Схема бп на 12 вольт – Собираем мощный блок питания на 12Вольт, который можно будет использовать в качестве прикуривателя на автомобиль. | Истории и советы от Азата

Блок питания 12 Вольт 3 Ампера или как самому сделать бесперебойник

Вообще изначально данная статья писалась очень давно, более двух лет назад. Но в данном случае я решил, что информация из нее может быть полезна и использована на благо мастеров 3D печати.

Суть данной статьи в том, чтобы превратить обычный блок питания в маленький бесперебойник с выходом примерно 11-13.5 Вольт.

В качестве примера будет БП с мощностью 36 Ватт, но практически без доработок схема применима к более мощным БП с топологией Флайбек и с доработками к двухтактным БП.

Но сначала просто миниобзор самого БП, сорри за качество фото, снималось на паяльник.

На торце указаны технические характеристики.

Характеристики меня немного запутали, обычно или указывают полный диапазон, или если есть выбор 110/220, то соответственно есть переключатель и внутри схема сетевого выпрямителя с переключением на удвоение. Здесь никакого переключателя не было. Позже посмотрим внимательнее что внутри.

Размеры относительно небольшие.

С торца расположены клеммы подключения 220 Вольт, клемма заземления и клеммы выхода 12 Вольт. Так же здесь расположен светодиод, который показывает наличие выходного напряжения и подстроечный резистор для корректировки выходного напряжения. После вскрытия моему взору предстала печатная плата данного блока питания.

На плате распаян полноценный входной фильтр, конденсатор 33мкФ 400 В (вполне нормально для заявленной мощности), высоковольтная часть, сделанная по схемотехнике автогенератора (когда заказывал, то надеялся что будет стандартная UC3842), выходной фильтр из двух конденсаторов 470мкФ 25 Вольт и дросселя. Емкость выходного фильтра маловата, я бы поставил раза в 2 больше.

Силовой транзистор 5N60D - только в корпусе ТО-220.

Выходной диод - stps20h200ct - аналогично в корпусе ТО-220.

Схема стабилизации и обратной связи сделана на TL431.

Обратная сторона платы.

Ничего необычного, пайка среднего качества, флюс смыт, довольно аккуратно.

Но удивила маркировка на плате (она есть и с верхней стороны).

SM-24W, может изначально БП был 24 Ватта, потом решили что маловато будет и написали 36?

Эксперименты покажут.

Первое включение, ничего не бахнуло, уже неплохо.

Нагрузил блок питания классическими неубиваемыми советскими резисторами, 10 Ом 2 штуки параллельно.

Ток около 2.5 Ампера.

Напряжение измерял после проводов к резисторам, потому немного просело.

Оставил так, пошел попить чайку и покурить, ждал что рванет.

Не рвануло, даже почти не нагрелось, градусов 40, ну может 45, специально не измерял, по ощущениям немного теплый.

Догрузил еще на 0.22 А (не нашел ничего рядом подходящего), ничего не изменилось.

Решил на этом не останавливаться и повесил на выход еще один резистор 10 Ом.

Напряжение просело до 10.05 Вольта, но блок питания продолжал упорно работать.

Дальше мне стало жалко разработчиков данного блока питания, сумевших настолько его упростить, и при этом добиться его работоспособности и я на этом этапе решил закончить стандартные эксперименты над ним.

К слову я был настроен скептически по отношению к данному блоку питания, в основном из-за его схемотехники, как то вот привык работать с более дорогими блоками питания, где есть ШИМ контроллер, контроль тока и т.п. Практика показала, что такой вариант тоже вполне жизнеспособен.

Дальше я решил перейти к нестандартной части испытаний и попробовать добиться от него того, для чего я хотел его взять. Собственно постоянные читатели моих обзоров привыкли, что я люблю не только показать товар в обзоре, а и применить его, не буду вас расстраивать и в этот раз.

Допилинг

Началось все с того, что позвонил товарищ и спросил, можно ли сделать небольшой бесперебойничек для питания электромагнитного замка и контроллера. Живет он в частном секторе, свет иногда ненадолго, да пропадет. Аккумулятор у него уже был, остался от компьютерного бесперебойника, большой ток уже не тянет, а с замком вполне нормально справляется.

В общем накидал небольшую добавочную платку к этому блоку питания.

Платка, схема и небольшое описание процесса.

Схема.

И страссированная по ней плата. Схема обеспечивает ограничение тока заряда (в моем случае настроено на 400мА), защиту от переразряда аккумулятора (настроено на 10 Вольт), простенькую защиту от переполюсовки аккумулятора (кроме случая если переполюсовать прямо на ходу), ну и собственно функцию подачи напряжения от аккумулятора на выход блока питания.

Перенес платку на текстолит, покрыл припоем.

Подобрал детали.
Спаял плату, реле стоит другое, так как сначала не заметил что оно на 5 Вольт, пришлось поискать на 12. Пояснения по схеме.

С2 в принципе можно не ставить, тогда R5 и R6 заменяются одним на 9.1-10 кОм.

Он нужен для уменьшения ложных срабатываний при резком изменении нагрузки.

В идеале конечно лучше было бы домотать пару витков в дополнение ко вторичной обмотке, так как блок питания работает с перегрузом по напряжению в 20%. Испытания показали что работает все отлично, но лучше либо домотать немного вторичную обмотку, либо еще лучше - дорабатывать БП на 15 Вольт, а не на 12. В моем случае пришлось еще изменить номинал резистора в делителе обратной связи у блока питания, на схеме это R7, там стоят 4.7 кОм, я поставил 4.3 кОм, в случае применения БП на 15 Вольт, этого скорее всего делать не придется.

После сборки платы встроил ее в блок питания.

На плате обозначены точки подключения и видно место, где перерезана минусовая дорожка (над цифрой 3).

Плату обмотал скотчем, и уложил на более-менее свободное место. После (на самом деле лучше до того как изолируем скотчем) выставил выходное напряжение блока питания 13.8 Вольта (это напряжение которое будет поддерживаться на аккумуляторе, обычно выставляется в диапазоне 13.8-13.85. Вот вид собранного и настроенного устройства. Подключил небольшую нагрузку и аккумулятор. Ток заряда 0.39А (может немного падать по мере прогрева). Отключил блок питания от сети, нагрузка продолжает работать, на мультиметре ток нагрузки +ток потребления реле + ток потребления цепей измерения.
Товарищу надо было бесперебойник на ток 0.8-1 Ампер, я нагрузил немного больше. После этого подключил питание 220 Вольт, на одном мультиметре напряжение на нагрузке (будет еще подниматься, аккумулятор не заряжен), на втором ток заряда (немного просел из-за прогрева). В общем на мой взгляд переделка удалась, от такого БП можно питать небольшие нагрузки, до 1-1.5 Ампера. Больше не стал бы, так как БП в нештатном режиме. Если использовать БП на 15 Вольт, то ток можно поднять, но надо всегда учитывать ток заряда аккумулятора (он определяется резистором R1. 1.6 Ома дает тока заряда около 0.4 А, чем меньше сопротивление, тем больше ток и наоборот.

Если кто то несогласен с настроенным током заряда, напряжением окончания заряда и авто отключения, то это все легко меняется, если надо, объясню как это сделать.

Вы конечно спросите, при чем здесь 3D принтеры и этот мелкий блок питания.

Все просто, как я писал в самом начале, можно взять мощный блок питания, применить более мощные компоненты в плате которую я делал и получить бесперебойник, который не имеет такого понятия как 'время переключения', т.е. фактически 'онлайн'. А так как печать идет очень долго, то это может быть весьма полезно в плане бесперебойности работы. Кроме того КПД такой системы заметно выше чем у традиционных УПСов.

Для применения с большими токами надо заменить на моей плате диод VD1 на любой Шоттки с током более 30 Ампер (например выпаянный из компьютерного БП) и установить его на радиатор, Реле на любое с током контактов более 20 Ампер и обмоткой с током не более 100мА (а лучше до 80). Кроме того возможно понадобится увеличение тока заряда, это делается путем уменьшения номинала резистора R1 до 0.6-1 Ом.

Есть и промышленные БП с такой функцией, по крайней мере я знаю пару таких производства Meanwell, но:

1. Они очень дорогие

2. Выпускаются мощностью 55 и 150 Ватт, что не так много.

Вроде все, если есть вопросы, буду рад обсудить.

Еще один 12 Вольт блок питания, но уже на 1 Ампер.

В предыдущем обзоре я оговорился насчет того, что в посылке было два товара.
Сегодня я покажу, что еще пришло ко мне. Этот блок питания заказывался с вполне конкретной целью, но об этом я напишу в конце.
Обзор будет очень похож на предыдущий, если интересно, прошу под кат.

Как я написал в аннотации, блок питания пришел в компании с первым.
Но он не только пришел вместе, а как я понял, они еще и одного производителя, об этом говорит и внешний вид и качество изготовления (хотя у этого БП оно несколько похуже) и маркировка.
У предыдущего была маркировка XK-2412DC, что означает 24\12 Вольт, т.е. плата выпускается в двух вариантах, на 24 и 12 Вольт соответственно.
Маркировка этого — XK-1205DC, т.е такой блок питания бывает на 12 или 5 Вольт. Я заказал 12 Вольт вариант.

Характеристики блока питания.
Входное напряжение: AC85-265V или DC100-370V
Выходное напряжение: DC 12V
Выходной ток: 1A (на сайте магазина ошибочно указано 1-2А)
Выходная мощность: 12 Ватт.
Так же в заголовке было заявлено о низких пульсациях, но это мы проверим отдельно 🙂

Начну по традиции с упаковки, так же по традиции спрячу ее под спойлер, ничего особо интересного там нет, можно спокойно пропустить этот пункт.

Упаковка

Пришел блок питания в стандартном антистатическом пакете, со стандартными наклейками, номер товара в магазине и предостережение.

После распаковки ничего криминального я не увидел, все аккуратно, за исключением того, что ехал он болтаясь в пакете (об этом я писал в предыдущем обзоре)

Блок питания реально маленький, размер чуть больше спичечного коробка.
Размеры 62.5х31х23мм, последний размер — высота, может быть уменьшен еще на 1мм, так как я измерял с выводами трансформатора, которые немного торчат.

В этом блоке питания так же есть сетевой фильтр и ограничитель пускового тока, но фильтр урезан, отсутствует фильтрующий конденсатор перед дросселем.
Так же отсутствует разъем, просто два отверстия с шагом 5мм.

Зато в этом БП конденсатор в цепи питания ШИМ контроллера стоит 33мкФ, а не 10 как в предыдущем, это хорошо.

С другого ракурса виден выходной диод и выходные конденсаторы с дросселем.
Радиаторов здесь не предусмотрено, да они и не сильно нужны при такой мощности.
Диод применен на 3 Ампера 100 Вольт, марка SR3100, все как положено.

А вот и первое замечание, причем серьезное.
В качестве межобмоточного конденсатора применен обычный конденсатор на 1 КВ, а не Y1, который положено ставить в таких цепях.
Дело в том, что конденсаторы Y1 ставятся в таких цепях из соображений безопасности, при пробое он всегда уходит в обрыв, так как КЗ в такой цепи чревато последствиями.
Очень рекомендую его заменить, выпаять можно из любого импульсного БП, номинал особо не критичен, главное класс конденсатора.

Силовой транзистор «спрятался» где то в глубине платы, между входным дросселем и трансформатором, радиатора не имеет, корпус мелкий, но об этом я скажу отдельно.

Как и в прошлый раз, чертеж с размерами платы и крепежных отверстий.

Плата изготовлена и собрана очень качественно, претензии отсутствуют, мало того, здесь производитель даже зафиксировал SMD элементы клеем, это видно по месту для установки выходного диода в SMD корпусе вместо выводного, да и видно по другим элементам. За это плюс.
Плата двухслойная, монтаж двухсторонний и довольно плотный, пара резисторов расположена даже под трансом.

В качестве ШИМ контроллера использована неизвестная мне микросхема 63D39, название очень похоже на микросхему 63D12 из этого обзора. Насколько я понял, ближайший аналог это FAN6862.
Резисторы, как и в прошлом обзоре, не хуже 1%.

Для экспериментов я рещил все таки установить клеммники на вход и выход платы.
По входу стал стандартный 5мм клеммник, правда пришлось чуть чуть его подкусить около дросселя, но можно установить и без этого (на фото именно так он и показан).
На выходе отверстия с шагом 3.75мм, но клеммник туда не стал, мешает выходной дроссель.

Как и в прошлый раз решил проверить характеристики установленных конденсаторов.
Ну что сказать, здесь все похуже, замечание к ESR конденсаторов, так как к емкости и напряжению нареканий нет.
Конденсаторы 470мкф х25 Вольт, емкость стоит нормально из расчета 1000мкФ на 1 Ампер выходного тока.
ESR заметно завышен, около 140мОм.

Ко входному конденсатору претензия по поводу ESR так же относится, хотя и в меньшей степени, а вот с емкостью все отлично, 22 вместо расчетных (для 220 Вольт) 12 это очень хорошо.

Первое пробное включение. Запустился без проблем. Время запуска несколько затянуто, около 1.5-2 секунды, сказывается увеличенная емкость в цепи питания ШИМ контроллера.

Когда описывал установленные компоненты, то забыл указать какой стоит транзистор.
Правда его для этого пришлось буквально выковыривать. Чего не сделаешь для науки 🙂
Установлен 2N60C производства fairchild.
Транзистор конечно маловат, но эксперименты все покажут.

Естественно перед началом экспериментов была начерчена схема.
Схема нужна не только просто для обзора, а и для помощи тем, кто купит, мало ли что бы жизни бывает. Да и самому перед проверкой неплохо знать, что делать потом, если сгорит в процессе пыток 🙂

Как и в прошлый раз я подготовил для проверки разные вещи.
Список почти не отличается от предыдущего, разница только в номиналах нагрузочных резисторов.
Для нагрузки я использовал:
Резистор 27 Ом
Резистор 15.3 Ома набранный из трех штук 5.1 Ома соединенных последовательно
Резистор 10 Ом (он был добавлен потом)
Нагрузка на ток 1 Ампер, о ней я говорил в обзоре тестирования аккумуляторов.

Процесс проверки

Проверять я буду все точно так же. Напряжение на выходе под разными нагрузками и пульсации.
Мультиметр и осциллограф подключены непосредственно к выходу БП, нагрузка подключается к клеммникам, вынесенном на небольшом кабеле. Падение на кабеле небольшое, но в расчетах я их потом учту.
В этот раз я принял рекомендацию коллеги Ksiman-а и настроил синхронизацию на осциллографе.
Итак:
1. Режим холостого хода.
2. Нагрузка 27 Ом, ток около 0.44 Ампера.

1. Нагрузка 15.3 Ома, ток около 0.78 Ампера.
2. Нагрузка 1 Ампер
Все параметры в норме, пульсации около 30мВ, делитель щупа осциллографа установлен в положение 1:1, тепловой режим я распишу потом.

Дальше я решил не останавливаться на полученном, так как температуры были вполне нормальными.
1. Нагрузка 10 Ом, ток около 1.19 Ампера.
2. Нагрузка 1 Ампер + 27 Ом параллельно, ток около 1.44 Ампера
Все работает отлично.
По поводу пульсаций, такое чувство, что они даже уменьшились, на этом этапе я даже проверил, действительно ли щуп стоит в положении 1:1 и погонял туда-сюда синхронизацию, но нет, все правильно, ошибки нет.

Так как эксперимент мне хотелось продолжить дальше, но нагрев начал выходить за допустимые пределы (на мой взгляд), то я решил сначала немного допилить блок питания.
Вырезал пластинку из 1мм текстолита, залудил ее и припаял к силовому транзистору.
На фото видно, что мне пришлось ее угол немного подрезать.
Не скажу, что это красивое решение, но лучше чем ничего.
Вообще не рекомендуется соединять металлический вывод корпуса транзистора, в таком включении. с радиатором, это может увеличить электромагнитные помехи.
Но так как пластинка маленькая. а транзистор еще меньше, то я подумал что ничего страшного не будет.

В самом начале обзора я написал, что на странице магазина есть ошибка насчет указанного тока в 2 Ампера.
Ошибка это потому, что даже внешне такой БП просто принципиально не отдаст длительно такой ток, кроме того, в заголовке товара указан ток 1 Ампер, в описании мощность 12 Ватт (тот же 1 Ампер). Если не забуду, напишу менеджеру об ошибке.

Итак нагрузка 1 Ампер + резистор 15.3 Ома, итого ток около 1.78 Ампера.
Напряжение иногда перескакивало на 11.90, но основное время стояло 11.91 Вольта, как и в режиме холостого хода.
Но долго в таком режиме БП работать не захотел, примерно через пару минут я заметил, что светодиод на плате моргает с частотой около одного раза в секунду, БП ушел в защиту от перегрузки.
После отключения резистора 15.3 Ома он перестал моргать и продолжил свою работу дальше.

Кстати, обрезок ламината, лежащий под платой, выполняет очень важную функцию, защищает мой рабочий стол от последствий взрывов БП. не доживших до кончца экспериментов, хотя я и стараюсь использовать неразрушающие методы контроля.

А вот осциллограмма ухудшилась, появились пики, общая амплитуда пульсаций составила около 50-60мВ. Я бы сказал, что это очень хороший результат, а с учетом того, что БП работает в режиме перегрузки, так вообще отличный.

В процессе тестирования я как и в прошлый раз измерял температуры.
Проблема была только с измерением температуры транзистора, так как долезть до него бесконтактным термометром не получалось 🙁
В качестве измерения температуры выходного конденсатора я измерял температуру двух конденсаторов и дросселя около них.
Температуру при максимальной нагрузке измерить не получилось, БП ушел в защиту еще не прогревшись.

Небольшая доработка

В самом начале обзора я написал, что БП покупался с вполне определенной целью.
Не так давно я писал обзор про микросхему преобразователя и собирал там плату для измерения тока на шунте.
Так вот блок питания предназначается для этого же устройства, туда же предназначались и аккумуляторы, но они увы не подошли мне 🙁
В моем будущем устройстве мне желательно напряжение питания чуть больше чем 12 Вольт, так как после него идет понижение до 8.5 Вольт.
Изменить выходное напряжение данного БП я решил включением еще одного резистора параллельно резистору нижнего плеча делителя ОС.
Ближайшее, что было под рукой это 20к.

Напряжение я получил около 13 Вольт, думаю хватит. Эта плата будет еще использоваться в одном из будущих обзоров и именно с этой переделкой, потому кому интересно, советую сделать себе отметку на полях 🙂
Вообще напряжение таких БП довольно безопасно можно повышать на 10-15%, максимум 20%, но думаю, что мне хватит и 10.

А вот сравнение двух блоков питания, первое что пришло мне в голову при взгляде на это фото, слова из стихотворения Маяковского — Кроха сын к отцу пришел :))

Итак резюме:
Плюсы
Достаточно хорошее качество изготовления
Очень хорошие электрические параметры
Соответствие заявленным параметрам и даже превышение их.
Цена, ну цена как цена, тяжело судить, на мой взгляд нормальная, по крайней мере для такого качества.

Минусы
Неправильный межобмоточный помехоподавляющий конденсатор, довольно большой, но легко поправимый минус.
Выходные электролиты могли бы поставить и получше качеством, хотя с емкостью все в порядке.

Мое мнение. На мой взгляд Бп вполне достойный, хоть и крошечный. Да, ток смешной, подсветку на кухне от него врядли запитаешь, но качество довольно неплохое. Как встраиваемый БП для какого нибудь прибора, более чем достаточен.
Порадовали очень низкие пульсации, но при этом очень расстроил межобмоточный помехоподавляющий конденсатор, менять обязательно, благо стоит он копейки и водится во всех импульсных БП. Сложность его перепайки соизмерима с припаиванием входных\выходных проводов.

Блок питания для обзора был предоставлен магазином banggood.

Думаю что найдутся люди, которые ищут подобный БП, да и просто интересуются устройством таких вещей и мой обзор будет им полезен.
Вопросы и пожелания жду как всегда в комментах 🙂

РадиоКот :: Блок питания

РадиоКот >Обучалка >Аналоговая техника >Собираем первые устройства >

Блок питания

Да, да, я уже понял, что тебе не терпится - ты уже начитался теории, прочитал, что такое электрический ток, что такое сопротивление, узнал кто такой товарищ Ом и еще много чего. И теперь ты хочешь резонно спросить - "И чего? Толк то в этом во всем какой? Куда это все приложить то можно?". А возможно ты ничего этого и не читал, потому как это страшно скучно, но приложить руки к чему-то электронному все-таки хочется. Спешу тебя обрадовать - сейчас мы как раз и займемся тем, что приложим все это как следует и спаяем первую реальную конструкцию, которая очень тебе пригодится в дальнейшем.

Делать мы будем блок питания для питания различных электронных устройств, которые мы соберем в дальнейшем. Ведь если мы сначала соберем, например, радиоприемник - он все равно работать не будет, пока мы не дадим ему питания. Так что, перефразируя известную пословицу - "блок питания - всему голова".

Итак, приступим. Прежде всего зададимся начальными параметрами - напряжением, которое будет выдавать наш блок питания и максимальный ток, который он способен будет отдать в нагрузку. То бишь, насколько мощную нагрузку можно будет к нему подключить - сможем ли мы подключить к нему только один радиоприемник или же сможем подключить десять? Не спрашивайте меня зачем включать десять радиоприемников одновременно - не знаю, я просто для примера сказал.

Для начала, давайте подумаем над выходным напряжением. Предположим, что у нас есть два радиоприемника, один из которых работает от 9 вольт, а второй от 12 вольт. Не будем же мы делать два разных блока питания для этих устройств. Отсюда вывод - нужно сделать выходное напряжение регулируемым, чтобы его можно было настраивать на разные значения и питать самые разнообразные устройства.

Наш блок питания будет иметь диапазон регулировки выходного напряжения от 1,5 до 14 вольт - вполне достаточно на первое время. Ну а ток нагрузки мы с вами примем равным 1 амперу.

Схема нашего блока питания:

Проще не бывает, не правда ли? Итак, какие же детальки нам понадобятся, чтобы спаять эту схемку? Прежде всего, нам потребуется трансформатор с напряжением на вторичной обмотке 13-16 вольт и током нагрузки не менее 1 ампера. Он обозначен на схеме как Т1. Также нам понадобится диодный мостик VD1 - КЦ405Б или любой другой с максимальным током 1 ампер. Идем дальше - С1 - электролитический конденсатор, которым мы будет фильтровать и сглаживать выпрямленное диодным мостом напряжение, его параметры указаны на схеме. D1 - стабилитрон - он заведует стабилизацией напряжения - ведь мы же не хотим, чтобы напряжение на выходе блока питания колебалось вместе с сетевым напряжением. Стабилитрон мы возьмем Д814Д или любой другой с напряжением стабилизации 14 вольт. Еще нам понадобятся постоянный резистор R1 и переменный резистор R2, которым мы будем регулировать выходное напряжение. А так же два транзистора - КТ315 с любой буковкой в названии и КТ817 тоже с любой буковкой. Для удобства, я загнал все нужные элементы в табличку, которую можно распечатать и вместе с этим листочком отправится в магазин на закупку.

Обозначение на схеме

Номинал

Примечание

Т1

Любой с напряжением вторичной обмотки 12-13 вольт и током 1 ампер

 

VD1

КЦ405Б

Диодный мост. Максимальный выпрямленный ток не менее 1 ампера

С1

2000 мкФх25 вольт

Электролитический конденсатор

R1

470 Ом

Постоянный резистор, мощность 0,125-0,25 Вт

R2

10 кОм

Переменный резистор

R3

1 кОм

Постоянный резистор, мощность 0,125-0,25 Вт

D1

Д814Д

Стабилитрон. Напряжение стабилизации 14В

VT1

КТ315

Транзистор. С любым буквенным индексом

VT2

КТ817

Транзистор. С любым буквенным индексом

Паять все это можно как на плате, так и навесным монтажем - благо элементов в схеме совсем немного. Транзистор VT2 необходимо обязательно установить на радиатор. Оптимальную площадь радиатора можно выбрать экспериментально, но она должна быть не меньше 50 кв. см. При правильном монтаже схема совершенно не нуждается в настройке и начинает работать сразу. Подключаем тестер или вольтметр к выходу блока питания и устанавливаем резистором R2 необходимое нам напряжение.

Вот в общем то и все. Вопросы есть? Ну например - "А почему резистор R1 - 100 Ом?" или, "почему два транзистора - неужели нельзя обойтись одним?". Нет? Ну ладно, как хотите, но если все таки появятся, прочтите следующую часть этой статьи, где рассказывается о том, как рассчитывался этот блок питания и как рассчитать свой собственный.

--Часть 2-->>


Как вам эта статья?

Заработало ли это устройство у вас?

Блок питания 12 Вольт 3 Ампера и небольшой "допилинг"

Увидел я на сайте Чайнабея данный блок питания и захотелось мне с ним познакомиться поближе. А так как данный блок питания мне предоставили в итоге бесплатно, то не поэкспериментировать над ним было бы кощунством, в общем продолжение под катом.

Ну в общем заказал я данный блок питания, долго, коротко ли ползал он где то почтой Китая, но в итоге дополз до моего рабочего стола.

Пришел он в стандартном желтом конверте, в общем стандартные бла-бла-бла, фото под спойлером.

Фото как это пришло

Стандартный желтый конверт, внутри стандартный белый коробок.

Внутри стандартного белого коробка собственно герой обзора. Такой весь из себя сияет, ничего, посмотрим что будет дальше. 🙂

На торце указаны технические характеристики.

Характеристики меня немного запутали, обычно или указывают полный диапазон, или если есть выбор 110/220, то соответственно есть переключатель и внутри схема сетевого выпрямителя с переключением на удвоение. Здесь никакого переключателя не было. Позже посмотрим внимательнее что внутри.

Размеры относительно небольшие.

С торца расположены клеммы подключения 220 Вольт, клемма заземления и клеммы выхода 12 Вольт. Так же здесь расположен светодиод, который показывает наличие выходного напряжения и подстроечный резистор для корректировки выходного напряжения.

После вскрытия моему взору предстала печатная плата данного блока питания.
На плате распаян полноценный входной фильтр, конденсатор 33мкФ 400 В (вполне нормально для заявленной мощности), высоковольтная часть, сделанная по схемотехнике автогенератора (когда заказывал, то надеялся что будет стандартная UC3842), выходной фильтр из двух конденсаторов 470мкФ 25 Вольт и дросселя. Емкость выходного фильтра маловата, я бы поставил раза в 2 больше.

Силовой транзистор 5N60D — www.icemostech.com/ice/superjunction/ICE5N60D20140221Rev2.pdf только в корпусе ТО-220.
Выходной диод — stps20h200ct — datasheet.octopart.com/STPS20h200CT-STMicroelectronics-datasheet-10413158.pdf аналогично в корпусе ТО-220.
Схема стабилизации и обратной связи сделана на TL431.

Обратная сторона платы.

Ничего необычного, пайка среднего качества, флюс смыт, довольно аккуратно.
Но удивила маркировка на плате (она есть и с верхней стороны).
SM-24W, может изначально БП был 24 Ватта, потом решили что маловато будет и написали 36?
Эксперименты покажут.

Первое включение, ничего не бахнуло, уже неплохо.

Нагрузил блок питания классическими неубиваемыми советскими резисторами, 10 Ом 2 штуки параллельно.
Ток около 2.5 Ампера.

Напряжение мерял после проводов к резисторам, потому немного просело.
Оставил так, пошел попить чайку и покурить, ждал что рванет.
Не рвануло, даже почти не нагрелось, градусов 40, ну может 45, специально не мерял, по ощущениям немного теплый.

Догрузил еще на 0.22 А (не нашел ничего рядом подходящего), ничего не изменилось.

Решил на этом не останавливаться и повесил на выход еще один резистор 10 Ом.
Напряжение просело до 10.05 Вольта, но блок питания продолжал упорно работать.

Дальше мне стало жалко разработчиков данного блока питания, сумевших настолько его упростить, и при этом добиться его работоспособности и я на этом этапе решил закончить стандартные эксперименты над ним.
К слову я был настроен скептически по отношению к данному блоку питания, в основном из-за его схемотехники, как то вот привык работать с более дорогими блоками питания, где есть ШИМ контроллер, контроль тока и т.п. Практика показала, что такой вариант тоже вполне жизнеспособен.

Дальше я решил перейти к нестандартной части испытаний и попробовать добиться от него того, для чего я хотел его взять. Собственно постоянные читатели моих обзоров привыкли, что я люблю не только показать товар в обзоре, а и применить его, не буду вас расстраивать и в этот раз.

Допилинг

Началось все с того, что позвонил товарищ и спросил, можно ли сделать небольшой бесперебойничек для питания электромагнитного замка и контроллера. Живет он в частном секторе, свет иногда ненадолго, да пропадет. Аккумулятор у него уже был, остался от компьютерного бесперебойника, большой ток уже не тянет, а с замком вполне нормально справляется.

В общем накидал небольшую добавочную платку к этому блоку питания.

Платка, схема и небольшое описание процесса.

Схема.

И страссированная по ней плата.

Схема обеспечивает ограничение тока заряда (в моем случае настроено на 400мА), защиту от переразряда аккумулятора (настроено на 10 Вольт), простенькую защиту от переполюсовки аккумулятора (кроме случая если переполюсовать прямо на ходу), ну и собственно функцию подачи напряжения от аккумулятора на выход блока питания.

Перенес платку на текстолит, покрыл припоем…

Подобрал детали.

Спаял плату, реле стоит другое, так как сначала не заметил что оно на 5 Вольт, пришлось поискать на 12.

Пояснения по схеме.
С2 в принципе можно не ставить, тогда R5 и R6 заменяются одним на 9.1к.
Он нужен для уменьшения ложных срабатываний при резком изменении нагрузки.

В идеале конечно лучше было бы домотать пару витков в дополнение ко вторичной обмотке, так как блок питания работает с перегрузом по напряжению в 20%. Испытания показали что работает все отлично, но лучше либо домотать немного вторичку, либо еще лучше — дорабатывать БП на 15 Вольт, а не на 12. В моем случае пришлось еще изменить номинал резистора в делителе обратной связи у блока питания, на схеме это R7, там стоят 4.7 КОм, я поставил 4.3 КОм, в случае применения БП на 15 Вольт, этого скорее всего делать не придется.

После сборки платы встроил ее в блок питания.
На плате обозначены точки подключения и видно место, где перерезана минусовая дорожка (над цифрой 3).

Плату обмотал скотчем, и уложил на более-менее свободное место.

После (на самом деле лучше до того как изолируем скотчем) выставил выходное напряжение блока питания 13.8 Вольта (это напряжение которое будет поддерживаться на аккумуляторе, обычно выставляется в диапазоне 13.8-13.85.

Вот вид собранного и настроенного устройства.

Подключил небольшую нагрузку и аккумулятор. Ток заряда 0.39А (может немного падать по мере прогрева).

Отключил блок питания от сети, нагрузка продолжает работать, на мультиметре ток нагрузки +ток потребления реле + ток потребления цепей измерения.

Товарищу надо было бесперебойник на ток 0.8-1 Ампер, я нагрузил немного больше.

После этого подключил питания 220 Вольт, на одном мультиметре напряжение на нагрузке (будет еще подниматься, аккумулятор не заряжен), на втором ток заряда (немного просел из-за прогрева).

В общем на мой взгляд переделка удалась, от такого БП можно питать небольшие нагрузки, до 1-1.5 Ампера. Больше не стал бы, так как БП в нештатном режиме. Если использовать БП на 15 Вольт, то ток можно поднять, но надо всегда учитывать ток заряда аккумулятора (он определяется резистором R1. 1.6 Ома дает тока заряда около 0.4 А, чем меньше сопротивление, тем больше ток и наоборот.
Переделать так можно и более мощные БП, надо заменить только реле и мощный диод на плате.
Если кто то несогласен с настроенным током заряда, напряжением окончания заряда и авто отключения, то это все легко меняется, если надо, объясню как это сделать.

Работает данный БП уже неделю без никаких проблем (клеммы на провод к аккумулятору товарищ припаивал уже сам), надеюсь что данная переделка будет кому нибудь интересна, вопросы и замечания по схеме, конструкции и печатной плате приветствуются.
Да, я знаю что есть менвелловские БП с функцией бесперебойника (и даже успешно их использую), но они стоят около 30 баксов, а здесь недорогой БП (может даже есть уже в наличии) и комплект деталей стоимостью меньше бакса.

Резюме.
Плюсы
Он работает.
Характеристики вполне соответствуют заявленным.
Качество сборки вполне приемлемое

Минусы.
Клеммник довольно неудобный, залуженный провод 0.75 лезет с трудом.
Не помешал бы варистор после предохранителя, но это я уже придираюсь, хорошо что фильтр по входу поставили.
Конденсаторы на выходе весьма неважные, я бы заменил, но если нагружать не по максимуму, то вполне пройдут.

Мое мнение, блок питания вполне нормальный, подойдет для питания всяких светодиодных лент и видеокамер, электрозамков и т.п.
Данный товар был предоставлен мне бесплатно для теста и обзора магазином chinabuye.

Самодельный импульсный блок питания 12 вольт 2 ампера


Задумал я сделать импульсный блок питания на 12V 4A своими руками, выбрал схему, посоветовался с людьми на форуме, спаял. В результате отладки выяснилось, что нагрузку 4А, данный самодельный блок питания, не сможет держать, но с 2А он справится отлично.
За основу взята схема дежурки пользователя Starichok51. Она получила дополнения, например, обзавелась фильтрами, а также, претерпела ряд изменений номиналов, позволяющих сделать блоки питания более мощным.

Трансформатор для данного импульсного блока питания  я использовал с сердечником EI-28. У боковых частей E части было полное примыкание к I части, а у средней – имелся заводской зазор в 0,65 мм.  Трансформатор пришлось перематывать несколько раз.
В первый раз обмотки были следующими: I – 46 витков (Ø – 0.36 мм), I I – 5 витков (Ø – 1 мм х 3), обратная связь – 4 витка (Ø – 0.22 мм). Индуктивность первичной обмотки - 490 uH. Вторичная обмотка и ОС находились между двумя половинами первичной. При этом был избыточный нагрев транзистора даже при малых нагрузках, напряжение ОС – выше необходимого.
Во второй раз перемотал трансформатор по совету пользователя Starichok51, из расчета на 12В 4А: I – 36 витков (Ø – 0.36 мм), I I – 4 витков (Ø – 1 мм х 2), обратная связь – 2 витка (Ø – 0.36 мм). Индуктивность первичной обмотки – порядка 250 uH. Как и в первом случае, первичная обмотка разделена на две половины. Блок питания при таких обмотках запускался в узком диапазоне подбираемых деталей. Но даже в тот момент, когда он запускался, его работа была нестабильна и «прожорливой».
В третий раз перемотал трансформатор по своему усмотрению. Точнее, взял имеющийся кусок провода Ø 0.36 мм и намотал его весь. Получилось, что ко второй половине первичной обмотке добавил еще 26 витков. В сумме – первичная обмотка составляла 62 витка, проводом Ø – 0.36 мм. Индуктивность первичной обмотки – ориентировочно составила 850 uH. Блок питания начал вести себя более-менее адекватно.
Для достижения максимальной стабильности и производительности, начал подбирать номиналы R9+C5, R2, C7+R11. Те, на которых я остановился, указаны на схеме. Также, вместо транзистора C5027, запаивал C5763. У последнего оказался нагрев без радиатора на 2-3 градуса ниже. В качестве радиатора использовал алюминиевую пластину, толщиной 2 мм и площадью 15 см2, изогнутую таким образом, чтобы она поместилась в корпусе и не контактировала с остальными деталями. Транзистор посажен на теплопроводящую пасту.
L1 сделал самостоятельно. Его конструкцию подсмотрел из АТ компьютерного блока питания. В оригинальном исполнение кольцо имело внешний диаметр 17 мм, а ширину – 8 мм, обмотки имели по 18 витков Ø – 0.5 мм. Я подобрал кольцо, от материнской платы, похожее по габаритам, а в качестве проводов использовал часть витой пары. L2 – готовый дроссель (выпаянный не помню откуда). Сердечник L2 в высоту 20мм, Ø – 5 мм, обмотка – 18 витков Ø – 1 мм, индуктивность 3,9uH.
 

Привожу фотографию первой версии печатной платы с расположенной на ней элементами. Т.к. в процессе отладки, схема претерпела изменения, разводку печатной платы подправил под конечный результат. Разводку печатной платы данного самодельного блока питания 12V 2A в формате *.lay6 можно скачать ЗДЕСЬ. Печатная плата разводилась под имеющийся в наличии корпус. Для дополнительного охлаждения элементов схемы, в корпусе просверлил вентиляционные отверстия.
Выражаю свою благодарность пользователям Starichok51 и Serj66610, которые принимали активное участие в процессе обсуждения отладки данного блока питания.

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *