Унч а класса на транзисторах – Схемы усилителей мощности на германиевых транзисторах. Секреты звучания забытых германиевых УНЧ.

Содержание

виды, схемы, простые и сложные :: SYL.ru

Простейший усилитель на транзисторах может быть хорошим пособием для изучения свойств приборов. Схемы и конструкции достаточно простые, можно самостоятельно изготовить устройство и проверить его работу, произвести замеры всех параметров. Благодаря современным полевым транзисторам можно изготовить буквально из трех элементов миниатюрный микрофонный усилитель. И подключить его к персональному компьютеру для улучшения параметров звукозаписи. Да и собеседники при разговорах будут намного лучше и четче слышать вашу речь.

Частотные характеристики

Усилители низкой (звуковой) частоты имеются практически во всех бытовых приборах – музыкальных центрах, телевизорах, радиоприемниках, магнитолах и даже в персональных компьютерах. Но существуют еще усилители ВЧ на транзисторах, лампах и микросхемах. Отличие их в том, что УНЧ позволяет усилить сигнал только звуковой частоты, которая воспринимается человеческим ухом. Усилители звука на транзисторах позволяют воспроизводить сигналы с частотами в диапазоне от 20 Гц до 20000 Гц.

усилитель на транзисторахСледовательно, даже простейшее устройство способно усилить сигнал в этом диапазоне. Причем делает оно это максимально равномерно. Коэффициент усиления зависит прямо от частоты входного сигнала. График зависимости этих величин – практически прямая линия. Если же на вход усилителя подать сигнал с частотой вне диапазона, качество работы и эффективность устройства быстро уменьшатся. Каскады УНЧ собираются, как правило, на транзисторах, работающих в низко- и среднечастотном диапазонах.

Классы работы звуковых усилителей

схема усилителя на транзисторах

Все усилительные устройства разделяются на несколько классов, в зависимости от того, какая степень протекания в течение периода работы тока через каскад:

  1. Класс «А» – ток протекает безостановочно в течение всего периода работы усилительного каскада.
  2. В классе работы «В» протекает ток в течение половины периода.
  3. Класс «АВ» говорит о том, что ток протекает через усилительный каскад в течение времени, равного 50-100 % от периода.
  4. В режиме «С» электрический ток протекает менее чем половину периода времени работы.
  5. Режим «D» УНЧ применяется в радиолюбительской практике совсем недавно – чуть больше 50 лет. В большинстве случаев эти устройства реализуются на основе цифровых элементов и имеют очень высокий КПД – свыше 90 %.

Наличие искажений в различных классах НЧ-усилителей

Рабочая область транзисторного усилителя класса «А» характеризуется достаточно небольшими нелинейными искажениями. Если входящий сигнал выбрасывает импульсы с более высоким напряжением, это приводит к тому, что транзисторы насыщаются. В выходном сигнале возле каждой гармоники начинают появляться более высокие (до 10 или 11). Из-за этого появляется металлический звук, характерный только для транзисторных усилителей.

При нестабильном питании выходной сигнал будет по амплитуде моделироваться возле частоты сети. Звук станет в левой части частотной характеристики более жестким. Но чем лучше стабилизация питания усилителя, тем сложнее становится конструкция всего устройства. УНЧ, работающие в классе «А», имеют относительно небольшой КПД – менее 20 %. Причина заключается в том, что транзистор постоянно открыт и ток через него протекает постоянно.

усилитель на полевых транзисторахДля повышения (правда, незначительного) КПД можно воспользоваться двухтактными схемами. Один недостаток – полуволны у выходного сигнала становятся несимметричными. Если же перевести из класса «А» в «АВ», увеличатся нелинейные искажения в 3-4 раза. Но коэффициент полезного действия всей схемы устройства все же увеличится. УНЧ классов «АВ» и «В» характеризует нарастание искажений при уменьшении уровня сигнала на входе. Но даже если прибавить громкость, это не поможет полностью избавиться от недостатков.

Работа в промежуточных классах

У каждого класса имеется несколько разновидностей. Например, существует класс работы усилителей «А+». В нем транзисторы на входе (низковольтные) работают в режиме «А». Но высоковольтные, устанавливаемые в выходных каскадах, работают либо в «В», либо в «АВ». Такие усилители намного экономичнее, нежели работающие в классе «А». Заметно меньшее число нелинейных искажений – не выше 0,003 %. Можно добиться и более высоких результатов, используя биполярные транзисторы. Принцип работы усилителей на этих элементах будет рассмотрен ниже.

Но все равно имеется большое количество высших гармоник в выходном сигнале, отчего звук становится характерным металлическим. Существуют еще схемы усилителей, работающие в классе «АА». В них нелинейные искажения еще меньше – до 0,0005 %. Но главный недостаток транзисторных усилителей все равно имеется – характерный металлический звук.

«Альтернативные» конструкции

усилитель звука на транзисторахНельзя сказать, что они альтернативные, просто некоторые специалисты, занимающиеся проектировкой и сборкой усилителей для качественного воспроизведения звука, все чаще отдают предпочтение ламповым конструкциям. У ламповых усилителей такие преимущества:
  1. Очень низкое значение уровня нелинейных искажений в выходном сигнале.
  2. Высших гармоник меньше, чем в транзисторных конструкциях.

Но есть один огромный минус, который перевешивает все достоинства, – обязательно нужно ставить устройство для согласования. Дело в том, что у лампового каскада очень большое сопротивление – несколько тысяч Ом. Но сопротивление обмотки динамиков – 8 или 4 Ома. Чтобы их согласовать, нужно устанавливать трансформатор.

Конечно, это не очень большой недостаток – существуют и транзисторные устройства, в которых используются трансформаторы для согласования выходного каскада и акустической системы. Некоторые специалисты утверждают, что наиболее эффективной схемой оказывается гибридная – в которой применяются однотактные усилители, не охваченные отрицательной обратной связью. Причем все эти каскады функционируют в режиме УНЧ класса «А». Другими словами, применяется в качестве повторителя усилитель мощности на транзисторе.

биполярный транзистор принцип работы

Причем КПД у таких устройств достаточно высокий – порядка 50 %. Но не стоит ориентироваться только на показатели КПД и мощности – они не говорят о высоком качестве воспроизведения звука усилителем. Намного большее значение имеют линейность характеристик и их качество. Поэтому нужно обращать внимание в первую очередь на них, а не на мощность.

Схема однотактного УНЧ на транзисторе

Самый простой усилитель, построенный по схеме с общим эмиттером, работает в классе «А». В схеме используется полупроводниковый элемент со структурой n-p-n. В коллекторной цепи установлено сопротивление R3, ограничивающее протекающий ток. Коллекторная цепь соединяется с положительным проводом питания, а эмиттерная – с отрицательным. В случае использования полупроводниковых транзисторов со структурой p-n-p схема будет точно такой же, вот только потребуется поменять полярность.

С помощью разделительного конденсатора С1 удается отделить переменный входной сигнал от источника постоянного тока. При этом конденсатор не является преградой для протекания переменного тока по пути база-эмиттер. Внутреннее сопротивление перехода эмиттер-база вместе с резисторами R1 и R2 представляют собой простейший делитель напряжения питания. Обычно резистор R2 имеет сопротивление 1-1,5 кОм – наиболее типичные значения для таких схем. При этом напряжение питания делится ровно пополам. И если запитать схему напряжением 20 Вольт, то можно увидеть, что значение коэффициента усиления по току h31 составит 150. Нужно отметить, что усилители КВ на транзисторах выполняются по аналогичным схемам, только работают немного иначе.

усилитель своими рукамиПри этом напряжение эмиттера равно 9 В и падение на участке цепи «Э-Б» 0,7 В (что характерно для транзисторов на кристаллах кремния). Если рассмотреть усилитель на германиевых транзисторах, то в этом случае падение напряжения на участке «Э-Б» будет равно 0,3 В. Ток в цепи коллектора будет равен тому, который протекает в эмиттере. Вычислить можно, разделив напряжение эмиттера на сопротивление R2 – 9В/1 кОм=9 мА. Для вычисления значения тока базы необходимо 9 мА разделить на коэффициент усиления h31 – 9мА/150=60 мкА. В конструкциях УНЧ обычно используются биполярные транзисторы. Принцип работы у него отличается от полевых.

На резисторе R1 теперь можно вычислить значение падения – это разница между напряжениями базы и питания. При этом напряжение базы можно узнать по формуле – сумма характеристик эмиттера и перехода «Э-Б». При питании от источника 20 Вольт: 20 – 9,7 = 10,3. Отсюда можно вычислить и значение сопротивления R1=10,3В/60 мкА=172 кОм. В схеме присутствует емкость С2, необходимая для реализации цепи, по которой сможет проходить переменная составляющая эмиттерного тока.

Если не устанавливать конденсатор С2, переменная составляющая будет очень сильно ограничиваться. Из-за этого такой усилитель звука на транзисторах будет обладать очень низким коэффициентом усиления по току h31. Нужно обратить внимание на то, что в вышеизложенных расчетах принимались равными токи базы и коллектора. Причем за ток базы брался тот, который втекает в цепь от эмиттера. Возникает он только при условии подачи на вывод базы транзистора напряжения смещения.

усилитель на германиевых транзисторахНо нужно учитывать, что по цепи базы абсолютно всегда, независимо от наличия смещения, обязательно протекает ток утечки коллектора. В схемах с общим эмиттером ток утечки усиливается не менее чем в 150 раз. Но обычно это значение учитывается только при расчете усилителей на германиевых транзисторах. В случае использования кремниевых, у которых ток цепи «К-Б» очень мал, этим значением просто пренебрегают.

Усилители на МДП-транзисторах

Усилитель на полевых транзисторах, представленный на схеме, имеет множество аналогов. В том числе и с использованием биполярных транзисторов. Поэтому можно рассмотреть в качестве аналогичного примера конструкцию усилителя звука, собранную по схеме с общим эмиттером. На фото представлена схема, выполненная по схеме с общим истоком. На входных и выходных цепях собраны R-C-связи, чтобы устройство работало в режиме усилителя класса «А».

Переменный ток от источника сигнала отделяется от постоянного напряжения питания конденсатором С1. Обязательно усилитель на полевых транзисторах должен обладать потенциалом затвора, который будет ниже аналогичной характеристики истока. На представленной схеме затвор соединен с общим проводом посредством резистора R1. Его сопротивление очень большое – обычно применяют в конструкциях резисторы 100-1000 кОм. Такое большое сопротивление выбирается для того, чтобы не шунтировался сигнал на входе.

усилитель кв на транзисторахЭто сопротивление почти не пропускает электрический ток, вследствие чего у затвора потенциал (в случае отсутствия сигнала на входе) такой же, как у земли. На истоке же потенциал оказывается выше, чем у земли, только благодаря падению напряжения на сопротивлении R2. Отсюда ясно, что у затвора потенциал ниже, чем у истока. А именно это и требуется для нормального функционирования транзистора. Нужно обратить внимание на то, что С2 и R3 в этой схеме усилителя имеют такое же предназначение, как и в рассмотренной выше конструкции. А входной сигнал сдвинут относительно выходного на 180 градусов.

УНЧ с трансформатором на выходе

усилители вч на транзисторахМожно изготовить такой усилитель своими руками для домашнего использования. Выполняется он по схеме, работающей в классе «А». Конструкция такая же, как и рассмотренные выше, – с общим эмиттером. Одна особенность – необходимо использовать трансформатор для согласования. Это является недостатком подобного усилителя звука на транзисторах.усилитель нч на транзистореКоллекторная цепь транзистора нагружается первичной обмоткой, которая развивает выходной сигнал, передаваемый через вторичную на динамики. На резисторах R1 и R3 собран делитель напряжения, который позволяет выбрать рабочую точку транзистора. С помощью этой цепочки обеспечивается подача напряжения смещения в базу. Все остальные компоненты имеют такое же назначение, как и у рассмотренных выше схем.

Двухтактный усилитель звука

Нельзя сказать, что это простой усилитель на транзисторах, так как его работа немного сложнее, чем у рассмотренных ранее. В двухтактных УНЧ входной сигнал расщепляется на две полуволны, различные по фазе. И каждая из этих полуволн усиливается своим каскадом, выполненном на транзисторе. После того, как произошло усиление каждой полуволны, оба сигнала соединяются и поступают на динамики. Такие сложные преобразования способны вызвать искажения сигнала, так как динамические и частотные свойства двух, даже одинаковых по типу, транзисторов будут отличны.

расчет усилителя на транзисторах В результате на выходе усилителя существенно снижается качество звучания. При работе двухтактного усилителя в классе «А» не получается качественно воспроизвести сложный сигнал. Причина – повышенный ток протекает по плечам усилителя постоянно, полуволны несимметричные, возникают фазовые искажения. Звук становится менее разборчивым, а при нагреве искажения сигнала еще больше усиливаются, особенно на низких и сверхнизких частотах.

Бестрансформаторные УНЧ

Усилитель НЧ на транзисторе, выполненный с использованием трансформатора, невзирая на то, что конструкция может иметь малые габариты, все равно несовершенен. Трансформаторы все равно тяжелые и громоздкие, поэтому лучше от них избавиться. Намного эффективнее оказывается схема, выполненная на комплементарных полупроводниковых элементах с различными типами проводимости. Большая часть современных УНЧ выполняется именно по таким схемам и работают в классе «В».

Два мощных транзистора, используемых в конструкции, работают по схеме эмиттерного повторителя (общий коллектор). При этом напряжение входа передается на выход без потерь и усиления. Если на входе нет сигнала, то транзисторы на грани включения, но все равно еще отключены. При подаче гармонического сигнала на вход происходит открывание положительной полуволной первого транзистора, а второй в это время находится в режиме отсечки.

простой усилитель на транзисторах Следовательно, через нагрузку способны пройти только положительные полуволны. Но отрицательные открывают второй транзистор и полностью запирают первый. При этом в нагрузке оказываются только отрицательные полуволны. В результате усиленный по мощности сигнал оказывается на выходе устройства. Подобная схема усилителя на транзисторах достаточно эффективная и способна обеспечить стабильную работу, качественное воспроизведение звука.

Схема УНЧ на одном транзисторе

Изучив все вышеописанные особенности, можно собрать усилитель своими руками на простой элементной базе. Транзистор можно использовать отечественный КТ315 или любой его зарубежный аналог – например ВС107. В качестве нагрузки нужно использовать наушники, сопротивление которых 2000-3000 Ом. На базу транзистора необходимо подать напряжение смещения через резистор сопротивлением 1 Мом и конденсатор развязки 10 мкФ. Питание схемы можно осуществить от источника напряжением 4,5-9 Вольт, ток — 0,3-0,5 А.

усилитель мощности на транзисторахЕсли сопротивление R1 не подключить, то в базе и коллекторе не будет тока. Но при подключении напряжение достигает уровня в 0,7 В и позволяет протекать току около 4 мкА. При этом по току коэффициент усиления окажется около 250. Отсюда можно сделать простой расчет усилителя на транзисторах и узнать ток коллектора – он оказывается равен 1 мА. Собрав эту схему усилителя на транзисторе, можно провести ее проверку. К выходу подключите нагрузку – наушники.

Коснитесь входа усилителя пальцем – должен появиться характерный шум. Если его нет, то, скорее всего, конструкция собрана неправильно. Перепроверьте все соединения и номиналы элементов. Чтобы нагляднее была демонстрация, подключите к входу УНЧ источник звука – выход от плеера или телефона. Прослушайте музыку и оцените качество звучания.

Транзисторный усилитель 50W своими руками

Приветствую, Самоделкины!
Усилители мощности низкой частоты или просто усилитель звука, собираются радиолюбителями довольно часто. Специализированные микросхемы усилителей мощности низкой частоты сейчас довольно популярны и после сборки некоторых УНЧ на базе микросхем, радиолюбитель стремится к чему-то более сложному. Транзисторные усилители, несмотря на огромное разнообразие микросхем, не потеряли свою актуальность. Если нужен хороший качественный усилитель, то стоит собрать его на транзисторах. Сегодня мы поговорим о неплохом транзисторном усилителе, работающим в классе b. Не спешите с выводами, класс b тоже бывает неплохим.


Истинные ценители сверх высококачественного звука наверняка скажут, что это не самый лучший класс УНЧ, однотактный и ламповый — вот каким должен быть качественный усилитель. Я конечно же отчасти с вами согласен, но цены ламповых усилителей, сами видите:


А собрать их дома тоже процесс не из легких.

Представленная схема была опубликованная в журнале «Радио» в 1991 году.


Это легендарный усилитель Дорофеева, так что он имеет довольно преклонный возраст. Гениальность схемы заключается в простоте. Несмотря на минимальное количество используемых компонентов с соответствующим источником питания данный усилитель способен отдавать в нагрузку 4 Ома, мощность до 50 ватт, что согласитесь, очень даже неплохо. В разное время радиолюбители дорабатывали и изменяли схему. Для удобства, автор перевел схему на импортные компоненты, далее будем рассматривать именно ее.

В данном усилителе применены довольно интересные схематические решения, например, резистор R12, которой ограничивает коллекторный ток транзистора выходного каскада и является своеобразным ограничителем выходной мощности, одновременно защищает выходные транзисторы от коротких замыканий. Так что усилитель короткого, можно сказать, не боится.

Указанный резистор нужен одноваттный, в крайнем случае можно на пол ватта. Коэффициент нелинейных искажений при чистоте в 1 кГц не более 0,1 %, при 20 кГц — 0,2%, так что на слух никаких искажений при номинальной мощности не будет. Питается усилитель от двухполярного источника. Диапазон питающих напряжений от +- 15 до +- 25В.

С целью увеличения выходной мощности, можно увеличить питающее напряжение, но в этом случае нужно менять и транзисторы оконечного каскада на более мощные и пересчитать несколько резисторов.

Резисторы r9 и r10 подбираются в зависимости от питающего напряжения.

Они ограничивают ток через стабилитрон и в этой части схемы собран параметрический стабилизатор напряжения, которое обеспечивает стабильное питание для операционного усилителя.


Кстати, об операционнике, это довольно неплохой операционный усилитель, применяется в аудиотехнике очень часто. Можно спокойно менять на TL081.


В случае замены на иные операционные усилители, стоит обратить внимание на распиновку, так как расположение выводов может быть иным. Операционный усилитель советую установить на панельку беспаячного монтажа, для быстрой замены в случае чего. Кстати, у этого автора есть и вторая версия данного усилителя, на сей раз полностью на транзисторах, она сейчас перед вами:

Несколько слов о печатной плате, мастер старался ее сделать максимально компактной, вроде бы получилось неплохо.


Ссылку на скачивание найдете в описании под видеороликом автора (внизу страницы). На плате имеются перемычки, их желательно запаять в первую очередь.

Транзисторы предвыходного и выходного каскада, устанавливаются на общий теплоотвод. Естественно не забываем их изолировать от радиатора.

В выходном каскаде стоит использовать транзисторы с мощностью рассеивания не менее 50-60 ватт, с напряжением коллектор-эмиттер не менее 60 В, а лучше 80 или 100 В, но тут тоже всё зависит от напряжения питания.


Как видно из схемы, в выходном и предвыходном каскаде, использованы комплементарные пары транзисторов. Очень и очень желательно подобрать транзисторы по коэффициенту усиления. Некоторые мультиметры имеют функцию проверки этого параметра, но можно использовать транзистор-тестер.

Стабилитроны можно на 0,5 Вт, с напряжением стабилизации от 14 до 18 В.


Пару слов об источнике питания.

В случае трансформаторного блока питания желательно использовать фильтрующие конденсаторы с емкостью не менее 4700 мкФ, тут чем больше тем лучше.


Усилитель работает в классе b и КПД на довольно высоком уровне, но в любом случае, источник питания нужен с некоторым запасом. Поэтому необходимо взять трансформатор с габаритной мощностью от 70 Вт. Как звучит усилитель вы можете узнать, посмотрев видеоролик автора. Должен заметить, что во время тестов будет слышен некий фон, это связано с тем, что в блоке питания у автора проекта использованы конденсаторы очень малой емкости, всего 1000 мкФ в плече.

Качество в принципе хорошее, на уровне микросхем TDA2030 – 2050. С хорошим источником питания и по мощности, и по качеству, вполне может конкурировать с микросхемами наподобие TDA7294.

На этом все. В описании под видео помимо архива проекта со схемой и платой, найдете ссылки на комплектующие для сборки такого же усилителя, а также на готовые платы усилителей низкой частоты на любой вкус.

Благодарю за внимание. До новых встреч!

Видео:


Источник
Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

МОЩНЫЙ УСИЛИТЕЛЬ НА ТРАНЗИСТОРАХ

   После изготовления и прослушивания собранного ранее небольшого УНЧ появилось желание собрать более мощный усилитель «А» класса. Прочитав достаточное количество соответствующей литературы и выбрал из предлагавшегося самую последнюю версию. Это был усилитель мощностью 30 Вт соответствующий по своим параметрам усилителям высокого класса.

МОЩНЫЙ УСИЛИТЕЛЬ НА ТРАНЗИСТОРАХ - схема 1

   В имеющеюся трассировку оригинальных печатных плат никаких изменений вносить не предполагал, однако, ввиду отсутствия первоначальных силовых транзисторов, был выбран более надежный выходной каскад с использованием транзисторов 2SA1943 и 2SC5200. Применение этих транзисторов в итоге позволило обеспечить большую выходную мощность усилителя. Принципиальная схема моей версии усилителя далее.

МОЩНЫЙ УСИЛИТЕЛЬ НА ТРАНЗИСТОРАХ - схема 2

   Это изображение плат собранных по этой схеме с транзисторами Toshiba 2SA1943 и 2SC5200.

МОЩНЫЙ УСИЛИТЕЛЬ НА ТРАНЗИСТОРАХ - собранные платы

   Если присмотреться, то сможете увидеть на печатной плате вместе со всеми компонентами стоят резисторы смещения, они мощность 1 Вт углеродного типа. Оказалось, что они более термостабильны. При работе любого усилителя большой мощности выделяется огромное количества тепла, поэтому соблюдение постоянства номинала  электронного компонента при его нагреве является важным условием качественной работы устройства. 

МОЩНЫЙ УСИЛИТЕЛЬ НА ТРАНЗИСТОРАХ

   Собранная версия усилителя работает при токе около 1,6 А и напряжении 35 В. В результате чего 60 Вт мощности непрерывного рассеивается на транзисторах в выходном каскаде. Должен заметить, что это только треть мощности, которую они способны выдержать. Постарайтесь представить, сколько тепла выделяется на радиаторах при их нагреве до 40 градусов.

мощный усилитель звука по 30 Вт на канал, работающий в классе "А"

   Корпус усилителя сделан своими руками из алюминия. Верхняя плита и монтажная плита толщиной 3 мм. Радиатор состоит из двух частей, его габаритные размеры составляют 420 x 180 x 35 мм. Крепеж — винты, в основном с потайной головкой из нержавеющей стали и резьбой М5 или М3. Количество конденсаторов было увеличено до шести, их общая ёмкость 220000 мкФ. Для питания был использован тороидальный трансформатор мощностью 500 Вт.

МОЩНЫЙ УСИЛИТЕЛЬ НА ТРАНЗИСТОРАХ своими руками

Блок питания усилителя

   Хорошо видно устройство усилителя, которое имеет медные шины соответствующего дизайна. Добавлен  небольшой тороид, для регулируемой подачи под управлением схемы защиты от постоянного тока. Так же имеется ВЧ фильтр в цепи питания. При всей своей простоте, надо сказать обманчивой простоте, топологии платы этого усилителя и звук им производится как бы без всякого усилия, подразумевающего в свою очередь возможность его бесконечного усиления.

Осциллограммы работы усилителя

Спад 3 дБ на 208 кГц

Синусоида 10 Гц и 100 Гц

Синусоида 1 кГц и 10 кГц

Сигналы 100 кГц и 1 МГц 

Меандр 10 Гц и 100 Гц

Меандр 1 кГц и 10 кГц

Полная мощность 60 Вт отсечение симметрии на частоте 1 кГц

мощный усилитель в классе "А"

   Таким образом становится понятно, что простая и качественная конструкция УМЗЧ не обязательно делается с применением интегральных микросхем — всего 8 транзисторов позволяют добиться приличного звучания со схемой, собрать которую можно за пол дня.

   Схемы усилителей

Усилитель звука на транзисторах

Усилитель звука на транзисторах
Транзисторные усилители, несмотря на появление более современных микросхемных, не потеряли свой актуальности. Достать микросхему бывает, порой, не так легко, а вот транзисторы можно выпаять практически из любого электронного устройства, именно поэтому у заядлых радиолюбителей иногда накапливаются горы этих деталей. Для того, чтобы найти им применение предлагаю к сборке незатейливый транзисторный усилитель мощности, сборку которого осилит даже начинающий.

Схема


Усилитель звука на транзисторах
Схема состоит из 6-ти транзисторов и может развивать мощность до 3-х ватт при питании напряжением 12 вольт. Этой мощности хватит для озвучивания небольшой комнаты или рабочего места. Транзисторы Т5 и Т6 на схеме образуют выходной каскад, на их место можно поставить широко распространённые отечественные аналоги КТ814 и КТ815. Конденсатор С4, который подключается к коллекторам выходных транзисторов, отделяет постоянную составляющую сигнала на выходе, именно поэтому данный усилитель можно использовать без платы защиты акустических систем. Даже если усилитель в процессе работы выйдет из строя и на выходе появится постоянное напряжение, оно не пройдёт дальше этого конденсатора и динамики акустической системы останутся целы. Разделительный конденсатор С1 на входе лучше применить плёночный, но если такого нет под рукой, подойдёт и керамический. Аналогом диодов D1 и D2 в данной схеме являются 1N4007 или отечественные КД522. Динамик можно использовать сопротивлением 4-16 Ом, чем ниже его сопротивление, тем большую мощность будет развивать схема.

Усилитель звука на транзисторах

Сборка усилителя


Собирается схема на печатной плате размерами 50х40 мм, рисунок в формате Sprint-Layout к статье прилагается. Приведённую печатную плату при печати необходимо отзеркалить. После травления и удаления тонера с платы сверлятся отверстия, лучше всего использовать сверло 0,8 — 1 мм, а для отверстий под выходные транзисторы и клеммник 1,2 мм.
Усилитель звука на транзисторах
После сверления отверстий желательно залудить все дорожки, тем самым уменьшить их сопротивление и защитить медь от окисления. Затем впаиваются мелкие детали – резисторы, диоды, после чего выходные транзисторы, клеммник, конденсаторы. Согласно схеме, коллекторы выходных транзисторов должны соединяться, на данной плате это соединение происходит путём замыкания «спинок» транзисторов проволокой или радиатором, если он используется. Радиатор требуется ставить в том случае, если схема нагружена на динамик сопротивлением 4 Ома, или если на вход подаётся сигнал большой громкости. В остальных же случаях выходные транзисторы почти не нагреваются и не требуют дополнительного охлаждения.
Усилитель звука на транзисторах
Усилитель звука на транзисторах
После сборки обязательно нужно смыть остатки флюса с дорожек, проверить плату на наличие ошибок сборки или замыканий между соседними дорожками.

Настройка и испытания усилителя


После завершения сборки можно подавать питание на плату усилителя. В разрыв одного из питающих проводов нужно включить амперметр, для контроля потребляемого тока. Подаём питание и смотрим на показания амперметра, без подачи на вход сигнала усилитель должен потреблять примерно 15-20 мА. Ток покоя задаётся резистором R6, для его увеличения нужно уменьшить сопротивление этого резистора. Слишком сильно поднимать ток покоя не следует, т.к. увеличится выделение тепла на выходных транзисторах. Если ток покоя в норме, можно подавать на вход сигнал, например, музыку с компьютера, телефона или плеера, подключать на выход динамик и приступать к прослушиванию. Хоть усилитель и прост в исполнении, он обеспечивает весьма приемлемое качество звука. Для воспроизведения одновременно двух каналов, левого и правого, схему нужно собрать дважды. Обратите внимание, что если источник сигнала находится далеко от платы, подключать его нужно экранированным проводом, иначе не избежать помех и наводок. Таким образом, данный усилитель получился полностью универсальным благодаря небольшому потреблению тока и компактным размерам платы. Его можно использовать как в составе компьютерных колонок, так и при создании небольшого стационарного музыкального центра. Удачной сборки.
Усилитель звука на транзисторах
Усилитель звука на транзисторах

Усилитель Класса А усилитель JLH Джона Ли Худа John Linsley Hood усилители класса А

Новое — это хорошо забытое старое

 

Последние несколько лет наблюдается волна интереса к знаменитому усилителю Джона Линсли Худа (John Linsley-Hood). Повышенный интерес к JLH обусловлен тем, что интернет-магазины и аукционы Hi-End начали предлагать множество вариаций этого усилителя в готовом виде и в виде комплектов для домашней сборки. На многочисленных форумах по электронике и звукотехнике проводятся бурные обсуждения предложенной более 40 лет назад схемы и способов ее улучшения применительно к сегодняшней компонентной базе.

Нередко лейбл «JLH» навешивают на конструкции, ничего общего с легендарным оригинальным усилителем не имеющие. Предлагаю разобраться в достоинствах и недостатках этого усилителя класса А и его поразительно изящной, и простой схемотехнике. Усилитель этого талантливого инженера из Англии, созданный почти 50 лет назад дожил до сегодняшнего дня пережив несколько реинкарнаций, и сегодня, в конце 2016 года он, по-прежнему будоражит воображение настоящих аудиофилов.

Первая публикация схемы появилась в журнале «Wireless World» в 1959 году. Перевод основной идеи схемы John Linsley-Hood:

 

«В последнее время издания для любителей качественного звучания опубликовали множество схем усилителей на транзисторах, большинство из которых малопригодны для повторения ввиду чрезвычайной сложности для повторения среднестатистическим радиолюбителем. Мощность предлагаемых к повторению транзисторных усилителей как правило многократно завышена, что совершенно не требуется для комфортного прослушивания музыки в обычной комнате. Повышенная мощность тянет за собой необходимость применения дорогостоящих транзисторов и мощных блоков питания. До эры появления транзисторов огромной популярностью пользовались ламповые усилители фирм Mullard, Leak и другие обладающие выходной мощностью до 10-15 Ватт на канал, которой с лихвой хватало для воспроизведения практически любой музыки в условиях реальной жилой комнаты. Уровень громкости с колонками средней чувствительности и такой выходной мощностью усилителя в стерео-режиме получался даже больше необходимого. Инженеру Джону Линсли Худу пришла идея разработать простой для повторения, но максимально качественный усилитель класса А с разумной выходной мощностью и минимально возможными искажениями. Что он блистательно и осуществил»

 

Один из приверженцев максимально простых и линейных Hi-End усилителей класса «А» и по совместительству владелец фирмы «Pass Aleph» Нельсон Пасс (Nelson Pass) написал в своей статье, что усилитель Д. Ли. Худа даже спустя 40 лет восхищает великолепным качеством звучания при предельно простотой конструкции.

 

Искажения и выходная мощность

 

В период 1947-1949 годов патриарх усилителе строения David Theodore Nelson Williamson написал в серии статей, опубликованных в том же журнале «Wireless World», что величина искажений для высококачественного звуковоспроизведения не должна превышать 0,1%. Основные искажения в ламповом усилителе вносит выходной трансформатор, а поскольку транзисторные конструкции могут обойтись без этого нелинейного элемента, то требования к транзисторным схемам можно ужесточить. Можно считать допустимыми не более 0,05% искажений, вносимых транзисторным усилителем при полной выходной мощности в полосе частот от 30 Гц до 20 кГц.

В связи с «гонкой мощностей» когда во главу угла ставились параметры усилителей, а их реальное звучание отодвигалось на второй план, подавляющее число разработок и воплощение их в готовых конструкциях было сосредоточено на усилителях класса «В» или «АВ». Потенциальный клиент читал отзывы об усилителях в аудио прессе и его глаза невольно наталкивались на эту «гонку параметров». На первое место ставились преимущества усилителей с характеристиками, изобилующие многими нулями: 0,01 – 0,001 % искажений, 100 – 200 – 300 Ватт выходной мощности, а не редко и больше. Эти цифры объявлялись «главными достоинствами» усилителей, а их цена напрямую зависела от количества нулей. Потенциальный покупатель усилителя намеренно ставился перед искусственно навязанным выбором, таким же, как в случае с автомобилями и рекламируемыми «преимуществами» с упором на мощность двигателя и максимальную скорость. В отличие от автомобиля, в усилителях выходная мощность и уровень искажений к реальному качеству звучания имеют очень опосредованное отношение. На звук гораздо большее влияние оказывает грамотно выбранная схемотехника, режимы работы каждого каскада и качество деталей.

 

По простому о классах «А» и «АВ»

 

Усилители класса А получили малое распространение в первую очередь из-за низкого КПД. При «гонке параметров» когда рынок требует от усилителя получение выходных мощностей 50 – 100 – 200 и более Ватт в канал применять режим класса А крайне невыгодное и неблагодарное мероприятие. Потребляемую мощность с этим режимом нужно смело умножить на три или четыре, и вся эта мощность, в отличие от полезной не идет на динамики, а преобразуется в банальное тепло. Соответственно для усилителя, работающего в классе А требуется блок питания в три — четыре раза мощнее аналогичного, работающего в классе АВ. Плюс, нужны огромные радиаторы, которые должны рассеять излишнее тепло. Себестоимость усилителя довольно сильно зависит от мощности блока питания и размеров радиаторов выходных транзисторов. В итоге усилители класса «А» получаются намного более дорогими и «горячими» в прямом смысле этого слова, по сравнению с аналогичными по мощности усилителями, работающими в классе АВ.

Вот этот маленький КПД усилителей класса А помноженный на «Горячесть» и высокую по сравнению с моделями класса «АВ» стоимость и предопределил малую распространенность этих на самом деле – замечательных конструкций.

Если абстрагироваться от желания получить сто ваттные мощности на выходе и смириться с повышенным тепловыделением, усилители класса А по звучанию уложат «на обе лопатки» абсолютно все другие модели усилителей с их техническими изысками. Как правило усилители класса А намного более просты схемотехнически, чем их собратья, работающие в других режимах. Режим работы А пришел из ламповых схем, которые отличаются от транзисторных намного более «коротким» трактом и малым количеством деталей. Платой за кажущуюся простоту является необходимость тщательного подбора каждого элемента усилителя класса А и высокие требования к качеству комплектующих.

Благодаря простой конструкции и малому количеству каскадов, усилитель класса А поддается точной настройке путем оптимизации работы каждого каскада и наилучшему согласованию каскадов между собой. В Усилителях класса АВ с их десятками и сотнями последовательно включенных звеньев, индивидуальная настройка каждого каскада в принципе невозможна. Для обеспечения приемлемых параметров в них приходится вводить глубокую отрицательную обратную связь, которая позволяя достичь заданных характеристик, при этом начисто «убивает» звук.

 

Особенности схемотехники JLH

 

Основная идея John Linsley-Hood, построение максимально простого усилителя, все каскады которого работают в классе А. В классе А транзисторы работают на максимально линейных участках своих характеристик, и имеют практически постоянную, хоть и немного повышенную температуру, при которой их параметры практически не «плывут». В классе А можно достичь очень хорошей симметрии плеч и избавиться от так называемых «коммутационных» искажений, ведь в классе А транзисторы в отличие от класса В и АВ вообще не выключаются.

Каскады класса А в однотактном включении с нагрузкой – резистором самые неэффективные по КПД в сравнении со всеми остальными вариантами включения транзисторов. Зато они самые линейные и самые «музыкальные». Путем замены резистора на дроссель или трансформатор можно повысить КПД и легко согласовать простейший каскад на транзисторе с практически любым следующим каскадом. Но это «палка о двух концах». Применив дроссель или трансформатор, мы получаем максимально качественно «звучащий» каскад, но при этом имеем в конструкции сложное, тяжелое и дорогостоящее моточное изделие.

Для упрощения и удешевления конструкции Джон Линсли Худ применил двухтактный выходной каскад с возбуждением противофазным сигналом, изображенный на Рис.1. Оптимальным решением здесь является применение каскада на транзисторе VT1 обратной проводимости (n-p-n), который для выходных транзисторов является фазоинвертором и управляет обоими плечами (верхним и нижним), собранными на транзисторах VT2 и VT3.

За счёт компенсации взаимной нелинейности характеристик транзисторов, это включение даёт низкие искажения даже без применения отрицательной обратной связи. Как бонус, низкое выходное сопротивление каскада на VT1 хорошо согласуется с довольно высоким входным сопротивлением каскадов на VT2, VT3.

 

Упрощенная схема усилителя JLH показана на Рис.2

 

Входной сигнал подается на базу транзистора VT1. С его коллектора инвертированный и усиленный сигнал поступает на базу транзистора VT2. Транзистор VT2 усиливает входной сигнал и формирует противофазные сигналы для выполненного на транзисторах VT3 и VT4 выходного каскада. Нижний выходной транзистор VT3 включен по схеме с общим эмиттером и усиливает как ток, так и напряжение. Верхний выходной транзистор VT4 включен по схеме с общим коллектором и усиливает только ток (это классический эмиттерный повторитель).

Резисторы R4-R5 задают напряжение смещения для транзистора VT1, резистор R3 формирует смещение выходного каскада. Резисторы R1-R2 задают глубину отрицательной обратной связи по току. Транзистор VT2 является сердцем этой схемы и применен здесь для управления выходным каскадом — элегантно и просто.

Нельсон Пасс являясь приверженцем максимально простых схем и коротких трактов, работающих в классе «А» обошёл стороной одну особенность представленной топологии. В своих конструкциях он применяет исключительно полевые транзисторы, которые управляются напряжением на затворе, в отличие от примененных Джоном Ли Худом биполярных транзисторов, управляемых током базы. И если в далеком 1959 году мощных серийных полевых транзисторов попросту не существовало и Джона Ли Худа можно понять, то Нельсона Паса понять сложно, по какой именно причине он не применяет в своих усилителях биполярные транзисторы.  Путем обращения к «коллективному» разуму армии любителей, повторивших конструкции как Нельсона Пасса, так и Джона Ли худа было «вычислено», что с полевыми транзисторами гораздо легче работать. Они менее капризны и для достижения искомых параметров не требуют вокруг себя «танцев с бубнами» (многомесячных настроек) как биполярные. Но тот же «коллективный разум» говорит о том, что биполярные транзисторы звучат все-таки лучше полевых… хотя это как раз не факт.

Выходной ток предыдущего каскада усилителя Джона Ли Худа является входным током для последующего. Ток коллектора транзистора VT1 является управляющим для транзистора VT2 и втекает в его базу. В других каскадах все происходит аналогично. Резистор R3 является источником стабильного тока и изменение тока коллектора транзистора VT2 полностью отражается на токе базы транзистора VT4. Такая топология построения «двойки» транзисторов делает условия их взаимного управления идеальными.

Вся идеология построения усилителя Джона Ли Худа подчиняется идее минимализма, в ней нет ничего лишнего…

Дизайн усилителя JLH родился в то время, когда эра усилителей на лампах близилась к своему завершению, транзисторы быстро вытеснили электровакуумные приборы практически из всех областей электроники. Не избежала этой участи и звуковая техника. Инженеры начали проектировать транзисторные усилители с оглядкой в первую очередь на параметры: высокую выходную мощность и предельно низкие искажения. Их разработки в большинстве своем были крайне сложны и отличались от ламповых схем применением многочисленных и глубоких обратных связей. А это, как в последствии выяснилось, качества звуку совсем не добавило.

За прошедшие 47 лет прогресс в электронной промышленности ушел далеко вперед. А вот про технику для воспроизведения звука такого сказать нельзя. За почти сто лет с момента изобретения электронного усилительного прибора – лампы, а за ней транзистора, вдруг выяснилось, что лучшее звучание имеют простые схемотехнические решения, известные уже много лет. И никакими современными технологическими изысками качество звучания почему-то не улучшается.

 

P.S. Усилитель JLH в отличие от конкурентов, воспроизводит почти «живую» музыку. Данный усилитель имеется в наличие. Так же Вы можете заказать аппарат в индивидуальной комплектации. Мощность усилителя JLH может варьироваться от 5 до 150 Вт на канал в классе А.

 

Ссылки по теме

 

Схема усилителя мощности класса А 24Вт


Схема усилителя мощности класса А 24Вт-1Схема усилителя мощности класса А 24Вт-1

Схема усилителя мощности класса А 24Вт

Схема усилителя мощности класса А 24Вт — показанная здесь схема высокоэффективного усилителя, выходной каскад которого работает в классе А и способен развивать выходную мощность более 24 Вт.

Схема усилителя собрана с использование десяти фирменных транзисторов. Пара, из которых 2N2222 установлены в дифференциальном каскаде усилителя, другая пара транзисторов 2N2907 выполняет защитные функции схемы. Еще два 2N2222 установлены в каскаде предварительного усиления. В выходном каскаде на радиаторах охлаждения установлены мощные четыре биполярных транзистора 2N3055.

Схема усилителя мощности класса А-2Схема усилителя мощности класса А-2
Все электронные приборы с n-p-n переходом, то есть обратной проводимости, кроме пары 2N2907, они прямой проводимости с переходом p-n-p типа. Схема усилителя рассчитана на напряжение питания от 34v до 46v, но при этом необходимо взять во внимание номинальную мощность постоянных резисторов и рабочее напряжение конденсаторов установленных в усилителе. Выходной каскад аппарата в состоянии покоя имеет ток в пределах 1.6 ампера, настройка схемы производится с помощью переменного резистора R20 путем установки падения напряжения 0.75v на резисторе R25 включенного в эмиторную цепь выходного транзистора 2N3055, при токе покоя менее 1.6v. Очень маленький коэффициент нелинейных искажений, его не удалось точно измерить. Данный усилитель с потрясающим звучанием был разработан и испытан Марком Клинхансом из Южной Африки.

Технические характеристики:

  • Выходная мощность усилителя — 24 Вт;
  • Диапазон частот — 0.1-100кГц;
  • Напряжение на входе — 305мВ для 24Вт;
  • Усилитель мощности класс — A;

Если усилитель собран без существенных ошибок, то он сразу будет работать без каких либо особых настроек. Указанные на схеме детали все актуальны, именно в таком варианте аппарат проходил тестирование.
Схема усилителя мощности класса А-3Схема усилителя мощности класса А-3

Сделай сам

Ультралинейный усилитель класса А на отечественных транзисторах

Вариант усилителя на отечественных транзисторах. По сути я ничего нового не придумал, просто давно хотел собрать данный усилитель, но на многих ресурсах отзывы о нем были не очень хорошие.

О схеме очень мало отзывов, в основном только негативные. Жалобы в основном о малом потреблении тока, слишком искаженный выходной сигнал и т.п.

Сначала были найдены все оптимальные замены транзисторам. Все транзисторы использовались отечественного производства. Травить плату не было возможности, поэтому как всегда на помощь пришла макетка.

На плате была собрана вся схема, а выходные транзисторы через провода припаяны к основной плате.

В начале для выходного каскада использовал транзисторы КТ805, затем 819 и остановился на КТ803А – самый лучший вариант для этой схемы.

Схема планировалась для стандартной колонки на 4 Ом, поэтому некоторые номиналы схемы нужно подобрать под свои нужды.

Выходной конденсатор на 3300 мкФ с напряжением 16-50 В, входной по вкусу (от 0,1 мкФ до 1 мкФ).

Для питания использовал аккумулятор от бесперебойника, с ним усилитель развивает до 8 Вт, это уже чистейшая мощность, без хрипов, искажений и гулов.

За свою практику собрал немало усилителей мощности. Еще год назад, эталоном звука для меня были микросхемы СТК, затем была повторена схема Lanzar и она долго не уступала свои позиции, но несколько дней назад этот усилитель вышел на первое место, оставив позади знаменитого ланзара.

Широкий диапазон воспроизводящих частот – еще одно достоинство этой схемы, хотя частоты ниже 30 Гц усилитель не сможет воспроизвести. Усилитель предназначен для широкополосной акустики, и для качественного звучания в первую очередь нужны качественные колонки. Хотя многие могут не согласится, но очень советую использовать отечественные головки 5 – 10 ГДШ с бумажным или поролоновым подвесом. После чистого класса “А” даже музыкальный центр будет звучать не так хорошо, как раньше.

Выходные транзисторы усилителя греются не так страшно, как говорилось в некоторых форумах, лично у меня без теплоотвода они поработали 10 минут на максимальной громкости, температура не превышала 70-80 °C.

Странно то, что усилитель настолько качественный, что без подачи входного сигнала в колонках нет никакого шума или гула, словно усилитель выключен и включается только при подаче сигнала на вход.

Не советуется поднимать напряжение питания более 20 В, при 18 В усилитель показал 14 Вт – чистой синусоидальной мощи, но потреблял при этом 60 Вт, что для класса «А» вполне нормально.

В дальнейшем планируется собрать еще один канал, уж больно понравился этот усилитель, рядом с ним даже музыкальный центр дурно звучит.

ОбозначениеНоминалКоличествоПримечание
T1

КТ361Г

12N3906
T2

КТ801А

1КТ630Д, КТ602А, 2N697
Т3, Т4

КТ803А

2MJ480
С1100 мкФ1 
С20.22 мкФ1 
С3220 мкФ1 
С4470 мкФ1 
С53300 мкФ1 
С60.1 мкФ1 
R1

39 кОм

1 
R2100 кОм1 
R3

100 кОм

1 
R4

220 Ом

1 
R5

2.7 кОм

1 
R6

8.2 кОм

1 
R7

47 Ом

10.5 Вт
R8

180 Ом

11 Вт
R9

2.2 кОм

10.5 Вт
R10

10 Ом

11 Вт

Печатные платы.

Автор: АКА КАСЬЯН, по материалам: cxem.net

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *