять топлива; далее датчик сообщает, что смесь стала "богатой" — ЭБУ начинает уменьшать подачу топлива, и так постоянно, пока активна обратная связь. Изменение подачи топлива (как реакция на показания лямбда-зонда) обычно выполняется с использованием двух переменных в ЭБУ — «долгая» коррекция и «краткая» коррекция, и они заложены в стандарт диагностики OBD-II. Краткая коррекция позволяет смеси следовать за датчиком сиюсекундно. Долгая коррекция вычисляется ЭБУ на основании анализа краткой коррекции, и нужна для того чтобы сдвигать всю коррекцию, фактически подстраиваясь под особенности и состояние конкретного образца мотора. Каждая коррекция может изменять впрыск в установленных производителем пределах, и если сумма долгой и краткой коррекций выйдет за общий предел, то обычно ЭБУ сигнализирует об ошибке смесеобразования с помощью индикатора «check engine». ЭБУ обычно использует режим работы с обратной связью по лямбда-зонду до определённого процента расчётной нагрузки на мотор. Далее ЭБУ временно прекращает режим коррекции, так как возникает вероятность неэффективной коррекции, и в этих условиях использование карт впрыска оказывается предпочтительным.

Поскольку некоторое количество кислорода должно присутствовать в выхлопе для нормального дожигания СО и СН[неизвестный термин] в катализаторе, для более точного регулирования может использоваться и второй лямбда-зонд, расположенный за катализатором или внутри него.

Широкополосный лямбда-зонд

Разновидность кислородного датчика.

Основная разница зонда с широким диапазоном измерения по отношению к обычным узкополосным λ-зондам — это комбинация сенсорных ячеек и так называемых накачивающих ячеек. Состав его газового содержимого постоянно соответствует λ=1, что для сенсорной ячейки значит напряжение в 450 милливольт. Содержание газа в зазоре и вместе с ним напряжение сенсора поддерживаются посредством различных напряжений, прикладываемых к накачивающей ячейке. При бедной смеси и напряжении сенсора ниже 450 милливольт ячейка выкачивает кислород из диффузионной полости. Если смесь богатая и напряжение лежит выше 450 милливольт, ток меняет своё направление, и накачивающие ячейки транспортируют кислород в диффузионные расщелины. При этом интегрированный нагревающий элемент устанавливает температуру области от 700 до 800 градусов. Датчик типа LSU при погружении в несгоревшую смесь, содержащую одновременно и топливо и кислород, будет указывать «избыток воздуха», в отличие от порогового, сигнал которого надо интерпретировать «избыток топлива».

Выходной сигнал широкодиапазонного датчика зависит от его контроллера управления, может быть токовым или потенциальным. Например, выходной ток контроллера широкополосного датчика Ipn и соответствующие значения λ[1]:

Ipn, мА −5.000 −4.000 −3.000 −2.000 −1.000 −0.500 0.000 0.500 1.000 1.500 2.000 2.500 3.000 4.000
λ 0.673 0.704 0.753 0.818 0.900 0.948 1.000 1.118 1.266 1.456 1.709 2.063 2.592 5.211

Основным преимуществом широкополосного зонда по отношению к узкополосному является устранение циклического перехода дискретных показаний "бедная смесь - богатая смесь". Блок управления получает информацию о степени несоответствия смеси оптимальному значению, и это ему позволяет точнее и быстрее корректировать смесь для достижения её полного сгорания без свободного кислорода.

Примечания

Ссылки

Лямбда-зонд — Википедия

Oxygen sensor.gif

Лямбда-зонд (λ-зонд) — датчик остаточного кислорода (например, в выпускном коллекторе двигателя или дымоходе отопительного котла). Позволяет оценивать количество оставшегося не сгоревшего топлива либо кислорода в выхлопных газах. Данные показания позволяют приготовлять оптимальную воздушно-топливную смесь, а также снижать количество вредных для человека побочных продуктов процесса сгорания.

Узкополосный лямбда-зонд

LambdasondeRB.jpg

Лямбда-зонд порогового типа действует по принципу гальванического элемента/твердооксидного топливного элемента с твердым электролитом в виде керамики из диоксида циркония (ZrO2). Керамика легирована оксидом иттрия, а поверх неё напылены токопроводящие пористые электроды из платины, одновременно являющейся катализатором окислительно-восстановительных реакций. Один из электродов омывается горячими выхлопными газами (внешняя сторона датчика), а второй — воздухом из атмосферы (внутренняя сторона датчика). Эффективное измерение состава отработавших газов лямбда-зонд обеспечивает после разогрева до определенной температуры выше 300°C. Только в таких условиях циркониевый электролит приобретает проводимость, а гальваническая ячейка начинает работать. Для работы датчика атмосферный кислород нужен в очень небольшом количестве, поэтому, в целом герметичный для воды, датчик делается таким образом, чтобы кислород немного попадал внутрь со стороны проводки.

Если при работе двигателя и датчика ионы свободного кислорода присутствуют лишь с внутренней стороны элемента, то есть имеется лишь атмосферный кислород, то разогретая ячейка самостоятельно начинает генерировать ЭДС, а значит, на блок управления с датчика начинает поступать электрический ток с определённым напряжением. Это означает для ЭБУ автомобиля, что смесь была «богатой». На практике этому соответствует примерно 0,8-0,9 вольт. Если свободный кислород появляется в составе выхлопа с внешней стороны датчика, то выработка ЭДС снижается, а если кислорода достаточно много, то полностью прекращается, то есть кислород из выхлопа блокирует работу ячейки. Это означает для ЭБУ, что смесь была «бедной». На практике этому соответствует примерно 0,1-0,2 вольт. Если ЭДС стремится к нулю, то это означает что смесь абсолютно бедная, например в двигатель не поступает топливо. Напряжение с датчика 0,45 вольт считается оптимальным, и свидетельствует, что сжигаемая смесь обладает стехиометрическим соотношением топлива и воздуха.

Конструктивно, датчики делятся по числу проводов и наличию подогревательного элемента. Датчики без нагревательного элемента используют 1 или 2 провода, с нагревательным элементом — 3 или 4 провода. Первое поколение датчиков разогревалось лишь от выхлопных газов, поэтому начинало давать сигнал сравнительно поздно после старта двигателя. Появившиеся позже датчики с нагревательным элементом стали выводить датчик в рабочее состояние очень быстро, что отвечало возросшим требованиям экологии, а также позволяло использовать датчик, когда температуры выхлопных газов оказывалось недостаточно.

В начале работы, после запуска мотора, лямбда-зонд не выдаёт показаний, и ЭБУ вынужден использовать только карты впрыска, прописанные в нём. Это режим работы без обратной связи, и коррекции топливной смеси по лямбда-зонду в этом режиме нет. Когда с датчика появляется сигнал, то ЭБУ автомобиля переходит в режим работы с обратной связью, при котором исходные топливные карты корректируются с учётом показаний с лямбда-зонда в режиме реального времени.

Сигнал используется системой управления для поддержания оптимального (стехиометрического, около 14,7:1) соотношения воздушно-топливной смеси.

  • λ=1 — стехиометрическая (теоретически идеальная) смесь;
  • λ>1 — бедная смесь;
  • λ<1 — богатая смесь (избыток топлива, воздуха не хватает для полного сгорания).

Работа датчика не линейна во времени, показания отклоняются от оптимального очень быстро, поэтому ЭБУ вынужден постоянно корректировать смесь. При этом двигатель редко работает на идеальном стехиометрическом составе смеси, однако смесь постоянно стремится к достижению идеальной пропорции. Лямбда-зонд не сообщает о том, сколько именно кислорода в выхлопных газах, он сигнализирует о том, есть ли свободный кислород в выхлопе или нет. Факт наличия свободного кислорода и означает, что топлива в смеси должно быть больше, поскольку часть кислорода не вступила в реакцию. И наоборот, если кислорода нет или очень мало, то требуется уменьшить подачу топлива, тем более, что если топлива окажется слишком много, то это приведёт к появлению сажи и так называемого «грязного» выхлопа. В реальности, достичь и долго удерживать идеальную стехиометрическую смесь невозможно, так как существует множество факторов, постоянно влияющих на смесеобразование и её сгорание. Поэтому, целью является не само достижение стехиометрического соотношения, а стремление к этому, путём постоянной коррекции смеси и пребывания её поочередно то в "условно-бедном", то в "условно-богатом" состоянии, не отдаляясь от оптимального состава. Правильность работы датчика даёт возможность максимально сократить разницу между реальным соотношением воздуха/топлива и стехиометрическим.

График вольтажа с датчика обычно имеет вид синусоиды с довольно резким переходом от верхних значений к нижним, и наоборот. Принцип цикла таков: датчик сообщил, что смесь "бедная" — ЭБУ начинает постепенно добавлять топлива; далее датчик сообщает, что смесь стала "богатой" — ЭБУ начинает уменьшать подачу топлива, и так постоянно, пока активна обратная связь. Изменение подачи топлива (как реакция на показания лямбда-зонда) обычно выполняется с использованием двух переменных в ЭБУ — «долгая» коррекция и «краткая» коррекция, и они заложены в стандарт диагностики OBD-II. Краткая коррекция позволяет смеси следовать за датчиком сиюсекундно. Долгая коррекция вычисляется ЭБУ на основании анализа краткой коррекции, и нужна для того чтобы сдвигать всю коррекцию, фактически подстраиваясь под особенности и состояние конкретного образца мотора. Каждая коррекция может изменять впрыск в установленных производителем пределах, и если сумма долгой и краткой коррекций выйдет за общий предел, то обычно ЭБУ сигнализирует об ошибке смесеобразования с помощью индикатора «check engine». ЭБУ обычно использует режим работы с обратной связью по лямбда-зонду до определённого процента расчётной нагрузки на мотор. Далее ЭБУ временно прекращает режим коррекции, так как возникает вероятность неэффективной коррекции, и в этих условиях использование карт впрыска оказывается предпочтительным.

Поскольку некоторое количество кислорода должно присутствовать в выхлопе для нормального дожигания СО и СН[неизвестный термин] в катализаторе, для более точного регулирования может использоваться и второй лямбда-зонд, расположенный за катализатором или внутри него.

O2SENSOR.png

Широкополосный лямбда-зонд

Разновидность кислородного датчика.

Wbo2.png

Основная разница зонда с широким диапазоном измерения по отношению к обычным узкополосным λ-зондам — это комбинация сенсорных ячеек и так называемых накачивающих ячеек. Состав его газового содержимого постоянно соответствует λ=1, что для сенсорной ячейки значит напряжение в 450 милливольт. Содержание газа в зазоре и вместе с ним напряжение сенсора поддерживаются посредством различных напряжений, прикладываемых к накачивающей ячейке. При бедной смеси и напряжении сенсора ниже 450 милливольт ячейка выкачивает кислород из диффузионной полости. Если смесь богатая и напряжение лежит выше 450 милливольт, ток меняет своё направление, и накачивающие ячейки транспортируют кислород в диффузионные расщелины. При этом интегрированный нагревающий элемент устанавливает температуру области от 700 до 800 градусов. Датчик типа LSU при погружении в несгоревшую смесь, содержащую одновременно и топливо и кислород, будет указывать «избыток воздуха», в отличие от порогового, сигнал которого надо интерпретировать «избыток топлива».

Выходной сигнал широкодиапазонного датчика зависит от его контроллера управления, может быть токовым или потенциальным. Например, выходной ток контроллера широкополосного датчика Ipn и соответствующие значения λ[1]:

Ipn, мА −5.000 −4.000 −3.000 −2.000 −1.000 −0.500 0.000 0.500 1.000 1.500 2.000 2.500 3.000 4.000
λ 0.673 0.704 0.753 0.818 0.900 0.948 1.000 1.118 1.266 1.456 1.709 2.063 2.592 5.211

Основным преимуществом широкополосного зонда по отношению к узкополосному является устранение циклического перехода дискретных показаний "бедная смесь - богатая смесь". Блок управления получает информацию о степени несоответствия смеси оптимальному значению, и это ему позволяет точнее и быстрее корректировать смесь для достижения её полного сгорания без свободного кислорода.

Примечания

Ссылки

Лямбда-зонд Википедия

Oxygen sensor.gif

Лямбда-зонд (λ-зонд) — датчик остаточного кислорода (например, в выпускном коллекторе двигателя или дымоходе отопительного котла). Позволяет оценивать количество оставшегося не сгоревшего топлива либо кислорода в выхлопных газах. Данные показания позволяют приготовлять оптимальную воздушно-топливную смесь, а также снижать количество вредных для человека побочных продуктов процесса сгорания.

Узкополосный лямбда-зонд[ | ]

LambdasondeRB.jpg

Лямбда-зонд порогового типа действует по принципу гальванического элемента/твердооксидного топливного элемента с твердым электролитом в виде керамики из диоксида циркония (ZrO2). Керамика легирована оксидом иттрия, а поверх неё напылены токопроводящие пористые электроды из платины, одновременно являющейся катализатором окислительно-восстановительных реакций. Один из электродов омывается горячими выхлопными газами (внешняя сторона датчика), а второй — воздухом из атмосферы (внутренняя сторона датчика). Эффективное измерение состава отработавших газов лямбда-зонд обеспечивает после разогрева до определенной температуры выше 300°C. Только в таких условиях циркониевый электролит приобретает проводимость, а гальваническая ячейка начинает работать. Для работы датчика атмосферный кислород нужен в очень небольшом количестве, поэтому, в целом герметичный для воды, датчик делается таким образом, чтобы кислород немного попадал внутрь со стороны проводки.

Если при работе двигателя и датчика ионы свободного кислорода присутствуют лишь с внутренней стороны элемента, то есть имеется лишь атмосферный кислород, то разогретая ячейка самостоятельно начинает генерировать ЭДС, а значит, на блок управления с датчика начинает поступать электрический ток с определённым напряжением. Это означает для ЭБУ автомобиля, что смесь была «богатой». На практике этому соответствует примерно 0,8-0,9 вольт. Если свободный кислород появляется в составе выхлопа с внешней стороны датчика, то выработка ЭДС снижается, а если кислорода достаточно много, то полностью прекращается, то есть кислород из выхлопа блокирует работу ячейки. Это означает для ЭБУ, что смесь была «бедной». На практике этому соответствует примерно 0,1-0,2 вольт. Если ЭДС стремится к нулю, то это означает что смесь абсолютно бедная, например в двигатель не поступает топливо. Напряжение с датчика 0,45 вольт считается оптимальным, и свидетельствует, что сжигаемая смесь обладает стехиометрическим соотношением топлива и воздуха.

Конструктивно, датчики делятся по числу проводов и наличию подогревательного элемента. Датчики без нагревательного элемента используют 1 или 2 провода, с нагревательным элементом — 3 или 4 провода. Первое поколение датчиков разогревалось лишь от выхлопных газов, поэтому начинало давать сигнал сравнительно поздно после старта двигателя. Появившиеся позже датчики с нагревательным элементом стали выводить датчик в рабочее состояние очень быстро, что отвечало возросшим требованиям экологии, а также позволяло использовать датчик, когда температуры выхлопных газов оказывалось недостаточно.

В начале работы, после запуска мотора, лямбда-зонд не выдаёт показаний, и ЭБУ вынужден использовать только карты впрыска, прописанные в нём. Это режим работы без обратной связи, и коррекции топливной смеси по лямбда-зонду в этом режиме нет. Когда с датчика появляется сигнал, то ЭБУ автомобиля переходит в режим работы с обратной связью, при котором исходные топливные карты корректируются с учётом показаний с лямбда-зонда в режиме реального времени.

Сигнал используется системой управления для поддержания оптимального (стехиометрического, около 14,7:1) соотношения воздушно-топливной смеси.

  • λ=1 — стехиометрическая (теоретически идеальная) смесь;
  • λ>1 — бедная смесь;
  • λ<1 — богатая смесь (избыток топлива, воздуха не хватает для полного сгорания).

Работа датчика не линейна во времени, показания отклоняются от оптимального очень быстро, поэтому ЭБУ вынужден постоянно корректировать смесь. При этом двигатель редко работает на идеальном стехиометрическом составе смеси, однако смесь постоянно стремится к достижению идеальной пропорции. Лямбда-зонд не сообщает о том, сколько именно кислорода в выхлопных газах, он сигнализирует о том, есть ли свободный кислород в выхлопе или нет. Факт наличия свободного кислорода и означает, что топлива в смеси должно быть больше, поскольку часть кислорода не вступила в реакцию. И наоборот, если кислорода нет или очень мало, то требуется уменьшить подачу топлива, тем более, что если топлива окажется слишком много, то это приведёт к появлению сажи и так называемого «грязного» выхлопа. В реальности, достичь и долго удерживать идеальную стехиометрическую смесь невозможно, так как существует множество факторов, постоянно влияющих на смесеобразование и её сгорание. Поэтому, целью является не само достижение стехиометрического соотношения, а

Лямбда-Зонд — Энциклопедия журнала "За рулем"

Лямбда—зонд (Дат­чик ки­с­ло­ро­да) вы­да­ет элек­т­ри­че­ский им­пульс на сво­их вы­ход­ных кон­та­к­тах в за­ви­си­мо­сти от на­ли­чия или отсут­ст­вия ки­с­ло­ро­да в от­ра­бо­тав­ших га­зах. Ес­ли ки­с­ло­род по­я­вил­ся, смесь со­дер­жит из­бы­ток воз­ду­ха (обед­не­на), ес­ли ки­с­ло­род исчез, смесь со­дер­жит из­бы­ток то­п­ли­ва (обо­га­ще­на). По сиг­на­лу дат­чи­ка элек­трон­ная си­с­те­ма уп­ра­в­ле­ния дви­га­те­лем по­сто­ян­но поддер­жи­ва­ет смесь сте­хио­мет­ри­че­ско­го со­ста­ва.

1 — металлический корпус с резьбой и шестигранником “под ключ”;
2 — уплотнительное кольцо;
3 — токосъемник электрического сигнала;
4 — керамический изолятор;
5 — провода;
6 — манжета проводов уплотнительная;
7 — токоподводящий контакт провода питания нагревателя;
8 — наружный защитный экран с отверстием для атмосферного воздуха;
9 — электрический нагреватель;
10 — керамический наконечник;
11 — защитный экран с отверстием для отработавших газов.

Этот датчик определяет количество кислорода в отработавших газах, а его электрический сигнал использует ЭБУ, который соответственно изменяет количество впрыскиваемого топлива. Принцип действия датчика заключается в способности пропускать через себя ионы кислорода. Если содержание кислорода на активных поверхностях датчика (одна из которой контактирует с атмосферой, а другая с отработавшими газами) значительно отличается, происходит резкое изменение напряжения на выводах датчика. Иногда устанавливают два датчика концентрации кислорода: один — до нейтрализатора, а другой — после.
Для того чтобы катализатор и датчик концентрации кислорода могли эффективно работать, они должны быть прогреты до определенной температуры. Минимальная температура, при которой задерживается 90 % вредных веществ, составляет порядка 300 °С. Необходимо также избегать перегрева нейтрализатора, поскольку это может привести к повреждению наполнителя и частично блокировать проход для газов. Если двигатель начинает работать с перебоями, то несгоревшее топливо догорает в катализаторе, резко увеличивая его температуру. Иногда может быть достаточно нескольких минут работы двигателя с перебоями, чтобы полностью повредить нейтрализатор. Вот почему электронные системы современных двигателей должны выявлять пропуски в работе и предотвращать их, а также предупреждать водителя о серьезности этой проблемы. Иногда для ускорения прогрева каталитического нейтрализатора после пуска холодного двигателя применяют электрические нагреватели. Датчики концентрации кислорода, применяющиеся в настоящее время, практически все имеют нагревательные элементы.
В современных двигателях, с целью ограничения выбросов вредных веществ в атмосферу во время прогрева двигателя, предварительные каталитические найтрализаторы устанавливают максимально близко к выпускному коллектору, чтобы обеспечить быстрый прогрев нейтрализатора до рабочей температуры. Кислородные датчики установлены до и после нейтрализатора.
Для улучшения экологических показателей работы двигателя необходимо не только совершенствовать нейтрализаторы отработавших газов, но и улучшать процессы, протекающие в двигателе. Содержание углеводородов стало возможным снизить за счет уменьшения «щелевых объемов», таких как зазор между поршнем и стенкой цилиндра над верхним компрессионным кольцом и полостей вокруг седел клапанов.

Зависимость эффективности действия нейтрализатора от коэффициента избытка воздуха

Тщательное исследование потоков горючей смеси внутри цилиндра с помощью компьютерной техники дало возможность обеспечить более полное сгорание и низкий уровень СО. Уровень NOx был уменьшен с помощью системы рециркуляции отработавших газов путем забора части газа из выпускной системы и подачи его в поток воздуха на впуске. Эти меры и быстрый, точный контроль за работой двигателя на переходных режимах могут свести вредные выбросы к минимуму еще до катализатора. Для ускорения прогрева каталитического нейтрализатора и выхода его на рабочий режим используется также способ вторичной подачи воздуха в выпускной коллектор с помощью специального электроприводного насоса.
Другим эффективным и распространенным способом нейтрализации вредных продуктов в отработавших газах является пламенное дожигание, которое основано на способности горючих составляющих отработавших газов (СО, СН, альдегиды) окисляться при высоких температурах. Отработавшие газы поступают в камеру дожигателя, имеющую эжектор, через который поступает нагретый воздух из теплообменника. Горение происходит в камере, а для воспламенения служит запальная свеча.

Кислородный датчик Википедия

Oxygen sensor.gif

Лямбда-зонд (λ-зонд) — датчик остаточного кислорода (например, в выпускном коллекторе двигателя или дымоходе отопительного котла). Позволяет оценивать количество оставшегося не сгоревшего топлива либо кислорода в выхлопных газах. Данные показания позволяют приготовлять оптимальную воздушно-топливную смесь, а также снижать количество вредных для человека побочных продуктов процесса сгорания.

Узкополосный лямбда-зонд[ | ]

LambdasondeRB.jpg

Лямбда-зонд порогового типа действует по принципу гальванического элемента/твердооксидного топливного элемента с твердым электролитом в виде керамики из диоксида циркония (ZrO2). Керамика легирована оксидом иттрия, а поверх неё напылены токопроводящие пористые электроды из платины, одновременно являющейся катализатором окислительно-восстановительных реакций. Один из электродов омывается горячими выхлопными газами (внешняя сторона датчика), а второй — воздухом из атмосферы (внутренняя сторона датчика). Эффективное измерение состава отработавших газов лямбда-зонд обеспечивает после разогрева до определенной температуры выше 300°C. Только в таких условиях циркониевый электролит приобретает проводимость, а гальваническая ячейка начинает работать. Для работы датчика атмосферный кислород нужен в очень небольшом количестве, поэтому, в целом герметичный для воды, датчик делается таким образом, чтобы кислород немного попадал внутрь со стороны проводки.

Если при работе двигателя и датчика ионы свободного кислорода присутствуют лишь с внутренней стороны элемента, то есть имеется лишь атмосферный кислород, то разогретая ячейка самостоятельно начинает генерировать ЭДС, а значит, на блок управления с датчика начинает поступать электрический ток с определённым напряжением. Это означает для ЭБУ автомобиля, что смесь была «богатой». На практике этому соответствует примерно 0,8-0,9 вольт. Если свободный кислород появляется в составе выхлопа с внешней стороны датчика, то выработка ЭДС снижается, а если кислорода достаточно много, то полностью прекращается, то есть кислород из выхлопа блокирует работу ячейки. Это означает для ЭБУ, что смесь была «бедной». На практике этому соответствует примерно 0,1-0,2 вольт. Если ЭДС стремится к нулю, то это означает что смесь абсолютно бедная, например в двигатель не поступает топливо. Напряжение с датчика 0,45 вольт считается оптимальным, и свидетельствует, что сжигаемая смесь обладает стехиометрическим соотношением топлива и воздуха.

Конструктивно, датчики делятся по числу проводов и наличию подогревательного элемента. Датчики без нагревательного элемента используют 1 или 2 провода, с нагревательным элементом — 3 или 4 провода. Первое поколение датчиков разогревалось лишь от выхлопных газов, поэтому начинало давать сигнал сравнительно поздно после старта двигателя. Появившиеся позже датчики с нагревательным элементом стали выводить датчик в рабочее состояние очень быстро, что отвечало возросшим требованиям экологии, а также позволяло использовать датчик, когда температуры выхлопных газов оказывалось недостаточно.

В начале работы, после запуска мотора, лямбда-зонд не выдаёт показаний, и ЭБУ вынужден использовать только карты впрыска, прописанные в нём. Это режим работы без обратной связи, и коррекции топливной смеси по лямбда-зонду в этом режиме нет. Когда с датчика появляется сигнал, то ЭБУ автомобиля переходит в режим работы с обратной связью, при котором исходные топливные карты корректируются с учётом показаний с лямбда-зонда в режиме реального времени.

Сигнал используется системой управления для поддержания оптимального (стехиометрического, около 14,7:1) соотношения воздушно-топливной смеси.

  • λ=1 — стехиометрическая (теоретически идеальная) смесь;
  • λ>1 — бедная смесь;
  • λ<1 — богатая смесь (избыток топлива, воздуха не хватает для полного сгорания).

Работа датчика не линейна во времени, показания отклоняются от оптимального очень быстро, поэтому ЭБУ вынужден постоянно корректировать смесь. При этом двигатель редко работает на идеальном стехиометрическом составе смеси, однако смесь постоянно стремится к достижению идеальной пропорции. Лямбда-зонд не сообщает о том, сколько именно кислорода в выхлопных газах, он сигнализирует о том, есть ли свободный кислород в выхлопе или нет. Факт наличия свободного кислорода и означает, что топлива в смеси должно быть больше, поскольку часть кислорода не вступила в реакцию. И наоборот, если кислорода нет или очень мало, то требуется уменьшить подачу топлива, тем более, что если топлива окажется слишком много, то это приведёт к появлению сажи и так называемого «грязного» выхлопа. В реальности, достичь и долго удерживать идеальную стехиометрическую смесь невозможно, так как существует множество факторов, постоянно влияющих на смесеобразование и её сгорание. Поэтому, целью является не само достижение стехиометрического соотношения, а стремление

Лямбда-зонд - Вики

LambdasondeRB.jpg

Лямбда-зонд порогового типа действует по принципу гальванического элемента/твердооксидного топливного элемента с твердым электролитом в виде керамики из диоксида циркония (ZrO2). Керамика легирована оксидом иттрия, а поверх неё напылены токопроводящие пористые электроды из платины, одновременно являющейся катализатором окислительно-восстановительных реакций. Один из электродов омывается горячими выхлопными газами (внешняя сторона датчика), а второй — воздухом из атмосферы (внутренняя сторона датчика). Эффективное измерение состава отработавших газов лямбда-зонд обеспечивает после разогрева до определенной температуры выше 300°C. Только в таких условиях циркониевый электролит приобретает проводимость, а гальваническая ячейка начинает работать. Для работы датчика атмосферный кислород нужен в очень небольшом количестве, поэтому, в целом герметичный для воды, датчик делается таким образом, чтобы кислород немного попадал внутрь со стороны проводки.

Если при работе двигателя и датчика ионы свободного кислорода присутствуют лишь с внутренней стороны элемента, то есть имеется лишь атмосферный кислород, то разогретая ячейка самостоятельно начинает генерировать ЭДС, а значит, на блок управления с датчика начинает поступать электрический ток с определённым напряжением. Это означает для ЭБУ автомобиля, что смесь была «богатой». На практике этому соответствует примерно 0,8-0,9 вольт. Если свободный кислород появляется в составе выхлопа с внешней стороны датчика, то выработка ЭДС снижается, а если кислорода достаточно много, то полностью прекращается, то есть кислород из выхлопа блокирует работу ячейки. Это означает для ЭБУ, что смесь была «бедной». На практике этому соответствует примерно 0,1-0,2 вольт. Если ЭДС стремится к нулю, то это означает что смесь абсолютно бедная, например в двигатель не поступает топливо. Напряжение с датчика 0,45 вольт считается оптимальным, и свидетельствует, что сжигаемая смесь обладает стехиометрическим соотношением топлива и воздуха.

Конструктивно, датчики делятся по числу проводов и наличию подогревательного элемента. Датчики без нагревательного элемента используют 1 или 2 провода, с нагревательным элементом — 3 или 4 провода. Первое поколение датчиков разогревалось лишь от выхлопных газов, поэтому начинало давать сигнал сравнительно поздно после старта двигателя. Появившиеся позже датчики с нагревательным элементом стали выводить датчик в рабочее состояние очень быстро, что отвечало возросшим требованиям экологии, а также позволяло использовать датчик, когда температуры выхлопных газов оказывалось недостаточно.

В начале работы, после запуска мотора, лямбда-зонд не выдаёт показаний, и ЭБУ вынужден использовать только карты впрыска, прописанные в нём. Это режим работы без обратной связи, и коррекции топливной смеси по лямбда-зонду в этом режиме нет. Когда с датчика появляется сигнал, то ЭБУ автомобиля переходит в режим работы с обратной связью, при котором исходные топливные карты корректируются с учётом показаний с лямбда-зонда в режиме реального времени.

Сигнал используется системой управления для поддержания оптимального (стехиометрического, около 14,7:1) соотношения воздушно-топливной смеси.

  • λ=1 — стехиометрическая (теоретически идеальная) смесь;
  • λ>1 — бедная смесь;
  • λ<1 — богатая смесь (избыток топлива, воздуха не хватает для полного сгорания).

Работа датчика не линейна во времени, показания отклоняются от оптимального очень быстро, поэтому ЭБУ вынужден постоянно корректировать смесь. При этом двигатель редко работает на идеальном стехиометрическом составе смеси, однако смесь постоянно стремится к достижению идеальной пропорции. Лямбда-зонд не сообщает о том, сколько именно кислорода в выхлопных газах, он сигнализирует о том, есть ли свободный кислород в выхлопе или нет. Факт наличия свободного кислорода и означает, что топлива в смеси должно быть больше, поскольку часть кислорода не вступила в реакцию. И наоборот, если кислорода нет или очень мало, то требуется уменьшить подачу топлива, тем более, что если топлива окажется слишком много, то это приведёт к появлению сажи и так называемого «грязного» выхлопа. В реальности, достичь и долго удерживать идеальную стехиометрическую смесь невозможно, так как существует множество факторов, постоянно влияющих на смесеобразование и её сгорание. Поэтому, целью является не само достижение стехиометрического соотношения, а стремление к этому, путём постоянной коррекции смеси и пребывания её поочередно то в "условно-бедном", то в "условно-богатом" состоянии, не отдаляясь от оптимального состава. Правильность работы датчика даёт возможность максимально сократить разницу между реальным соотношением воздуха/топлива и стехиометрическим.

График вольтажа с датчика обычно имеет вид синусоиды с довольно резким переходом от верхних значений к нижним, и наоборот. Принцип цикла таков: датчик сообщил, что смесь "бедная" — ЭБУ начинает постепенно добавлять топлива; далее датчик сообщает, что смесь стала "богатой" — ЭБУ начинает уменьшать подачу топлива, и так постоянно, пока активна обратная связь. Изменение подачи топлива (как реакция на показания лямбда-зонда) обычно выполняется с использованием двух переменных в ЭБУ — «долгая» коррекция и «краткая» коррекция, и они заложены в стандарт диагностики OBD-II. Краткая коррекция позволяет смеси следовать за датчиком сиюсекундно. Долгая коррекция вычисляется ЭБУ на основании анализа краткой коррекции, и нужна для того чтобы сдвигать всю коррекцию, фактически подстраиваясь под особенности и состояние конкретного образца мотора. Каждая коррекция может изменять впрыск в установленных производителем пределах, и если сумма долгой и краткой коррекций выйдет за общий предел, то обычно ЭБУ сигнализирует об ошибке смесеобразования с помощью индикатора «check engine». ЭБУ обычно использует режим работы с обратной связью по лямбда-зонду до определённого процента расчётной на

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *