Гидротрансформатор — Энциклопедия журнала «За рулем»
Схема гидротрансформатора:
1 — блокировочная муфта;
2 — турбинное колесо;
3 — насосное колесо;
4 — реакторное колесо;
5 — механизм свободного хода
Гидротрансформатор был изобретен немецким профессором Феттингером в 1905 г. Прежде чем найти применение на автомобилях, гидротрансформатор использовался на судах и тепловозах.
Простейший гидротрансформатор, выполнен в виде камеры тороидальной формы и включает в себя три лопастных колеса: насосное, вал которого соединен с коленчатым валом двигателя; турбинное, соединенное с трансмиссией, и реактор, установленный в корпусе гидротрансформатора.
Гидротрансформатор заполняется специальной жидкостью. Каждое колесо имеет наружный и внутренний торцы, между которыми располагаются профилированные лопасти, образующие каналы для протока жидкости. Все колеса гидротрансформатора максимально приближены друг к другу, а вытеканию жидкости препятствует специальное уплотнение.
При вращении коленчатого вала двигателя вращается насосное колесо, которое перемещает жидкость, находящуюся между его лопастями. Жидкость не только вращается относительно оси гидротрансформатора, но и за счет воздействия на нее центробежных сил перемещается вдоль лопастей насосного колеса по направлению от входа к выходу, что сопровождается увеличением кинетической энергии потока. На выходе из насосного колеса поток жидкости попадает на турбинное колесо, оказывая силовое воздействие на его лопасти. Затем поток попадает в реактор, пройдя который, возвращается к входу в насосное колесо. Таким образом, жидкость постоянно перемещается по замкнутому кругу циркуляции, образованному проточными частями всех трех лопастных колес, и находится с ними в силовом взаимодействии. При этом насос передает энергию двигателя потоку, а тот, в свою очередь, — турбине.
Любой гидротрансформатор характеризуется определенным КПД, передаточным отношением, которое показывает соотношение угловых скоростей его колес, и коэффициентом трансформации, показывающим, во сколько раз увеличивается значение крутящего момента. Максимальный коэффициент трансформации зависит от конструкции гидротрансформатора и может составлять до 2,4 (при неподвижном турбинном колесе). При увеличении частоты вращения вала двигателя увеличивается угловая скорость насосного и турбинного колес, а увеличение крутящего момента в гидротрансформаторе плавно уменьшается. Когда угловая скорость турбинного колеса приближается к угловой скорости насосного, поток жидкости, поступающей на лопасти реактора, изменяет свое направление на противоположное.
КПД гидротрансформатора определяет экономичность его работы. Максимальное значение КПД гидротрансформатора может быть от 0,85 до 0,97, но обычно находится в диапазоне от 0,7 до 0,8. В комплексном гидротрансформаторе на режиме гидромуфты можно получить максимальное значение КПД — 0,97.
Изменение режимов работы гидротрансформатора происходит автоматически. Если увеличивать нагрузку на выходе из гидротрансформатора, то происходит уменьшение угловой скорости турбины, что приводит к увеличению коэффициента трансформации.
Детали гидротрансформатора:
1 — насосное колесо;
2 — турбинное колесо;
3 — крышки муфты свободного хода;
4 — часть корпуса гидротрансформатора;
5 — остатки рабочей жидкости с продуктами механического износа деталей;
6 — колесо реактора;
7 — муфта свободного хода реактора;
8 — упорная шайба турбинного колеса;
9 — упорный подшипник реактора;
10 — поршень блокировки гидротрансформатора
К сожалению, гидротрансформатор имеет малый диапазон передаточных чисел, не обеспечивает движения задним ходом, не разобщает двигатель от трансмиссии (необходима сложная система опорожнения проточных частей от рабочей жидкости). Поэтому за гидротрансформатором устанавливают специальную коробку передач, которая компенсирует указанные недостатки. Такая гидромеханическая передача является бесступенчатой и позволяет получить любое передаточное число в заданном диапазоне.
В гидромеханических передачах в основном применяются механические планетарные коробки передач, которые легко поддаются автоматизации, но иногда используют и обычные ступенчатые коробки передач с автоматическим управлением.
Современная четырехступенчатая ГМП автомобиля классической компоновки
Ремонт гидротрансформатора — Это важно знать
Гидродинамический трансформатор («Гидротрансформатор» или «ГДТ») — это герметично заваренный узел, передающий крутящий момент от двигателя — к автоматической трансмиссии при помощи двух вращающихся в масле турбин. Раньше этот узел носил название гидромуфта, потому что не трансформировал вращение в дополнительный момент, а лишь соединял как муфта (сцепление) двигатель с колесами.
Название «Гидротрансформатор» или Torque Converter произошло от того, что при разгоне происходит примерно 2-х кратное увеличение вращающего момента за счет такого-же кратного уменьшения скорости вращения. Чем выше скорость (и меньше ускорение) — тем меньше эта кратность.
Немного об истории Гидротрансформатора:
- Первая гидромуфта была изобретена в 1902 году и установлена в 1907-м на скоростном судне.
- В 1928 году фирма «Lysholm-Smith» первой применила гидромуфту для автобусов.
- В 1940 году гидромуфтами стали оснащаться первые легковые авто Oldsmobile.
- А с 1946-47 годов – гидромуфта стала использоваться серийно в производстве автомобилей (США).
Для чего нужен Гидротрансформатор в АКПП?
ГДТ позволяет отказаться от педали сцепления, обеспечивает плавность разгона и как дополнительная опция — увеличивает крутящий момент при разгоне, также позволяет двигателю работать во время остановки при включенной передаче. Это можно увидеть на примере двух вентиляторов (один из которых включен вращение передается от работающего вентилятора к не работающему. На этом примере наглядно виден основной принцип работы гидротрансформатора.
Гидротрансформатор осуществляет гидравлическое сцепление между двигателем и автоматической коробкой передач. В отличии от механического сцепления в МКПП, ГДТ передает крутящий момент от ведущего вала к ведомому не через механическое трение фрикционов, а посредством гидравлического давления масла. Как ветер вращает крылья мельницы. Наглядно о принципе работы ГДТ рассказывают многочисленные видео.
Когда скорости вращения входного и выходного валов сравняются (а это конструктивно наступает после 60-70 км/ч), включается механическая блокировка ГДТ, с помощью фрикционной накладки вращение масла останавливается, а валы двигателя и трансмиссии соединяются напрямую. Гидротрансформатор в этом режиме выключается и передает уже 100% вращения. Сравнимо с отжиманием сцепления после переключения скорости.
Фактически, пока ГДТ работает — он тратит кинетическую энергию двигателя на вращение масла и как следствие — на нагрев масла от трения. А в момент, когда он блокируется — истирается накладка и эта пыль вымывается маслом. Эти две побочных функции ГДТ и являются главными проблемами, которые влияют на жизнь автоматической трансмиссии.
КПД Гидротрансформаторов.
— Средний КПД типичных 3-х и 4-х ступенчатых АКПП 20-го века при режиме «городской езды» составлял от 75 до 85%. ГДТ выключался на скорости ок. 60 км/час. В момент, когда включается блокировка — КПД агрегата сразу подтягивается к 100%. Пока нагрузку от двигателя к трансмиссии передает вращающееся масло — КПД этого узла составляет около 60-70%.
Чем быстрее включается блокировка — тем выше средний КПД автомата.
В последних конструкциях 5-ти и 6-ти ступенчатых АКПП с введением интеллектуальной электронной системы управления и линейных соленоидов средний кпд ГДТ удалось довести до рекордных 94-95%.
Оптимизация достигается за счет того, что муфта блокировки подключается так рано, как это возможно (иногда уже со 2-й скорости) и разблокируется как можно позднее при снижении скорости. Практически приближаясь к режиму работы педали сцепления на МКПП.
Регулируемое проскальзывание муфты
«Режим регулируемого проскальзывания» фрикциона блокировки — это режим, когда фрикцион (или несколько — по моде введенной Мерседесом) управляемый тонконастроенным линейным соленоидом и компьютером поджимается на такое расстояние к корпусу, что между ними остается тончайшая пленка масла, которая достаточна для проскальзывания и отвода температуры от трущейся поверхности, но заставляет корпус вращаться. Очень похоже на проскальзывание сцепления при агрессивном разгоне с МКПП или на регулируемое притормаживание колес.
Таким образом фрикцион совместно с крыльчатками турбин раскручивает вал трансмиссии, что кроме увеличения КПД, приводит к дополнительному нагреву и загрязнению масла продуктами износа этого фрикциона.
Если раньше разгонял машину поток масла между крыльчатками турбин, а муфта блокировки только помогала, то в ГДТ 21-го века все чаще разгоняют машину фрикционы «проскальзывающие» с тончайшими зазорами, заполненными маслом, а турбины — только помогают. Идея, придуманная фирмой Мерседес, используется и в современных 7-ми и 8-ми ступенчатых АКПП.
То есть введено революционное изменение самого принципа работы фрикциона. Если фрикционы 20-го века работали в режиме Он-Офф (сцепление происходило как можно короче и с небольшим толчком, чтобы ускорить переключение передач), то новый принцип включения и новые фрикционы ГДТ привели к тому, что блокировка ГТД стала работать по принципу тормозных колодок колеса. То есть с тонкой регулировкой силы и времени сцепления.
Это привело к таким особенностям:
1. Материал нагруженной накладки фрикциона теперь стал не тот, что был у «лениво» работающих бумажных фрикционных накладок 4-х ступок, а — графитовые «хай-энерджи» составы, отличающиеся износо- и температуро-стойкостью и клейкостью. И эти суперстойкие и суперклейкие микрочастицы, оторвавшиеся от фрикциона путешествуют вместе с маслом и «набрызгом» ввариваются-вклеиваются во все неудобные места, начиная от деталей гидротрансформатора, кончая деталями и каналами гидроблока и соленоидов.
2. Полуистертый фрикцион все хуже держит контакт и все сильнее проскальзывает, еще сильнее нагревая корпус «бублика» и масло. А компьютер не понимает, что фрикцион стерт и продолжает заставлять его работать с длительном проскальзывании, что приводит к быстрому перегреву масла, а соответственно и трансмиссии.
Так на первом месте по колличеству ремонтов с большим отрывом стоят бублики 5HP19, которые почти всегда приходят в ремонт с изношенным до металла фрикционом и перегретым хабом привода маслонасоса. Этот участок конструкции приходится вырезать и вваривать новый. Довольно сложная и ответственная работа. (справа)
2А. Самое неприятное последствие от изнашивающегося фрикциона — это его остатки, то есть клеевой слой, с помощью которого накладка приклеивается к металлу. Именно частицы клея фрикциона наиболее вредны для гидроблока и клапанов-золотников.
3. Перегретое масло (свыше 140 градусов) за несколько суток работы убивает резину сальников и уплотнителей и остатки фрикциона. И хотя в новых 6-ти ступенчатых АКПП немецких и американских производителей вместо приклеиваемой на тело поршня фрикционной накладки стали использовать настоящие фрикционные диски с карбоном (см. выше), перегретый фрикцион также истирается и быстро загрязняет масло мельчайшими частицами фрикционного материала. Поэтому плановые замены фрикционов гидротрансформатора — стали обязательной регламентной работой на всех АКПП Мерседеса и коробок производства фирмы ZF.
Получается, что качество внутренних поверхностей ГДТ напрямую влияет на:
- динамические характеристики разгона и потери мощности
- на нагрев масла,
- на загрязнение масла
и поэтому сейчас ремонт гидротрансформатора с резкой корпуса превратился в регламентную операцию, которую необходимо производить, чтобы заменить полустертый фрикцион и очистить все узлы и сочленения. Очистить этот нагар с помощью жидкостей практически невозможно. Очистка гидротрансформатора без вскрытия это — хобби.
Возрастные АКПП, пережившие период работы с горелым маслом, нуждаются в капремонте ГДТ как непременном условии продления ресурса трансмиссии.
Что изнашивается в гидротрансформаторах?
Проблемы ГДТ можно представить как пирамиду:
Самая распространенная причина, вызывающая необходимость ремонта гидротрансформаторов (низ пирамиды) — износ Фрикционной накладки Поршня блокировки ГДТ — тормоза.
При ремонте старую накладку удаляют, очищают место установки от остатков клея и наклеивают новую фрикционную накладку сцепления.
Без этой накладки или работе со «съеденным» фрикционом гидротрансформатор вполне может выполнять свои функции и мало кто замечает разницу в задержке блокировки, или ее нештатной работе, или перегреве масла.
Но если накладку вовремя не заменить, то отслоившиеся остатки фрикциона и клеевого состава попадают в масло и забивают каналы гидроплиты («мозги»), приводя к цепной реакции масляного голодания — нагрева — износа — сгорания муфт, ступиц и втулок и т.д.
Гидротрансформаторы 21 века
Что касается нового поколения ГДТ (например для 6-ти ступенчатых АКПП), работающих при температуре 120-130 градусов, где активно используется «режим проскальзывания» , то там возникла новая проблема: Фрикционная накладка уже не приклеивается к поршню , а сама стала сменяемым фрикционным диском (слева), потому что изнашивается теперь быстрее других расходников. Но кроме того, что она изнашивается, она еще загрязняет масло новым материалом — графитовой пылью.
Графитовый фрикцион — гораздо более термо- и износо-стоек и долговечен, чем бумажный, но обладает и совершенно другими абразивными свойствами и «прилипаемостью». А это катастрофически быстро изнашивает тонкие места гидроблока и соленоидов. Каждые 100-150 ткм этот фрикцион ГДТ на разных 6-ти (и выше) ступенчатых АКПП часто приходится менять (В основном — ZF и Mercedes). Чем сильнее надавлена педаль газа, тем больше «заслуга» фрикциона для разгона машины.
Новые гидротрансформаторы для мощных авто имеют два режима работы: Спокойный. Когда нагружена в основном старая добрая пара турбин, разгоняющая машину с помощью вихря масла, а фрикционы блокировки подключаются только для блокировки разовым быстрым замыканием.
И Агрессивный режим. Когда в дело вступают фрикционы, отодвигая в сторону турбины и истираясь тянут колеса за ревущим многолитровым двигателем. Представьте площадь этих «проскальзывающих» фрикционов ГДТ и силу тяги двигателя!
Материалы для этого инновационного графитового (или кевларового) фрикциона много раз модифицировались (щадя масло и гидроблок) и сейчас имеются несколько их типов: HTE, HTS, HTL, XTL. для разного момента, разных настроек компьютера для различных температурных режимов и т.д.
Более редкие проблемы:
- поломки лопастей колес. (случается не так часто, но приводит к поломке ГДТ). Определяется только при вскрытии.
- перегрев и разрушение ступицы ГДТ. Заметно при осмотре.
- разблокировка обгонной муфты, (случается не часто, проверка)
- полное заклинивание обгонной муфты; (случается не часто, проверка)
- Замена изношенных подшипников. (случается не часто, но при их поломке разрушается сам ГДТ, проверка)
- замена сгоревшего хаба, передающего вращение трансмиссии.
Какие работы производятся при разборке ГДТ ?
1. Чтобы выполнить разборку агрегата, требуется срез сборочного сварного шва, соединяющего половинки ГДТ на высокоточном токарном станке, и только после этого производится диагностика и замена деталей.
При разборке производятся все описанные выше дефектовки и замены, а также очистка всех деталей от налета грязи.
2. В сборку гидротрансформаторов входит высокоточная сварка корпуса , проверка на герметичность, радиальное и осевое биение.Зтем производится балансировка ГТД.
Для этих процессов уже недостаточно распространенного заводского токарного или сварочного оборудования. От качества и точности обработки зависит ресурс работы этого сложного узла АТ и все это требует организации специализированного цеха, поставки запчастей и расходников, большого опыта специалистов — системы отдельного бизнеса.
Отремонтированные нашими партнерами ГДТ имеют минимально возможный процент брака и как правило ходят еще до 70-80% своего первоначального ресурса. И почти всегда ремонт оказывается дешевле замены ГДТ, Хотя изредка ( в одном случае из 100) случается, что ГДТ дороже ремонтировать, чем заменить.
О необходимости своевременного ремонта ГДТ не стоит убеждать того, кто уже один раз «попал» на капремонт автомата.
Признаки выхода из строя ГДТ
Обычно это:
- посторонние вибрации и звуки,
- рывки при переключении передач, особенно в районе 60-70 км/ч — или двигатель перестает тянуть после набора скорости или до нее тянет необычно долго, протечки масла итд.
Практически невозможно без спецоборудования определить смерть фрикциона ГДТ, что чаще всего и является причиной выхода из строя гидроблока АКПП и как следствие и самой трансмиссии.
Чем мощнее автомобиль, тем короче средний срок службы ГДТ до капремонта.
В ремонт идут обычно гидротрансформаторы легковых автомашин. Но изредка встречаются в ремонте и гидротрансформаторы грузовиков большого диаметра (св 35 см)
Ниже — любопытная сравнительная статистика (2009-2012 год) по популярности гидротрансформаторов в ремонте:
После ремонта гидротрансформатора акпп | ремонт акпп
После ремонта гидротрансформатора акпп
Егор
Добрый день! АКПП 41 ТЕ(А604). После ремонта гидротрансформатора, с целью обеспечения длительной работы последнего, специалист советует поменять турбинный вал. Хотя визуально износ шлицов минимальный. Понятно, что новое не старое, но не хочу платить денег ради перестраховки. Как принять правильное решение? Кто из специалистов прав?
.
1. «Понятно, что новое не старое, но не хочу платить денег ради перестраховки» — я бы вообще не дал никакой гарантии ни на трансмиссию ни на работу ГТ , если после обрыва шлицов турбинного колеса , только отремонтировали сам гидротрансформатор.
2. «Как принять правильное решение?» — смотрите на свой страх и риск))).
3. «Кто из специалистов прав?» — если бы Вы только согласились ремонтировать ГТ , я бы не стал связываться. Как обычно потом опять оборвёт шлицы или АКПП начнёт глючить и во всём начинают обвинять мастера.
.Андрей
Здраствуйте. подскажите пожалуйста.
езжу минут 40-50 потом начинает машина дёргаться, останавливаюсь она глохен. отдал в ремонт гидромуфту. после ремонта было всё нормально , прошло 4 месяца и вот ездил по городу и опять такая же беда случилась. потом опять нормально.что ето может быть?
.
Топливная система двигателя в первую очередь. Начните с проверки топливного фильтра , сетки в баке и т.д.
АКПП и гидротрансформатор не причём.
.Юрий
!
HONDA CR-V 2.0
Мучаюсь вопросом, если стоять на драйве перед светофором, то машина тянет вперед.
1-Означает это то, что гидро-сцепление трется и изнашивается, т.к. это не гидротрансформатор?
2-Не лучше переключаться на нейтраль на светофоре (примерно более 30 секунд)?
3-какой срок службы гидро-сцепления
Спасибо.
.
1. А у Вас какая автоматическая трансмиссия? классический автомат или вариатор (CVT)?
Год вы не написали авто.
2. «1-Означает это то, что гидро-сцепление трется и изнашивается, т.к. это не гидротрансформатор?» — обороты холостого хода какие?
3. «Не лучше переключаться на нейтраль на светофоре (примерно более 30 секунд)?» — если у вас стоит вариатор (CVT) , то надо переключаться на N , в противном случае спалите старт клач. Если классический автомат с гироторансформатором , то не надо переключать через 30 секунд , 3-5 минут стоите , тогда да;
3. «3-какой срок службы гидро-сцепления» — а что вы имеете ввиду под этим понятием? На вашей авто два варианта , вальная автоматическая трансмиссия с гидротрансформатором и вариатор (CVT) со стартовой муфтой (старт клач) , последний менее надёжен.
Но срок службы любой автоматической трансмиссии очень сильно зависит от прокладки между рулём и сидением.
.
This entry was posted in Статьи.Как работает гидротрансформатор?
Многие из Вас наверняка знают элементарные вещи об устройстве механической коробки передач — Вы знаете, что двигатель подключен к передаче путём сцепления, ведь без этой связи автомобиль не сможет прийти к полной остановке, разумеется, не убив двигатель. Но автомобили с автоматической коробкой передач не имеют сцепления, которое отключало бы трансмиссию от двигателя. Вместо этого в них используется удивительное устройство под названием гидротрансформатор. Может быть, его устройство Вам покажется несколько сложным, но то, что он делает и какое удобство доставляет, просто очень интересно!
В этой статье мы узнаем, почему автоматическая коробка передач автомобиля так нуждается в гидротрансформаторе, как работает гидротрансформатор и его некоторые недостатки.
Основы гидротрансформатора
Так же, как и в случае с ручной трансмиссией, автомобилю с автоматической коробкой передач необходимо найти способ, чтобы одновременно держать двигатель работающим (крутящимся коленчатым валом), а колеса и шестерни в коробке передач остановленными.Автомобили с МКПП используют для этого сцепление, которое полностью отключает двигатель от коробки передач, а вот автоматическая коробка передач использует гидротрансформатор.
Гидротрансформатор является одним из видов гидромуфты, которая позволяет двигателю вращаться независимо от трансмиссии. Если двигатель вращается медленно, например, когда автомобиль работает на холостом ходу на красном сигнале светофора, количество крутящего момента, который передаётся через гидротрансформатор, очень мало, и его достаточно, чтобы удержать автомобиль на месте путём лишь лёгкого давления на тормозную педаль.
Если бы Вы надавили на педаль газа в то время как автомобиль остановился, Вам пришлось бы также нажать сильнее на тормоза, чтобы удержать машину от перемещения. Это происходит потому, что при нажатии на газ двигатель ускоряется, и насос из-за этого ускорения подаёт больше жидкости в гидротрансформатор, вызывая больший крутящий момент, который, в свою очередь передаётся на колеса.
Как работает гидротрансформатор?
Как показано на рисунке выше, существуют четыре компонента внутри очень крепкого корпуса гидротрансформатора:
- Насос
- Турбина
- Статор
- Трансмиссионное масло
Корпус гидротрансформатора крепится болтами к маховику двигателя, то есть корпус всегда крутится с той же скоростью, с какой крутится коленвал двигателя. Плавники, которые составляют насос гидротрансформатора, крепятся к корпусу, поэтому они также вращаются с одинаковой скоростью, что и двигатель. Гидротрансформатор в разрезе на рисунке ниже показывает, как всё это связано внутри гидротрансформатора.
Насос внутри гидротрансформатора является одним из видов центробежных насосов. В то время как он вращается, жидкость движется направленно от центра к краям, примерно как вращающийся барабан стиральной машины во время отжима бросает воду и одежду по своим стенкам. В то же время, так как жидкость устремляется от центра, в это центре создаётся вакуум, который привлекает ещё больше жидкости.
Затем жидкость поступает в лопасти турбины, которая связана с передачей. Именно турбина заставляет передачу крутиться, что в основном и приводит в движение Ваш автомобиль. Так как же жидкость (точнее, масло) поступает из насоса к турбине?! Дело в том, что в то время, как жидкость эта устремляется от центра к краям насоса, она встречает на своём пути лопасти насоса, которые направлены таким образом, что жидкость рикошетит о них и направляется уже вдоль оси вращения насоса прочь от него — к турбине, которая как раз и расположена напротив насоса.
Лопасти турбины также немного искривлены. Это означает, что жидкость, которая поступает в турбину снаружи, должна изменить своё направление, переместившись в центр турбины. Именно это направленное изменение вызывает вращение турбины.
Чтобы ещё проще представить принцип работы гидротрансформатора, представим ситуацию с расположенными друг напротив друга на небольшом расстоянии (допустим, около одного метра) комнатными вентиляторами и направленными друг напротив друга — если включить один из вентиляторов, то он за счёт своих искривлённых лопастей погонит воздух от себя к вентилятору, который стоит напротив него, а тот, в свою очередь, начнёт вращаться, потому как его лопасти также искривлены и поток воздуха толкает их все в какую-либо одну сторону (именно в ту сторону, в какую и начнёт вращаться вал вентилятора).
Но мы всё ещё двигаемся далее: жидкость выходит из турбины в её центре, двигаясь опять же в другом — противоположном направлении, чем то, в котором она когда-то вошла в турбину — то есть снова по направлению к насосу. И вот здесь заключается большая проблема — дело в том, что по своей конструкции (точнее, по конструкции своих лопастей, насос и турбина вращаются в противоположные стороны, и, если жидкости будет разрешено попасть обратно в насос, то это будет сильно замедлять двигатель. Вот почему гидротрансформатор имеет статор, который, благодаря своей конструкции, изменяет направление движения масла, и, таким образом, остаточная энергия, которая возвращается от турбины к насосу, идёт в дело — немного помогая двигателю раскручивать насос.
Важно отметить, что скорость вращения турбины никогда не будет равной скорости вращения насоса, а КПД в гидротрансформаторе даже близко не будет стоять к механическим шестерёнчатым механизмам, передающим крутящий момент. Именно поэтому у автомобиля с АКПП значительно более высокий расход топлива. Для борьбы с этим эффектом, большинство автомобилей имеет гидротрансформатор, снабжённый блокировочной муфтой . Когда требуется, чтобы две половинки гидротрансформатора (насос и турбина) вращались с одинаковой скоростью (это происходит, например, когда автомобиль движется на высокой скорости), блокировочная муфта блокирует их вместе намертво, что исключает проскальзывание насоса относительно турбины и, таким образом, повышает эффективность расхода топлива.
Технология | GidroTor
Как производится ремонт гидротрансформатора АКПП
1) Приёмка в ремонт и разборка
После того, как вы сдаёте гидротрансформатор к нам в ремонт, наши сотрудники тщательно осматривают его на предмет наличия внешних повреждений. Далее из него сливается масло, и он устанавливается при помощи специальных приспособлений (для каждой модели своих) на токарный станок. Мастер будет аккуратно срезать сварной шов и разъединять гидротрансформатор на две половины. Перед резкой мастер, вращая его на станке, смотрит, насколько он ровно сварен и не погнута ли шейка, по которой ходит сальник. Далее происходит сам процесс срезания сварного шва, при котором мастер старается снять минимальное количество металла с корпуса и крышки гидротрансформатора для того, чтобы Вы избежали оплаты надставки корпуса при сварке.
2) Первичный осмотр
После разрезания все детали раскладываются на столе и тщательно осматриваются на предмет повреждений. Те детали, которые имеют по нашему опыту маленький срок службы (это некоторые подшипники, либо фрикционы блокировки на некоторых моделях) сразу откладываются в сторону и при ремонте подлежат замене на новые вне зависимости от их внешнего состояния. Нами накоплена большая статистика поломок разных моделей, мы знаем все слабые места и какие детали лучше заменить на новые сразу, не дожидаясь, пока они рассыплются и разнесут всё остальное, что приведёт к повторному дорогостоящему ремонту не только гидротрансформатора, но и коробки передач.
3) Мойка гидротрансформатора, дефектация и выполнение дополнительных ремонтных работ
Далее все детали отправляются в специальные мойки — одна для крупных металлических и пластиковых деталей, а вторая для мелких деталей и для фрикционов блокировки, которые моются в специальном растворителе. После того, как детали помоются приблизительно 20 минут, они вынимаются из мойки и насухо обдуваются сжатым воздухом. Далее происходит повторный осмотр уже сухих чистых деталей, разложенных на столе после мойки, так как на грязных деталях не всегда можно заметить повреждения. В данный момент принимается решение о том, какие новые детали нужно взять со склада, чтобы установить в Ваш гидротрансформатор. Также мастер смотрит, понадобятся ли дополнительные работы, такие как замена шейки гидротрансформатора, переклёпка ступицы турбины или переклейка фрикциона блокировки, а также усиление лопаток на крышке и турбине и другие работы по устранению слабых мест этой модели. После выполнения всех необходимых дополнительных работ гидротрансформатор комплектуется необходимыми новыми деталями со склада и передаётся мастеру-сборщику.
4) Последний осмотр мастером-сборщиком и подготовительные работы
На этом этапе происходит последний, третий тщательный осмотр всех внутренних и внешних деталей, а также контроль качества произведённых дополнительных работ. Если у мастера в процессе осмотра появляются какие-либо замечания, гидротрансформатор дорабатывается дополнительно и возможно дополучение со склада новых деталей. Таким образом, осмотр и контроль качества проводится трижды тремя разными мастерами, чтобы никакие проблемы не укрылись от нашего взгляда. Далее происходят расточка корпуса для сборки и протачивание поверхности под новый фрикцион. Здесь тоже есть свои тонкости: очень важно расточить корпус именно настолько, чтобы две половины гидротрансформатора заходили друг в друга свободно, но без большого зазора. Иначе получится большая щель между двумя половинами, что приведёт к дополнительному биению после сварки, как при ремонте в других мастерских. Проточка корпуса под новый фрикцион тоже производится аккуратно — необходимо срезать минимальный слой металла, чтобы не истончать корпус. Также нельзя допускать, чтобы резец врезался в угол корпуса, так как в этом месте корпус может впоследствии треснуть. К сожалению, не все мастерские думают о таких «мелочах» в погоне за количеством сделанной работы, совершенно забывая о качестве.
5) Установка гидротрансформатора на сварочный станок и подготовка к сварке
Две половинки со всеми установленными внутри деталями ставятся на сварочный станок через необходимые высокоточные приспособления (разные для разных моделей) и зажимаются в два патрона, идеально соосных друг другу. Перед установкой все соприкасающиеся установочные поверхности тщательно протираются и проверяются, чтобы наличие там грязи или мелких опилок не могло повлиять на результат. Тут надо заметить, что раз в несколько месяцев соосность патронов обязательно проверяется, при необходимости производятся регулировки оборудования и шлифовка зажимающих кулачков — мы всегда содержим наше оборудование в идеальном состоянии.
6) Сварка и проверка гидротрансформатора
Следующий этап работы — сварка. После установки гидротрансформатора на сварочный станок, всех подготовительных работ и проверки происходит прихват сваркой двух половин друг к другу на шести точках. Далее мастер предварительно проверяет соосность двух половин по индикатору с точностью более чем одна сотая миллиметра. Если несоосность хотя бы приближается к значению, в два раза меньшему, чем заводской допуск — трансформатор разрезается и прихватывается заново. После того, как мастер убедился, что две половины прихвачены друг к другу ровно, он смотрит, с какого места нужно начать сварочный шов, чтобы биение после сварки было наименьшим. Потом мастер решает какие параметры тока и какую скорость вращения установить для вашего трансформатора для лучшего результата. Только после этого производится сама сварка — она происходит в автоматическом режиме примерно в течение 2-3 минут по кругу. После сварки трансформатор ещё раз тщательнейшим образом проверяется на осевое биение и герметичность, и только если всё нормально, он поступает на выдачу клиенту.
На видео обычный среднестатистический результат нашего ремонта — биение 6 сотых миллиметра при допустимом биении в 3 десятых.
Мы восстанавливаем трансформаторы криво сваренные или испорченные в других сервисах и мастерских. Все запасные части у нас всегда в наличии, что позволяет осуществить ремонт в течение суток, а для иногородних клиентов в день обращения. Исключение составляют редкие случаи, когда повреждения настолько серьёзны, что требуется трансформатор-донор. Если у нас нет такого, мы своими силами попытаемся осуществить поиск в течение нескольких дней. В некоторых случаях, если детали, необходимые для ремонта, не поставляются производителем, мы можем осуществить изготовление некоторых запасных частей, например хабов (шеек), полностью идентичных оригинальным (по материалу, твёрдости и размерам).
У нас индивидуальный подход к каждому клиенту — мастер покажет Вам все поломки и подробно всё объяснит: разборка и дефектация Вашего трансформатора происходит сразу и прямо при Вас. Цена зависит от разрушений и износа, которые будут обнаружены при вскрытии.
О том как не сломать гидротрансформатор после ремонта смотрите тут: