Схема зу 11 01: Google Диск – Cторінку не знайдено – 403 — Доступ запрещён

Зарядное устройство «ЗУ-11» — Домашнее Радио

Характеристики устройства:
Pпот. – 170wT
I зарядки – 0-6A
Umax- 15v
Данные трансформатора:
1-2 – 770 вит. ПЭВ-2 0.63
3-4 – 69 вит. ПЭВ-2 2.0
5-6-7 – 45+45 вит. ПЭВ-2 0.25

Принципиальная схема представлена на рис.1 с некоторыми изменениями, выделенные сиреневым цветом.

Для самостоятельного изготовления в конструкции применял трансформатор ТС-180 от ч/б телевизоров рис.2, данные обмоток трансформатора приведены в таблице 1

Не разбирая трансформатор, снимаем все вторичные обмотки, из накальной обмотки, секции IV,IV’, вычисляем кол. витков на вольт и её длину, после чего мотаем новые из расчета. У меня вышло ≈3.3 витка/вольт.
21 виток = 6.4в = 430см. ≈20см/вольт
Находим необходимые значения
36 витков на 11в ПЭВ-2 1.5-2.0 мм на секцию
45 витков на 15в ПЭВ-2 0.25 на секцию
Длину кусков надо брать с небольшим запасам. Что касается мощной обмотки, её можно мотать меньшим диаметром из нескольких проводов, подобрав необходимое сечение.

Сечение жилы S = 0,785d2 х n , где d — диаметр жилы, n – количество жил
15-ти вольтовые обмотки не обязательно мотать, их можно сделать из секций II,II’, выводы 5-6 и 5′-6′. Отмотав необходимое количество витков.
На рис. 3 показано подключение секций перемотанного трансформатора и нумерация выводов согласно приведенной схеме на рис.1 (красным цветом выделенные новые обмотки)

Поскольку зарядное применялось в гараже, а там как правило из соседей, кто то варит сваркой, кто то включает пилораму или что то ещё и при этом напряжение очень здорово прыгает, а следовательно и ток зарядки будет прыгать.( В своё время я запорол аккумулятор при таких условиях, замыкание пластин в одной банке)
Для защиты в схему был добавлен предохранитель на 10А и как примочка, авто лампа 20+40 (нити включены параллельно),она же служит и защитой от КЗ, у некоторых автолюбителей есть маничка проверки работоспособности устройства на искру.

Лампочка — полноценный бареттер, поскольку с увеличением тока растёт её сопротивление, что, в свою очередь, вызывает уменьшение тока: собственно, суть принципа стабилизатора тока.

Правда при этом показания амперметра уменьшатся, но это не означает не дозаряжание аккумулятора.
Стандартное условие зарядки составляет обычно I=0,1хЕ, где I — зарядный ток в амперах, а Е — емкость аккумулятора в амперчасах. В этом режиме емкостной КПД аккумулятора принимают равным 2/3 и, соответственно, длительность зарядки устанавливают равной 15 часам. Режим зарядки малым током (он может быть и меньше 0,1хЕ при соответствующем увеличении продолжительности зарядки) замечателен тем, что даже при значительной перезарядке аккумулятор не будет поврежден.
Обычно делал так, подключал аккумулятор без лампочки, выставлял нужный ток, после чего подключал через лампочку.
Вообще то степень разряда-заряда лучше определять ареометром, учитывая погрешность температуры электролита (заводские условия: плотность электролита =1.25-1.30 при температуре 15 градусов, в зависимости от районов эксплуатации). При каждой зарядке, данные каждой банки заносить в таблицу. По которой будет видно дальнейшая степень пригодности аккумулятора в целом.

Конструкция и детали:
Печатная плата (заводское исполнение) приведена на рис.4

Сетка 0.25х0.25см

VD1и VD2 любые на U не ниже 50вольт и I = 10А
VD3 — VD5 –КД 105 (можно применить любые на Iпр. не ниже 300mA)
VS1и VS2 любые на U не ниже 50вольт и I = 10А
Так как у диодов серии Д242-Д246 катод на корпусе, а у тиристора анод, ставим их попарно VD1 VS1; VD2 VS2 на радиаторы

При исправных деталях, схема работает сразу, единственное, что может понадобиться, поменять местами выводы идущие с платы управления к обмотке трансформатора, к точкам 5 и 7 (поменять фазировку, относительно обмотки 3-4)
Автор статьи: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

Зарядное устройство зру 1м схема

Соблюдение режима эксплуатации аккумуляторных батарей, и в частности режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку аккумуляторных батарей производят током, значение которого можно определить по формуле

I=0,1Q

где I — средний зарядный ток, А., а Q — паспортная электрическая емкость аккумуляторной батареи, А-ч.

Зарядный ток, рекомендуемый в инструкции по эксплуатации аккумуляторной батареи, обеспечивает оптимальное протекание электрохимических процессов в ней и нормальную работу в течение длительного времени.

Классическая схема зарядного устройства для автомобильного аккумулятора состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки. В качестве регуляторов тока применяют проволочные реостаты (см. Рис. 1) и транзисторные стабилизаторы тока.

В обоих случаях на этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность выхода его из строя.

Для регулировки зарядного тока можно использовать магазин конденсаторов, включаемых последовательно с первичной (сетевой) обмоткой трансформатора и выполняющих функцию реактивных сопротивлений, гасящих избыточное напряжение сети. Упрощенная схема такого устройства приведена на рис. 2.

В этой схеме тепловая (активная) мощность выделяется лишь на диодах VD1-VD4 выпрямительного моста и трансформаторе, поэтому нагрев устройства незначителен.

Недостатком схемы на Рис. 2 является необходимость обеспечить напряжение на вторичной обмотке трансформатора в полтора раза большее, чем номинальное напряжение нагрузки (

Схема зарядного устройства, обеспечивающее зарядку 12-вольтовых аккумуляторных батарей током до 15 А, причем ток зарядки можно изменять от 1 до 15 А ступенями через 1 А, приведена на Рис. 3.

Предусмотрена возможность автоматического выключения устройства, когда батарея полностью зарядится. Оно не боится кратковременных коротких замыканий в цепи нагрузки и обрывов в ней.

Выключателями Q1 — Q4 можно подключать различные комбинации конденсаторов и тем самым регулировать ток зарядки.

Переменным резистором R4 устанавливают порог срабатывания реле К2, которое должно срабатывать при напряжении на зажимах аккумулятора, равном напряжению полностью заряженной батареи.

На Рис. 4 представлена схема еще одного зарядного устройства, в котором ток зарядки плавно регулируется от нуля до максимального значения.

Изменение тока в нагрузке достигается регулированием угла открывания тринистора VS1. Узел регулирования выполнен на однопереходном транзисторе VT1. Значение этого тока определяется положением движка переменного резистора R5. Максимальный ток заряда аккумулятора 10А , устанавливается амперметром. Защита устройства обеспечена со стороны сети и нагрузки предохранителями F1 и F2.

Вариант печатной платы зарядного устройства (см. рис. 4), размером 60х75 мм приведен на следующем рисунке:

В схеме на рис. 4 вторичная обмотка трансформатора должна быть рассчитана на ток, втрое больший зарядного тока, и соответственно мощность трансформатора также должна быть втрое больше мощности, потребляемой аккумулятором.

Названное обстоятельство является существенным недостатком зарядных устройств с регулятором тока тринистором (тиристором).

Диоды выпрямительного мостика VD1-VD4 и тиристор VS1 необходимо установить на радиаторы.

Значительно снизить потери мощности в тринисторе, а следовательно, повысить КПД зарядного устройства можно, если регулирующий элемент перенести из цепи вторичной обмотки трансформатора в цепь первичной обмотки. Схема такого устройства показана на рис. 5.

В схеме на Рис. 5 регулирующий узел аналогичен примененному в предыдущем варианте устройства. Тринистор VS1 включен в диагональ выпрямительного моста VD1 — VD4. Поскольку ток первичной обмотки трансформатора примерно в 10 раз меньше тока заряда, на диодах VD1-VD4 и тринисторе VS1 выделяется относительно небольшая тепловая мощность и они не требуют установки на радиаторы. Кроме того, применение тринистора в цепи первичной обмотки трансформатора позволило несколько улучшить форму кривой зарядного тока и снизить значение коэффициента формы кривой тока (что также приводит к повышению КПД зарядного устройства). К недостатку этого зарядного устройства следует отнести гальваническую связь с сетью элементов узла регулирования, что необходимо учитывать при разработке конструктивного исполнения (например, использовать переменный резистор с пластмассовой осью).

Вариант печатной платы зарядного устройства на рисенке 5, размером 60х75 мм приведен на рисунке ниже:

Диоды выпрямительного мостика VD5-VD8 необходимо установить на радиаторы.

В зарядном устройстве на рисунке 5 диодный мостик VD1-VD4 типа КЦ402 или КЦ405 с буквами А, Б, В. Стабилитрон VD3 типа КС518, КС522, КС524, или составленный из двух одинаковых стабилитронов с суммарным напряжением стабилизации 16÷24 вольта (КС482, Д808, КС510 и др.). Транзистор VT1 однопереходной, типа КТ117А, Б, В, Г. Диодный мостик VD5-VD8 составлен из диодов, с рабочим

током не менее 10 ампер (Д242÷Д247 и др.). Диоды устанавливаются на радиаторы площадью не менее 200 кв.см, а если радиаторы будут сильно нагреваться, в корпус зарядного устройства можно установить вентилятор для обдува.

Разбор больше 11 схем для изготовления ЗУ своими руками в домашних условиях, новые схемы 2017 и 2018 года, как собрать принципиальную схему за час.

  1. По каким основным причинам происходит разрядка автомобильного аккумулятора на дороге?

А) Автомобилист вышел из транспорта и забыл выключить фары.

Б) Аккумуляторная батарея слишком нагрелась под воздействием солнечных лучей.

  1. Может ли аккумулятор выйти из строя, если автомобилем не пользуются долгое время (стоит в гараже без запуска)?

А) При долгом простое аккумуляторная батарея выйдет из строя.

Б) Нет, батарея не испортится, ее потребуется только зарядить и она снова будет функционировать.

  1. Какой источник тока используется для подзарядки АКБ?

А) Есть только один вариант — сеть с напряжением в 220 вольт.

Б) Сеть на 180 Вольт.

  1. Обязательно снимать аккумуляторную батарею при подключении самодельного устройства?

А) Желательно производить демонтаж батареи с установленного места, иначе возникнет риск повредить электронику поступлением большого напряжения.

Б) Необязательно снимать АКБ с установленного места.

  1. Если перепутать «минус» и «плюс» при подключении ЗУ, то аккумуляторная батарея выйдет из строя?

А) Да, при неправильном подключении, аппаратура сгорит.

Б) Зарядное устройство просто не включится, потребуется переместить на положенные места необходимые контакты.

Ответы:

  1. А) Не выключенные фары при остановке и минусовая температура – наиболее распространенные причины разряда АКБ на дороге.
  2. А) АКБ выходит из строя, если долго не подзаряжать ее при простое автомобиля.
  3. А) Для подзарядки применяется напряжение сети в 220 В.
  4. А) Не желательно производить зарядку батареи самодельным устройством, если она не снята с автомобиля.
  5. А) Не следует путать клеммы, иначе самодельный аппарат перегорит.

Аккумулятор на автотранспорте требуют периодической зарядки. Причины разряжения могут быть разные — начиная от фар, что хозяин забыл выключить, и до отрицательных температур в зимний период на улице. Для подпитки АКБ потребуется хорошее зарядное устройство. Такое приспособление в больших разновидностях представлено в магазинах автозапчастей. Но если нет возможности или желания покупки, то ЗУ можно сделать своими руками в домашних условиях. Имеется также большое количество схем — их желательно все изучить, чтобы выбрать наиболее подходящий вариант.

Определение: Зарядное устройство для автомобиля предназначается для передачи электрического тока с заданным напряжением напрямую в АКБ.

Ответы на 5 часто задаваемых вопросов

  1. Потребуется ли производить какие-то дополнительные меры, перед тем как приступать к зарядке аккумуляторной батареи на своём автомобиле? – Да, потребуется почистить клеммы, поскольку во время работы на них появляются кислотные отложения. Контакты очень хорошо нужно почистить, чтобы ток без трудностей поступал к батарее. Иногда автомобилисты используют смазку для обработки клемм, ее тоже следует убрать.
  2. Чем протереть клеммы зарядных устройств? — Специализированное средство можно купить в магазине или приготовить самостоятельно. В качестве самостоятельно изготовленного раствора используют воду и соду. Компоненты смешиваются и перемешиваются. Это отличный вариант для обработки всех поверхностей. Когда кислота соприкоснется с содой, то произойдет реакция и автомобилист обязательно ее заметит. Это место и потребуется тщательно протереть, чтобы избавиться от всей кислоты. Если клеммы ранее обрабатывались смазкой, то она убирается любой чистой тряпкой.
  3. Если на аккумуляторе стоят крышки, то их нужно вскрывать перед началом зарядки? — Если крышки имеются на корпусе, то их обязательно снимают.
  4. По какой причине необходимо откручивать крышечки с аккумуляторной батареи? — Это нужно, чтобы газы, образующиеся в процессе зарядки, беспрепятственно выходили из корпуса.
  5. Есть необходимость обращать внимание на уровень электролита в аккумуляторной батарее? – Это делается в обязательном порядке. Если уровень ниже требуемого, то необходимо добавить дистиллированную воду внутрь аккумулятора. Уровень определить не составит труда – пластины должны быть полностью покрыты жидкостью.

Ещё важно знать: 3 нюанса об эксплуатации

Самоделка по способу эксплуатации несколько отличается от заводского варианта. Это объясняется тем, что у покупного агрегата имеются встроенные функции, помогающие в работе. Их сложно установить на аппарате, собранном дома, а потому придется придерживаться нескольких правил при эксплуатации.

  1. Зарядное устройство, собранное своими руками не будет отключаться при полной зарядке аккумулятора. Именно поэтому необходимо периодически следить за оборудованием и подключать к нему мультиметр – для контроля заряда.
  2. Нужно быть очень аккуратным, не путать «плюс» и «минус», иначе зарядное устройство сгорит.
  3. Оборудование должна быть выключено, когда происходит соединение с зарядным устройством.

Выполняя эти простые правила, получится правильно произвести подпитку АКБ и не допустить неприятных последствий.

Топ-3 производителей зарядных устройств

Если нет желания или возможности своими руками собрать ЗУ, то обратите внимание на следующих производителей:

Фирмы хорошо зарекомендовали себя на рынке, а потому о надежности и функциональности переживать при покупке не следует.

Как избежать 2-х ошибок при зарядке аккумуляторной батареи

Необходимо соблюдать основные правила, чтобы правильно подпитать батарею на автомобиле.

  1. Напрямую к электросети аккумуляторную батарею запрещено подключать. Для этой цели и предназначается зарядные устройства.
  2. Даже если устройство изготавливается качественно и из хороших материалов, всё равно потребуется периодически наблюдать за процессом зарядки, чтобы не произошли неприятности.

Выполнение простых правил обеспечит надежную работу самостоятельно сделанного оборудования. Гораздо проще следить за агрегатом, чем после тратиться на составляющие для ремонта.

Самое простое зарядное устройство для АКБ

Схема 100% рабочего ЗУ на 12 вольт

Посмотрите на картинке на схему ЗУ на 12 В. Оборудование предназначается для зарядки автомобильных аккумуляторов с напряжением 14,5 Вольт. Максимальный ток, получаемый при заряде составляет 6 А. Но аппарат также подходит и для других аккумуляторов – литий-ионных, поскольку напряжение и выходной ток можно отрегулировать. Все основные компоненты для сборки устройства можно найти на сайте Aliexpress.

  1. dc-dc понижающий преобразователь.
  2. Амперметр.
  3. Диодный мост КВРС 5010.
  4. Концентраторы 2200 мкФ на 50 вольт.
  5. трансформатор ТС 180-2.
  6. Предохранители.
  7. Вилка для подключения к сети.
  8. «Крокодилы» для подключения клемм.
  9. Радиатор для диодного моста.

Трансформатор используется любой, по собственному усмотрению Главное, чтобы его мощность была не ниже 150 Вт (при зарядном токе в 6 А). Необходимо установить на оборудование толстые и короткие провода. Диодный мост фиксируется на большом радиаторе.

Схема ЗУ Рассвет 2

Посмотрите на картинке на схему зарядного устройства Рассвет 2. Она составлена по оригинальному ЗУ. Если освоить эту схему, то самостоятельно получится создать качественную копию, ничем не отличающуюся от оригинального образца. Конструктивно устройство представляет собой отдельный блок, закрывающийся корпусом, чтобы защитить электронику от влаги и воздействия плохих погодных условий. На основание корпуса необходимо подсоединить трансформатор и тиристоры на радиаторах. Потребуется плата, что будет стабилизировать заряд тока и управлять тиристорами и клеммы.

1 схема умного ЗУ

Посмотрите на картинке принципиальную схему умного зарядного устройства. Приспособление необходимо для подключения к свинцово-кислотным аккумуляторам, имеющим емкость — 45 ампер в час или больше. Подключают такой вид аппарата не только к аккумуляторам, что ежедневно используются, но также к дежурным или находящимся в резерве. Это довольно бюджетная версия оборудования. В ней не предусмотрен индикатор, а микроконтроллер можно купить самый дешевый.

Если имеется необходимый опыт, то трансформатор собирается своими руками. Нет необходимости устанавливать также и звуковые сигналы оповещения — если аккумулятор подключится неправильно, то загоревшаяся лампочка разряда будет уведомлять об ошибке. На оборудование необходимо поставить импульсный блок питания на 12 вольт — 10 ампер.

1 схема промышленного ЗУ

Посмотрите на схему промышленного зарядного устройства от оборудования Барс 8А. Трансформаторы используются с одной силовой обмоткой на 16 Вольт, добавляется несколько диодов vd-7 и vd-8. Это необходимо для того, чтобы обеспечить мостовую схему выпрямителя от одной обмотки.

1 схема инверторного устройства

Посмотрите на картинке схему инверторного зарядного устройства. Это приспособление перед началом зарядки разряжает аккумуляторную батарею до 10,5 Вольт. Ток используется с величиной С/20: «C» обозначает ёмкость установленного аккумулятора. После этого процесса напряжение повышается до 14,5 Вольт, при помощи разрядно-зарядного цикла. Соотношение величины заряда и разряда составляет десять к одному.

1 электросхема ЗУ электроника

1 схема мощного ЗУ

Посмотрите на картинке на схему мощного зарядного устройства для автомобильного аккумулятора. Приспособление применяется для кислотных АКБ, имеющих высокую емкость. Устройство с легкостью заряжает автомобильный аккумулятор, имеющий емкость в 120 А. Выходное напряжение устройство регулируется самостоятельно. Оно составляет от 0 до 24 вольт. Схема примечательна тем, что в ней установлено мало компонентов, но дополнительные настройки при работе она не требует.

2 схемы советского ЗУ

Многие уже могли видеть советское зарядное устройство. Оно похоже на небольшую коробку из металла, и может показаться совсем ненадежной. Но это вовсе не так. Главное отличие советского образца от современных моделей — надежность. Оборудование обладает конструктивной мощностью. В том случае, если к старому устройству подсоединить электронный контроллер, то зарядник получится оживить. Но если под рукой такого уже нет, но есть желание его собрать, необходимо изучить схему.

К особенностям их оборудования относят мощный трансформатор и выпрямитель, с помощью которых получается быстро зарядить даже сильно разряженную батарею. Многие современные аппараты не смогут повторить этот эффект.

Для зарядки, подзарядки и формировки аккумуляторных батарей применяют специальные зарядные устройства, обеспечивающие необходимый режим заряда и удовлетворяющие специальным требованиям, обусловленным изменяющимся в процессе заряда напряжением аккумуляторов.

В качестве зарядных устройств применяются полупроводниковые агрегаты и вращающиеся преобразователи — двигатель-генераторы.

Полупроводниковые выпрямительные установки

Наибольшее распространение получили выпрямительные агрегаты на полупроводниках, смонтированные в шкафах с электронной защитой и автоматическим регулированием напряжения и стабилизацией силы тока заряда.

Коэффициент полезного действия полупроводниковых выпрямительных агрегатов разного типа находится в пределах 0,7—0,9. Коэффициент мощности — 0,68—0,8.

Современные зарядные агрегаты должны предусматривать защиту от короткого замыкания на выводах выпрямленного тока, защиту от ошибочного включения зажимов + и — аккумуляторной батареи на противоположные полюса агрегата, автоматическую стабилизацию зарядного тока при колебании напряжения питающей сети до ±10% от номинального значения.

Все полупроводниковые выпрямители подключаются к сети питающего напряжения через силовые трансформаторы, что обеспечивает безопасность установки и исключает попадание потенциала сети переменного тока в цепи выпрямленного напряжения.

Для зарядки свинцовых стартерных аккумуляторных батарей 6 или 12 В легковых автомобилей, мотоциклов и мотороллеров, а также в качестве источника постоянного тока применяют выпрямительные зарядные агрегаты типа ВАЗ-6/12-6 и ЗРУ 12/6-6.

Агрегат ВАЗ-6/12-6 представляет собой выпрямитель, выполненный по двухполупериодной схеме с плавным ручным регулированием тока и автоматической стабилизацией зарядного тока при колебании напряжения питающей сети. Выпрямленное напряжение (и, соответственно, величина зарядного тока) регулируется изменением момента (фазы) отпирания тиристоров, задаваемым регулировочным резистором. Агрегат обеспечивает электронную защиту при коротком замыкании на выходных зажимах и при ошибочном (встречном по полярности) присоединении аккумуляторной батареи.

Агрегат допускает питание нагрузки постоянного тока мощностью до 80 Вт. Для этого переключатель режимов работы (тумблер В) устанавливают в положение «Активная нагрузка». Следует учитывать, что в этом режиме электронная защита на выходе отключается и защита от короткого замыкания осуществляется только предохранителем Пр.

Переносное зарядное устройство типа ЗРУ 12/6-6 кроме зарядки аккумуляторов позволяет проводить тренировочные и контрольные зарядно-разрядные циклы, подключать электрический вулканизатор, переносное освещение или паяльник на 6 либо 12 В. Схема устройства проще чем у ВАЗ-6/12-6, не содержит элементов автоматической стабилизации тока и электронной защиты.

Рис. 1. Переносное зарядное устройство типа ЗРУ 12/6-6

Устройство можно сделать своими силами. Силовые трансформаторы изготовляют на стальном сердечнике типа Ш-25. Толщина набора 45 мм, дроссели — на образном сердечнике.

Рис. 2. Принципиальная схема выпрямительного зарядного устройства ЗРУ 12/6-6: Д — диоды Д242; R — регулировочный реостат на 10А; А — амперметр М4203 на 10 А с шунтом ШС-75-10-0,5; Ф — помехоподавляющий фильтр

При формировке аккумуляторов напряжение регулируется от 2 до 8 В специальным регулятором напряжения.

Для заряда и подзаряда стационарных аккумуляторных батарей на подстанциях всех категорий, а также для формировки отдельных аккумуляторов применяют выпрямительные зарядно-подзарядные агрегаты типа ВАЗ П.

Для буферного питания аппаратуры связи и заряда кислотных аккумуляторных батарей применяются выпрямительные устройства серии ВУК.

Конструкция зарядного устройства от шуруповёрта.

Схема, устройство, ремонт

Без сомнений, электроинструмент значительно облегчает наш труд, а также сокращает время рутинных операций. В ходу сейчас и всевозможные шуруповёрты с автономным питанием.

Рассмотрим устройство, принципиальную схему и ремонт зарядного устройства для аккумуляторов от шуруповёрта фирмы «Интерскол».

Для начала взглянем на принципиальную схему. Она срисована с реальной печатной платы зарядного устройства.

Схема зарядного устройства от шуруповёрта

Печатная плата зарядного устройства (CDQ-F06K1).

Печатная плата зарядного устройства

Силовая часть зарядного устройства состоит из силового трансформатора GS-1415. Мощность его около 25-26 Ватт. Считал по упрощённой формуле, о которой уже говорил здесь.

Трансформатор GS-1415 от зарядного устройства

Пониженное переменное напряжение 18V со вторичной обмотки трансформатора поступает на диодный мост через плавкий предохранитель FU1. Диодный мост состоит из 4 диодов VD1-VD4 типа 1N5408. Каждый из диодов 1N5408 выдерживает прямой ток 3 ампера. Электролитический конденсатор C1 сглаживает пульсации напряжения после диодного моста.

Основа схемы управления – микросхема HCF4060BE, которая является 14-разрядным счётчиком с элементами для задающего генератора. Она управляет биполярным транзистором структуры p-n-p S9012. Транзистор нагружен на электромагнитное реле S3-12A. На микросхеме U1 реализован своеобразный таймер, который включает реле на заданное время заряда – около 60 минут.

При включении зарядника в сеть и подключении аккумулятора контакты реле JDQK1 разомкнуты.

Микросхема HCF4060BE запитывается от стабилитрона VD6 – 1N4742A (12V). Стабилитрон ограничивает напряжение с сетевого выпрямителя до уровня 12 вольт, так как на его выходе около 24 вольт.

Если взглянуть на схему, то не трудно заметить, что до нажатия кнопки «Пуск» микросхема U1 HCF4060BE обесточена – отключена от источника питания. При нажатии кнопки «Пуск» напряжение питания от выпрямителя поступает на стабилитрон 1N4742A через резистор R6.

Далее пониженное и стабилизированное напряжение поступает на 16 вывод микросхемы U1. Микросхема начинает работать, а также открывается транзистор S9012, которым она управляет.

Напряжение питания через открытый транзистор S9012 поступает на обмотку электромагнитного реле JDQK1. Контакты реле замыкаются, и на аккумулятор поступает напряжение питания. Начинается заряд аккумулятора. Диод VD8 (1N4007) шунтирует реле и защищает транзистор S9012 от скачка обратного напряжения, которое образуется при обесточивании обмотки реле.

Диод VD5 (1N5408) защищает аккумулятор от разряда, если вдруг будет отключено сетевое питание.

Что будет после того, когда контакты кнопки «Пуск» разомкнутся? По схеме видно, что при замкнутых контактах электромагнитного реле плюсовое напряжение через диод VD7 (1N4007) поступает на стабилитрон VD6 через гасящий резистор R6. В результате микросхема U1 остаётся подключенной к источнику питания даже после того, как контакты кнопки будут разомкнуты.

Сменный аккумулятор.

Сменный аккумулятор GB1 представляет собой блок, в котором последовательно соединено 12 никель-кадмиевых (Ni-Cd) элементов, каждый по 1,2 вольта.

Сменный аккумулятор 14,4V

На принципиальной схеме элементы сменного аккумулятора обведены пунктирной линией.

Суммарное напряжение такого составного аккумулятора составляет 14,4 вольт.

Никель-кадмиевый элемент (Ni-Cd)

Также в блок аккумуляторов встроен датчик температуры. На схеме он обозначен как SA1. По принципу действия он похож на термовыключатели серии KSD. Маркировка термовыключателя JJD-45 2A. Конструктивно он закреплён на одном из Ni-Cd элементов и плотно прилегает к нему.

Датчик температуры

Один из выводов термодатчика соединён с минусовым выводом аккумуляторной батареи. Второй вывод подключен к отдельному, третьему разъёму.

Алгоритм работы схемы довольно прост.

При включении в сеть 220V зарядное устройство ни как не проявляет свою работу. Индикаторы (зелёный и красный светодиоды) не светятся. При подключении сменного аккумулятора загорается зелёный светодиод, который свидетельствует о том, что зарядник готов к работе.

При нажатии кнопки «Пуск» электромагнитное реле замыкает свои контакты, и аккумулятор подключается к выходу сетевого выпрямителя, начинается процесс заряда аккумулятора. Загорается красный светодиод, а зелёный гаснет. По истечении 50 – 60 минут, реле размыкает цепь заряда аккумулятора. Загорается светодиод зелёного цвета, а красный гаснет. Зарядка завершена.

После зарядки напряжение на клеммах аккумулятора может достигать 16,8 вольт.

Такой алгоритм работы примитивен и со временем приводит к так называемому «эффекту памяти» у аккумулятора. То есть ёмкость аккумулятора снижается.

Если следовать правильному алгоритму заряда аккумулятора для начала каждый из его элементов нужно разрядить до 1 вольта. Т.е. блок из 12 аккумуляторов нужно разрядить до 12 вольт. В заряднике для шуруповёрта такой режим не реализован.

Вот зарядная характеристика одного Ni-Cd аккумуляторного элемента на 1,2V.

Зарядная характеристика Ni-Cd аккумуляторов

На графике показано, как во время заряда меняется температура элемента (temperature), напряжение на его выводах (voltage) и относительное давление (relative pressure).

Специализированные контроллеры заряда для Ni-Cd и Ni-MH аккумуляторов, как правило, работают по так называемому методу дельта -ΔV. На рисунке видно, что в конце зарядки элемента происходить уменьшение напряжения на небольшую величину – порядка 10mV (для Ni-Cd) и 4mV (для Ni-MH). По этому изменению напряжения контроллер и определяет, зарядился ли элемент.

Так же во время зарядки происходит контроль температуры элемента с помощью термодатчика. Тут же на графике видно, что температура зарядившегося элемента составляет около 450С.

Вернёмся к схеме зарядного устройства от шуруповёрта. Теперь понятно, что термовыключатель JDD-45 отслеживает температуру аккумуляторного блока и разрывает цепь заряда, когда температура достигнет где-то 450С. Иногда такое происходит раньше того, как сработает таймер на микросхеме HCF4060BE. Такое происходит, когда емкость аккумулятора снизилась из-за «эффекта памяти». При этом полная зарядка такого аккумулятора происходит чуть быстрее, чем за 60 минут.

Как видим из схемотехники, алгоритм заряда не самый оптимальный и со временем приводит к потере электроёмкости аккумулятора. Поэтому для зарядки аккумулятора можно воспользоваться универсальным зарядным устройством, например, таким, как Turnigy Accucell 6.

Возможные неполадки зарядного устройства.

Со временем из-за износа и влажности кнопка SK1 «Пуск» начинает плохо срабатывать, а иногда и вообще отказывает. Понятно, что при неисправности кнопки SK1 мы не сможем подать питание на микросхему U1 и запустить таймер.

Также может иметь место выход из строя стабилитрона VD6 (1N4742A) и микросхемы U1 (HCF4060BE). В таком случае при нажатии кнопки включение зарядки не происходит, индикация отсутствует.

Зарядное устройство шуруповёрта Интерскол в разобранном виде

В моей практике был случай, когда стабилитрон пробило, мультиметром он «звонился» как кусок провода. После его замены зарядка стала исправно работать. Для замены подойдёт любой стабилитрон на напряжение стабилизации 12V и мощностью 1 Ватт. Проверить стабилитрон на «пробой» можно также, как и обычный диод. О проверке диодов я уже рассказывал.

Меняем пробитый стабилитрон

После ремонта нужно проверить работу устройства. Нажатием кнопки запускаем зарядку АКБ. Приблизительно через час зарядное устройство должно отключиться (засветится индикатор «Сеть» (зелёный). Вынимаем АКБ и делаем «контрольный» замер напряжения на её клеммах. АКБ должна быть заряженной.

Проверка зарядного устройства после ремонта

Если же элементы печатной платы исправны и не вызывают подозрения, а включения режима заряда не происходит, то следует проверить термовыключатель SA1 (JDD-45 2A) в аккумуляторном блоке.

Схема достаточно примитивна и не вызывает проблем при диагностике неисправности и ремонте даже у начинающих радиолюбителей.

Главная &raquo Мастерская &raquo Текущая страница

Также Вам будет интересно узнать:

 

СХЕМА ЗАРЯДНОГО УСТРОЙСТВА

СХЕМА ЗАРЯДНОГО УСТРОЙСТВА

     Представляю известную и проверенную схему зарядного устройства практически для всех типов аккумуляторов. Не смотря на то, что в продаже имеется множество крутых и серьёзных устройств, с зарядкой аккумуляторов токами различной формы и амплитуды, системами контроля и компенсации зарядного процесса, долгие эксперименты с различными схемами зарядных устройств и алгоритмами привели к простому выводу, что всё намного проще. Зарядный ток 10% от ёмкости АКБ подходит для любых видов аккумуляторов — хоть NiCd, хоть Li-Ion, хоть Pb. А чтоб полностью зарядить аккумулятор, ему надо дать время зарядки около 10 — 12 часов. Значит когда нужно зарядить какой — нибудь пальчиковый никель кадмиевый аккумулятор на 2500 мА, нужно выбрать ток 2500/10 = 250 мА и заряжать им в течении десяти часов, проще говоря оставить зарядку на ночь. Просто? Просто. И не надо ничего усложнять.

     Схема зарядного устройства:

Схема зарядного устройства ЗУ

     В этой схеме ЗУ относительная стабильность будет сохранятся и при изменении тока нагрузки или изменении питающего напряжения. Ток заряда определяется сопротивлением резистора R1. Различные значения этого сопротивления соответствуют току заряда от 0.01 до 1,5 A. Расчет зарядного тока – ток равен 1,2В деленное на сопротивление резистора R1 I=U/R или для расчёта резистора: R=U/I. Например для зарядного тока 250 мА (те же пальчиковые аккумуляторы), выбираем резистор R1 = 1,2В/0,25А = 4,8 Ома. А мощность этого резистора равна ток умножить на напряжение: P=UхI; Р=1,2В х 0,25А = 0,3 ватта. Для запаса берём минимум двухкратный запас по мощности.

детали для схемы зарядного устройства

     Детали зарядного устройства. Предохранители F1 и F2 защищают ЗУ от различных проблемных ситуаций. Емкость конденсатора С1 выбирается в пределах 1000 — 2000 мкФ. Выпрямительный диодный мост можно взять готовый, а можно составить из 4-х диодов на ток 1 — 5 А и напряжение от 50 В. Микросхему — стабилизатор LM317 можно заменить на любые аналоги, в том числе и советские, типа КРЕН5, КР142ЕН12 и так далее. Только выбирайте их согласно паспортным данным по заданному току (обычно 1-1,5А).

собранная схема ЗУ с трансформатором

     Но так как цена LM317 (LM117) очень низкая, а параметры заметно лучше, чем у отечественных аналогов, рекомендую использовать именно её. Эта микросхема представляет собой регулируемый стабилизатор напряжения с выходным напряжением в пределах от 1,2 до 36 В при выходном токе 1,5 А. Она снабжена защитой от короткого замыкания, выходной ток не зависит от температуры, максимальная нестабильность выходного напряжения 0,3%, подавление пульсаций — 80 дБ. Если нужно получить больший выходной ток ЗУ, лучше использовать другие микросхемы: LM150 — на ток до 3А; LM138, LM338 — на ток до 5А.  

     Главное достоинство этой схемы зарядного устройства — оно не боится коротких замыканий; в не зависимости от числа элементов в аккумуляторе и типа – можно заряжать и кислотный герметичный, и литий ионный, и щелочной, и никель кадмиевый. Для удобства и универсальности можно добавить в схему зарядного устройства переключатель тока для каждого вида заряжаемых аккумуляторов. Вообще, за долгие годы радиолюбительства, эту схему лично повторял десятки раз для разных целей — и всегда с успехом.

Схема зарядного устройства для аккумуляторов

     Естественно, при выборе питающего трансформатора нужно учесть, что максимальное напряжение заряжаемого аккумулятора должно быть меньше, чем напряжение питания зарядки минимум на 3 вольта, иначе и заряд то идти не будет. Микросхему нужно установить на алюминиевый радиатор размерами с пачку сигарет, или если ток больше 1 ампера — соответственно тоже большего размера. 

     ФОРУМ по зарядным устройствам.

   Схемы зарядных устройств

УСТРОЙСТВО ЗАРЯДНОЕ

8. Правила хранения, размещения упаковки.

 

           Зарядное устройство ЗУ-1Б должно храниться в упаковке предприятия-изготовителя в закрытом помещении с температурой окружающего воздуха от –10*С

до +30*С и относительной влажности до 80% при температуре 25*С ( без

 конденсации влаги).

          В помещении при хранении и эксплуатации не должно быть паров кислот и щелочей, а также газов, вызывающих коррозию металлов и повреждение изоляции, а также токопроводящей и взрывоопасной пыли.

        Зарядное устройство рекомендуется устанавливать в помещении,

соответствующем вышеуказанным требованиям на горизонтальной подставке из

неметаллических материалов высотой 500 мм от уровня пола.

        Место установки должно обеспечивать:

—         удобные условия, установки, подключения, обслуживания и осмотра;

—         расположение устройства рядом с нагрузкой;

—         надежное заземление.

       Условия хранения и эксплуатации зарядного устройства ЗУ-1Б в части воздействия климатических факторов должно соответствовать условиям «5». ГОСТ 15150-69 и группе С в части воздействия механических факторов по ГОСТ 23170-78

 

 

9. Техническое обслуживание

 

         9.1. Для обеспечения нормальной работы устройства в течение всего срока  службы необходимо раз в три  месяца производить осмотр устройства, очистку от

 пыли и загрязнений, подтягивание контактных электрических соединений.

         9.2. Проверку встроенного амперметра производить один раз в год  подключением последовательно с заряженной батареей образцового амперметра магнитно–электрической системы класса точности не ниже 0,5. Показания амперметров не должны отличаться более чем на 1,5 А.

1.        Назначение

           1.1.Устройство зарядное ____________ (в дальнейшем устройство) предназначено

         для заряда автомобильных стартерных кислотных аккумуляторных батарей

         номинальным напряжением 12В, 12-24В* и 6-12В** емкостью до 250 (100**) А-час в       подзарядки в условиях автотранспортных предприятий и станций технического обслуживания  автомобилей.

                    Предпусковая подзарядка аккумуляторных батарей производится в двух случаях:

         -если аккумуляторная батарея сильно разряжена вследствие длительного

         саморазряда или других причин. Время заряда 3-5 минут;

         -если при отрицательной температуре окружающего воздуха вследствие

         переохлаждения электролита падает емкость и возрастает внутреннее

         сопротивление аккумуляторной батареи. Время заряда 6-10 минут.

           1.2.Устройство позволяет производить заряд одновременно до двух

         однотипных аккумуляторных батарей напряжением 12В на режиме 24В* (6В в режиме 12

12В**) последовательно.

                    1.3. Регулировка зарядного тока плавная.

                    1.4. Устройство имеет защиту от токов короткого замыкания на выходных

                    проводах «+» и «-», неправильного подключения АКБ, превышения тока заряда.

           1.5.Устройство предназначено для эксплуатации в районах с умеренным

        климатом, в помещениях с искусственно регулируемыми условиями при

        температуре окружающего воздуха от 10°С до 35°С, относительной влажности до

        80% при температуре 25°С и атмосферном давлении от 650 до 800 мм рт. ст.

1.6.   Устройство соответствует требованиям, обеспечивающим безопасность

        потребителя согласно ГОСТ 12.2.007-75

2.       Технические характеристики

 2.1 Питание устройства                                 сеть однофазного переменного тока

                                                                                                                    напряжением 220+-20В

                                                                                                                              частотой 50+-2Гц    

2.2 Максимально допустимый зарядный ток, А, не более                       25, 10***

2.3Выходные напряжения В                                                         12, 12-24*, 6-12**

2.4 Максимальная емкость АКБ А/час                                                                 250

2.5 Количество одновременно заряжаемых АКБ в режиме 24В                          2*                            

2.4 Максимальная потребляемая мощность, кВт, не более          0,6 — 0,8* — 0,5**

2.5 Габаритные размеры, мм, не более

                                                                         длина                                                                  180

                                                                         ширина                                                               310

                                                                         высота                                                                280

2.6 Масса, кг, не более                                                                                              8

 

3. Комплектность

3.1 Устройство зарядное, шт.                                                                                    1

3.2 Паспорт                                                                                                                  1

 

* Значение применимо к устройство ЗУ-1Б

** Значение применимо к устройству ЗУ-1Д

Зарядные устройства

Доброе время суток. Сегодня речь пойдет об ЗУ для АКБ. ( автоматическом зарядном устройстве для свинцово-кислотных аккумуляторных батарей) После поездки по городу на своей машине, я поставил ее в гараж и забыл выключить подфарники, и только на третье сутки когда нужно было срочно  ехать по делам, я обратил внимание что аккумулятор полностью мертв. И тогда задумался об ЗУ, и тут наткнулся на данную схему. Первоисточник и автор схемы указан в низу статьи. 


В этой статье речь пойдет о том, как из компьютерного блока питания формата АТ/АТХ и самодельного блока управления изготовить довольно-таки «умное» зарядное устройство для свинцово-кислотных аккумуляторных батарей. К ним относятся т.н. «УПС-овые», автомобильные и другие АКБ широкого применения.


Описание
Устройство предназначено для зарядки и тренировки (десульфатации) свинцово-кислотных АКБ ёмкостью от 7 до 100 Ач, а также для приблизительной оценки уровня их заряда и емкости. ЗУ имеет защиту от неправильного включения батареи (переполюсовки) и от короткого замыкания случайно брошенных клемм. В нём применено микроконтроллерное управление, благодаря чему осуществляются безопасные и оптимальные алгоритмы зарядки: IUoU или IUIoU, с последующей «добивкой» до 100%-го уровня зарядки. Параметры зарядки можно подстроить под конкретный аккумулятор (настраиваемые профили) или выбрать уже заложенные в управляющей программе. Конструктивно зарядное устройство состоит из блока питания АТ/АТХ, который нужно немного доработать и блока управления на МК ATmega16A.
Всё устройство свободно монтируется в корпусе того же блока питания. Система охлаждения (штатный кулер БП) включается/отключается автоматически.
Достоинства данного ЗУ — его относительная простота и отсутствие трудоёмких регулировок, что особенно актуально для начинающих радиолюбителей.

1. Режим зарядки — меню «Заряд». Для аккумуляторов емкостью от 7Ач до 12Ач по умолчанию задан алгоритм IUoU. Это значит:
— первый этап- зарядка стабильным током 0.1С до достижения напряжения14.6В
— второй этап-зарядка стабильным напряжением 14.6В, пока ток не упадет до 0,02С
— третий этап-поддержание стабильного напряжения 13.8В, пока ток не упадет до 0.01С. Здесь С — ёмкость батареи в Ач.
— четвёртый этап — «добивка». На этом этапе отслеживается напряжение на АКБ. Если оно падает ниже 12.7В, включается заряд с самого начала.
Для стартерных АКБ (от 45 Ач и выше) применяем алгоритм IUIoU. Вместо третьего этапа включается стабилизация тока на уровне 0.02C до достижения напряжения на АКБ 16В или по прошествии времени около 2-х часов. По окончанию этого этапа зарядка прекращается и начинается «добивка». Это — четвёртый этап. Процесс заряда проиллюстрирован графиками рис.1 и рис.2.

2. Режим тренировки (десульфатации) — меню «Тренировка». Здесь осуществляется тренировочный цикл: 
10 секунд — разряд током 0,01С, 5 секунд — заряд током 0.1С. Зарядно-разрядный цикл продолжается, пока напряжение на АКБ не поднимется до 14.6В. Далее — обычный заряд.

3. Режим теста батареи. Позволяет приблизительно оценить степень разряда АКБ. Батарея нагружается током 0,01С на 15 секунд, затем включается режим измерения напряжения на АКБ.

4. Контрольно-тренировочный цикл (КТЦ). Если предварительно подключить дополнительную нагрузку и включить режим «Заряд» или «Тренировка», то в этом случае, сначала будет выполнена разрядка АКБ до напряжения 10.8В, а затем включится соответствующий выбранный режим. При этом измеряются ток и время разряда, таким образом, подсчитывается примерная емкость АКБ. Эти параметры отображаются на дисплее после окончания зарядки (когда появится надпись «Батарея заряжена») при нажатии на кнопку «выбор». В качестве дополнительной нагрузки можно применить автомобильную лампу накаливания. Ее мощность выбирается, исходя из требуемого тока разряда. Обычно его задают равным 0.1С — 0.05С (ток 10-ти или 20-ти часового разряда).
Перемещение по меню осуществляется кнопками «влево», «вправо», «выбор». Кнопкой «ресет» осуществляется выход из любого режима работы ЗУ в главное меню.

Основные параметры зарядных алгоритмов можно настроить под конкретный аккумулятор, для этого в меню есть два настраиваемых профиля — П1 и П2. Настроенные параметры сохраняются в энергонезависимой памяти (EEPROM-е).
Чтобы попасть в меню настроек нужно выбрать любой из профилей, нажать кнопку «выбор», выбрать «установки», «параметры профиля», профиль П1 или П2. Выбрав нужный параметр, нажимаем «выбор». Стрелки «влево» или «вправо» сменятся на стрелки «вверх» или «вниз», что означает готовность параметра к изменению. Выбираем нужное значение кнопками «влево» или «вправо», подтверждаем кнопкой «выбор». На дисплее появится надпись «Сохранено», что обозначает запись значения в EEPROM.

Значения настроек:

1. «Алгоритм заряда». Выбирается IUoU или IUIoU. См. графики на рис.1 и рис.2.
2. «Емкость АКБ». Задавая значение этого параметра, мы задаем ток зарядки на первом этапе I=0.1C, где С- емкость АКБ В Ач. (Таким образом, если нужно задать ток заряда, например 4.5А, следует выбрать емкость АКБ 45Ач).
3. «Напряжение U1». Это напряжение, при котором заканчивается первый этап зарядки и начинается второй. По умолчанию задано значение 14.6В.
4. «Напряжение U2». Используется только, если задан алгоритм IUIoU. Это напряжение, при котором заканчивается третий этап зарядки. По умолчанию — 16В.
5. «Ток 2-го этапа I2». Это значение тока, при котором заканчивается второй этап зарядки. Ток стабилизации на третьем этапе для алгоритма IUIoU. По умолчанию задано значение 0.2С.
6. «Окончание заряда I3». Это значение тока, по достижению которого зарядка считается оконченной. По умолчанию задано значение 0.01С.
7. «Ток разряда». Это значение тока, которым осуществляется разряд АКБ при тренировке зарядно-разрядными циклами.

Выбор и переделка блока питания.
В нашей конструкции мы используем блок питания от компьютера. Почему? Причин несколько. Во–первых, это — практически готовая силовая часть. Во-вторых, это же и корпус нашего будущего устройства. В-третьих, он имеет малые габариты и вес. И, в-четвёртых, его можно приобрести практически на любом радиорынке, барахолке и в компьютерных сервисных центрах. Как говорится, дёшево и сердито.
Из всего многообразия моделей блоков питания нам лучше всего подходит блок формата АТX, мощностью не менее 250 Вт. Нужно только учесть следующее. Подходят лишь те блоки питания, в которых применён ШИМ-контроллер TL494 или его аналоги (MB3759, КА7500, КР1114ЕУ4). Можно также применить и БП формата AT, только придется изготовить еще маломощный блок дежурного питания (дежурку) на напряжение 12В и ток 150-200мА. Разница между AT и ATX – в схеме начального запуска. АТ запускается самостоятельно, питание микросхемы ШИМ–контроллера берётся с 12-вольтовой обмотки трансформатора. В ATX для начального питания микросхемы служит отдельный источник 5В, называемый «источник дежурного питания» или «дежурка».

Итак, блок питания имеется. Сначала необходимо его проверить на исправность. Для этого его разбираем, вынимаем предохранитель и вместо него подпаиваем лампу накаливания 220 вольт мощностью 100-200Вт. Если на задней панели БП имеется переключатель сетевого напряжения, то он должен быть установлен на 220В. Включаем БП в сеть. Блок питания АТ запускается сразу, для ATX нужно замкнуть зелёный и чёрный провода на большом разъёме. Если лампочка не светится, кулер вращается, а все выходные напряжения в норме — значит, нам повезло и наш блок питания рабочий. В противном случае, придётся заняться его ремонтом. Оставляем лампочку пока на месте.

Для переделки БП в наше будущее зарядное устройство, нам потребуется немного изменить «обвязку» ШИМ-контроллера. Несмотря на огромное разнообразие схем блоков питания, схема включения TL494 стандартная и может иметь пару вариаций, в зависимости от того, как реализованы защиты по току и ограничения по напряжению. Схема переделки показана на рис.3. 

На ней показан только один канал выходного напряжения: +12В. Остальные каналы: +5В,-5В, +3,3В не используются. Их обязательно нужно отключить, перерезав соответствующие дорожки или выпаяв из их цепей элементы. Которые, кстати, нам могут и пригодиться для блока управления. Об этом — чуть позже.
Красным цветом обозначены элементы, которые устанавливаются дополнительно. Конденсатор С2 должен иметь рабочее напряжение не ниже 35В и устанавливается взамен существующего в БП. После того, как «обвязка» TL494 приведена к схеме на рис.3, включаем БП в сеть. Напряжение на выходе БП определяется по формуле: Uвых=2,5*(1+R3/R4) и при указанных на схеме номиналах должно составлять около 10В. Если это не так, придется проверить правильность монтажа. На этом переделка закончена, можно убирать лампочку и ставить на место предохранитель.

Схема и принцип работы.

Схема блока управления показана на рис.4.

Она довольно проста, так как все основные процессы выполняет микроконтроллер. В его память записывается управляющая программа, в которой и заложены все алгоритмы. Управление блоком питания осуществляется с помощью ШИМ с вывода PD7 МК и простейшего ЦАП на элементах R4,C9,R7,C11. Измерение напряжения АКБ и зарядного тока осуществляется средствами самого микроконтроллера — встроенным АЦП и управляемым дифференциальным усилителем. Напряжение АКБ на вход АЦП подается с делителя R10R11, Зарядный и разрядный ток измеряются следующим образом. Падение напряжения с измерительного резистора R8 через делители R5R6R10R11 подается на усилительный каскад, который находится внутри МК и подключен к выводам PA2, PA3. Коэффициент его усиления устанавливается программно, в зависимости от измеряемого тока. Для токов меньше 1А коэффициент усиления (КУ) задается равным 200, для токов выше 1А КУ=10. Вся информация выводится на ЖКИ, подключенный к портам РВ1-РВ7 по четырёхпроводной шине.
Защита от переполюсовки выполнена на транзисторе Т1, сигнализация неправильного подключения — на элементах VD1,EP1 ,R13. При включении зарядного устройства в сеть транзистор Т1 закрыт низким уровнем с порта РС5, и АКБ отключена от зарядного устройства. Подключается она только при выборе в меню типа АКБ и режима работы ЗУ. Этим обеспечивается также отсутствие искрения при подключении батареи. При попытке подключить аккумулятор в неправильной полярности сработает зуммер ЕР1 и красный светодиод VD1, сигнализируя о возможной аварии. В процессе заряда постоянно контролируется зарядный ток. Если он станет равным нулю (сняли клеммы с АКБ), устройство автоматически переходит в главное меню, останавливая заряд и отключая батарею. Транзистор Т2 и резистор R12 образуют разрядную цепь, которая участвует в зарядно-разрядном цикле десульфатирующего заряда (режим тренировки) и в режиме теста АКБ. Ток разряда 0.01С задается с помощью ШИМ с порта PD5. Кулер автоматически выключается, когда ток заряда падает ниже 1,8А. Управляет кулером порт PD4 и транзистор VT1.

Детали и конструкция.

Микроконтроллер. В продаже обычно встречаются в корпусе DIP-40 или TQFP-44 и маркируются так: ATMega16А-PU или ATMega16A-AU. Буква после дефиса обозначает тип корпуса: «P»- корпус DIP, «A»- корпус TQFP. Встречаются также и снятые с производства микроконтроллеры ATMega16-16PU, ATMega16-16AU или ATMega16L-8AU. В них цифра после дефиса обозначает максимальную тактовую частоту контроллера. Фирма- производитель ATMEL рекомендует использовать контроллеры ATMega16A (именно с буквой «А») и в корпусе TQFP, то есть, вот такие: ATMega16A-AU, хотя в нашем устройстве будут работать все вышеперечисленные экземпляры, что и подтвердила практика. Типы корпусов отличаются также и количеством выводов (40 или 44) и их назначением. На рис.4 изображена принципиальная схема блока управления для МК в корпусе DIP.
Резистор R8 –керамический или проволочный, мощностью не менее 10 Вт, R12- 7-10Вт. Все остальные- 0.125Вт. Резисторы R5,R6,R10 и R11 нужно применять с допустимым отклонением 0.1-0.5%. Это очень важно! От этого будет зависеть точность измерений и, следовательно, правильная работа всего устройства.
Транзисторы T1 и Т2 желательно применять такие, как указаны на схеме. Но если придется подбирать замену, то необходимо учитывать, что они должны открываться напряжением на затворе 5В и, конечно же, должны выдерживать ток не ниже 10А. Подойдут, например, транзисторы с маркировкой 40N03GР, которые иногда используются в тех же БП формата АТХ, в цепи стабилизации 3.3В. 
Диод Шоттки D2 можно взять из того же БП, из цепи +5В, которая у нас не используется. Элементы D2, Т1 иТ2 через изолирующие прокладки от радиатора размещаются на одном радиаторе площадью 40 квадратных сантиметров. Зумер EP1- со встроенным генератором, на напряжение 8-12 В, громкость звучания можно подрегулировать резистором R13.
Жидкокристаллический индикатор – Wh2602 или аналогичный, на контроллере HD44780, KS0066 или совместимых с ними. К сожалению, эти индикаторы могут иметь разное расположение выводов, так что, возможно, придется разрабатывать печатную плату под свой экземпляр.

Программа
Управляющая программа содержится в папке «Программа» Конфигурационные биты (фузы) устанавливаются следующие:
Запрограммированы (установлены в 0 это значит там нужно поставить галочки):
CKSEL0
CKSEL1
CKSEL3
SPIEN
SUT0
BODEN
BODLEVEL
BOOTSZ0
BOOTSZ1

все остальные — незапрограммированы (установлены в 1).

Наладка.
Итак, блок питания переделан и выдает напряжение около 10В. При подключении к нему исправного блока управления с прошитым МК, напряжение должно упасть до 0.8..15В. Резистором R1 устанавливается контрастность индикатора. Наладка устройства заключается в проверке и калибровке измерительной части. Подключаем к клеммам аккумулятор, либо блок питания напряжением 12-15В и вольтметр. Заходим в меню «Калибровка». Сверяем показания напряжения на индикаторе с показаниями вольтметра, при необходимости, корректируем кнопками «<» и «>». Нажимаем «Выбор». Далее идет калибровка по току при КУ=10. Теми же кнопками «<» и «>» нужно выставить нулевые показания тока. Нагрузка (аккумулятор) при этом автоматически отключается, так что ток заряда отсутствует. В идеальном случае там должны быть нули или очень близкие к нулю значения. Если это так, это говорит о точности резисторов R5,R6,R10,R11,R8 и хорошем качестве дифференциального усилителя. Нажимаем «Выбор». Аналогично — калибровка для КУ=200. «Выбор». На дисплее отобразится «Готово» и через 3 сек. устройство перейдет в главное меню.
Калибровка окончена. Поправочные коэффициенты хранятся в энергонезависимой памяти. Здесь стоит отметить, что если при самой первой калибровке значение напряжения на ЖКИ сильно отличается от показаний вольтметра, а токи при каком — либо КУ сильно отличаются от нуля, нужно применить (подобрать) другие резисторы делителя R5,R6,R10,R11,R8, иначе в работе устройства возможны сбои. При точных резисторах (с допуском 0,1-0,5%) поправочные коэффициенты равны нулю или минимальны. На этом наладка заканчивается. Если же напряжение или ток зарядного устройства на каком-то этапе не возрастает до положенного уровня или устройство «выскакивает» в меню, нужно ещё раз внимательно проверить правильность доработки блока питания. Возможно, срабатывает защита.

Весь материал одним архивом можно скачать здесь1.87 MB


А вот Фото что получилось у меня.

Вместо лампочки которая стоит в качестве нагрузки можно пременить не сложную схему электроной нагрузки которая отлично работает!

Автор данной разработки: Sergey212

 

Печатная плата в lay 

Обсудить на форуме.

Источник: http://electronics-lab.ru 

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *