Схема бп на 12 вольт: Схема простого трансформаторного блока питания с регулировкой напряжения 0—12 вольт.

Содержание

Схема простого трансформаторного блока питания с регулировкой напряжения 0—12 вольт.

Человек, у которого электрика и электроника является хобби, увлечение, делами, что позволяют получать удовольствие или иметь дополнительный заработок, просто обязан иметь у себя в наличии блок питания с плавной регулировкой напряжения! Ведь работая с различной электрической и электронной техникой постоянно приходится сталкиваться с её питанием, а оно, как известно, не всегда одинаково. Постоянно искать источники питания с подходящим напряжением, тоже не выход. Именно в данном случае наиболее рациональным и правильным решением будет создание простого (или сложного, если есть в этом особая необходимость) блока питания, имеющего плавное регулирование напряжения питания. Простая, но надёжная схема представлена на рисунке, давайте её разберём.

Схема простого, регулируемого плавно, блока питания представляет собой две основные части, это сам блок питания и небольшая транзисторная схема параметрического регулятора напряжения.

Первая часть содержит понижающий трансформатор, выпрямитель (диодный мост) и конденсатор (сглаживающий фильтр). По большей части именно от выбора этих частей зависит мощность всего блока питания. Что бы не делать слишком большим блок питания ограничимся электрической мощностью в 30 Вт. Хотя для увеличения этой мощности достаточно будет поменять трансформатор, мост и выходной транзистор, имеющие соответствующие величины токов и напряжений.

Итак, находим трансформатор, который рассчитан на входное напряжение 220 вольт и выходное 12-15 вольт, вторичная обмотка должна иметь сечение, обеспечивающее номинальную силу тока в 2-3 ампера. Далее, спаиваем диодный мостик, элементы которого должны быть рассчитаны на ток не меньше 5 ампер (лучше брать с небольшим запасом). И к выходу моста припаяем фильтрующий конденсатор с ёмкостью от 1000 микрофарад и более. Схема плавно регулируемого параметрического стабилизатора после её сборки (спайки) должна сразу начать нормально работать, хотя если есть желание донастройки и точной регулировки внутренних параметров, можете сами по изменять имеющиеся электронные компоненты, поставив туда наиболее подходящие на Ваш взгляд.

Теперь расскажу о самой работе данной схемы плавно регулируемого блока питания. Трансформатор — его задача заключается в преобразовании электрической энергии, то есть он сетевое напряжение 220 вольт понижает до нужных 12 вольт. Заметим, что как был у нас переменный ток, так и остался, хотя и понизилась амплитуда. Диодный мостик занимается тем, что переводит все колебания в один полупериод, а именно значение тока после мостика уже меняется только от нуля и до 12 вольт, не меняя своего полюса. Но волнообразный ток подходит не для всех случаев питания электрооборудования, для многих устройств нужен именно постоянный ток, допускающий минимальные колебания. Для этого и нужен конденсатор, который сглаживает скачки напряжения.

Схема регулятора является параметрической, то есть в схеме создаётся некое опорное напряжение, уже от которого путём деления напряжения и усиления силы тока создаются необходимые выходные величины электрических параметров. С выхода мостика, на котором уже сглажены скачки (фильтрующим конденсатором), напряжение подаётся на цепь параметрического стабилизатора, состоящего из резистора R1 и стабилитрона VD2. Тут напряжение делиться, причём на стабилитроне образуется некоторое постоянная его величина с малыми отклонениями. Если напряжение будет меняться, по причине внешних обстоятельств, то эти изменения только будут заметны на R1.

Параллельно стабилитрону, на котором образовалось опорное напряжение постоянной величины, включён переменный резистор R2, что, собственно, и осуществляет плавное изменение выходного напряжения на нашем регулируемом блоке питания. Когда мы его крутим, то получаем определённую величину постоянного напряжения, что далее делится между база-эмиттерными переходами транзисторов, включённых по схеме эмиттерных повторителей. А, как известно, включение по этой схеме заставляет транзисторы работать в режиме усиления только тока, при том, что напряжение остаётся как бы неизменным. То есть, напряжение снятое с переменного резистора передаётся на выход через транзисторы, которые понижают его только на величину своего насыщения (примерно от 0.4 до 0.7 вольт).

Проще говоря — выставили мы на переменном резисторе значение 5 вольт, оно передалось через транзисторы на выход (минус примерно 1. 2 вольта, что осели на транзисторных переходах база-эмиттер), а в силу усиления тока, мы получили повышение мощности, срезанной от основной, которая имеется на выходе диодного мостика. Транзисторы тут являются некими электрическими краниками, которыми мы управляем при помощи изменения напряжения на база-эмиттерных переходах. Чем больше мы подадим на них напряжения с переменного резистора, тем сильнее откроются транзисторы (понизится их внутреннее сопротивление) и больше электрической мощности передастся на выход регулируемого блока питания.

Видео по этой теме:

P.S. Эту электрическую схему простого регулируемого блока питания я когда-то давно (когда сам начинал заниматься электроникой) собрал для себя. Он меня не разу не подводил, я им проверял устройства, запитывал самодельные схемы, заряжал различные аккумуляторы и т.д. При желании этот блок питания можно доработать и снабдить дополнительными функциональными элементами, такими как внутренний вольтметр, амперметр, защиты от перегрузки и т.

д.

Схемы блоков питания и не только.

codegen_250.djvu — Схема БП Codegen 250w mod. 200XA1 mod. 250XA1.

codegen_300x.gif — Схема БП Codegen 300w mod. 300X.

PUh500W.pdf — Схема БП CWT Model PUh500W .

Dell-145W-SA145-3436.png — Схема блока питания Dell 145W SA145-3436

Dell-160W-PS-5161-7DS.pdf — Схема блока питания Dell 160W PS-5161-7DS

Dell_PS-5231-2DS-LF.pdf — Схема блока питания Dell 230W PS-5231-2DS-LF (Liteon Electronics L230N-00)

Dell_PS-5251-2DFS.pdf — Схема блока питания Dell 250W PS-5251-2DFS

Dell_PS-5281-5DF-LF.pdf — Схема блока питания Dell 280W PS-5281-5DF-LF модель L280P-01

Dell_PS-6311-2DF2-LF.pdf — Схема блока питания Dell 305W PS-6311-2DF2-LF модель L305-00

Dell_L350P-00.pdf — Схема блока питания Dell 350W PS-6351-1DFS модель L350P-00

Dell_L350P-00_Parts_List.pdf — Перечень деталей блока питания Dell 350W PS-6351-1DFS модель L350P-00

deltadps260. ARJ — Схема БП Delta Electronics Inc. модель DPS-260-2A.

delta-450AA-101A.pdf — Схема блока питания Delta 450W GPS-450AA-101A

delta500w.zip — Схема блока питания Delta DPS-470 AB A 500W

DTK-PTP-1358.pdf — Схема блока питания DTK PTP-1358.

DTK-PTP-1503.pdf — Схема блока питания DTK PTP-1503 150W

DTK-PTP-1508.pdf — Схема блока питания DTK PTP-1508 150W

DTK-PTP-1568.pdf — Схема БП DTK PTP-1568 .

DTK-PTP-2001.pdf — Схема БП DTK PTP-2001 200W.

DTK-PTP-2005.pdf — Схема БП DTK PTP-2005 200W.

DTK PTP-2007 .png — Схема БП DTK Computer модель PTP-2007 (она же – MACRON Power Co. модель ATX 9912)

DTK-PTP-2007.pdf — Схема БП DTK PTP-2007 200W.

DTK-PTP-2008.pdf — Схема БП DTK PTP-2008 200W.

DTK-PTP-2028.pdf — Схема БП DTK PTP-2028 230W.

DTK_PTP_2038.gif — Схема БП DTK PTP-2038 200W.

DTK-PTP-2068.pdf — Схема блока питания DTK PTP-2068 200W

DTK-PTP-3518.pdf — Схема БП DTK Computer model 3518 200W.

DTK-PTP-3018.pdf — Схема БП DTK DTK PTP-3018 230W.

DTK-PTP-2538.pdf — Схема блока питания DTK PTP-2538 250W

DTK-PTP-2518.pdf — Схема блока питания DTK PTP-2518 250W

DTK-PTP-2508.pdf — Схема блока питания DTK PTP-2508 250W

DTK-PTP-2505.pdf — Схема блока питания DTK PTP-2505 250W

EC mod 200x (.png) — Схема БП EC model 200X.

FSP145-60SP.GIF — Схема БП FSP Group Inc. модель FSP145-60SP.

fsp_atx-300gtf_dezhurka.gif — Схема источника дежурного питания БП FSP Group Inc. модель ATX-300GTF.

fsp_600_epsilon_fx600gln_dezhurka.png — Схема источника дежурного питания БП FSP Group Inc. модель FSP Epsilon FX 600 GLN.

green_tech_300.gif — Схема БП Green Tech. модель MAV-300W-P4.

HIPER_HPU-4K580.zip — Схемы блока питания HIPER HPU-4K580 . В архиве — файл в формате SPL (для программы sPlan) и 3 файла в формате GIF — упрощенные принципиальные схемы: Power Factor Corrector, ШИМ и силовой цепи, автогенератора. Если у вас нечем просматривать файлы .spl , используйте схемы в виде рисунков в формате .gif — они одинаковые.

iwp300a2.gif — Схемы блока питания INWIN IW-P300A2-0 R1.2.

IW-ISP300AX.gif — Схемы блока питания INWIN IW-P300A3-1 Powerman.
Наиболее распространенная неисправность блоков питания Inwin, схемы которых приведены выше — выход из строя схемы формирования дежурного напряжения +5VSB ( дежурки ). Как правило, требуется замена электролитического конденсатора C34 10мкФ x 50В и защитного стабилитрона D14 (6-6.3 V ). В худшем случае, к неисправным элементам добавляются R54, R9, R37, микросхема U3 ( SG6105 или IW1688 (полный аналог SG6105) ) Для эксперимента, пробовал ставить C34 емкостью 22-47 мкФ — возможно, это повысит надежность работы дежурки.

IP-P550DJ2-0.pdf — схема блока питания Powerman IP-P550DJ2-0 (плата IP-DJ Rev:1.51). Имеющаяся в документе схема формирования дежурного напряжения используется во многих других моделях блоков питания Power Man (для многих блоков питания мощностью 350W и 550W отличия только в номиналах элементов ).

JNC_LC-B250ATX.gif — JNC Computer Co. LTD LC-B250ATX

JNC_SY-300ATX.pdf — JNC Computer Co. LTD. Схема блока питания SY-300ATX

JNC_SY-300ATX.rar — предположительно производитель JNC Computer Co. LTD. Блок питания SY-300ATX. Схема нарисована от руки, комментарии и рекомендации по усовершенствованию.

KME_pm-230.GIF — Схемы блока питания Key Mouse Electroniks Co Ltd модель PM-230W

L & C A250ATX (.png) — Схемы блока питания L & C Technology Co. модель LC-A250ATX

LiteOn_PE-5161-1.pdf — Схема блоков питания LiteOn PE-5161-1 135W.

LiteOn-PA-1201-1. pdf — Схема блоков питания LiteOn PA-1201-1 200W (полный комплект документации к БП)

LiteOn_model_PS-5281-7VW.pdf — Схема блоков питания LiteOn PS-5281-7VW 280W (полный комплект документации к БП)

LiteOn_model_PS-5281-7VR1.pdf — Схема блоков питания LiteOn PS-5281-7VR1 280W (полный комплект документации к БП)

LiteOn_model_PS-5281-7VR.pdf — Схема блоков питания LiteOn PS-5281-7VR 280W (полный комплект документации к БП)

LWT2005 (.png) — Схемы блока питания LWT2005 на микросхеме KA7500B и LM339N

M-tech SG6105 (.png) — Схема БП M-tech KOB AP4450XA.

Macrom Power ATX 9912 .png — Схема БП MACRON Power Co. модель ATX 9912 (она же – DTK Computer модель PTP-2007)

Maxpower 230W (.png) — Схема БП Maxpower PX-300W

MaxpowerPX-300W.GIF — Схема БП Maxpower PC ATX SMPS PX-230W ver.2.03

PowerLink LP-J2-18 (.png) — Схемы блока питания PowerLink модель LP-J2-18 300W.

Power_Master_LP-8_AP5E.gif — Схемы блока питания Power Master модель LP-8 ver 2.03 230W (AP-5-E v1.1).

Power_Master_FA_5_2_v3-2.gif — Схемы блока питания Power Master модель FA-5-2 ver 3.2 250W.

microlab350w.pdf — Схема БП Microlab 350W

microlab_400w.pdf — Схема БП Microlab 400W

linkworld_LPJ2-18.GIF — Схема БП Powerlink LPJ2-18 300W

Linkword_LPK_LPQ.gif — Схема БП Powerlink LPK, LPQ

PE-050187 — Схема БП Power Efficiency Electronic Co LTD модель PE-050187

ATX-230.pdf — Схема БП Rolsen ATX-230

SevenTeam_ST-200HRK.gif — Схема БП SevenTeam ST-200HRK

SevenTeam_ST-230WHF (.png) — Схема БП SevenTeam ST-230WHF 230Watt

SevenTeam ATX2 V2 на TL494 (.png) — Схема БП SevenTeam ATX2 V2

hpc-360-302.zip — Схема БП SIRTEC INTERNATIONAL CO. LTD. HPC-360-302 DF REV:C0 заархивированный документ в формате . PDF

hpc-420-302.pdf — Схема блока питания Sirtec HighPower HPC-420-302 420W

HP-500-G14C.pdf — Схема БП Sirtec HighPower HP-500-G14C 500W

cft-850g-df_141.pdf — Схема БП SIRTEC INTERNATIONAL CO. LTD. NO-672S. 850W. Блоки питания линейки Sirtec HighPower RockSolid продавались под маркой CHIEFTEC CFT-850G-DF.

SHIDO_ATX-250.gif — Схемы блока питания SHIDO модель LP-6100 250W.

SUNNY_ATX-230.png — Схема БП SUNNY TECHNOLOGIES CO. LTD ATX-230

s_atx06f.png — Схема блока питания Utiek ATX12V-13 600T

Wintech 235w (.png) — Схема блока питания Wintech PC ATX SMPS модель Win-235PE ver.2.03

Схемы блоков питания для ноутбуков.

EWAD70W_LD7552.png — Схема универсального блока питания 70W для ноутбуков 12-24V, модель SCAC2004, плата EWAD70W на микросхеме LD7552.

KM60-8M_UC3843.png — Схема блока питания 60W 19V 3.42A для ноутбуков, плата KM60-8M на микросхеме UC3843.

ADP-36EH_DAP6A_DAS001.png — Схема блока питания Delta ADP-36EH для ноутбуков 12V 3A на микросхеме DAP6A и DAS001.

LSE0202A2090_L6561_NCP1203_TSM101.png — Схема блока питания Li Shin LSE0202A2090 90W для ноутбуков 20V 4.5A на микросхеме NCP1203 и TSM101, АККМ на L6561.

ADP-30JH_DAP018B_TL431.png — Схема блока питания ADP-30JH 30W для ноутбуков 19V 1.58A на микросхеме DAP018B и TL431.

ADP-40PH_2PIN.jpg — Схема блока питания Delta ADP-40PH ABW

Delta-ADP-40MH-BDA-OUT-20V-2A.pdf — Ещё один вариант схемы блока питания Delta ADP-40MH BDA на чипах DAS01A и DAP8A.

PPP009H-DC359A_3842_358_431.png — Схема блока питания HP Compaq CM-0K065B13-LF 65W для ноутбуков 18.5V 3.5A, модель PPP009H-DC359A на микросхемах UC3842 и LM358.

NB-90B19-AAA.jpg — Схема блока питания NB-90B19-AAA 90W для ноутбуков 19V 4.74A на TEA1750.

PA-1121-04.jpg — Схема блока питания LiteOn PA-1121-04CP на микросхеме LTA702.

Delta_ADP-40MH_BDA.jpg — Схема блока питания Delta ADP-40MH BDA (Part No:S93-0408120-D04) на микросхеме DAS01A, DAP008ADR2G.

LiteOn_LTA301P_Acer.jpg — Схема блока питания LiteOn 19V 4.74A на LTA301P, 103AI, PFC на микросхемах TDA4863G/FAN7530/L6561D/L6562D.

ADP-90SB_BB_230512_v3.jpg — Схема блока питания Delta ADP-90SB BB AC:110-240v DC:19V 4.7A на микросхеме DAP6A, DSA001 или TSM103A

Delta-ADP-90FB-EK-rev.01.pdf — Схема блоков питания Delta ADP-90FB AC:100-240v DC:19V 4.74A на микросхеме L6561D013TR, DAP002TR и DAS01A.

PA-1211-1.pdf — Схема блока питания LiteOn PA-1211-1 на LM339N, L6561, UC3845BN, LM358N.

Li-Shin-LSE0202A2090.pdf — Схема блоков питания Li Shin LSE0202A2090 AC:100-240v DC:20V 4.5A 90W на микросхемах L6561, NCP1203-60 и TSM101.

GEMBIRD-model-NPA-AC1.pdf — Схема универсального блока питания Gembird NPA-AC1 AC:100-240v DC:15V/16V/18V/19V/19.5V/20V 4.5A 90W на микросхеме LD7575 и полевом транзисторе MDF9N60.

ADP-60DP-19V-3.16A.pdf — Схема блоков питания Delta ADP-60DP AC:100-240v DC:19V 3.16A на микросхеме TSM103W (он же M103A) и I6561D.

Delta-ADP-40PH-BB-19V-2. 1A.jpg — Схема блоков питания Delta ADP-40PH BB AC:100-240v DC:19V 2.1A на микросхеме DAP018ADR2G и полевом транзисторе STP6NK60ZFP.

Asus_SADP-65KB_B.jpg — Схема блоков питания Asus SADP-65KB B AC:100-240v DC:19V 3.42A на микросхеме DAP006 (DAP6A или NCP1200) и DAS001 (TSM103AI).

Asus_PA-1900-36_19V_4.74A.jpg — Схема блоков питания Asus PA-1900-36 AC:100-240v DC:19V 4.74A на микросхеме LTA804N и LTA806N.

Asus_ADP-90CD_DB.jpg — Схема блоков питания Asus ADP-90CD DB AC:100-240v DC:19V 4.74A на микросхеме DAP013D и полевике 11N65C3.

PA-1211-1.pdf — Схема блоков питания Asus ADP-90SB BB AC:100-240v DC:19V 4.74A на микросхеме DAP006 (она же DAP6A) и DAS001 (она же TSM103AI).

LiteOn-PA-1900-05.pdf — Схема блока питания LiteOn PA-1900/05 AC:100-240v DC:19V 4.74A на LTA301P и 103AI, транзистор PFC 2SK3561, транзистор силовой 2SK3569.

LiteOn-PA-1121-04.pdf — Схема блока питания LiteOn PA-1121-04 AC:100-240v DC:19V 6.3A на LTA702, транзистор PFC 2SK3934, транзистор силовой SPA11N65C3.

Прочее оборудование.

monpsu1.gif — типовая схема блоков питания мониторов SVGA с диагональю 14-15 дюймов.

sch_A10x.pdf — Схема планшетного компьютера («планшетника») Acer Iconia Tab A100 (A101).

HDD SAMSUNG.rar — архив с обширной подборкой документации к HDD Samsung

HDD SAMSUNG M40S — документация к HDD Samsung серии M40S на английскомязыке.

sonyps3.jpg — схема блока питания к Sony Playstation 3.

APC_Smart-UPS_450-1500_Back-UPS_250-600.pdf — инструкции по ремонту источников бесперебойного питания производства APC на русском языке. Принципиальные схемы многих моделей Smart и Back UPS.

Silcon_DP300E.zip — эксплуатационная документация на UPS Silcon DP300E производства компании APC

symmetra-re.pdf — руководство по эксплуатации UPS Symmetra RM компании APC.

symmetrar.pdf — общие сведения и руководство по монтажу UPS Symmetra RM компании APC (на русском языке).

manuals_symmetra80.pdf — эксплуатационная документация на Symmetra RM UPS 80KW, высокоэффективную систему бесперебойного питания блочной конфигурации, конструкция которой обеспечивает питание серверов высокой готовности и другого ответственного электронного оборудования.

APC-Symmetra.zip — архив с эксплуатационной документацией на Symmetra Power Array компании APC

Smart Power Pro 2000.pdf — схема ИБП Smart Power Pro 2000.

BNT-400A500A600A.pdf — Схема UPS Powercom BNT-400A/500A/600A.

ml-1630.zip — Документация к принтеру Samsung ML-1630

splitter.arj — 2 принципиальные схемы ADSL — сплиттеров.

KS3A.djvu — Документация и схемы для 29″ телевизоров на шасси KS3A.

Если вы желаете поделиться ссылкой на эту страницу в своей социальной сети, пользуйтесь кнопкой «Поделиться»

Схема универсального регулируемого блока питания 0

   Вам уже приходилось строить самоделки с самым разным напряжением пи­тания: 4,5, 9, 12 В. И каждый раз нужно было приобретать соответствующее число батареек или элементов. Но не всегда есть нужные источники питания, да и срок службы их ограничен. Вот почему для домашней лаборатории не­обходим универсальный источник, пригодный практически для всех случаев радиолюбительской практики. Им может стать описанный ниже блок питания, работающий от сети переменного тока и обеспечивающий любое постоянное напряжение от 0,5 до 12 В.

   В то время как величина тока, потребляемого от блока, может достигать 0,3 А, выходное напряжение остается стабильным. И еще одно достоинство блока — он не боится коротких замыканий, часто встречающихся на практике во время проверки и налаживания конструкций, что особенно важно для начинающего радиолюбителя.

Рис 1.

   Схема блока питания приведена на рис 1. Сетевое напряжение подается через вилку Х1, предохранитель F1 и выключатель S1 на первичную обмотку трансформатора T1. Это понижающий трансформатор, поэтому напряжение на его вторичной обмотке (II) значительно меньше сетевого. Переменное нап­ряжение со вторичной обмотки поступает на выпрямитель, собранный на дио­дах V1 — V4. На выходе выпрямителя будет уже постоянное напряжение, оно сглаживается конденсатором С1 сравнительно большой емкости — 500 мкФ.

   Далее следует стабилизатор напряжения, в который входят резисторы R2 — R5, транзисторы V8, V9 и стабилитрон V7. Переменным резистором R3 можно устанавливать на выходе блока (в гнездах Х2 и ХЗ) любое напряжение от 0,5 до 12 В.

   Каскад на транзисторе V6 постоянно «следит» за состоянием нагрузки — это автомат защиты от короткого замыкания. Если в цепи нагрузки произойдет короткое замыкание, то есть окажутся замкнутыми выходные гнезда блока пи­тания, транзистор V6 откроется, замкнет выводы стабилитрона и снимет та­ким образом напряжение с нагрузки. Как только короткое замыкание будет устранено, выходное напряжение появится вновь.

   Понижающий трансформатор блока готовый. Его роль выполняет выход­ной трансформатор кадровой развертки телевизора (ТВК — 110ЛМ). С таким трансформатором вы уже встречались, когда собирали блок питания электро­фона. Подойдет и другой понижающий трансформатор с переменным напря­жением на обмотке II около 14 В (можно 13 — 17 В) при токе потребления до 0,3 А. Иначе говоря, указанное напряжение должно быть при подключенной к выводам обмотки нагрузке (например, резистор) сопротивлением около 45 Ом и мощностью 5 Вт.

   Диоды могут быть любые из се­рии Д226 (например, Д226В, Д226Д и т.д.). Конденсатор С1 типа К50-6. Постоянные резисторы — МЛТ, пе­ременный — СП-I. Вместо стабилит­рона Д814Д можно применить Д813. Транзисторы V6, V8 надо взять типа МП39Б, МП41, МП41А, МП42Б с возможно большим коэффициентом передачи тока. Транзистор V9 — П213, П216, П217 с любым буквен­ным индексом. Подойдут и П201 — П203. Транзистор нужно установить на радиатор — пластину алюминия или другого металла размером 70 X X 40 мм, толщиной 1,5 — 2 мм. Дела­ют это так, как рассказывалось в опи­сании блока питания электрофона.

   Остальные детали — выключатель, предохранитель, вилка и гнезда — любой конструкции.

Рис 2.

   Для монтажа деталей вырежьте из изоляционного материала (гетинакс, текстолит, фанера) плату, чертеж которой приведен на рис. 2. Сначала про­режьте в плате пазы под лапки крепления трансформатора. Затем установите монтажные шпильки и просверлите отверстия в углах платы и под выводы электролитического конденсатора. Смонтируйте диоды и стабилитрон, припа­яйте постоянные резисторы, а в последнюю очередь — транзисторы. Установите на плате держатель предохранителя — его можно изготовить из жести от кон­сервной банки (см. рис. 81). Поместите выходной транзистор на радиатор, при­крепите радиатор к плате и подпаяйте выводы транзистора к соответствующим шпилькам платы. Прикрепите к плате трансформатор и подпаяйте выводы его вторичной обмотки к диодам, а один из выводов первичной обмотки — к дер­жателю предохранителя. Вставьте в отверстия выводы электролитического конденсатора, загните их снизу в разные стороны, чтобы конденсатор держал­ся на плате, и подпаяйте к выводам проводники от диодов.

Рис 3.

   Плату с деталями закрепите в корпусе (рис. 3) подходящих размеров. На лицевой стенке корпуса установите выключатель (например, тумблер ТВ2-1), переменный резистор, выходные гнезда (здесь лучше всего подойдут зажимы, позволяющие вставлять однополюсные вилки или подключать про­водники от питаемых конструкций). Задняя стенка корпуса съемная, в ней надо проделать отверстие под сетевой шнур питания. Перед тем как закрепить в корпусе плату, соедините соответствующие шпильки ее с деталями на перед­ней стенке. Это соединение сделайте проводниками в изоляции достаточной длины, чтобы их хватило, когда плата лежит рядом с корпусом.

   Как обычно, после окончания монтажа сначала проверьте правильность всех соединений, а затем вооружитесь вольтметром и приступайте к проверке блока питания. Вставив вилку блока в сетевую розетку и подав питание вык­лючателем S1, сразу же проверьте напряжение на конденсаторе С1 — оно должно быть 15 — 19 В. Затем установите движок переменного резистора R3 в верхнее по схеме положение и измерьте напряжение на гнездах XI и ХЗ — оно должно быть около 12 В. Если напряжение намного меньше, проверьте работу стаби­литрона — подключите вольтметр к его выводам и измерьте напряжение. В этих точках напряжение должно быть около 12 В. Его значение может быть значительно меньше из-за использования стабилитрона с другим буквенным индексом (например, Д814А), а также при неправильном включении выводов транзистора V6 или его неисправности. Чтобы исключить влияние этого тран­зистора, отпаяйте вывод его коллектора от анода стабилитрона и вновь из­мерьте напряжение на стабилитроне. Если и в этом случае напряжение мало, проверьте резистор R2 на соответствие его номинала заданному (360 Ом).

   Когда добьетесь на выходе блока питания нужного напряжения (пример­но 12 В), попробуйте перемещать движок резистора вниз по схеме. Выходное напряжение блока должно плавно уменьшаться почти до нуля.

   Теперь проверьте работу блока под нагрузкой. Подключите к гнездам-зажимам резистор сопротивлением 40 — 50 Ом и мощностью не менее 5 Вт. Его можно составить, например, из четырех параллельно соединенных резисторов МЛТ-2,0 (мощностью 2 Вт) сопротивлением по 160 — 200 Ом. Параллельно резистору включите вольтметр и установите движок переменного резистора R3 в верхнее по схеме положение. Стрелка вольтметра должна показать напря­жение не ниже 11 В. Если напряжение падает сильнее, попробуйте уменьшить сопротивление резистора R2 (установите вместо него резистор сопротивлением 330 или 300 Ом).

   Наступило время проверить действие автомата защиты. Понадобится ам­перметр на 1 — 2 А, но вполне можно воспользоваться авометром Ц20, вклю­ченным на измерение постоянного тока до 750 мА. Сначала установите пере­менным резистором блока питания выходное напряжение 5 — 6 В, а затем подк­лючите щупы амперметра к выходным гнездам блока: минусовый щуп к гнез­ду Х2, плюсовый — к гнезду ХЗ. В первый момент стрелка амперметра должна отклониться скачком на конечное деление шкалы, а затем возвратиться на нуле­вую отметку. Если это так, автомат работает исправно.

   Максимальное выходное напряжение блока определяется только напря­жением стабилизации стабилитрона. А оно для указанного на схеме Д814Д (Д813) может быть от 11,5 до 14 В. Поэтому при необходимости несколько поднять максимальное напряжение подберите стабилитрон с нужным напря­жением стабилизации или замените его другим, например Д815Е (с напряже­нием стабилизации 15 В). Но в этом случае придется изменить резистор R2 (уменьшить его сопротивление) и использовать трансформатор, с которым выпрямленное напряжение будет не менее 17 В при нагрузке 0,3 А (измеряется на выводах конденсатора).

   Заключительный этап — градуировка шкалы переменного резистора, кото­рую вы заранее должны наклеить на лицевую панель корпуса. Понадобится, конечно, вольтметр постоянного тока. Контролируя выходное напряжение бло­ка, устанавливайте движок переменного резистора в разные положения и от­мечайте на шкале значение напряжения для каждого из них. Градуировать шкалу можно через 1 В или проставить на ней наиболее употребительные напряжения: 1,5; 3; 4,5; 6; 9; 12 В. В любом случае надо помнить, что значения напряжений будут правильны без нагрузки.

   

⭐ Варианты сборки блоков питания для LED-ленты своими руками 📌 Статьи POWERCOM

Набирающие популярность светящиеся ленты, составленные из светодиодных (LED) лампочек, сейчас можно купить в магазине или собрать в домашних условиях. Многие домашние мастера уже оценили удобство, возможность сэкономить денежные средства, а также практичность, которые они получили в результате самостоятельной сборки блочок питания для LED-ленты. Именно поэтому далее мы рассмотрим, как просто сконструировать блок питания для светодиодной ленты своими руками.

Подробнее о самом блоке питания для LED-ленты

Чтобы лента с диодными источниками света (светодиодная лента) работала, необходимо подключить к ней дополнительное оборудование. Таковым является питающий блочок. Он представляет собой трансформатор в защитном корпусе с выпрямителем. Если оборудовать такое устройство ещё конденсатором, оно будет способно также гасить так называемые помехи, провалы. При этом соблюдается такое правило: чем больше ёмкость конденсатора, тем лучше.

Светодиодная лента как прибор, работающий от электричества, имеет свою особенность: он требует пониженное напряжение – 12-19 В. Блок питания выполняет функцию стабилизации напряжения от 220-ти Вольт. Двенадцативольтные источники обычно применяются в конструкциях компьютеров, планшетов, телевизоров, девятнадцативольтные можно найти в моноблоках, ноутбуках, мониторах.

Обратите внимание: слишком слабые БП-устройства на 5 В, которыми обычно комплектуются мобильные телефоны, вряд ли подойдут для достаточно сильного свечения диодной ленты.

Возможно ли подобрать старый блок питания?

Итак, чтобы запитать светодиодную ленту, не подойдёт старый блок питания от смартфона или кнопочного телефона. Причина проста: как уже было указано выше, они имеют недостаточный вольтаж на выходе, который находится на уровне пяти V. Лучше всего рассмотреть устройства-зарядники, которые остались после сетевых маршрутизаторов, планшетных компьютеров, отдельных моделей персональных компьютеров, моноблоков, компьютерных мониторов. Перечисленные устройства выдают на выходе 12 В или 19 В.

Предпочтение при выборе БП-устройства для дальнейшей переделки следует отдавать импульсным лёгким моделям. Если вы начнёте работу с тяжёлым трансформаторным устройством, неправильно либо неточно определив будущую нагрузочную мощность, возникнет проблема с работой уже собранного под светодиодную ленту устройства. Оно может слишком сильно нагреться, что недопустимо с точки зрения техники пожарной безопасности. Ещё один важный нюанс, о котором нужно помнить при подготовке к конструированию светодиодного БП своими руками из подручных средств, – это наличие постоянной величины силы тока.

Двенадцативольтные источники питания (12 вольт)

Если от бытовой техники остался блочок питания на 12 Вольт, его можно использовать для светодиодной ленты. Обычно такие устройства имеют мощность от 6 до 36 Ватт. Когда монтируется лента для освещения рабочей зоны на кухне или другого совсем небольшого пространства, может быть достаточно десятиваттного источника питания. Трансформаторное устройство будет иметь большой вес, а более современное импульсное (электронный трансформатор) – небольшую массу, маленький размер.

Первый вариант использовать не стоит, лучше остановить свой выбор на лёгком импульсном устройстве. В противном случае прибор будет постоянно нагреваться, быстро выйдет из строя.

Девятнадцативольтные источники питания (19 вольт)

Подключение светодиодной ленты своими руками можно осуществить с помощью БП-устройства с напряжением в 19 Вольт. Такое устройство часто встречается современным людям в обычной, бытовой жизни. Это – блоки питания от домашних компьютеров, принтеров, различных маршрутизаторов.

Если у вас есть БП-устройство от старого ноутбука с характеристиками 90 W, 19 V, его можно использовать для светодиод-ленты, выдающей световой поток в 6000 Люмен. Такие характеристики достаточны для получения яркого освещения комнаты, имеющей площадь в 20 квадратных метров. Для того чтобы устройство исправно функционировало, потребуется сделать небольшую доработку – добавить в схему один из двух подходящих понижателей напряжения.

Стабилизаторы для БП на 12 В

Первый из вариантов называется КРЕН 7812. После установки на радиатор он будет выдерживать силу тока в один ампер. Чтобы использовать всю доступную мощность блочка питания, понадобится около пяти-шести таких деталей. Второй вариант – это небольшой импульсный стабилизатор LM2596, имеющий коэффициент полезного действия на уровне 80-90%.

Мощность блока питания для LED-ленты

БП-устройство для светодиодной ленты должно иметь конкретную мощность, которая зависит от суммарной нагрузки подключённых устройств. Нужно учитывать, что преувеличение этого параметра приводит к нарушению нормальной работы всего осветительного прибора и сильному перегреву оборудования. Дабы этого не произошло, нужно проследить, чтобы мощность светодиодной ленты была меньше, чем максимально допустимая у блока питания.

Старые БП-устройства с понижающими трансформаторами предоставляют огромное поле для деятельности, ведь запас их мощности неограничен. Что касается импульсных (более современных) БП, они имеют некоторые ограничения, в том числе по минимальной величине тока.

Как самому сделать блок питания для светодиодной ленты?

Рассмотрим, как сделать схему блока питания для светодиодной ленты своими руками. Наиболее простым в исполнении, оптимальным вариантом для решения этой задачи является использование микросхемы LM2596. Она похожа по своему функционалу с ST1S10, ST1S14 или L5973D. Для трансформации в работающее светодиодное устройство в схему потребуется добавить четыре радиоэлемента.

Например, можно придерживаться этой бестрансформаторной схемы на 12 В:

Обратите внимание, что вместо микросхемы линейного стабилизатора D1 L7812 можно использовать другую (например, КРЕН). Главное, чтобы этот элемент подходил по напряжению. Также допустимо использование параметрического стабилизатора из стабилитрона или самого стабилитрона. В таком случае у собираемого устройства появляется преимущество – гибкость при проведении настройки, наладки. Для монтажа на светодиодную ленту подойдёт стабилитрон, относящийся к серии Д818Д. Он должен быть рассчитан на напряжение 12-13 В.

Следующий вариант стабилизации — сборка блочка на 2-х транзисторах по схеме:

Ток, нуждающийся в стабилизации, задаётся R2-резистором (R2 = 0,7 * Iст), R1 равен 3,9 кОм.

Вариант переделки БП из зарядного устройства

Питание светодиодных лент своими руками можно сделать, если в доме есть ненужная или лишняя зарядка от ноутбука.

1-й вариант сборки

Первый вариант решения поставленной задачи – это выполнить замену одного из резисторов на потенциометр. Лучше всего впаять последовательно постоянный резистор, после него – установить потенциометр. На входе блока питания потребуется установить минимально возможный уровень напряжения. Следует использовать такую формулу: V out = 1 + (R1 / R2) * V ref.

2-й вариант сборки

Здесь регулировать необходимо резисторы R5, R7.

Схема из старого блока питания

Если вы нашли старый блок питания, его можно переделать согласно третьей схеме, представленной далее.

В данном случае необходимо проверить, какова величина входного напряжения, идущего со светодиодного моста. Если оно превышает 14 В, добавьте в схему L7812.

Не оказалось зарядного устройства от планшета, но нашёлся блочок от старого ноутбука, выполненный на популярной, широко распространённой схеме LM2596? В таком случае стоит проверить напряжение: если оно более 12 В, нужно немного модифицировать устройство. Для этого достаточно ввести в схему понижающий преобразователь напряжения.

Ещё одна простая схема на основе LM2596 

Для полностью самодельного БП-устройства потребуется много времени и большое количество деталей, поэтому стоит упомянуть ещё одну схему для сборки двенадцативольтного блока. Его можно будет подключать в электрическую сеть с двухсотдвадцативольтным напряжением.

Речь идёт об использовании популярной микросхемы LM2596 или его регулируемой модификации – LM2596ADJ. Этот элемент является прекрасным вариантом для решения рассматриваемой здесь задачи. Он имеет следующие характеристики:

  • максимальное входящее напряжение – 40 В;
  • величина выходного тока – 3 А;
  • вольтаж на выходе – от 3 В до 37 В;
  • частота преобразования – 150 кГц;
  • токовая защита срабатывает при значении более 3 А.

Используем ненужный компьютер

Рассмотрим, как осуществить подключение светодиодной ленты к блоку питания компьютера на 19 В. Для этого потребуется снизить величину входного напряжения. Первый вариант – сделать это с помощью стабилизатора. Для решения такой задачи подойдёт отечественная микросхема под названием КРЕН 7812. Если диод-лента длинная, придётся использовать сразу несколько таких микросхем. Второй вариант подготовки блока питания компьютера для светодиодной ленты – использование готовой платы стабилизатора импульсного типа.

Правила подключения светодиодной ленты своими руками

После того как БП для диодного источника освещения готово, необходимо грамотно его подключить, проверив работоспособность. Важно помнить об общих правилах подключения светодиодной ленты:

  • максимальная длина – не более пяти метров;
  • при необходимости можно добавить второй отрезок светополосы, но он должен быть отдельным;
  • подключать второй отрезок светодиодов можно только параллельным способом.

Проверить, подходит ли конкретный блок питания для вашей светодиодной ленты, нужно рассчитав будущую нагрузку. После этого лучше увеличить полученный результат примерно на 15-20 %, чтобы создать так называемый запас прочности. При этом следует помнить, что ещё большее увеличение такого запаса не оправдано, поэтому делать этого не стоит.

Место, где будет располагаться питающий блочок светополосы, также играет важную роль. Если этот оригинальный осветительный прибор предназначен для потолка, стен, мебели в жилых комнатах или коридоре квартиры, БП может не иметь специального защитного корпуса. В случае, когда ленточный светильник располагают во влажных помещениях (например, в ванной комнате), необходимо использовать только влагозащищённые варианты.

Светодиодная лента часто применяется для создания праздничного освещения, приятной, весёлой обстановки на улицах населённых пунктов. Такую светящуюся полосу, называемую также дюралайтом, используют вовсе без какого-либо блока питания. Для её включения в сеть в 220 В используют диодный мост. Однако это удобно только на первый взгляд, ведь при первом же значительном скачке напряжения этот дорогостоящий осветительный прибор может полностью выйти из строя. На случай проблем в электросети необходимо использование устройств бесперебойного питания.

Импульсные блоки питания на 12 вольт схемы. Простой импульсный блок питания своими руками

27.02.2020

Устанавливаются во многих электроприборах. Основным их элементом принято считать катушку индуктивности. По своим параметрам она может довольно сильно отличаться, и в первую очередь это связано с пороговым напряжением в сети.

Дополнительно следует учитывать мощность самого прибора. Сделать простой блок питания в домашних условиях довольно просто. Однако в данном случае необходимо уметь рассчитывать показатель частотной модуляции. Для этого учитывается вектор прерывания в сети и параметр интеграции.

Как сделать блок для компьютера?

Для того чтобы собирать импульсные блоки питания своими руками для компьютеров, потребуются катушки индуктивности средней мощности. Частотный сдвиг в данном случае будет полностью зависеть от типа используемых конденсаторов. Дополнительно перед началом работы следует рассчитать показатель модуляции. При этом важно учесть пороговое напряжение в системе.

Если параметр модуляции находится в районе 80 %, то конденсаторы можно использовать с емкостью менее 4 пФ. Однако следует позаботиться о наличии мощных транзисторов. Основной проблемой данных блоков принято считать перегрев обмотки катушки. При этом человек может наблюдать небольшую задымленность. Ремонт импульсного блока питания в данном случае следует начинать с отключения в первую очередь всех конденсаторов. После этого контакты необходимо тщательно зачистить. Если в конечном счете проблема будет не устранена, катушку индуктивности придется полностью заменить.

Модель на 3 В

Сделать импульсные блоки питания своими руками на 3 В можно используя обычные катушки индуктивности серии РР202. Показатели проводимости у них находятся на среднем уровне. В данной ситуации параметр модуляции в системе не должен превышать 70 %. В противном случае пользователь может столкнуть с частотным сдвигом, который будет происходить в блоке.

Дополнительно важно подбирать конденсаторы с емкостью не менее 5 пФ. Принцип работы импульсного блока питания данного типа основывается на смене фазы. При этом нередко специалистами дополнительно устанавливаются преобразователи. Все это необходимо для того, чтобы промежуточная частота была как можно меньше. Кулеры на блоки данного типа монтируются крайне редко.

Устройство на 5 В

Чтобы сделать импульсные блоки питания своими руками, необходимо обязательно подобрать выпрямитель, исходя из мощности электроприбора. Конденсаторы в данном случае используются с емкостью до 6 пФ. При этом дополнительно в приборе устанавливаются попарно транзисторы. Это необходимо для того, чтобы показатель модуляции как минимум вывести на уровень 80 %.

Все это позволит повысить также параметр индуктивности. Проблемы данных блоков чаще всего связаны именно с перегревом конденсаторов. При этом на катушку особого напряжения не оказывается. Ремонт импульсного блока питания в данном случае следует начинать стандартно — с зачистки контактов. Только после этого устанавливается более мощный преобразователь.

Что понадобится для блока на 12 В?

Стандартная схема импульсного блока питания данного типа включает в себя катушку индуктивности, конденсаторы, а также выпрямитель вместе с фильтрами. Параметр модуляции в этом случае значительно зависит от показателя предельной частоты. Дополнительно важно учитывать скорость интегрального процессора. Транзисторы для блока данного типа в основном подбираются полевого вида.

Конденсаторы необходимы только с емкостью на уровне 5 пФ. Все это в конечном счете позволит значительно понизить риск термального повышения в системе. Катушки индуктивности устанавливаются, как правило, средней мощности. При этом обмотки для них обязательно должны использоваться медные. Регулируется импульсный блок питания 12В за счет специальных контролеров. Однако многое в данной ситуации зависит от типа электроприбора.

Блоки с фильтрами ММ1

Схема импульсного блока питания с фильтрами данной серии включает в себя, помимо катушки индуктивности, выпрямитель, конденсатор и резистор вместе с преобразователем. Использование фильтров в устройстве позволяет значительно сократить риск термального повышения. При этом чувствительность модели повышается. Коэффициент модуляции в этом случае напрямую зависит от прерывания сигнала.

Для повышения порогового напряжения специалисты резисторы рекомендуют применять только полевого типа. При этом емкость конденсатора минимум должна быть на уровне 4 Ом. Основной проблемой таких устройств принято считать повышение отрицательного сопротивления. В результате все резисторы на плате довольно быстро выгорают. Ремонт блока в такой ситуации необходимо начинать с замены внешней обмотки катушки индуктивности. Дополнительно следует проверить полярность резисторов. В некоторых случаях повышение отрицательного сопротивления в цепи связано с увеличением диапазона частоты. В данном случае целесообразнее поставить более мощный преобразователь.

Как собрать блок с выпрямителем?

Чтобы сделать импульсные блоки питания своими руками с выпрямителем, транзисторы понадобятся закрытого типа. При этом конденсаторов в системе должно быть предусмотрено как минимум четыре единицы. Минимальная их емкость обязана находиться на уровне 5 пФ. Принцип работы импульсного блока питания данного типа основывается на изменении фазы тока. Происходит данный процесс непосредственно за счет преобразователя. Фильтры у таких моделей устанавливаются довольно редко. Связано это в большей степени с тем, что пороговое напряжение вследствие их использования значительно повышается.

Модели со сглаживающими фильтрами

Схема импульсного блока питания 12В со сглаживающими фильтрами конденсаторы предусматривает с емкостью как минимум в 4 пФ. За счет этого показатель модуляции должен находится на уровне 70 %. Для того чтобы стабилизировать процесс преобразования, многие используют резисторы только закрытого типа. Пропускная способность у них довольно малая, однако проблему они решают. Принцип импульсного блока питания основывается на изменении фазы устройства. Фильтры у него чаще всего устанавливаются сразу возле катушки.

Блоки повышенной стабилизации

Сделать блок данного типа можно используя катушку индуктивности только большой мощности. При этом конденсаторов в системе должно быть как минимум пять единиц. Также следует заранее подсчитать количество необходимых резисторов. Если преобразователь используется в блоке низкочастотный, то резисторов необходимо использовать только два. В противном случае они устанавливаются также и на выходе. Фильтры для данных систем применяются самые разнообразные.

В этой ситуации многое зависит от показателя модуляции. Основной проблемой таких систем принято считать перегрев резисторов. Происходит это из-за резкого повышения порогового напряжения. При этом преобразователь также выходит из строя. Ремонт блока в такой ситуации необходимо начинать также с зачистки контактов. Только после этого можно проверить уровень отрицательного сопротивления. Если данный параметр превышает 5 Ом, то необходимо полностью заменить все конденсаторы в устройстве.

Модели с конденсаторами РС

Сделать блоки с конденсаторами данной серии можно довольно просто. Резисторы для них используются только закрытого типа. При этом полевые аналоги значительно снизят параметр модуляции до 50 %. Катушки индуктивности с конденсаторами применяются средней мощности. Прерывание сигнала в данном случае напрямую зависит от скорости возрастания предельного напряжения. Преобразователи в устройствах используются довольно редко. В данном случае интегрирование происходит за счет изменения положения резистора.

Устройства с конденсаторами СХ

Сделать блоки данного типа можно только на резисторах закрытого типа. Катушки индуктивности на них можно устанавливать различной мощности. В данном случае параметр модуляции зависит исключительно от порогового напряжения. Если рассматривать модели для телевизоров, то блок лучше всего делать сразу с системой фильтрации. В данном случае низкочастотные помехи будут отсеиваться сразу на входе. Конденсаторов в устройстве должно быть предусмотрено как минимум пять. Емкость их в среднем обязана составлять 5 пФ.

Если устанавливать их непосредственно возле катушки индуктивности, то лучше всего использовать дополнительно многослойный конденсатор. Контролеры в данном случае устанавливаются только поворотного типа. При этом регулировка импульсного блока питания будет происходить довольно плавно.

Как сделать блок с синазным дросселем?

Схема импульсного блока питания 12В с синазным дросселем включает в себя катушку, конденсатор, а также преобразователь. Последний элемент подбирается исходя из уровня отрицательного сопротивления в цепи. Также важно заранее рассчитать параметр предельной частоты. В среднем он должен быть не ниже 45 Гц. За счет этого стабильность системы значительно повысится. Работа импульсного блока питания данного типа основывается на изменении фазы за счет повышения модуляции.

Блоки с применением керамических конденсаторов

Сделать мощный импульсный блок питания с керамическими конденсаторами довольно сложно из-за высокого сопротивления цепи. В результате встретить такие модификации на сегодняшний день проблематично. Как правило, они изредка применяются на различном аудиоборудовании. Резисторы в данном случае подходят только полевого типа. Также следует заранее подбирать качественный преобразователь. Обмотка на нем должна быть только медная.

При этом витки обязаны быть направлены как сверху вниз, так и снизу вверх. Прерывание сигнала в данном случае напрямую зависит от скорости процесса преобразования. Если температура в системе повышается довольно быстро, в первую очередь страдают именно конденсаторы. При этом дымок над платой появляется довольно часто. В таком случае ремонт блока следует начинать с замены конденсаторов. После этого проверяется пороговое напряжение на внешней обмотке катушки индуктивности. Завершать работы следует с зачистки контактов.

Модели с каплевидными конденсаторами

Принцип работы блоков с каплевидными конденсаторами стандартно заключается в изменении фазы. При этом преобразователь в процессе играет ключевую роль. Для стабильной работы системы параметр отрицательного сопротивления должен находиться на уровне не ниже 5 Ом. В противном случае конденсаторы перегружаются. Катушку индуктивности в данном случае можно использовать любую. При этом параметр модуляции обязан находиться в районе 70 %. Резисторы для таких блоков используются только векторные. Проходимость тока у них довольно высокая. При этом стоят они на рынке дешево.

Применение варисторов

Варисторы в маломощных блоках используются крайне редко. При этом они способны значительно повысить стабильность работы прибора. Устанавливаются данные элементы, как правило, возле катушки индуктивности. Скорость процесса интегрирования в данном случае зависит напрямую от типов конденсаторов. Если использовать их с предельной емкостью на уровне 5 пФ, то коэффициент модуляции будет находиться на уровне 60 %.

Прерывание сигнала в данном случае может происходить из-за сбоев преобразователя. Ремонт блока необходимо начинать с обследования состояния контактов. Только после этого проверяется целостность обмотки катушки индуктивности. Контролеры для таких блоков подходят самые разнообразные. Кнопочные варианты следует рассматривать в последнюю очередь. Регулирование блока при этом будет зависеть во многом от проводимости контактов.

Иногда в нашей практике бывает необходим довольно мощный нестабилизированный источник постоянного напряжения. От такого источника можно запитать например подогреваемый столик 3D принтера , батарейный шуруповерт или даже мощный усилитель НЧ класса D (в этом случае ИБП стоит оборудовать дополнительным фильтром для уменьшения высокочастотных помех). В случае изготовления источника питания, рассчитанного на мощности 200 — 500 вт дешевле пойти по пути изготовления импульсного источника, так как сетевой трансформатор 50 Гц на такую мощность будет довольно дорог и очень тяжел.


Проще всего такой источник питания собрать по полумостовой схеме на основе драйвера IR2153. Эта микросхема обычно используется в качественных драйверах (электронных балластах) люминесцентных ламп.

Принципиальная схема импульсного блока питания на IR2153. Кликните на схеме, чтобы её увеличить

Сетевое напряжение 220В поступает на выпрямитель (диодный мост) через сетевой фильтр на элементах C1, C2, C3, C4, L1. Этот фильтр предотвращает проникновение высокочастотных помех от блока питания в электросеть. Термистор на входе устройства уменьшает бросок тока через диодный мост в момент включения блока питания в сеть, когда происходит заряд конденсаторов C5 и C6.


Катушку сетевого фильтра L1, термистор и конденсаторы C5 и C6 можно извлечь из старого компьютерного блока питания. импульсный силовой трансформатор Т1 придется намотать самостоятельно. Сердечник трансформатора берем также из старого компьютерного блока. Нужно разобрать трансформатор. Для этот помещаем трансформатор в емкость с водой (банку, кастрюльку) так, чтобы он был полностью погружен в жидкость. Ставим ескость на плиту и кипятим примерно полчаса. После этого сливаем воду, извлекаем трансформатор и пока он горячий, пытаемся аккуратно разобрать сердечник. Сматываем с каркаса все заводские обмотки и наматываем новые. Первичная обмотка содержит 40 витков провода диаметром 0.8мм. Вторичная обмотка содержит 2 части по 3 витка и намотана «косой» из 7 проводов того же провода диаметром 0.8мм.

Резистор R2 в цепи питания микросхемы должен быть мощностью не менее 2 W и в процессе работы он будет слегка нагреваться. Это нормально. Диодный мост выпрямителя сетевого напряжения можно составить из четырех диодов 1N5408 (3А 1000В). Транзисторы IRF840 нужно установить на радиатор через изолирующие прокладки. желательно установить в корпусе блока питания небольшой вентилятор для охлаждения этих транзисторов и других элементов схемы.

Первое включение блока питания в сеть нужно производить через лампу накаливания мощностью 100вт, включенную последовательно с предохранителем FU1. В момент включения в сель лампа может вспыхнуть, затем она должна погаснуть. Если лампа светится постоянно, это означает что с блоком проблемы — короткое замыкание в монтаже или неисправность компонентом. В этом случае включать блок в сеть напрямую без лампы накаливания нельзя. Нужно найти причину неисправности.

Сейчас мало кто при построении мощных, на ток более 3-х ампер, блоков питания, ставит обычные железные трансформаторы на 50 Гц. Во-первых они слишком габаритные и тяжёлые, а во-вторых их просто нелегко (дорого) достать. Сами посудите, во сколько обоййдётся 5-10 амперный трансформатор. Поэтому когда потребовался импульсный блок питания, то собрал его на базе стандартного преобразователя TL494. Транзисторы выходные 2s2625.

За основу схемы взял с ИБП на драйвере SG6105D (или похожую IW1688). Фото готовой платы прилагаю. Многие опасаются связываться с подобными устройствами, но напрасно — если все правильно собрано, то запуск без проблем.

Предназначается данный ИБП для зарядного автомобильного аккумулятора, покупать готовое не стал — интереснее сделать своими руками.

После успешного запуска, гонял под нагрузкой 5 А. грелось не существенно — выходной диод и дроссель. Напряжение держалось стабильно 12 В. Силовые транзисторы еле теплые.

ДАННЫЙ МАТЕРИАЛ СОДЕРЖИТ БОЛЬШОЕ КОЛИЧЕСТВО АНИМИРОВАННЫХ ПРИЛОЖЕНИЙ!!!

Для браузера Microsoft Internet Extlorer необходимо временно выключить некоторые функции, а именно:
— выключить интегрированные бары от Яндекса, Гугла и т.д.
— выключить строку состояния (снять галочку):

Выключить адресную строку:

По желанию можно выключить и ОБЫЧНЫЕ КНОПКИ, но получившейся площади экрана уже достаточно

В остальном больше ни каких регулировок производить не нужно — управление материалом производится при помощи встроенных в материал кнопок, а убранные панели вы всегда можете вернуть на место.

ПРЕОБРАЗОВАНИЕ ЭЛЕКТРИЧЕСТВА

Прежде чем приступить к описанию принципа работы импульсных источников питания следует вспомнить некоторые детали из общего курса физики, а именно что такое электричество, что такое магнитное поле и как они зависят друг от друга.
Сильно глубоко мы не будем углублятся и о причинах возникновения электричества в различных объектах мы тоже умолчим — для этого нужно просто тупо перепечатать 1/4 курса физики, поэтому будем надеятся, что читатель знает что такое электричество не по надписям на табличах «НЕ ВЛЕЗАЙ — УБЬЕТ!». Однако для начала напомним какое оно бывает, это самое электричество, точнее напряжение.

Ну а теперь, чисто теоритически, предположим, что в качестве нагрузки у нас выступает проводник, т.е. самый обычный отрезок провода. Что происходит в нем, когда через него протекает ток наглядно показанно на следующем рисунке:

Если с проводником и магнитным полем вокруг него все понятно, то сложим проводник не в кольцо, а в несколько колец, чтобы наша катушка индуктивности проявила себя активней и посмотрим что будет происходить дальше.

На этом самом месте имеет смысл попить чаю и дать мозгу усвоить только что узнанное. Если же мозг не устал, или же эта информация уже известна, то смотрим дальше

В качестве силовых транзисторов в импульсных блока питания используются биполярные транзисторы, полевые(MOSFET) и IGBT. Какой именно силовой транзистор использовать решает только производитель устройств, поскольку и те, и другие и третьи имеют и свои достоинства, и свои недостатки. Однако было бы не справедливым не заметить, что биполярные транзисторы в мощных источника питания практически не используются. Транзисторы MOSFET лучше использовать при частотах преобразования от 30 кГц до 100 кГц, а вот IGBT «любят частоты пониже — выше 30 кГц уже лучше не использовать.
Биполярные транзисторы хороши тем, что они довольно быстро закрываются, поскольку ток коллектора зависит от тока базы, но вот в открытом состоянии имеют довольно большое сопротивление, а это означает, что на них будет довольно большое падение напряжения, что однозначно ведет к лишнему нагреву самого транзистора.
Полевые имеют в открытом состоянии очень маленькое активное сопротивление, что не вызывает большого выделения тепла. Однако чем мощнее транзистор, тем больше его емкость затвора, а для ее зарядки-разрядки требуются довольно большие токи. Данная зависимость емкости затвора от мощности транзистора вызвана тем, что используемые для источников питания полевые транзисторы изготавливаются по технологии MOSFET, суть которой заключается в использовании параллельного включения нескольких полевых транзисторов с изолированным затвором и выполненных на одном кристалле. И чем мощенее транзистор, тем большее количество параллельных транзисторов используется а емкости затворов суммируются.
Попыткой найти компромисс являются транзисторы, выполненные по технологии IGBT, поскольку являются составными элементами. Ходят слухи, что получилисьони чисто случайно, при попытке повторить MOSFET, но вот вместо полевых транзисторов, получились не совсем полевые и не совсем биполярные. В качестве управляющего электрода выступает затвор встроенного внутрь полевого транзистора не большой мощности, который своими истоком-стоком уже управляет током баз мощных биполярных транзисторов, включенных параллельно и выполненных на одном кристалле данного транзстора. Таким образом получается довольно маленькая емкость затвора и не очень большое активное сопротивление в открытом состоянии.
Основных схем включения силовой части не так уж и много:
АВТОГЕНЕРАТОРНЫЕ БЛОКИ ПИТАНИЯ . Используют положительную связь, обычно индукционную. Простота подобных источников питания накладывает на них некоторые ограничения — подобные источники питания «любят» постоянную, не меняющуюся нагрузку, поскольку нагрузка влияет на параметры обратной связи. Подобные источники бывают как однотактные, так и двухтактные.
ИМПУЛЬСНИНЫЕ БЛОКИ ПИТАНИЯ С ПРИНУДИТЕЛЬНЫМ ВОЗБУЖДЕНИЕМ . Данные источники питания так же делятся на однотактыные и двухтактные. Первые хоть и лояльней относятся к меняющейся нагрузке, но все же не очень устойчиво поддерживают необходимый запас мощности. А аудиотехника имеет довольно большой разброс по потреблению — в режиме паузы усилитель потребляет единицы ватт (ток покоя оконечного каскада), а на пиках аудиосигнала потребление может достигать десятков или даже сотен ватт.
Таким образом единственным, максимально приемлемым вариантом импульсных источником питания для аудиотехники является использование двухтактных схем с принудительным возбуждением. Так же не стоит забывать о том, что при высокочастотном преобразовании необходимо уделять более тщательное внимание к фильтрации вторичного напряжения, поскольку появление помех по питанию в звуковом диапазоне сведут на нет все старания по изготовлению импульсного источника питания для усилителя мощности. По этой же причине частота преобразования уводится по дальше от звукового диапазона. Самой популярной частотой преобразования раньше была частота в районе 40 кГц, но современная элементная база позволяет производить преобразование на частотах гораздо выше — вплоть до 100 кГц.
Различают два базовых вида данных импульсных источников — стабилизированные и не стабилизированные.
Стабилизированные источники питания используют широтноимпульсную модуляцию, суть которой заключается в формровании выходного напряжения за счет регулировки длительности подаваемого в первиную обмотку напряжения, а компенсация отсутствия импульсов осуществляется LC цепочками, включенными на выходе вторичного питания. Большим плюсом стабилизированных источников питания является стабильность выходного напряжения, не зависящая ни от входного напряжения сети 220 В, ни от потребляемой мощности.
Не стабилизированные просто управляют силовой частью с постоянной частотой и длительностью импульсов и от обычного трансформатора отличаются лишь габаритами и гораздо меньшими емкостями конденсаторов вторичного питания. Выходное напряжение напрямую зависит от сети 220 В, и имеет небольшую зависисмость от потребляемой мощности (на холостом ходу напряжение несколько выше рассчетного).
Самыми популярными схемами силовой части импульсных источников питания являются:
Со средней точкой (ПУШ-ПУЛЛ). Используются обычно в низковольтных источниках питания, поскольку имеет некоторые особенности в требованиях к элементной базе. Диапазон мощностей довольно большой.
Полумостовые . Самая популярная схема в сетевых ипульсных источниках питания. Диапазон мощностей до 3000 Вт. Дальнейшее увеличение мощности возможно, но уже по стоимости доходит до уровня мостового варианта, поэтому несколько не экономично.
Мостовые . Данная схема не экономична на малых мощностях, поскольку содержит удвоенное количество силовых ключей. Поэтому чаще всего используется на мощностях от 2000 Вт. Максимальные мощности находятся в пределах 10000 Вт. Данная схемотехника является основной при изготовлении сварочных аппаратов.
Рассмотрим подробнее кто есть кто и как работает.

СО СРЕДНЕЙ ТОЧКОЙ

Как было показанно — данную схемотехнику силовой части не рекомендуется использовать для создания сетевых источников питания, однако НЕ РЕКОМЕНДУЕТСЯ не значит НЕЛЬЗЯ. Просто необходимо более тщательно подходить к выбору элементной базы и изготовлению силового трансформатора, а так же учитывать довольно большие напряжения при разводке печатной платы.
Максимальную же популярность данный силовой каскад получил в автомобильной аудитехнике, а так же в источниках бесперебойного питания. Однако на этом поприще данная схемотехника притерпевает некоторые неудобства, а именно ограничение максимальной мощности. И дело не в элементной базе — на сегодня совсем не являются дефицитными MOSFET транзисторы с мгновенными значениями тока сток-исток в 50-100 А. Дело в габаритной мощности самого трансформатора, а точнее в первичной обмотке.
Проблема заключается… Впрочем для большей убедительности воспользуемся программой расчетов моточных данных высокочастотных трансформаторов.
Возьмем 5 колец типоразмера К45х28х8 с проницаемостью M2000HM1-А, заложем частоту преобразования 54 кГц и первичную обмотку в 24 В (две полуобмотки по 12 В) В итоге получаем, что мощность данный сердечник сможет развить 658 вт, но вот первичная обмотка должна содержать 5 витков, т.е. по 2,5 витка на одну полуобмотку. Как то не естественно маловато… Однако стоит поднять частоту преобразорвания до 88 кГц как получится всего 2 (!) витка на полуобмотку, хотя мощность выглядит весьма заманчиво — 1000 Вт.
Вроде с такими результатами можно смириться и равномерно по всему кольцу распределить 2 витка тоже, если сильно постараться, можно, но вот качество феррита оставляет желать лучшего, да и M2000HM1-А на частотах выше 60 кГц уже сам по себе греется довольно сильно, ну а на 90 кГц его уже обдувать надо.
Так что как не крути, но получается замкнутый круг — увеличивая габариты для получения большей мощности мы слишком сильно уменьшаем количество витков первичной обмотки, увеличивая частоту мы опять же уменьшаем количество витков первичной обмотки, но еще в довеско получаем лишнее тепло.
Именно по этой причине для получения мощностей свыше 600 Вт используют сдвоенные преобразователи — один модуль управления выдает управляющие импульсны на два одинаковых силовых модуля, содержащих два силовых трансформатора. Выходные напряжения обоих трансформаторов суммируются. Именно таким способом организуется питания сверхмощных автмобильных усилителей заводского производства и с одного силовго модуля снимается порядка 500..700 Вт и не более. Способов суммирования несколько:
— суммирования переменного напряжения. Ток в первичные обмотки трансформаторов подается синхронно, следовательно и выходные напряжения синхронны и могут соединяться последовательно. Соединять вторичные обмотки параллельно от двух трансформаторов не рекомендуется — небольшая разница в намотке или качестве феррита приводит в большим потерям и снижению надежности.
— суммирование после выпрямителей, т.е. постоянного напряжения. Самый оптимальный вариант — один силовой модуль выдает положительное напряжение для усилителя мощности, а второй — отрицательное.
— формирование питания для усилителей с двух уровневым питанием сложением двух идентичных двухполярных напряжений.

ПОЛУМОСТОВАЯ

Полумостовая схема имеет довольно много достоинств — проста, следовательно надежна, легка в повторении, не содержит дефицитных деталей, может выполняться как на биполярных, так и на полывых транзисторах. Транзисторы IGBT в ней тоже прекрано работают. Однако слабое место у нее есть. Это проходные конденсаторы. Дело в том, что при больших мощностях через них протекает довольно большой ток и качество готового импульсного источника питания на прямую зависит от качества именно этого компонента.
А проблема заключается в том, что конденсаторы постоянно перезаряжаются, следовательно они должны иметь минимальное сопротивление ВЫВОД-ОБКЛАДКА, поскольку при большом сопротивлении на этом участке будет выделяться довольно много тепла и в конце концов вывод просто отгорит. Поэтому в качестве проходных конденсаторов необходимо использовать пленочные конденсаторы, причем емкость одного конденсатора может достигать емкости 4,7 мкФ в крайнем случае, если используется один конденсатор — схема с одни кондлесатром тоже довольно часто используется, по принципу выходного каскада УМЗЧ с однполярным питанием. Если же используются два конденсатора на 4,7 мкФ (точка их соединения подключена к обмотке трансформатора, а свободные выводы к плюсовой и минусовой шинам питания), то данная комплектация вполне пригодна для питания усилителей мощности — суммарная емкость для переменного напряжения преобразования складывает и в итоге получается равной 4,7 мкФ + 4,7 мкФ = 9,4 мкФ. Однако данный вариант не расчитан для догосрочного непрерывного использования с максимальной нагрузкой — необходимо разделять суммарную емкость на несколько конденсаторов.
При необходимости получения больших емкостей (низкая частота преоразования) лучше использовать несколько конденсаторов меньшей емкости (например 5 штук по 1 мкФ соединенных параллельно). Однако большое количество включенных параллельно конденсаторов довольно сильно увеличивает габариты устройства, да и суммарная стоимость все гирлянды конденсаторов получается не маленькой. Поэтому, при необходимости получить большую мощность имеет смысл воспользоваться мостовой схемой.
Для полумостового варианта мощности выше 3000 Вт не желательны — уж больно громоздкими будут платы с проходными конденсаторами. Использование в качестве проходных конденсаторов электролитических имеет смысл, но лишь на мощностях до 1000 Вт, посокольку на больших частотах электролиты не эффективны и начинаю греться. Бумажные конденсаторы в каестве проходных показали себя очень хорошо, но вот их габариты…
Для большей наглядности мы приводим таблицу зависимости реактивного сопротивления конденсатора от частоты и емкости (Ом):

Емкость конденсатора

Частота преобразования

На всякий случай напоминаем, что при использовании двух конденсаторо (один на плюс, второй на минус) финальная емкость будет равна сумме емкостей этих конденсаторов. Итоговое сопротивление не выделает тепла, поскольку реактивное, но может повлиять на КПД источника питания при максимальных нагрузках — напряжение на выходе начнет уменьшаться, не смотря на то, что габаритная мощность силового трансформатора вполне достаточна.

МОСТОВАЯ

Мостовая схема пригодна для любых мощностей, но наиболее эффективна на больших мощностях (для сетевых источников питания это мощности от 2000 Вт). Схема содержит две пары силовых транзисторов, управляемых синхроно, но необходимость гальванической развязки эмиттеров верхенй пары вносит некоторые неудобства. Однако эта проблема вполне решаема при использовании трансформаторов управления или же специализированных микросхем, например для полевых транзисторов вполен можно использовать IR2110 — специализированная разработка компании International Rectifier .

Однако силовая часть не имеет ни какого смысла, если ею не управляет модуль управления.


Специализированных микросхем, способных управлять силовой частью импульсных источников питания довольно много, однако наиболее удачной разработкой в этой области является TL494, которая появилась еще в прошлом веке, тем не менее не утратила своей актуальности, поскольку содержит ВСЕ необходимые узлы для управления силовой частью импульсных источников питания. О популярности данной микросхемы прежде всего говорит выпуск ее сразу несколькими крупными производителями электронных компонентов.
Рассмотрим принцип действия данной микросхемы, которую с полной ответственностью можно назвать контроллером, поскольку она обладет ВСЕМИ необходимыми узлами.



ЧАСТЬ II

В чем же заключается собственно ШИМ способ регулировки напряжения?
В основу способа положена все таже инерционность индуктивности, т.е. ее не способность мгновенно пропустить ток. Поэтому регулируя длительность импульсов можно изменять финальное постоянное напряжение. Причем для импульсных источников питания это лучше делать в первичных цепях и таким образом экономить средства на создание источника питания, поскольку данный источник будет исполнять сразу две роли:
— преобразование напряжения;
— стабилизацию выходного напряжения.
Причем тепла при этом будет выделяться гораздо меньше по сравнению с линейным стабилизатором, установленным на выходе не стабилизированно импульсного блока питания.
Для больше наглядности стоит посмотреть рисунок, приведенный ниже:

На рисунке приведена схема-эквивалент импульсного стабилизатора в котором в качестве силового ключа выступает генерато прямоугольных импульсов V1, а R1 в качестве нагрузки. Как видно из рисунка при фиксированной амплитуде выходных импульсов в 50 В, изменяя длительность импульсов можно в широких пределах изменять подаваемое на нагрузку напряжение, причем с очень маленькими тепловыми поетрями, зависищами лишь от параметров используемого силового ключа.

С принципами работы силовой части разобрались, с управлением тоже. Осталось соединить оба узла и получить готовый импульсный источник питания.
Нагрузочная способность контроллера TL494 не очень большая, хотя ее хватает для управления одной парой силовых транзисторов типа IRFZ44. Однако для более мощных транзисторов уже необходимы усилители тока, способные развить необходимы тока на управляющих электродах силовых транзисторов. Поскольку мы стараемся снизить габариты источника питания и уйти подальше от звукового диапазона, то оптимальным использованием в качестве силовых транзисторов будут полевые транзисторы, выполненные по технологии MOSFET.


Варианты структур при изготовлении MOSFET.

С одной стороны — для управления полевым транзистором не нужны большие токи — они открываются напряжением. Однако в этой бочке меда есть ложка дегтя, в данном случае заключающаяся в том, что хоть затвор и имеет огромное активное сопротивление, не потребляющее тока для управления транзистором, но затвор имеет емкость. А для ее заряда и разряда как раз и нужны большие токи, поскольку на больших частотах преобразования реактивное сопротивление уже снижается до пределов которые нельзя игнорировать. И чем больше мощность силового MOSFET транзистора тем больше емкость его затвора.
Для примера возьмем IRF740 (400 V, 10A), у которого емкость затвора составляет 1400 пкФ и IRFP460 (500 V, 20 A), у которого емкость затвора составляет 4200 пкФ. Поскольку и у первого, и у второго напряжение затвора не должно быть более ± 20 В, то в качестве управляющих импульсов возьмем напряжение 15 В и посмотрим в симмуляторе что происходит при частоте генератора в 100 кГц на резисторах R1 и R2, которые включены последовательно с конденсаторами на 1400 пкФ и 4200 пкФ.


Тестовый стенд.

При протекании через активную нагрузку тока на ней образуется падение напряжения, по этой величене и можно судить о мгновенных значениях протекающего тока.


Падение на резисторе R1.

Как видно из рисунка сразу при появлении управляющего импульса на резисторе R1 падает примерно 10,7 В. При сопротивлении 10 Ом это означает, что мгновенное значения тока достигает 1, А (!). Как только импульс заканчивается на резисторе R1 падает так же 10,7 В, следовательно и для того, чтобы разрядить конденсатор С1 требуется ток около 1 А..
Для зарядки-разрядки емкости в 4200 пкФ через резистор 10 Ом требуется 1,3 А, поскольку на резисторе 10 Ом падает 13,4 В.

Вывод напрашивается сам собой — для зарядки-разрядки емкостей затворов необходимо, чтобы каска, работающий на затворы силовых транзисторов, выдерживал довольно большие токи, не смотря на то, что суммарное потребление довольно мало.
Для ограничения мгновенных значений тока в затворах полевых транзисторов обычно используют токоограничивающие резисторы от 33 до 100 Ом. Чрезмерное уменьшение этих резисторов повышает мгновенное значение проеткающих токов, а увеличение — увеличивает длительность работы силового транзистора в линейном режиме, что влечет необоснованный нагрев последних.
Довольно часто используется цепочка состоящая из соединенных параллельно резистора и диода. Данная хитрость используется прежде всего для того, чтобы разгрузить управляющий каскад на время зарядки и ускорить разрядку емкости затвора.


Фрагмент однотактного преобразователя.

Таким образом достигается не мгновенное появление тока в обмотке силового трансформатора, а несколько линейное. Хотя это увеличивает температуру силового каскада, но довольно ощутимо снижает выбосы самоидуции, которые неизбежно появляются при подаче прямоугольного напряжения в обмотку трансформатора.


Самоиндукция в работе однотактного преобразователя
(красная линия — напряжение на обмотке трансформатора, синяя — напряжение питания, зеленая — импульсы управления).

Итак с теоритической частью разобрались и можно подвести кое какие итоги:
Для создания импульсного источника питания необходим трансформатор, сердечник у которого изготовлен из феррита;
Для стабилизации выходного напряжения импульсного источника питания необходим ШИМ метод с которым вполне успешно справляется контроллер TL494;
Силовая часть со средней точкой наиболее удобна для низковольных импульсных источников питания;
Силовая часть полумостовой схемотехники удобна для малых и средних мощностей, а ее параметы и надежность во многом зависят от коичества и качества проходных конденсаторов;
Силовая часть мостового типа более выгодна для больших мощностей;
При использовании в силовой части MOSFET не стоит забывать о емкости затворов и расчитывать управляющие элементы силовыми транзисторами с поправками на эту емкость;

Поскольку с отдельными узлами разобрались переходим к финальному варианту импульсного источника питания. Поскольку и алгоритм и схемотехника всех полумостовых источников практически одинакова, то для разъяснения какой элемент для чего нужен разберем по косточкам самый популярный, мощностью 400 Вт, с двумя двуполярными выходными напряжениями.


Осталось отметить некоторые ньюнасы:
Резисторы R23, R25, R33, R34 служат для создания RC-фильтра, который крайне желателен при использовании электролитических конденсаторах на выходе импульсных источниках. В идеале конечно же лучше использовать LС-фильтры, но поскольку «потребители» не очень мощные можно вполне обойтись и RC-фильтром. Сопротивление данных резисторов может использоваться от 15 до 47 Ом. R23 лучше мощностью 1 Вт, остальные на 0,5 Вт вполне достаточно.
С25 и R28 — снабер снижающий выбросы самоиндукции в обмотке силового трансформатора. Наиболее эффективны при емкостях около выше 1000 пкф, но в этом случае на резисторе выделяется слишком много тепла. Необходимы в случае когда после выпрямительных диодов вторичного питания отсутствуют дроссели (подавляющее большинство заводской аппаратуры). Если дроссели используются эффективность снаберов не так заметна. Поэтому мы их ставим крайне редко и хуже источники питания от этого не работают.
Если некоторые номиналы элементов отличаются на плате и принципиальной схеме эти номиналы не критичны — можно использовать и те и другие.
Если на плате имеются элементы отсутствующие на принципиальной схеме (обычно это конденсаторы по питанию) то можно их не ставить, хотя с ними будет лучше. Если же решили устанавливать, то не электролитические конденсаторы можно использовать на 0,1…0,47 мкФ, а электролитические такой же емкости как и те, которые получаются с ними включенными параллельно.
На плате ВАРИАНТ 2 Возле радиаторов имеется прямоугольная часть которая высверливается по периметру и на нее устанавливаются кнопки управления источником питания (вкл-выкл). Необходимость данного отверстия обусловлена тем, что вентилятор на 80 мм не умещается по высоте, для того, чтобы закрепить его к радиатору. Поэтому вентиялтор устанавливается ниже основания печатной платы.

ИНСТРУКЦИЯ ПО САМОСТОЯТЕЛЬНОЙ СБОРКЕ
СТАБИЛИЗИРОВАННОГО ИМПУЛЬСНОГО ИСТОЧНИКА ПИТАНИЯ

Для начала внимательно следует ознакомиться с принципиальной схемой, впрочем это следует делать всегда, перед тем как приступать к сборке. Данный преобразователь напряжения работает по полумостовой схеме. В чем отличие от остальных подробно рассказанно .

Принципиальная схема упакованна WinRAR старой версии и выполнена на странице WORD-2000, поэтому с распечаткой данной страницы проблем возникнуть не должно. Здесь же мы рассмотрим ее фрагментами, поскольку хочется сохранить высокую читаемость схемы, а целиком на эеран монитора она умещается не совсем корректно. На всякий случай можно пользоватся этим чертежом для представления картины в целом, но лучше распечатать…
На рисунке 1 — фильтр и выпрямитель сетевого напряжения. Фильтр предназначен прежде всего для исключения проникновения импульсных помех от преобразователя в сеть. Выполнен на L-C основе. В качестве индуктивности используется ферритовый сердечник любой формы (стержневые лучше не нужно — большой фон от них) с намотанной одинарной обмоткой. Габариты сердечника зависят от мощности источника питания, поскольку чем мощнее источник, тем больше помех он будет создавать и тем лучше нужен фильтр.


Рисунок 1.

Примерные габариты сердечников в зависимости от мощности источника питания сведены в таблицу 1. Обмотка мотается до заполения сердечника, диаметр(ы) провода следует выбирать из расчета 4-5 А/мм кв.

Таблица 1

МОЩНОСТЬ ИСТОЧНИКА ПИТАНИЯ

КОЛЬЦЕВОЙ СЕРДЕЧНИК

Ш-ОБРАЗНЫЙ СЕРДЕЧНИК

Диаметр от 22 до 30 при толщине 6-8 мм

Ширина от 24 до 30 при толщине 6-8 мм

Диаметр от 32 до 40 при толщине 8-10 мм

Ширина от 30 до 40 при толщине 8-10 мм

Диаметр от 40 до 45 при толщине 8-10 мм

Ширина от 40 до 45 при толщине 8-10 мм

Диаметр от 40 до 45 при толщине 10-12 мм

Ширина от 40 до 45 при толщине 10-12 мм

Диаметр от 40 до 45 при толщине 12-16 мм

Ширина от 40 до 45 при толщине 12-16 мм

Диаметр от 40 до 45 при толщине 16-20 мм

Ширина от 40 до 45 при толщине 16-20 мм

Здесь следует немного пояснить почему диаметр (ы ) и что такое 4-5 А/мм кв .
Данная категория источников питания относится в высокочастотной. Теперь вспомним курс физики, а именно то место, в котором говорится, что на высоких частотах ток течет не по всему сечению проводника, а по его поверхности. И чем выше частота, тем большая часть сечения проводника остается не задействованной. По этой причине в импульсных высокочастотных устройствах обмотки выполняют с помощью жгутов, т.е. берется несколько более тонкив проводников и складывается вместе. Затем получившийся жгут немного скручивают вдоль оси, чтобы отдельные проводники не торчали в разные стороны во время намотки и этим жгутом наматывают обмотки.
4-5 А/мм кв означает, что напряженность в проводнике может достигать от четырех до пяти Ампер на квадрантный миллиметр. Этот параметр отвечает за нагрев проводника за счет пандения в нем напряжения, ведь проводник имеет, хоть и не большое, но все же сопротивление. В импульсной технике моточные изделия (дроссели, трансформаторы) имеют сравнительно не большие габариты, следовательно охлаждаться они будут хорошо, поэтому напряженность можно использовать именно 4-5 А/мм кв. А вот для традиционных трансформаторов, выполненных на железе, этот параметр не должен превышать 2,5-3 А/мм кв. Сколько проводов и какого сечения поможет расчитать табличка диаметров. Кроме этого табличка подскажет какую мощность можно получить при использовании того или иного количества проводов имеющегося в наличии провода, если использовать его в качестве первичной обмотки силового трансформатора. Открыть табличку .
Емкость конденсатора С4 должна быть не ниже 0,1 мкФ, если он используется вообще. Напряжение 400-630 В. Формулировка если он используется вообще используется не напрасно — основным фильтром является дроссель L1, а его индуктивность получилась довольно большой и вероятность проникновения ВЧ помех сводится практически до нулевых значений.
Диодный мост VD служит для выпрямления переменного сетевого напряжения. В каечстве диодного моста используется сборка типа RS (торцевые выводы). Для мощности в 400 Вт можно использовать RS607, RS807, RS1007 (на 700 В, 6, 8 и 10 А соответственно), поскольку установочные габариты у этих диодных мостов одинаковые.
Конденсаторы С7, С8, С11 и С12 необходимы для снижения импульсных помех, создаваемых диодами во время приближения переменного напряжения к нулю. Емкость данных конденсаторов от 10 нФ до 47 нФ, напряжение не ниже 630 В. Однако проведя несколько замеров было выяснено, что L1 хорошо справляется и с этими помехами, а для исключения влияния по первичным цепях вполне хватает конденсатора С17. Кроме этого свою лепту вносят и емкости конденсаторов С26 и С27 — для первичного напряжения они являются двумя, соединенными последовательно конденсаторами. Поскольку их номиналы равны, то итоговая емккость делится на 2 и эта емкость уже не только служит для работы силового трансформатора, но еще и подавляет импульсные помехи по первичному питанию. Исходя из этого мы отказались от использования С7, С8, С11 и С12, ну а если кому то уж очень хочется их установить, то на плате, со стороны дорожек места вполне достаточно.
Следующий фрагмент схемы — ограничители тока на R8 и R11 (рисунок 2). Данные резисторы необходимы для снижения тока зарядки электролитических конденсаторов С15 и С16. Данная мера необходима, поскольку в момент включения необходим очень большой ток. Ни предохранитель, ни диодный мост VD не способны, пусть даже кратковременно выдержать такой мощный токовый бросок, хотя индуктивность L1 и ограничивает максимальное значение протекающего тока, в данном случае этого не достаточно. Поэтому используются токоограничивающие резисторы. Мощность резисторов в 2 Вт выбрана не столько из за выделяемого тепла, а по причине довольно широкого резистивного слоя, способного кратковременно выдержать ток в 5-10 А. Для источников питания мощностью до 600 Вт можно использовать резисторы мощностью и 1 Вт, либо использовать один резистор мощностью 2 Вт, необходимо лишь соблюсти условие — суммарное сопротивление даннйо цепи не должно быть меньше 150 Ом и не должно быть больше 480 Ом. При слишком низком сопротивлении увеличивается шанс разрушения резистивного слоя, при слишком выском — увеличивается время заряда С15, С16 и напряжение на них не успеет приблизится к максимальному значению как сработает реле К1 и контактам этого реле придется коммутировать слишком большой ток. Если вместо резисторов МЛТ использовать проволочные, то суммарное сопротивление можно уменьшить до 47…68 Ом.
Емкость конденсаторов С15 и С16 выбирается так же в зависимости от мощности источника. Вычислить необходиму емкость можно воспользовавшись не сложной формулой: НА ОДИН ВАТТ ВЫХОДНОЙ МОЩНОСТИ НЕОБХОДИМ 1 МКФ ЕМКОСТИ КОНДЕНСАТОРОВ ФИЛЬТРА ПЕРВИЧНОГО ПИТАНИЯ . Если есть сомнения в своих математических способностях можно воспользоваться табличкой , в которой просто ставите мощность источника питания, который вы собираетесь изготовить и смотрите сколько и каких конденсаторов Вам необходимо. Обратите внимание на то, что плата расчитана на установку сетевых электролитических конденсаторов диаметром 30 мм .


Рисунок 3

На рисунке 3 показанны гасящие резисторы основная цель которых сформировать стартовое напряжение. Мощность не ниже 2 Вт, на плату устанавливаются парами, друг над дружкой. Сопротивление от 43 кОм до 75 кОм. ОЧЕНЬ желательно, чтобы ВСЕ резисторы были одного номилала — в этом случае тепло распределяется равномерно. Для небольших мощностей используется маленькое реле с небольшим потреблением, поэтому можно обойтись 2 или тремя гасящими резисторами. На плате устанавливаются друг над дружкой.


Рисунок 4

Рисунок 4 — стабилизатор питания модуля управления — в любом корпусе интергарльный стабилизатор на +15В. Необходим радиатор. Размер… Обычно хватает радиатора от предпоследнего каскада отечественных усилителей. Можно попросить что-то в телемастерских — на телевезионных платах обычно 2-3 подходящих радиатора находятся. Второй как раз используется для охлаждения транзистора VT4, управляющего оборотами вентилятора (рисунок 5 и 6). Конденсаторы С1 и С3 можно использовать и 470 мкФ на 50 В, но такая замена подходит лишь для источников питания, использующих определенный тип реле, у которых сопротивление катушки довольно большое. На более мощных источниках используется более мощное реле и уменьшение емкости С1 и С3 крайне не желательно.


Рисунок 5

Рисунок 6

Транзистор VT4 — IRF640. Можно заменить на IRF510, IRF520, IRF530, IRF610, IRF620, IRF630, IRF720, IRF730, IRF740 и т.д.. Главное — он должен быть к орпусе ТО-220, иметь максимальное напряжение не ниже 40 В и максимальный ток не менее 1 А.
Транзистор VT1 — практически любой прямой транзистор с максимальным током более 1 А, желательно с маленьким напряжение насыщения. Одинаково хорошо становятся транзисторы в корпусах ТО-126 и ТО-220, поэтому можно подобрать уйму замен. Если прикрутить небольщой радиатор то вполне подойдет даже КТ816 (рисунок 7).


Рисунок 7

Реле К1 — TRA2 D-12VDC-S-Z или TRA3 L-12VDC-S-2Z . По сути — самое обыкновенное реле с обмоткой на 12 V и контактной группой способной коммутировать 5 А и более. Можно использовать реле, используемые в некоторых телевизрах для включения петли размагничивания, только учтите — контактная группа в подобных реле имеет другую цоколевку и даже если она становится на плату без проблем следует проверить какие выводы замыкаются при подаче напряжения на катушку. Отличаются TRA2 от TRA3 тем, что TRA2 имеют одну контактную группу, способную коммутировать ток до 16 А, а TRA3 имеет 2 контактные группы по 5А.
Кстати сказать — печатная плата предлагается в двух вариантах, а именно с использованием реле и без такового. В варианте без реле не используется система мягкого старта первичного напряжения, поэтому данный вариант пригоден для источника питания мощностью не более 400 Вт, поскольку без токоограничения включать на «прямую» емкость более 470 мкФ крайне не рекомендуется. Кроме того — в качестве диодного моста VD ОБЯЗАТЕЛЬНО должен использоваться мост с максимальным током 10 А, т.е. RS1007. Ну а роль реле в варианте без софт-старта выполняет светодиод. Фунция дежурного режима сохранена.
Кнопки SA2 и SA3 (подразумевается, что SA1 — сетевой выключатель) — кнопки любого типа без фиксации, для которых можно изготовить отдельную печатную плату, а можно закрупить и другим удбным способом. Необходимо помнить, что контакты кнопок гальванически связанны с сетью 220 В , поэтому необходимо исключить вероятность их касания в процессе эксплуатации источника питания .
Аналогов контроллера TL494 довольно много, можно использовать любой, только учтите — у разных производителей возможны некоторые различия параметров. Например при замене одного производителя на другого может измениться частота преобразования, но не сильно, а вот выходное напряжение может измениться вплоть до 15%.
IR2110 в принципе не дефецитный драйвер, да и аналогов у нее не так много — IR2113, но IR2113 имеет большее количество вариантов корпуса, поэтому будьте внимательны — необходим корпус DIP-14.
При монтаже платы вместо микросхем лучше использовать разъемы для микросхем (панельки), идеально — цанговые, но можно и обычные. Данная мера позволит избежать некоторых недоразумений, поскольку брака среди и TL494 (нет выходных импульсов, хотя тактовый генератор работает), и среди IR2110 (нет управляющих импульсов на верхний транзистор) довольно много, так что условия гарантии следует согласовать с продавцом микросхем.


Рисунок 8

На рисунке 8 показана силовая часть. Диоды VD4…VD5 лучше использовать быстрые, например SF16, но при отсутствии таковых HER108 тоже вполне подойдут. С20 и С21 — суммарная емкость не менее 1 мкФ, поэтому можно использовать 2 конденсатора по 0,47 мкФ. Напряжение не менее 50 В, идеально — пленочный конденсатра на 1 мкФ 63 В (в случае пробоя силовых транзисторов пленочный остается целым, а многослойная керамика погибает). Для источников питания мощностью до 600 Вт сопротивление резисторов R24 и R25 может быть от 22 до 47 Ом, поскольку емкости затворов силовых транзисторов не очень велики.
Силовые транзисторы могут быть любыми из приведенных в таблице 2 (корпус ТО-220 или ТО-220Р).

Таблица 2

Наименование

Емкость затвора,
пкФ

Макс напряжение,
В

Макс ток,
А

Тепловая мощн,
Вт

Сопротивление,
Ом


Если тепловая мощность не превышает 40 Вт значит корпус транзистора полностью пластмассовый и требуется теплоотвод большей площади, чтобы не доводить температуру кристалла до критического значения.

Напряжение затвора для всех не более ±20 В

Тиристоры VS1 и VS в принципе марка значения не имеет, главное — максимальный ток должен составлять не менее 0,5 А и корпус должен быть ТО-92. Мы используем либо MCR100-8, либо MCR22-8.
Диоды для слаботочного питания (рисунок 9) желательно выбирать с маленьким временем восстановления. Вполне подойдут диоды серии HER, например HER108, но можно использоваь и другие, например SF16, MUR120, UF4007. Резисторы R33 и R34 на 0,5 Вт, сопротивление от 15 до 47 Ом, причем R33=R34. Служебная обмотка, работающая на VD9-VD10 должна быть рассчитана на 20 В стабилизированного напряжения. В таблице расчета обмоток она отмечена красным.


Рисунок 9

Силовые выпрямительные диоды могут использоваться как в корпусе ТО-220, так и в корпусе ТО-247. В обоих вариантах печатной платы подразумевается, что диоды будут установлены друг над дружкой и с платой соединяться проводниками (рисунок 10). Разумеется, что при установке диодов следует использовать термопасту и изолирующие прокладки (слюду).


Рисунок 10

В качестве выпрямительных диодов желательно использовать диоды с маленьким временем восстановления, поскольку от этого зависит нагрев диодов на холостом ходу (сказывается внутренняю емкость диодов и они просто греются сами по себе, даже без нагрузки). Список вариантов сведен в таблицу 3

Таблица 3

Наименование

Максимальное напряжение,
В

Максимальный ток,
А

Время восстановления,
нано сек

Трансформатор тока выполняет две роли — используется именно как трансформатор тока и как индуктивность, включенная последовательно с первичной обмоткой силового трансформатора, что позволяет несколько снизить скорость появляения тока в первичной обмотке, что ведет к уменьшению выбросов самоиндукции (рисунок 11).


Рисунок 11

Строгих формул для расчета данного трансформатора нет, но вот соблюсти некоторые ограничения настоятельно рекомендуется:

ДЛЯ МОЩНОСТЕЙ ОТ 200 ДО 500 ВТ — КОЛЬЦО ДИАМЕТРОМ 12…18 ММ
ДЛЯ МОЩНОСТЕЙ ОТ 400 ДО 800 ВТ — КОЛЬЦО ДИАМЕТРОМ 18…26 ММ
ДЛЯ МОЩНОСТЕЙ ОТ 800 ДО 1800 ВТ — КОЛЬЦО ДИАМЕТРОМ 22…32 ММ
ДЛЯ МОЩНОСТЕЙ ОТ 1500 ДО 3000 ВТ — КОЛЬЦО ДИАМЕТРОМ 32…48 ММ
КОЛЬЦА ФЕРРИТОВЫЕ, ПРОНИЦАЕМОСТЬЮ 2000, ТОЛЩИНОЙ 6…12 ММ

КОЛИЧЕСТВО ВИТКОВ ПЕРВИЧНОЙ ОБМОТКИ:
3 ВИТКА ДЛЯ ПЛОХИХ УСЛОВИЙ ОХЛАЖДЕНИЯ И 5 ВИТКОВ ЕСЛИ ВЕНТИЛЯТОР ОБДУВАЕТ НЕПОСРЕДСТВЕННО ПЛАТУ
КОЛИЧЕСТВО ВИТКОВ ВТОРИЧНОЙ ОБМОТКИ:
12…14 ДЛЯ ПЕРВИЧНОЙ ИЗ 3-Х ВИТКОВ И 20…22 ДЛЯ ПЕРВИЧНОЙ ИЗ 5-ТИ ВИТКОВ

ГОРАЗДО УДОБНЕЙ ТРАНСФОРМАТОР НАМОТАТЬ СЕКЦИОННО — ПЕРВИЧНАЯ ОБМОТКА НЕ ПЕРЕХЛЕСТЫВАЕТСЯ СО ВТОРИЧНОЙ. В ЭТОМ СЛУЧАЕ ОТМОТАТЬ-ДОМОТАТЬ ВИТОК К ПЕРВИЧНОЙ ОБМОТКЕ НЕ ПРЕДСТАВЛЯЕТ ТРУДА. В ФИНАЛЕ ПРИ НАГРУЗКЕ В 60% ОТ МАКСИМАЛЬНОЙ НА ВЕРХНЕМ ВЫВОДЕ R27 ДОЛЖНО БЫТЬ ПОРЯДКА 12…15 В
Первичная обмотка трансформатора мотается тем же, что и первичная обмотка силового трансформатора TV2, вторичная двойным проводом диаметром 0,15…0,3 мм.

Для изготовления силового трансформатора импульсного блока птания следует воспользоваться программой для расчета импульсных трансформаторов . Конструктив сердечника принципиального значения не имеет — может быть и тороидальным и Ш-образным. Печатные платы позволяют без проблемно использовать и тот и другой. Если габаритной мощности Ш-образного средечника не хватает его можно так же сложить в пакет, как кольца (рисунок 12).


Рисунок 12

Ш-образными ферритами можно разжиться в телемастерских — не чато, но трансформаторы питания в телевизорах выходят из строя. Легче всего найти блоки питания от отечественных телевизоров 3…5-го. Не стоит забывать, что в случае, если требуется трансформатор из двух-трех средечников, то ВСЕ средечники должны быть одной марки, т. е. для разборки необходимо использовать трансформаторы одного типа.
Если силовой трансформатор будет изготовлен из колец 2000, то можно воспользоваться таблицей 4.

РЕАЛИЗАЦИЯ

РЕАЛЬНЫЙ
ТИПОРАЗМЕР

ПАРАМЕТР

ЧАСТОТА ПРЕОБРАЗОРВАНИЯ

МОЖНО БОЛЬШЕ

ОПТИМАЛЬНО

СИЛЬНЫЙ НАГРЕВ

1 КОЛЬЦО
К40х25х11

ГАБАРИТНАЯ МОЩНОСТЬ

ВИТКОВ НА ПЕРВ ОБМОТКУ

2 КОЛЬЦА
К40х25х11

ГАБАРИТНАЯ МОЩНОСТЬ

ВИТКОВ НА ПЕРВ ОБМОТКУ

1 КОЛЬЦО
К45х28х8

ГАБАРИТНАЯ МОЩНОСТЬ

ВИТКОВ НА ПЕРВ ОБМОТКУ

2 КОЛЬЦА
К45х28х8

ГАБАРИТНАЯ МОЩНОСТЬ

ВИТКОВ НА ПЕРВ ОБМОТКУ

3 КОЛЬЦА
К45х28х8

ГАБАРИТНАЯ МОЩНОСТЬ




ВИТКОВ НА ПЕРВ ОБМОТКУ


4 КОЛЬЦ А
К45х28х8

ГАБАРИТНАЯ МОЩНОСТЬ






ВИТКОВ НА ПЕРВ ОБМОТКУ




КОЛИЧЕСТВО ВИТКОВ ВТОРИЧНОЙ ОБМОТКИ РАСЧИТЫВАЕТСЯ ЧЕРЕЗ ПРОПОРЦИЮ, УЧИТЫВАЯ ТО, ЧТО НАПРЯЖЕНИЕ НА ПЕРВИЧНОЙ ОБМОТКЕ РАВНО 155 В ИЛИ ПРИ ПОМОЩИ ТАБЛИЦЫ (ИЗМЕНЯТЬ ТОЛЬКО ЖЕЛТЫЕ ЯЧЕЙКИ )

Обратите внимание, что стабилизация напряжения осуществляется при помощи ШИМ, следовательно выходное расчетное напряжение вторичных обмоток должно быть минимум на 30 % больше, чем вам необходимо. Оптимальные параметры получаются, когда расчетной напряжение составляет на 50…60% больше, чем необходимо стабилизировать. Например Вам необходим источник с выходным напряжением 50 В, следовательно вторичная обмотка силового трансформатора должна расчитываться на выходное напряжение 75…80 В. В таблице расчетов вторичной обмотки этот коэфициент учтен.
Зависимость частоты преобразования от номиналов С5 и R5 показана на графике:

Использовать довольно большое сопротивление R5 не рекомендуется — слишком большое магнитное поле находится совсем не далеко и возможны наводки. Поэтому остановимся на «среднем» номинале R5 в 10 кОм. При таком сопротивлении частотозадающего резистора получаются следующие частоты преобразования:

Параметры получены у данного производителя

Частота преобразования

(!) Тут следует сказать несколько слов о намотке трансформатора. Довольно часто приходят возмущения, мол при самостоятельном изготовлении источник либо не отдает необходиму мощность, либо силовые транзисторы сильно греются даже без нагрузки.
Откровенно говоря с такой проблемой мы тоже сталкнулись используя кольца 2000, но нам было проще — наличие измерительной аппартуры позволило выяснить в чем причина таких казусов, а она оказалась довольно ожидаемой — магнитная проницаемость феррита не соответсвует маркировки. Другими словами на «слабеньких» трансформаторах пришлось отматывать первичную обмотку, на «греющихся силовых транзисторах» наоборот — доматывать.
Немного позже мы отказалиьс от использования колец, однако тот феррит который мы используем вообще был не макрирован, поэтому пошли на радикальные меры. К собранной и отлаженной плате подключается трансформатор с расчетным количеством витков первичной обмотки и изменяется частота преобразования установленным на плату подстроечным резистором (вместо R5 устанавливается подстроечник на 22 кОм). В момент включения частоат преобразования устанавливается в пределах 110 кГц и начинает снижаться вращением движка подстроечного резистора. Таким образом выясняется частота при которой сердечник начинает входить в насыщение, т.е. когда силовые транзисторы начинают греться без нагрузки. Если частота снижается ниже 60 кГц, то первичная обмотка отматывается, если же температура начинает повышаться на 80 кГц, то первичная обмотка доматывается. Таким образом выясняется количество витков именно для этого сердечника и тоько после этого наматывается вторичная обмотка с использованием предлагаемой выше таблички и на упаковках проставляется количество витков первички для того или иного средечника..
Если качество вашего сердечника вызывает сомнения, то лучше изготовить плату, проверить ее на работоспособность и только после этого изготавливать силовой трансформатор используя описанную выше методику..

Дроссель групповой стабилизации. Кое где даже мелькало суждение, что он ну никак не может работать, поскольку через него протекает постоянное напряжение. С одной стороны подобные суждения верны — напряжение действительно одной полярности, значит может быть опознанно как постоянное. Однако автор подобного суждения не учел тот факт, что напряжение хоть и постонное, но оно пульсирующее и во время работы в данном узле происходит далеко не один процесс (протекание тока), а множество, поскольку дроссель содержит не одну обмотку, а минимум две (если выходное напряжение нужно двуполярное) или 4 обмотки, если необходимо два двуполярных напряжения (рисунок 13).



Рисунок 13

Изготовить дроссель можно и на кольце и на Ш-образхном феррите. Габариты конечно же зависят от мощности. Для мощностей до 400-500 Вт хватает средечника от сетевого фильтра питания телевизоров с 54-х см диагональю и выше (рисунок 14). Конструктив сердечника не принципиален

Рисунок 14

Мотается так же как и силовой трансформатор — из нескольких тонких проводников, свитых в жгут или склеенных в ленту из расчета 4-5 А/мм кв. Теоритически — чем больше витков — тем лучше, поэтому обмотка укладывается до заполнения окна, причем сразу в 2 (если нужен двуполярный источник) или в 4 провода (если нужен источник с двумя двуполярными напряжениями.
После сглаживающих конденсаторов стоят выходные дроссели. Особых требований к ним не предъявляется, габариты… Платы расчитаны на установку сердечников от фильтров сетевого питания телевизоров. Наматывают до заполнения окна, сечение из расчета 4-5 А/мм кв (рисунок 15).



Рисунок 15

Выше упоминалась лента в качетсве обмотки. Здесь следует остановится несколько подробней.
Что лучше? Жгут или лента? И у того и у другого способа есть свои преимущества и недостатки. Изготовление жгута наиболее простой способ — растянул необходимое количество проводов, а затем скрутил их в жгут при помощи дрели. Однако такой способ увеличивает суммарную длину проводников за счет внутреннего кручения, а так же не позволяет добиться идентичности магнитного поля во все проводниках жгута, а это, пусть и не большие, но все же потери на тепло.
Изготовление ленты более трудоемко и немного дороже обходится, поскольку необходимое количество проводников растягивается и затем, при помощи полиуританового клея (ТОП-ТОП, СПЕЦИАЛИСТ, МОМЕНТ-КРИСТАЛЛ) склеивается в ленту. Клей наносят на провод небольшими порциями — по 15…20 см длинны проводника и затем зажав жгут между пальцами как бы втирают его следя за тем, чтобы провода уложились в ленту, на подобии ленточных жгутов, используемых для соединения дисковых носителей с материнской платой IBM компьютеров. После того как клей прихватился наносится новая порция на 15…20 см длины проводов и снова разглаживается пальцами до получения ленты. И так по всей длине проводника (рисунок 16).


Рисунок 16

После полного высыхания клея производят намотку ленты на сердечник, причем первой наматывается обмотка с большим количеством витков (как правило и меньшим сечением), а сверху уже более сильноточные обмотки. После намотки первого слоя необходимо ленту «уложить» внутри кольца воспользовавшись выструганным из дерева конусообразным колышком. Максимальный диаметр колышка равен внутреннему диаметру используемого кольца, а минимальный — 8…10 мм. Длина конуса должна быть не меньше 20 см и измение диаметра должно быть равномерным. После намотки первого слоя кольцо просто одевают на колышек и с усилием надавливают таким образом, чтобы кольцо довольно сильно заклинило на колышке. Затем кольцо снимают, переворачивают и снова одевают на колышек с тем же усилием. Колышек должен быть достаточно мягким, чтоб не повредить изоляцию обмоточного провода, поэтому твердые породы дерева для этих целей не подойдут. Таким образом проводники укладывают строго по форме внутреннего диаметра сердечника. После намотки следующего слоя провод снова «укладывают» при помощи колышка и так делают после намотки каждого следующего слоя.
После намотки всех обмоток (не забывая использовать межобмоточную изоляцию) трансформатор желательно прогреть до 80…90°С в течении 30-40 мин (можно воспользоваться духовкой газовой или электрической печки на кухне, но не следует перегревать). При этой температуре полиуритановый клей делается эластичным и снова приобретает клеящие свойства склеивая между собой уже не только проводники расположенные параллельно самой ленте, но и находящиеся сверху, т.е. происходит склеивание слоев обмоток между собой, что добавляет механической жесткости обмоткам и исключает какие либо звуковые эффекты, появление которых иногда случается при плохой стяжке проводников силового трансформатора (рисунок 17).


Рисунок 17

Плюсами такой намотки является получения идентичного магнитного поля во все проводах ленточного жгута, поскольку геометрически они располагаются одинаково по отношению к магнитному полю. Такой ленточный проводник гораздо легче равномерно распределять по всему периметру сердечника, что очень актуально даже для типовых трансформаторов, а для импульсных является ОБЯЗАТЕЛЬНЫМ условием. Используя ленту можно добиться довольно плотной намотки, причем увеличив доступ охлаждающего воздуха к виткам, расположенным непосредственно внутри обмотки. Для этого достаточно количество необходимых проводов разделить на два и сделать две одинаковых ленты, которые будут наматываться друг на друга. Таким образом увеличится толщина намотки, но появится большое расстояние между витками ленты, обеспечивая доступ воздуха внутрь трансформатора.
В качестве межслойной изоляции лучше всего использовать фторопластовую пленку — очень эластична, что компенсирует напряженность одного края, возникающего при намотке на кольцо, имеет довольно большое пробивное напряжение, не чувствительна к температурам до 200°С и очень тонкая, т.е. не будет занимать много места в окне сердечника. Но она не всегда имеется под рукой. Использовать виниловую изоленту можно, но она чувствительна к температурам выше 80°С. Изолента на основе материи к температурам устойчива, но имеет маленькое пробивное напряжение, поэтому при ее использовании необходимо наматывать минимум 2 слоя.
Каким бы проводником и в какой бы последовательности Вы не наматывали дроссели и силовой трансформатор следует помнить о длине выводов
Если Дроссели и силовой трансформатор изготавливаются с использованием ферритовых колец, то не надо забывать, что перед намоткой края ферритового кольца следует скруглить, поскольку они достаточно остры, а феррит материал довольно прочный и может повредить изоляцию на обмоточном проводе. После обработки феррит обматывается фторопластовой лентой или матерчатой изолентой и наматывается первая обмотка.
Для полной идентичности одинаковых обмоток обмотки мотаются сразу в два провода (подразумевается сразу в два жгута) которые после намотки прозваниваются и начало одной обмотки соединяется с концом другой.
После намотки трансформатора необходимо удалить лаковую изоляцию на проводах. Это самый не приятный момент, поскольку ОЧЕНЬ трудоемкий.
Прежде всего необходимо зафиксировать вывода на самом трансформаторе и исключить вытягивание отдельных проводов их жгута при механических воздействиях. Если жгут ленточный, т.е. клееный и после намотки прогретый, то достаточно намотать на отводы несколько витков тем же обмоточным проводом непосредственно возле тела трансформатора. Если же используется витой жгут, то его необходимо дополнительно свить у снования вывода и так же зафиксировать, намотав несколько витков провода. Далее вывода либо обжигаются при помощи газовой горелки сразу все, либо зачищаются по одному при помощи канцелярского резака. Если лак отжигался, то после остывания провода защищаются наждачной бумагой и свиваются.
После удаления лака, зачистки и свивки вывода необходимо защитить от окисления, т.е. покрыть канифольным флюсом. Затем трансформатор устанавливают на плату, все вывода, кроме вывода первичной обмотки подключаемого к силовым транзисторам, вставляются в соответствующие отверстия, на всякий случай следует «прозвонить» обмотки. Особое внимание следует обратить на фазировку обмоток, т.е. на соответствие начала обмотки с принципиальной схемой. После того как вывода трансформатора вставлены в отверстия следует их укоротить так, чтобы от конца вывода до печатной платы было 3…4 мм. Затем свитый вывод «раскручивается» и в место пайки помещается АКТИВНЫЙ флюс, т.е. это либо гашенная соляная кислота, на кончик спички берется капелька и переносится в место пайки. Либо в глицерин добавляется ацетил-салициловая кислота кристаллическая (аспирин) до получения кашеобразной консистенции (и то и другое можно приобрести в аптеке, в рецептурном отделе). После этого вывод припаивается к печатной плате, тщательно прогревая и добиваясь равномерного расположения припоя вокруг ВСЕХ проводников отвода. Затем вывод укорачивается по высоте пайки и плата тщательно моется либо спиртом (90% минимум), либо очищенным бензином, либо смесью бензина с растворителем 647 (1:1).

ПЕРВОЕ ВКЛЮЧЕНИЕ
Включение, проверка работоспособности производится в несколько этапов позволяющих избежать неприятностей, которые однозначно возникнут при ошибке в монтаже.
1 . Для проверки данной конструкции потребуется отдельный источник питания с двуполярных напряжением ±15…20 В и мощность 15…20 Вт. Первое включение производят подключив МИНУСОВОЙ ВЫВОД дополнительного источника питания к минусовой первичной шине питания преобразователя, а ОБЩИЙ подключают в плюсовому выводу конденсатора С1 (рисунок 18). Таким образом симмулируется питани модуля управления и он проверяется на работоспосбность без силовой части. Тут желательно использовать осцилограф и частотомер, но если их нет, то можно обойтись и мультиметром, желательно стрелочны (цифровые не адекватно реагируют на пульсирующие напряжения).


Рисунок 18

На выводах 9 и 10 контроллера TL494 стрелочный прибор, включенный на измерение постоянного напряжения должен показать почти половину напряжения питания, что говорит о том, что на микросхеме имеются прямоугольные импульсы
Так же должно сработать реле К1
2 . Если модуль работает нормально, то следует проверить силовую часть, но опять же не от высокого напряжения, а используя доп источник питания (рисунок 19).


Рисунок 19

При такой последовательности проверки что либо сжечь весьма затруднительно даже при серьезных ошибках монтажа (замыкание между дорожками платы, не пропайка элементов) поскольку мощности дополнительного блока не хватит. После включения проверяется наличие выходных напряжения преобразователя — конечно же оно будет значительно ниже расчетного (при использовании доп источника ±15В выходные напряжения будут занижены примерно в 10 раз, поскольку первичное питание составляет не 310 В а 30 В), тем не менее наличие выходных напряжений говорит о том, что в силовой части нет ошибок и можно переходить к терьей части проврки.
3 . Первое включение от сети необходимо производить с токоограничением в качестве которого может выступить обычная лампа накаливания на 40-60 Вт, которую подключают вместо предохранителя. Радиаторы уже должны быть установлены. Таким образом в случае чрезмерного потребления по какой либо причине лампа загорится, а вероятность выхода из строя сведется к минимуму. Если же все нормально, то производят регулировку выходного напряжения резисторовм R26 и проверяют нагрузочную способность источника подключив к выходу такую же лампу накаливания. Включенная вместо предохранителя лампа должна загоряется (яркость зависит от выходного напряжения, т.е. от того какую мощность источник будет отдавать. Выходное напряжение регулируется резистором R26, однако может потебоваться подбор R36.
4 . Проверка работоспособности производится с установленным на место предохранителем. В качестве нагрузки можно использовать нихромовую спираль для электропечек мощность 2-3 кВт. Два отрезка провода подпаивают к выходу источника питания, для начала к плечу, с котрого производится контроль выходного напряжения. Один провод прикручивается к концу спирали, на второй устанавливается «крокодил». Теперь, переустанавливая «крокодил» по длине спирали, можно оперативно менять сопротивление нагрузки (рисунок 20).


Рисунок 20

Будет не лишним на спирали сделать «растяжки» в местах с определенным сопротивлением, например каждые 5 Ом. Подключаясь к «растяжкам» Уже заранее будет известно какая нагрузка и какая выходная мощность на данный момент. Ну а мощность можно вычислить по закону Ома (используется в табличке).
Все это необходимо для регулировки порога срабатывания защиты от перегрузки, которая должна устойчиво срабатывать при превышении реальной мощности на 10-15% расчетную. Так же проверяется как устойчиво источник питания держит нагрузку.

Если источник питания не отдает расчетную мощность значит какая то ошибка закралась при изготовлении трансформатора — смотрим выше как расчитать витки под реальный сердечник.
Осталось внимательно изучить как изготовить печатную плату, а это И можно приступать к сборке. 8

Как отремонтировать и доработать импульсный блок питания китайского производства на 12 вольт

Хочу начать с того, что ко мне в руки попали несколько сгоревших и кем-то уже «поремонтированных» блоков питания 220/12 В. Все блоки были однотипными – HF55W-S-12, поэтому, забив в поисковике название, я надеялся найти схему. Но кроме фотографий внешнего вида, параметров и цен на них, ничего не нашел. Поэтому пришлось схему рисовать самому с платы. Схема рисовалась не для изучения принципа работы БП, а исключительно в ремонтных целях. Поэтому сетевой выпрямитель не нарисован, так-же я не распиливал импульсный трансформатор и не знаю в каком месте сделан отвод (начало-конец) на 2 обмотке трансформатора. Так же не надо считать опечаткой С14 -62 Ома, – на плате маркировка и разметка под электролитический конденсатор (+ показан на схеме), но везде на его месте стояли резисторы номиналом 62 Ома.

При ремонте подобных устройств их нужно подключать через лампочку (лампа накаливания 100-200 Вт, последовательно с нагрузкой), что-бы в случае КЗ в нагрузке, не вышел из строя выходной транзистор и не погорели дорожки на плате. Да и вашим домочадцам спокойнее, если вдруг внезапно не погаснет свет в квартире.
Основной неисправностью является пробой Q1 (FJP5027 – 3 А,800 В, 15 мГц) и как следствие – обрыв резисторов R9, R8 и выход из строя Q2 (2SC2655 50 В\2 А 100 мГц). На схеме они выделены цветом. Q1 можно заменить любым подходящим по току и напряжению транзистором. Я ставил BUT11, BU508. Если мощность нагрузки не будет превышать 20 Вт можно ставить даже J1003, которые можно найти на плате от перегоревшей энергосберегающей лампы. В одном блоке совсем отсутствовал VD-01 (диод шоттки STPR1020CT -140 В\2х10 А) я поставил вместо него MBR2545CT (45 В\30 А), что характерно, он вообще не греется на нагрузке 1,8 А (использовалась лампа автомобильная 21 Вт\12 В). А родной диод за минуту работы (без радиатора) разогревается так, что рукой невозможно дотронуться. Проверил потребляемый устройством (с лампой 21 Вт) ток с родным диодом и с MBR2545CT – ток (потребляемый из сети, у меня напряжение 230 В) понизился с 0,115 А до 0,11 А. Мощность снизилась на 1,15 Вт, я считаю, что именно столько рассеивалось на родном диоде.
Заменить Q2 было нечем, под рукой нашелся транзистор С945. Пришлось “умощнить” его схемой с транзистором КТ837 (рис 2) . Ток остался под контролем и при сравнении тока с родной схемой на 2SC2655, получилось ещё снижение потребляемой мощности c той же нагрузкой на 1 Вт.

В результате, при нагрузке 21 Вт и при работе в течении 5 мин, выходной транзистор и выпрямительный диод (без радиатора) нагреваются градусов до 40 (чуть тёплые). В первоначальном варианте, через минуту работы без радиатора, до них нельзя было дотронуться. Следующим шагом к повышению надёжности блоков сделанных по этой схеме – это замена электролитического конденсатора С12 (склонного к высыханию электролита со временем) на обычный неполярный -неэлектролитический. Таким же номиналом 0,47 мкФ и напряжением не ниже 50 В.
С такими характеристиками БП, теперь можно смело подключать светодиодные ленты, не боясь что КПД блока питания ухудшит эффект экономичности светодиодного освещения.

100+ Схема блока питания с печатной платой

Вы ищете множество схем блоков питания, верно?

Потому что различные электронные проекты должны использовать их в качестве источника энергии.

Но иногда вы можете сэкономить время и почерпнуть идеи.

Кроме того, их легко строить и они дешевы.

Во-первых, посмотрите на:

3 источника питания для электронных устройств

Давайте познакомимся с тремя большинством типов блоков питания.
Типы 1# Аккумулятор
Многие схемы потребляют мало энергии. Таким образом, он может питаться от батареек.

Маленький и простой в использовании везде. Но обычно они низкого напряжения.

Таким образом…

Они лучше всего подходят для слаботочных сетей.

Но для большой нагрузки. Что мы должны использовать?

Аккумуляторы лучше отвечают. Повторное использование много раз, чтобы сэкономить много денег.

Я хочу, чтобы мои дети ими пользовались. Потому что это безопасно для него.

Тип 2# Солнечная батарея

Мы можем использовать ее как солнечную энергию напрямую в нашей схеме.

Но…

Нам нравится использовать его как солнечное зарядное устройство для перезаряжаемой батареи.

Например…

Мой сын любит делать солнечный свет.

Тип 3# Линия переменного тока

Мы используем линию переменного тока, ее основной адаптер переменного тока, как блок питания. Они компактны и просты в использовании, чем батарея.

Мы можем применять их для различных выходных напряжений и токов.

Когда мы в доме. мы должны использовать их вместо батарей и солнечных батарей, это сэкономит наши деньги.

Осторожно:

Мы должны использовать его осторожно. Безопасность прежде всего! Это много полезного, но также может убить вас!

Зачем использовать линейный блок питания?

Существует много видов цепей питания. Но всех их можно разделить на две группы.

  • Линейный источник питания
  • Импульсный источник питания

Как работает линейный?

Во-первых, напряжение переменного тока на силовой трансформатор для повышения или понижения напряжения.

Затем преобразуется в напряжение постоянного тока.

И далее, применительно к системе цепи регулятора.

Сохраняет напряжение и ток нагрузки.

Но…

Как работает импульсный источник питания

Без трансформатора — он преобразует мощность переменного тока напрямую в напряжение постоянного тока без трансформатора.

И…

Высокая частота — это постоянное напряжение преобразуется в высокочастотный сигнал переменного тока.

Затем схема регулятора внутри вырабатывает желаемое напряжение и ток.

Линейные VS Импульсные источники питания постоянного тока

В таблице ниже сравниваются различные параметры линейной и импульсной формы.

Спасибо: CR By Tekpower 30V 5A Power Supply on Amazon

Мне нравится линейный блок питания.

Почему?

Они…

  • простая электрическая схема
  • бесшумный
  • высокая стабильность, долговечность и прочность
  • низкий уровень шума, пульсаций, задержек и электромагнитных помех

Какой тип переключения прямо противоположен.
ОБНОВЛЕНИЕ: Теперь я также люблю импульсные источники питания постоянного тока
Читайте также: Как это работает
Возможно, вам это понравится вместе со мной.

Блок питания Обучение

Я знаю, что вы не хотите терять время, хотите быстро создать схему питания. Но ждать. Если вы новичок.

Следует изучить принципы его работы Хотя бы раз. Чтобы уменьшить количество ошибок И выбрать правильную схему, Я хочу, чтобы ваша жизнь была легкой.

8 Верхние схемы питания

На нашем сайте есть много схем питания. Мы не можем показать вам все. Таким образом, для экономии вашего времени смотрите списки ниже.

1# Первый регулируемый источник питания постоянного тока, LM317

Вы можете отрегулировать выходное напряжение 1.от 25В до 30В при 1,5А. Мне это нравится. Потому что… Это просто и дешево.

Подробнее: LM317 Источник питания

Например, вы можете использовать его вместо батареи 1,5 В.

Читайте также: См. распиновку LM317 и как использовать

2# Простой фиксированный регулятор постоянного тока


Вы часто видите эту схему во многих бытовых приборах. Это довольно старая схема, но такая полезная.

Потому что… Это очень просто: — один транзистор , стабилитрон и резистор. Выходное напряжение зависит от стабилитрона.

Например…

Вам нужно питание 12 В, вы используете стабилитрон на 12 В. Ты это можешь. Я верю тебе!

Продолжить чтение »

3# Регулятор напряжения 78xx — круто!

Многие схемы фиксированных регуляторов 5 В, 6 В, 9 В, 10 В, 12 В 1 А с использованием серии IC-78xx


Это популярный фиксированный регулятор постоянного тока 1 А, простой и дешевый.

Например…

Если вам нужно питание 5В 1А для цифровой схемы. Мы обычно используем здесь LM7805. Продолжить чтение »

Также: Узнать распиновку схемы 7805 и многое другое

4# Простой регулируемый регулятор на 3 А, LM350

Регулируемый регулятор напряжения LM350

Иногда мне нужно использовать источник переменного напряжения на 3 А.

Но…

LM317 не может мне помочь, так просто.

В скором времени мы используем LM350 Переменный блок питания .

Это лучший линейный [email protected] Выходное напряжение от 1,25 до 25 В.

5#  0-30 В, 3 А Регулируемый источник постоянного тока

Мы редко используем ток 3 А, который может регулировать выходное напряжение от 0 В до 30 В.

Это лучший выбор.

Он использует LM723 в качестве известного регулятора IC.

А вот и схема современного дизайна, полная защита, чем у LM350T.
Продолжить чтение »

6# Переменный источник питания, 0–50 В при 3 А

Если вам нужно использовать выходное напряжение более 30 В или отрегулировать 0 В до 50 В.

Вы можете использовать его. У них есть ключевые компоненты, LM723 и транзистор 2SC5200 с более высоким напряжением.

Также полная защита от перегрузок.

  Продолжить чтение »

7# Соберите блок питания 12В 2А с помощью молотка

Если поторопитесь и без печатной платы.Эта идея может быть хорошей. Вы можете собрать адаптер 12В 2А легко и дешево .

С помощью молотка и улитки на деревянной доске. Кроме того, чтобы узнать больше.

8# Двойной источник питания 15 В для предусилителя

Если вам нужно использовать много схем с операционным усилителем.

Например, предусилитель с регулировкой тембра и прочее. Они должны использовать источник питания +/- 15 В.

У нас есть 3 схемы для вас. Продолжить чтение >>

 

В категориях много схем: Блок питания.

Другое линейное энергоснабжение

Регулятор фиксированной вольты: 1,5 В, 3В, 6В, 9В, 12В

Низкий вольт

5V Power Actories Цифровые источники питания

9 вольт

Низкое выпадение напряжения

Просто и идеи

Схема регулируемого источника питания

Что такое регулируемый источник питания? Проще говоря, это источник питания, который может регулировать выходное напряжение или ток. Но он по-прежнему имеет те же характеристики, что и стационарный регулируемый источник питания.Он будет поддерживать стабильное напряжение при любой нагрузке.

под 1А
2а выходной ток
3а выходной ток
3A Выходной ток
высокий ток (5а вверх)
(5а вверх)
высокое напряжение (100В вверх)

Двойной железнодорожный регулятор и многократное напряжение

TRANCENERLEST

Постоянный ток Источник

Цепи питания

Импульсные источники питания постоянного тока. Чтобы были идеи по созданию проектов или инструментов. Потому что они имеют небольшие размеры и дешевле, чем линейные блоки питания.

На моем сайте появилось много каналов. Пока друзья не сказали, что сложно увидеть схемы или проекты так, как он хочет.

Особый импульсный источник питания постоянного тока очень полезен. В приведенном ниже списке представлены идеи по созданию отличного источника питания, который компактен и экономит деньги. Для применения или обучения.

Итак, эти схемы я собираю для удобства доступа к интересующим меня проектам. Также они могут быть полезны и вам.

Примеры схем

Регулятор режима переключения
Преобразователь постоянного тока в постоянный

 

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Проектирование простых цепей питания

В посте подробно рассказывается, как спроектировать и построить простую схему питания, начиная с базовой схемы и заканчивая достаточно сложным блоком питания с расширенными функциями.

Блок питания незаменим

Будь то новичок в электронике или опытный инженер, всем нужен этот незаменимый элемент оборудования, называемый блоком питания.

Это связано с тем, что никакая электроника не может работать без питания, а точнее, без питания постоянного тока низкого напряжения, а блок питания — это устройство, которое специально предназначено для выполнения этой цели.

Если это оборудование так важно, то всем, кто работает в этой области, необходимо изучить все тонкости этого важного члена электронной семьи.

Давайте начнем и узнаем, как спроектировать схему блока питания, сначала самую простую, вероятно, для новичков, которым эта информация будет чрезвычайно полезна.
Базовая схема источника питания потребует трех основных компонентов для обеспечения ожидаемых результатов.
Трансформатор, диод и конденсатор.Трансформатор представляет собой устройство, имеющее две группы обмоток, одну первичную, а другую вторичную.

Сеть 220В или 120В подается на первичную обмотку, которая передается на вторичную обмотку для создания в ней более низкого наведенного напряжения.

Низкое пониженное напряжение, доступное на вторичной обмотке трансформатора, используется для предполагаемого применения в электронных схемах, однако, прежде чем можно будет использовать это вторичное напряжение, его необходимо сначала выпрямить, то есть напряжение необходимо преобразовать в постоянный ток. первый.

Например, если вторичная обмотка трансформатора рассчитана на 12 вольт, то полученные 12 вольт от вторичной обмотки трансформатора будут 12 вольтами переменного тока по соответствующим проводам.

Электронная схема никогда не может работать с переменным током, поэтому это напряжение должно быть преобразовано в постоянное.

Диод — это одно из устройств, которое эффективно преобразует переменный ток в постоянный. Существует три конфигурации, с помощью которых можно сконфигурировать основные конструкции источников питания.


Вы также можете узнать, как спроектировать настольный источник питания


Использование одного диода:

Самая простая и грубая форма конструкции источника питания — это схема, в которой используется один диод и конденсатор.Поскольку один диод будет выпрямлять только один полупериод сигнала переменного тока, для этого типа конфигурации требуется большой конденсатор выходного фильтра для компенсации вышеуказанного ограничения.

Конденсатор с фильтром гарантирует, что после выпрямления на падающих или убывающих участках результирующей диаграммы постоянного тока, где напряжение имеет тенденцию к падению, эти участки заполняются и дополняются накопленной внутри конденсатора энергией.

Вышеупомянутая компенсация за счет накопленной энергии конденсаторов помогает поддерживать чистый и свободный от пульсаций выход постоянного тока, что было бы невозможно при использовании одних только диодов.

Для конструкции источника питания с одним диодом вторичная обмотка трансформатора должна иметь одну обмотку с двумя концами.

Однако приведенная выше конфигурация не может считаться эффективной конструкцией источника питания из-за грубого однополупериодного выпрямления и ограниченных возможностей формирования выходного сигнала.

Использование двух диодов:

Использование пары диодов для создания источника питания требует трансформатора со вторичной обмоткой с отводом от середины. На схеме показано, как диоды подключены к трансформатору.

Несмотря на то, что два диода работают в тандеме и охватывают обе половины сигнала переменного тока и производят двухполупериодное выпрямление, используемый метод неэффективен, поскольку в любой момент используется только половина обмотки трансформатора. Это приводит к плохому насыщению сердечника и ненужному нагреву трансформатора, что делает этот тип конфигурации источника питания менее эффективным и обычной конструкцией.

Использование четырех диодов:

Это наилучшая и общепринятая форма конфигурации источника питания с точки зрения процесса выпрямления.

Продуманное использование четырех диодов делает все очень просто, требуется только одна вторичная обмотка, насыщение сердечника идеально оптимизировано, что обеспечивает эффективное преобразование переменного тока в постоянный.

На рисунке показано, как создается источник питания с двухполупериодным выпрямлением с использованием четырех диодов и фильтрующего конденсатора относительно низкой емкости.

Этот тип диодной конфигурации широко известен как мостовая сеть. Возможно, вы захотите узнать, как сконструировать мостовой выпрямитель.

Все вышеперечисленные конструкции источников питания обеспечивают выходы с обычным регулированием и поэтому не могут считаться идеальными, они не обеспечивают идеальных выходов постоянного тока и поэтому нежелательны для многих сложных электронных схем. Кроме того, эти конфигурации не включают функции управления переменным напряжением и током.

Однако вышеуказанные функции могут быть просто интегрированы в вышеупомянутые конструкции, а не в последнюю конфигурацию полноволнового источника питания за счет введения одной ИС и нескольких других пассивных компонентов.

Нестабилизированный блок питания полного моста с формулами

На приведенной ниже схеме показан блок питания с одной шиной. Предохранитель устанавливается на пути токоведущего провода к трансформатору в целях безопасности. Провод под напряжением также подключен к клемме 240 В трансформатора; этот участок первичной обмотки находится довольно далеко от вторичной, что повышает безопасность устройства.

Заземление должно быть соединено с любым открытым металлом и, если применимо, с экраном трансформатора. Упомянутые напряжения указаны в вольтах (среднеквадратичное значение) и являются напряжениями переменного тока.Под нагрузкой выход трансформатора составляет 6 В (среднеквадратичное значение). Когда трансформатор не используется, напряжение может возрасти до 25%.

Выходная пульсация может быть рассчитана с использованием следующей формулы:

V RIP ≅ I нагрузка / C [7 x 10 -3 ]

Использование IC LM317 или LM338:

IC LM 317 — это очень универсальное устройство, которое обычно интегрируется с источниками питания для получения хорошо стабилизированных и регулируемых выходных сигналов напряжения/тока.Несколько примеров схем источника питания, использующих эту микросхему

. Поскольку приведенная выше микросхема может поддерживать максимум 1,5 А, для большей выходной мощности можно использовать другое аналогичное устройство, но с более высокими характеристиками. IC LM 338 работает точно так же, как LM 317, но способен выдерживать ток до 5 ампер. Ниже показана простая конструкция.

Для получения фиксированных уровней напряжения можно использовать микросхемы серии 78XX с описанными выше схемами питания. ИС 78XX подробно описаны для справки.

В настоящее время бестрансформаторные источники питания SMPS становятся фаворитами среди пользователей благодаря их высокой эффективности и высокой мощности при удивительно компактных размерах.
Хотя сборка схемы источника питания SMPS в домашних условиях, безусловно, не для новичков в этой области, инженеры и энтузиасты, обладающие всесторонними знаниями в этой области, могут заняться сборкой таких схем дома.

Вы также можете узнать об аккуратной конструкции импульсного источника питания.

Есть несколько других форм источников питания, которые могут быть созданы даже любителями новой электроники и не требуют трансформаторов. Хотя эти типы цепей питания очень дешевы и просты в сборке, они не могут поддерживать большой ток и обычно ограничены 200 мА или около того.

Конструкция бестрансформаторного источника питания

Две концепции описанного выше бестрансформаторного типа цепей питания обсуждаются в следующих парах постов:

С использованием высоковольтных конденсаторов,

С использованием Hi-End микросхем и полевых транзисторов

Обратная связь от одного из преданных читателей этого блога

Уважаемый Swagatam Majumdar,

Я хочу сделать блок питания для микроконтроллера и его зависимых компонентов…

Я хочу получить стабильные +5В на выходе и +3.3 В от блока питания, я не уверен в силе тока, но я думаю, что всего 5 А должно быть достаточно, также будут 5 В мышь и 5 В клавиатура, а также 3 микросхемы SN74HC595 и 2 x 512 КБ SRAM … Итак Я действительно не знаю, к какой силе тока стремиться….

Думаю, 5А достаточно?…. Мой ГЛАВНЫЙ вопрос: какой ТРАНСФОРМАТОР использовать и какие ДИОДЫ использовать? Я выбрал трансформатор после того, как прочитал где-то в Интернете, что мостовой выпрямитель вызывает ПАДЕНИЕ НАПРЯЖЕНИЯ на 1,4 В в целом, и в своем блоге выше вы заявляете, что мостовой выпрямитель вызовет повышение напряжения?..

ТАК ЧТО Я не уверен (во всяком случае, я не уверен, будучи новичком в электронике) ….. ПЕРВЫМ трансформатором, который я выбрал, был этот. Пожалуйста, посоветуйте мне, какой из них ЛУЧШЕ подходит для моих нужд и какие ДИОДЫ тоже использовать…. Я хотел бы использовать блок питания для платы, очень похожей на эту….

Пожалуйста, помогите и подскажите, как лучше всего сделать подходящий блок питания MAINS 220/240V, который дает мне СТАБИЛЬНЫЕ 5V и 3.3V для использования с моей конструкцией. Заранее спасибо.

Как получить постоянные 5 В и 3 В от цепи питания

Здравствуйте, вы можете добиться этого просто с помощью микросхемы 7805 для получения 5 В и добавив пару диодов 1N4007 к этим 5 В для получения примерно 3.3В.

5 ампер выглядит слишком большим, и я не думаю, что вам потребуется такой большой ток, если только вы не используете этот блок питания с внешним каскадом драйвера, несущим более высокие нагрузки, такие как высокомощный светодиод или двигатель и т. д.

Итак, я я уверен, что ваше требование может быть легко выполнено с помощью вышеупомянутых процедур.

для питания MCU с помощью описанной выше процедуры вы можете использовать трансформатор 0-9В или 0-12В с током 1А, диоды могут быть 1N4007 x 4nos

Диоды упадут на 1.4 В, когда на вход подается постоянный ток, но когда это переменный ток, например, от трансформатора, выходное напряжение будет увеличено в 1,21 раза.

обязательно используйте конденсатор 2200 мкФ / 25В после моста для фильтрации

Я надеюсь, что информация проинформирует вас и ответит на ваши вопросы.

На изображении выше показано, как получить постоянное напряжение 5 В и 3,3 В от заданной цепи питания.

Как получить переменное напряжение 9 В от IC 7805

Обычно IC 7805 рассматривается как стабилизатор напряжения с фиксированным напряжением 5 В.Однако с помощью базового обходного пути ИС можно превратить в схему переменного регулятора от 5 В до 9 В, как показано выше.

Здесь мы видим, что предустановка на 500 Ом добавлена ​​к центральному контакту заземления ИС, что позволяет ИС создавать повышенное выходное значение до 9 В при токе 850 мА. Предустановку можно настроить для получения выходного напряжения в диапазоне от 5 В до 9 В.

Чтобы получить повышенное выходное напряжение от микросхемы 7812, вы можете обратиться к этому сообщению!

Создание схемы стабилизатора с фиксированным напряжением 12 В

На приведенной выше диаграмме показано, как можно использовать обычную микросхему стабилизатора 7805 для создания регулируемого выходного сигнала с фиксированным напряжением 5 В.

Если вы хотите получить фиксированный регулируемый источник питания 12 В, для получения требуемых результатов можно применить ту же конфигурацию, как показано ниже:

Регулируемый источник питания 12 В, 5 В

двойное питание в диапазоне фиксированных 12 В, а также фиксированных регулируемых источников 5 В.

Для таких применений описанную выше конструкцию можно просто изменить, используя микросхему 7812, а затем микросхему 7805 для получения вместе требуемого регулируемого источника питания 12 В и 5 В, как показано ниже:

Разработка простого двойного источника питания

Во многих схемных приложениях, особенно в тех, где используются операционные усилители, двойной источник питания становится обязательным для включения +/- и заземления схемы.

Проектирование простого двойного источника питания фактически включает только источник питания с центральным отводом и мостовой выпрямитель, а также пару фильтрующих конденсаторов высокой емкости, как показано ниже:

Однако для получения регулируемого двойного источника питания с двойное напряжение на выходе — это то, что обычно требует сложной конструкции с использованием дорогостоящих ИС.

Следующая схема показывает, как просто и дискретно можно настроить двойной источник питания, используя несколько биполярных транзисторов и несколько резисторов.

Здесь Q1 и Q3 настроены как проходные транзисторы эмиттерного повторителя, которые определяют величину тока, проходящего через соответствующие +/- выходы. Здесь оно составляет около 2 ампер.

Выходное напряжение на соответствующих сдвоенных шинах питания определяется транзисторами Q2 и Q4 вместе с резистивной делительной сетью их базы.

Уровни выходного напряжения можно соответствующим образом отрегулировать и настроить, регулируя значения делителей потенциала, образованных резисторами R2, R3 и R5, R6.

Двойное питание с одним операционным усилителем

Если в вашей схеме остался дополнительный операционный усилитель, который требует двойного питания от одного источника, то, возможно, можно попробовать следующую простую конфигурацию двойного питания от одного операционного усилителя.

Резисторы R1 и R2 работают как высокоомный и, следовательно, экономичный сетевой делитель напряжения. Операционный усилитель гарантирует, что потенциал искусственной земли всегда идентичен потенциалу между соединением резисторов R1 и R2. Соединение между R1 и R2 устанавливает соотношение между парой выходных напряжений; если R1 и R2 имеют одинаковое значение, для обоих выходных напряжений будет обеспечено точно такое же значение, которое будет совершенно симметричным.

Это позволяет нам получить наиболее желательную особенность схемы, а именно то, что соединение R1/R2 не зависит от напряжения батареи! Дополнительным преимуществом этого активного делителя потенциала является то, что (в отличие от базовой цепочки резисторных делителей) он хорошо адаптируется к изменяющимся токам нагрузки, движущимся к линии заземления и от нее, особенно в отношении несимметричных ситуаций тока нагрузки. Вероятно, вы можете подумать об использовании различных вариантов операционных усилителей для этой схемы. 3140 и 324, как правило, являются фантастическим выбором, несмотря на то, что напряжение батареи составляет всего 4 В.5 В. Имейте в виду, что максимальное напряжение, которое могут выдержать эти ИС, не более 30 В, и максимальный ток нагрузки, который может выдержать операционный усилитель, также будет зависеть от типа операционного усилителя.

Проектирование источника питания LM317 с постоянными резисторами

Ниже показан чрезвычайно простой источник напряжения/тока на основе LM317T, который можно использовать для зарядки никель-кадмиевых элементов или в любое время, когда необходим практический источник питания.

Это несложное предприятие для новичка в сборке, и оно предназначено для использования с подключаемым сетевым адаптером, обеспечивающим нерегулируемую мощность d.в. вывод. IC1 на самом деле представляет собой регулируемый регулятор типа LM317T.

Поворотный переключатель S1 выбирает настройку (постоянный ток или постоянное напряжение) вместе со значением тока или напряжения. Регулируемое напряжение можно получить на SK3, а ток на SK4.

Обратите внимание, что предусмотрена регулируемая настройка (позиция 12), которая позволяет регулировать переменное напряжение с помощью потенциометра VR1.

Значения резисторов должны быть изготовлены из ближайших достижимых фиксированных значений, при необходимости расположенных последовательно.

Резистор R6 рассчитан на 1 Вт, а R7 на 2 Вт, хотя остальные резисторы могут быть 0,25 Вт. Регулятор напряжения IC1 317 должен быть установлен на какой-либо радиатор, размер которого определяется входными и выходными напряжениями и необходимыми токами.


Цепь питания 4,5 В, 6 В, 9 В , 12 В

ЭТОТ небольшой источник питания обеспечивает выходное контролируемое напряжение, выбираемое переключателем, от 4,5 до 12 В, выбираемое переключателем.

Питание обеспечивает ток до 400 мА, а выход выдерживает короткое замыкание без разрушения.Следовательно, он хорошо подходит для экспериментаторов или для использования с приборами с высоким потреблением энергии.

Как это работает

Линейное напряжение 120 В снижается до 15 В с помощью трансформатора T1, и теперь это вторичное напряжение может быть выпрямлено двухполупериодным выпрямительным мостом D1 D4.

Выходной сигнал мостового выпрямителя фильтруется конденсатором C1, чтобы обеспечить примерно 20 вольт постоянного тока. Последовательная комбинация стабилитрона ZD1, питаемого резистором R1, обеспечивает стабилизированное напряжение около 13 вольт, которое можно использовать на делителе напряжения R2, ​​R3, R4 и R5.

Таким образом, для регулятора создается серия опорных напряжений 4,5 В, 6 В, 9 В, 12 В, в которой устанавливается положительная шина, а отрицательная – регулируемая.

Транзистор Q3 представляет собой эмиттерный повторитель, в котором выходное напряжение (эмиттер) примерно на 0,6 В выше (более положительное) по сравнению с базой. Базовое напряжение определяется переключателем SW2 с одного из отводов делителя опорного напряжения.

Из-за того, что Q3 не может управлять заданным выходным током, он делает Q2 мощным транзистором, который может справиться с необходимой нагрузкой.

Как только нагрузка превышает 400 мА (примерно), падение напряжения около R6 смещает Q1 в прямом направлении, что обычно активирует и отводит ток от базы Q2.

Поэтому кажется, что регулятор теряет управление, и выходное напряжение падает, ограничивая ток до 400 мА. Поскольку мощность, рассеиваемая в Q2 в случае короткого замыкания, составляет около 10 Вт, Q2 необходимо установить на радиатор.

Кроме того, резистор R7 ограничивает ток, обеспечиваемый Q3, до безопасного значения (для Q3) в условиях короткого замыкания.Если требуется полностью регулируемый источник питания, вместо делителя напряжения необходимо использовать потенциометр на 10 кОм. Затем движок потенциометра подается прямо на базу Q3.

12 В, 9 В, 6 В, 5 В и 3,3 В цепь питания с несколькими напряжениями

Схемы источника питания

могут быть чрезвычайно полезны, когда вы работаете над проектом, требующим нескольких диапазонов входного напряжения. Создание отдельных блоков питания для каждого из них может быть болезненным и утомительным процессом.Вместо этого вы можете построить эту схему источника питания с несколькими напряжениями, которая обеспечивает выходное напряжение в диапазоне 12, 9, 6, 5 и 3,3 Вольт.

LM317:

LM317 — это микросхема стабилизатора напряжения, способная выдавать выходное напряжение от 1,2 В до 37 В с током 1,5 А на нагрузке. Выход можно изменить с помощью вывода Adj микросхемы. Микросхема была построена таким образом, что она развивает номинальное напряжение 1,25 В от вывода Output до вывода Adj. Таким образом, подключение резистора к этим двум клеммам и подача переменного напряжения на вывод adj даст различное выходное напряжение на выводе Vout.

Базовая настройка регулятора LM317

На приведенной выше схеме показан простой регулятор напряжения, созданный с использованием LM317. Здесь делитель потенциала использовался для подачи регулировочного напряжения на вывод adj. Полученное выходное напряжение находится по формуле.

Выход = 1,25 В (1 + R2/R1)

Где R2 и R1 обозначают нижнее и верхнее плечо делителя потенциала, используемого для питания контакта Adj.

РАБОТА ИСТОЧНИКА ПИТАНИЯ НЕСКОЛЬКИХ НАПРЯЖЕНИЙ:

Обычно при работе с электронными схемами очень часто используются пять диапазонов напряжения: 12, 9, 6, 5 и 3.3 В. Итак, мы собираемся построить единую схему источника питания, которая дает все эти выходные напряжения и может быть изменена с помощью простого поворотного переключателя SW1.

Согласно формуле Vout для LM317, изменение сопротивления делителя напряжения приводит к изменению выходного напряжения. Таким образом, мы собираемся оставить резистор R1 фиксированным и изменить нижнюю часть делителя с помощью различных резисторов R2, R3, R4, R5 и R6, которые выдают напряжения 12, 9, 6, 5 и 3,3.

Чтобы рассчитать значение сопротивления (нижняя часть) для требуемых выходных напряжений, мы должны изменить базовую формулу LM317

.

Vвых = 1.25V ( 1 + R2/R1) Переставляя эту формулу, мы получаем

R2 = (Vвых x R1 / 1,25) – R1

Эта формула дает значение сопротивления (нижняя часть) для требуемого напряжения. Чтобы получить 12 В на выходе, R2 будет

.

R2 = (12 х 240/1,25) – 240

R2 = 2064 Ом

Приближение к этому значению даст сопротивление 2K, поэтому на нашей принципиальной схеме мы зафиксировали R2 как 2K.

Таким образом, используя ту же формулу для 9, 6, 5 и 3,3 В, мы получим сопротивление 1.5К, 1К, 750 и 390 Ом примерно. Это формирует сопротивления R3, R4, R5 и R6 соответственно. Таким образом, суммируя все вышеперечисленное, выбрав R2, R3, R4, R5 и R6 с помощью поворотного переключателя, вы получите 12,9, 6, 5 и 3,3 В на выводе Vout LM317.

ПРИМЕЧАНИЕ:

  1. Используя данную формулу, вы можете подставить вышеуказанные значения сопротивления и получить желаемое значение на выходе Vout.
  2. Конденсатор С1 и С2 используется для подавления пульсаций в выходных и входных сигналах LM317.

Связанный контент

Источники питания переменного/постоянного тока | Статья

ОБРАЗОВАТЕЛЬНАЯ СТАТЬЯ


Получайте ценные ресурсы прямо на свой почтовый ящик — рассылается один раз в месяц

Мы ценим вашу конфиденциальность

Что такое блок питания?

Источник питания — это электрическое устройство, которое преобразует электрический ток, поступающий от источника питания, такого как сеть электропитания, в значения напряжения и тока, необходимые для питания нагрузки, такой как двигатель или электронное устройство.

Целью источника питания является питание нагрузки надлежащим напряжением и током. Ток должен подаваться контролируемым образом — и с точным напряжением — к широкому диапазону нагрузок, иногда одновременно, не позволяя изменениям входного напряжения или других подключенных устройств влиять на выход.

Источник питания может быть внешним, что часто встречается в таких устройствах, как ноутбуки и зарядные устройства для телефонов, или внутренним, например, в более крупных устройствах, таких как настольные компьютеры.

Блок питания может быть регулируемым и нерегулируемым. В регулируемом источнике питания изменения входного напряжения не влияют на выходное. С другой стороны, в нерегулируемом источнике питания выход зависит от любых изменений на входе.

Общее у всех блоков питания то, что они берут электроэнергию от источника на входе, каким-то образом преобразуют ее и на выходе отдают в нагрузку.

Мощность на входе и выходе может быть переменного тока (AC) или постоянного тока (DC):

  • Постоянный ток (DC) возникает, когда ток течет в одном постоянном направлении.Обычно это происходит от батарей, солнечных элементов или преобразователей переменного тока в постоянный. Постоянный ток является предпочтительным типом питания для электронных устройств.
  • Переменный ток (AC) возникает, когда электрический ток периодически меняет свое направление на противоположное. Переменный ток — это метод, используемый для доставки электроэнергии по линиям электропередачи в дома и на предприятия
  • .

Таким образом, если переменный ток — это тип питания, подаваемого в ваш дом, а постоянный ток — это тип питания, необходимый для зарядки вашего телефона, вам понадобится блок питания переменного/постоянного тока, чтобы преобразовать переменное напряжение, поступающее от электросети к напряжению постоянного тока, необходимому для зарядки аккумулятора вашего мобильного телефона.

Что такое переменный ток (AC)

Первым шагом при проектировании любого источника питания является определение входного тока. И в большинстве случаев источником входного напряжения электросети является переменный ток.

Типовой формой волны переменного тока является синусоида (см. рис. 1) .`

Рисунок 1: Форма волны переменного тока и основные параметры

Есть несколько показателей, которые необходимо учитывать при работе с блоком питания переменного тока:

  • Пиковое напряжение/ток: максимальное значение амплитуды волны, которое может достигать
  • Частота: количество циклов волны в секунду.Время, необходимое для завершения одного цикла, называется периодом.
  • Среднее напряжение/ток: среднее значение всех точек, которые принимает напряжение в течение одного цикла. В чисто переменном токе без наложенного постоянного напряжения это значение будет равно нулю, потому что положительная и отрицательная половины компенсируют друг друга.
  • Среднеквадратичное значение напряжения/тока: Оно определяется как квадратный корень из среднего за один цикл квадрата мгновенного напряжения. В чистой синусоидальной волне переменного тока ее значение может быть рассчитано с помощью уравнения (1) :
  • $$V_{PEAK} \над \sqrt 2 $$
  • Его также можно определить как эквивалентную мощность постоянного тока, необходимую для получения того же эффекта нагрева.Несмотря на его сложное определение, он широко используется в электротехнике, поскольку позволяет найти действующее значение переменного напряжения или тока. Из-за этого его иногда обозначают как V AC .
  • Фаза: угловая разница между двумя волнами. Полный цикл синусоиды делится на 360°, начиная с 0°, с пиками на 90° (положительный пик) и 270° (отрицательный пик) и дважды пересекая начальную точку, на 180° и 360°. Если две волны нанесены вместе, и одна волна достигает своего положительного пика в то же время, когда другая достигает своего отрицательного пика, то первая волна будет иметь угол 90°, а вторая волна будет иметь угол 270°; это означает, что разность фаз составляет 180°.Эти волны считаются противофазными, так как их значения всегда будут иметь противоположные знаки. Если разность фаз равна 0°, то мы говорим, что две волны находятся в фазе.

Переменный ток (AC) – это способ передачи электроэнергии от генерирующих объектов к конечным потребителям. Он используется для транспортировки электроэнергии, потому что электричество необходимо преобразовать несколько раз в процессе транспортировки.

Электрические генераторы производят напряжение около 40 000 В или 40 кВ.Затем это напряжение повышается до значений от 150 кВ до 800 кВ, чтобы снизить потери мощности при передаче электрического тока на большие расстояния. Как только он достигает места назначения, напряжение снижается до 4–35 кВ. Наконец, прежде чем ток достигнет отдельных пользователей, он снижается до 120 В или 240 В, в зависимости от местоположения.

Все эти изменения напряжения были бы либо сложными, либо очень неэффективными для постоянного тока (DC), потому что линейные трансформаторы зависят от колебаний напряжения для передачи и преобразования электрической энергии, поэтому они могут работать только с переменным током (AC).

Линейный и импульсный источник питания переменного/постоянного тока

Линейный источник питания переменного/постоянного тока

Линейный блок питания переменного/постоянного тока имеет простую конструкцию.

При использовании трансформатора входное напряжение переменного тока (AC) снижается до значения, более подходящего для предполагаемого применения. Затем пониженное напряжение переменного тока выпрямляется и превращается в напряжение постоянного тока (DC), которое фильтруется для дальнейшего улучшения качества сигнала (фиг. 2) .

Рисунок 2: Блок-схема линейного источника питания переменного/постоянного тока

Традиционная конструкция линейного блока питания переменного/постоянного тока с годами развивалась, улучшаясь с точки зрения эффективности, диапазона мощности и размера, но эта конструкция имеет некоторые существенные недостатки, которые ограничивают ее интеграцию.

Огромным ограничением линейного источника питания переменного/постоянного тока является размер трансформатора. Поскольку входное напряжение преобразуется на входе, необходимый трансформатор должен быть очень большим и, следовательно, очень тяжелым.

На низких частотах (например, 50 Гц) необходимы большие значения индуктивности для передачи большого количества энергии от первичной обмотки к вторичной. Это требует больших сердечников трансформатора, что делает миниатюризацию этих источников питания практически невозможной.

Другим ограничением линейных источников питания переменного/постоянного тока является регулирование напряжения большой мощности.

В линейном источнике питания переменного/постоянного тока используются линейные стабилизаторы для поддержания постоянного напряжения на выходе. Эти линейные регуляторы рассеивают любую дополнительную энергию в виде тепла.При малой мощности особых проблем не представляет. Однако для высокой мощности тепло, которое регулятор должен рассеивать для поддержания постоянного выходного напряжения, очень велико и требует добавления очень больших радиаторов.

Импульсный блок питания переменного/постоянного тока

Новая методология проектирования была разработана для решения многих проблем, связанных с проектированием линейных или традиционных источников питания переменного/постоянного тока, включая размер трансформатора и регулирование напряжения.

Импульсные источники питания теперь возможны благодаря развитию полупроводниковой технологии, особенно благодаря созданию мощных полевых МОП-транзисторов, которые могут включаться и выключаться очень быстро и эффективно, даже при наличии больших напряжений и токов.

Импульсный блок питания переменного/постоянного тока позволяет создавать более эффективные преобразователи мощности, которые больше не рассеивают избыточную мощность.

Источники питания переменного/постоянного тока

, разработанные с использованием импульсных преобразователей мощности, называются импульсными источниками питания. Импульсные источники питания переменного/постоянного тока имеют несколько более сложный метод преобразования мощности переменного тока в постоянный.

При переключении блоков питания переменного тока входное напряжение больше не снижается; скорее, он выпрямляется и фильтруется на входе.Затем постоянное напряжение проходит через прерыватель, который преобразует напряжение в последовательность высокочастотных импульсов. Наконец, волна проходит через еще один выпрямитель и фильтр, который преобразует ее обратно в постоянный ток (DC) и устраняет любую оставшуюся составляющую переменного тока (AC), которая может присутствовать до достижения выхода (см. фиг. 3) .

При работе на высоких частотах индуктор трансформатора способен передавать большую мощность, не достигая насыщения, а это означает, что сердечник может становиться все меньше и меньше.Таким образом, трансформатор, используемый при переключении источников питания переменного/постоянного тока для уменьшения амплитуды напряжения до заданного значения, может быть в несколько раз меньше размера трансформатора, необходимого для линейного источника питания переменного/постоянного тока.

Рисунок 3: Блок-схема импульсного источника питания переменного/постоянного тока

Как и следовало ожидать, этот новый метод проектирования имеет некоторые недостатки.

Импульсные преобразователи мощности переменного/постоянного тока могут генерировать значительный уровень шума в системе, который необходимо устранить, чтобы исключить его присутствие на выходе.Это создает потребность в более сложной схеме управления, что, в свою очередь, усложняет конструкцию. Тем не менее, эти фильтры состоят из компонентов, которые можно легко интегрировать, поэтому это не оказывает существенного влияния на размер блока питания.

Меньшие трансформаторы и повышенная эффективность регулятора напряжения при переключении источников питания переменного/постоянного тока являются причиной того, что теперь мы можем преобразовывать переменное напряжение 220 В со среднеквадратичным значением в напряжение постоянного тока 5 В с помощью преобразователя мощности, который умещается на ладони.

В таблице 1 приведены различия между линейными и импульсными источниками питания переменного/постоянного тока.

Транзисторы Нестабилизированные источники питания
Линейный источник питания переменного/постоянного тока Импульсный блок питания переменного/постоянного тока
Размер и вес Необходимы большие трансформаторы, увеличивающие размер и вес Более высокие частоты позволяют при необходимости использовать трансформаторы гораздо меньшего размера.
Эффективность При отсутствии регулирования потери в трансформаторе являются единственной существенной причиной снижения эффективности.При регулировании приложения высокой мощности окажут критическое влияние на эффективность. имеют небольшие потери при переключении, потому что они ведут себя как малые сопротивления. Это позволяет эффективно использовать мощные приложения .
Шум могут иметь значительный шум, вызванный пульсациями напряжения, но регулируемые линейные блоки питания переменного тока постоянного тока могут иметь чрезвычайно низкий уровень шума. Вот почему они используются в медицинских сенсорных приложениях. Когда транзисторы переключаются очень быстро, они создают помехи в цепи. Однако это можно либо отфильтровать, либо частоту переключения можно сделать чрезвычайно высокой, выше предела человеческого слуха, для аудиоприложений
Сложность Линейный источник питания переменного/постоянного тока, как правило, имеет меньше компонентов и более простые схемы, чем импульсный источник питания переменного/постоянного тока. Дополнительный шум, создаваемый трансформаторами, требует добавления больших сложных фильтров, а также схем управления и регулирования для преобразователей.

Таблица 1: Линейные и импульсные источники питания

Сравнение однофазных и трехфазных источников питания

Источник питания переменного тока (AC) может быть однофазным или трехфазным:

  • Трехфазный источник питания состоит из трех проводников, называемых линиями, по каждому из которых протекает переменный ток (АС) той же частоты и амплитуды напряжения, но с относительной разностью фаз 120°, или одной трети цикл (см. рисунок 4) .Эти системы наиболее эффективны при доставке больших объемов энергии и поэтому используются для доставки электроэнергии от генерирующих объектов в дома и на предприятия по всему миру.
  • Однофазный источник питания является предпочтительным методом подачи тока в отдельные дома или офисы, чтобы равномерно распределить нагрузку между линиями. При этом ток течет от питающей линии через нагрузку, затем обратно по нулевому проводу. Этот тип питания используется в большинстве установок, за исключением крупных промышленных или коммерческих зданий.Однофазные системы не могут передавать столько энергии на нагрузки и более подвержены перебоям в подаче электроэнергии, но однофазное питание также позволяет использовать гораздо более простые сети и устройства.

Рис. 4. Форма кривой переменного тока трехфазного источника питания

Существует две конфигурации для передачи электроэнергии через трехфазный источник питания: конфигурация треугольника $(\Delta)$ и звезда (Y), также называемые треугольником и звездой соответственно.

Основное различие между этими двумя конфигурациями заключается в возможности добавления нейтрального провода (см. рис. 5) .

Соединения треугольником

обеспечивают большую надежность, но соединения Y могут подавать два разных напряжения: фазное напряжение, которое представляет собой однофазное напряжение, подаваемое в дома, и линейное напряжение для питания больших нагрузок. Связь между фазным напряжением (или фазным током) и линейным напряжением (или линейным током) в конфигурации Y заключается в том, что амплитуда линейного напряжения (или тока) в √3 раза больше, чем амплитуда фазы.

Поскольку стандартная система распределения электроэнергии должна подавать питание как к трехфазным, так и к однофазным системам, большинство сетей распределения электроэнергии имеют три линии и нейтраль.Таким образом, как дома, так и промышленное оборудование могут быть подключены к одной и той же линии электропередачи. Таким образом, конфигурация Y чаще всего используется для распределения электроэнергии, тогда как конфигурация треугольника обычно используется для питания трехфазных нагрузок, таких как большие электродвигатели.

Рисунок 5: Трехфазные конфигурации Y и Delta

Напряжение, при котором электросеть поставляет своим потребителям однофазную электроэнергию, имеет различные значения в зависимости от географического положения.Вот почему очень важно проверить диапазон входного напряжения блока питания перед его покупкой или использованием, чтобы убедиться, что он предназначен для работы в электросети вашей страны. В противном случае вы можете повредить блок питания или подключенное к нему устройство.

В таблице 2 сравниваются напряжения сети в разных регионах мира.

Среднеквадратичное (переменное) напряжение Пиковое напряжение Частота Регион
230 В 310 В 50 Гц Европа, Африка, Азия, Австралия, Новая Зеландия и Южная Америка
120 В 170 В 60 Гц Северная Америка
100 В 141В 50 Гц/60 Гц Япония*

* Япония имеет две частоты в своей национальной сети из-за происхождения ее электрификации в конце 19-го века.В западном городе Осака поставщики электроэнергии закупили генераторы на 60 Гц в США, а в Токио, на востоке Японии, они купили немецкие генераторы на 50 Гц. Обе стороны отказались менять свою частоту, и по сей день в Японии до сих пор есть две частоты: 50 Гц на востоке, 60 Гц на западе.

Как упоминалось ранее, трехфазное питание используется не только для транспорта, но и для питания больших нагрузок, таких как электродвигатели или зарядка больших аккумуляторов. Это связано с тем, что параллельное приложение мощности в трехфазных системах может передавать гораздо больше энергии в нагрузку и может делать это более равномерно из-за перекрытия трех фаз (см. рисунок 6) .

Рисунок 6: Передача электроэнергии в однофазной (слева) и трехфазной (справа) системах

Например, при зарядке электромобиля количество энергии, которое вы можете передать аккумулятору, определяет скорость его зарядки.

Однофазные зарядные устройства подключаются к сети переменного тока (AC) и преобразуются в постоянный ток (DC) внутренним преобразователем переменного/постоянного тока автомобиля (также называемым бортовым зарядным устройством). Эти зарядные устройства ограничены по мощности сетью и розеткой переменного тока.

Ограничение варьируется от страны к стране, но обычно составляет менее 7 кВт для розетки на 32 А (в ЕС 220 x 32 А = 7 кВт). С другой стороны, трехфазные источники питания преобразуют мощность переменного тока в постоянный извне и могут передавать более 120 кВт на батарею, обеспечивая сверхбыструю зарядку.

Резюме

Блоки питания переменного/постоянного тока

можно найти повсюду. Основная задача источника питания переменного/постоянного тока заключается в преобразовании переменного тока (AC) в стабильное напряжение постоянного тока (DC), которое затем можно использовать для питания различных электрических устройств.

Переменный ток используется для передачи электроэнергии по всей электрической сети, от генераторов до конечных потребителей. Цепь переменного тока (AC) может быть сконфигурирована как однофазная или трехфазная система. Однофазные системы проще и могут обеспечить достаточную мощность для питания всего дома, но трехфазные системы могут обеспечить гораздо большую мощность более стабильным образом, поэтому они часто используются для подачи электроэнергии в промышленных целях.

Разработка эффективного источника питания переменного/постоянного тока — непростая задача, поскольку современные рынки требуют мощных, чрезвычайно эффективных и миниатюрных источников питания, способных поддерживать эффективность в широком диапазоне нагрузок.

Методы проектирования источника питания переменного/постоянного тока со временем изменились. Линейные блоки питания переменного/постоянного тока ограничены по размеру и эффективности, поскольку они работают на низких частотах и ​​регулируют выходную температуру, рассеивая избыточную энергию в виде тепла. Напротив, импульсные источники питания стали чрезвычайно популярными, поскольку в них используются импульсные стабилизаторы для преобразования переменного тока в постоянный. Импульсные источники питания работают на более высоких частотах и ​​преобразовывают электроэнергию намного эффективнее, чем в предыдущих конструкциях, что позволило создать мощные блоки питания переменного/постоянного тока размером с ладонь.

_________________________

Вам было интересно? Получайте ценные ресурсы прямо на свой почтовый ящик — рассылка раз в месяц!

Связанные статьи

Чему о синхронных выпрямителях не учат в школе — избранные темы из реальных разработок

Подключение источников питания параллельно или последовательно для увеличения выходной мощности

В некоторых приложениях использование одного источника питания может оказаться недостаточным для обеспечения мощности, необходимой для нагрузки.Причины использования нескольких источников питания могут включать резервирование для повышения надежности или увеличения выходной мощности. При обеспечении комбинированного питания необходимо позаботиться о том, чтобы обеспечить сбалансированное питание всех источников.

Блоки питания подключены для резервирования

Резервные источники питания — это топология, в которой выходы нескольких источников питания соединены для повышения надежности системы, но не для увеличения выходной мощности. Конфигурации с резервированием обычно предназначены для получения выходного тока только от основных источников питания и для получения тока от резервных источников питания в случае отказа одного из основных источников питания.Поскольку потребляемый ток нагрузки создает нагрузку на компоненты источника питания, высокая надежность системы достигается, когда ток не потребляется от резервных источников до тех пор, пока не возникнет проблема с одним из основных источников.

  • Источники питания A и B аналогичны; Vвых и максимальный Iвых одинаковые
  • Напряжение нагрузки равно напряжению питания
  • Максимальный ток нагрузки равен максимальному выходному току одного источника питания
  • Электронный переключатель подключает один из выходов питания к нагрузке

Блоки питания с выходами, соединенными параллельно

Обычная топология, используемая для увеличения выходной мощности, заключается в параллельном соединении выходов двух или более источников питания.В этой конфигурации каждый источник питания обеспечивает требуемое напряжение нагрузки, а параллельное подключение источников увеличивает доступный ток нагрузки и, следовательно, доступную мощность нагрузки.

Эта топология может быть успешно реализована, но существует множество соображений, обеспечивающих эффективность конфигурации. Для параллельных конфигураций предпочтительнее источники питания с внутренними цепями, так как внутренние цепи повышают эффективность распределения тока. Если источники питания, используемые в приложениях для разделения тока, не имеют внутренних цепей разделения, то должны использоваться внешние методы, которые могут быть менее эффективными.

Основная проблема заключается в том, насколько равномерно распределяется ток нагрузки между блоками питания. Распределение тока нагрузки зависит как от конструкции источников питания, так и от конструкции внешней цепи и проводников, используемых для параллельного соединения выходов источников питания. Почти всегда при параллельном подключении используются идентичные источники питания из-за проблем с эффективной настройкой источников питания. Однако возможно параллельное подключение источников питания с соответствующими выходными напряжениями и несовпадающими максимальными выходными токами.

Более подробное обсуждение параллельного подключения источников питания можно найти в нашем техническом документе «Распределение тока с источниками питания».

  • Источники питания A и B должны иметь одинаковое Vout; Iout максимум может быть разным
  • Напряжение нагрузки равно напряжению питания
  • Максимальный ток нагрузки равен сумме максимального выходного тока обоих источников питания
  • Цепи контроля тока уравновешивают ток нагрузки между источниками питания

Блоки питания с выходами, соединенными последовательно

Другим вариантом получения большей мощности, подаваемой на нагрузку, является подключение выходов нескольких источников питания последовательно, а не параллельно.Некоторые из преимуществ использования последовательной топологии включают в себя: почти идеальное использование мощности, подаваемой между источниками, отсутствие необходимости в настройке или совместном использовании цепей, а также устойчивость к большому разнообразию приложений. Как упоминалось ранее, при параллельном соединении выходов источников питания каждый источник обеспечивает требуемое напряжение, а ток нагрузки распределяется между источниками. Для сравнения, когда выходы источников питания соединены последовательно, каждый источник обеспечивает требуемый ток нагрузки, а выходное напряжение, подаваемое на нагрузку, будет представлять собой комбинацию источников питания, соединенных последовательно.

Следует отметить, что при последовательном соединении выходов источников питания нет необходимости в одинаковых выходных характеристиках источников питания. Ток нагрузки будет ограничен наименьшим допустимым током нагрузки любого источника в конфигурации, а напряжение нагрузки будет суммой выходных напряжений всех источников питания в цепочке.

На источники питания накладывается несколько ограничений при использовании их в конфигурации с последовательным выходом.Одно из ограничений заключается в том, что выход источников питания должен быть спроектирован так, чтобы выдерживать смещение напряжения из-за последовательной конфигурации. Это напряжение смещения обычно не представляет проблемы, но выходные напряжения источников питания с заземлением не могут суммироваться с выходами других источников. Второе ограничение заключается в том, что на выход источника питания может быть подано обратное напряжение, если выход не активен, когда остальные выходы в цепочке активны. Проблема обратного напряжения может быть легко решена путем размещения диода с обратным смещением на выходе каждого источника питания.Номинальное напряжение пробоя диода должно быть больше, чем выходное напряжение отдельного источника, а номинальный ток диода должен быть больше, чем самый высокий номинальный выходной ток любого источника питания в последовательной цепи.

  • Блоки питания A и B могут иметь разные максимальные значения Vout и Iout
  • Напряжение нагрузки равно сумме выходных напряжений питания
  • Максимальный ток нагрузки равен наименьшему из значений максимального выходного тока любого источника
  • Диоды обратного смещения защищают выходы источников питания

Резюме

Источники питания, подключенные параллельно:

  • Плохое использование мощности из-за допусков управления распределением тока между источниками питания
  • Требуется специальная схема для управления распределением тока между источниками питания
  • Чувствителен к дизайну и конструкции проводников, соединяющих параллельно источники питания
  • Наиболее простая конструкция с аналогичными блоками питания

Источники питания, соединенные последовательно:

  • Эффективное использование мощности ограничено только точностью выходного напряжения каждого источника
  • Не требуется никаких цепей для управления распределением напряжения или тока между источниками питания
  • Не имеет значения конструкция или конструкция проводников, соединяющих источники питания последовательно
  • Легко конструируется с любой комбинацией блоков питания

Хотя общий метод, используемый для увеличения мощности нагрузки, подаваемой от источников питания, заключается в параллельном соединении выходов, другим решением может быть последовательное соединение выходов нескольких источников питания.У поставщиков блоков питания, таких как CUI, есть технический персонал, который может помочь настроить приемлемое решение для этих и других проблем, связанных с приложениями питания.

Категории: Основы , Выбор продукта

Вам также может понравиться


Есть комментарии по этому посту или темам, которые вы хотели бы видеть в будущем?
Отправьте нам электронное письмо по адресу [email protected]ком

СДЕЛАЙТЕ ПРОСТОЙ БЛОК ПИТАНИЯ НА 12 ВОЛЬТ

Вы когда-нибудь нуждались в блоке питания на 12 вольт, который может подавать максимум 1 ампер? Но пытаться купить в магазине слишком дорого?

Ну можно сделать блок питания на 12 вольт очень дешево и легко!

Шаг 1: Вещи, которые вам понадобятся…

Вещи, которые вам понадобятся для изготовления этого блока питания, это…

  • Часть макетной платы
  • Четыре диода 1N4001
  • Регулятор LM7812
  • Трансформатор с выходным напряжением 14–35 В переменного тока с выходным током от 100 мА до 1 А, в зависимости от того, какая мощность вам потребуется.
  • Конденсатор 1000 мкФ – 4700 мкФ
  • Конденсатор 1 мкФ
  • Два конденсатора по 100 нФ
  • Соединительные провода (в качестве соединительных проводов я использовал обычный провод)
  • Радиатор (дополнительно)

Шаг 2: И инструменты…

Также вам понадобятся инструменты для изготовления этого блока питания…

    • Паяльник
    • Кусачки
    • Инструмент для зачистки проводов
    • Вещь, которой можно резать дорожки для прототипов.
    • Горячий клей (Для закрепления компонентов и придания физически прочности и устойчивости блоку питания.)
    • И некоторые другие инструменты, которые могут вам пригодиться.

Ладно, думаю, на этом все, давайте за работу!

Шаг 3: Схема и прочее…

Если вам нужен блок питания на 5 вольт, просто замените LM7812 на регулятор LM7805.
Лист данных для LM78XX

Если вы собираетесь вытащить из этого блока питания около 1 ампера, вам понадобится радиатор для регулятора, иначе он будет генерировать очень высокие температуры и, возможно, сгорит…
Однако, если вы просто собираетесь вытащить несколько сто миллиампер (ниже 500мА) от него радиатор для регулятора не понадобится, но может немного нагреться.

Кроме того, вот схема…
Я также добавил светодиод, чтобы убедиться, что блок питания работает. При желании можно добавить светодиод.

Шаг 4: Сделай это!

Убедитесь, что у вас хорошие паяные соединения и нет перемычек, иначе ваш блок питания не будет работать!

Шаг 5: Проверьте!

После сборки блока питания проверьте его с помощью мультиметра, чтобы убедиться в отсутствии перемычек припоя.

После того, как вы протестировали его, поместите его в пластиковую коробку или что-нибудь еще, чтобы защитить вас от ударов.
Но не включайте блок питания, как я, это очень опасно из-за сетевого напряжения на трансформаторе, вас или кого-то может сильно ударить током!

У моего блока питания выходное напряжение 11,73 В, не так уж и плохо, мне не нужно, чтобы оно было именно 12 В…

Шаг 6: Готово…

 

Источник: Учебники

 

Нравится:

Нравится Загрузка.

Author:

Добавить комментарий

Ваш адрес email не будет опубликован.