Регулятор тока и напряжения для зарядного устройства: Регулятор напряжения зарядного устройства. Зарядные устройства для аккумуляторных батарей

Содержание

Тиристорный регулятор зарядного тока. Простое тиристорное зарядное устройство

Известно, что в процессе эксплуатации аккумуляторов их пластины могут сульфатироваться, что приводит к выходу аккумулятора из строя. Если производить заряд импульсным ассиметричным током, то возможно восстановление таких батарей и продление срока их службы, при этом токи заряда и разряда должны быть установлены 10: 1. Мной изготовлено зарядное устройство, которое может работать в 2х режимах. Первый режим обеспечивает обычный заряд аккумуляторов постоянным током до 10 А. Величина зарядного тока устанавливается тиристорными регуляторами. Второй режим (Вк 1 выключен, Вк 2 включён) обеспечивает импульсный ток заряда 5А и ток разряда 0,5А.

Рассмотрим работу схемы (рис. 1) в первом режиме. Переменное напряжение 220 В поступает на понижающий трансформатор Тр1. Во вторичной обмотке образуются два напряжения по 24В относительно средней точки. Удалось найти трансформатор со средней точкой во вторичной обмотке, что даёт возможность сократить количество диодов в выпрямителях, создать запас по мощности и облегчить тепловой режим. Переменное напряжение со вторичной обмотки трансформатора поступает на выпрямитель на диодах D6, D7. Плюс со средней точки трансформатора поступает на резистор R8, который ограничивает ток стабилитрона Д1. Стабилитрон Д1 определяет рабочее напряжение схемы. На транзисторах Т1 и Т2 собран генератор управления тиристорами. Конденсатор С1 заражается по цепи: плюс питания, переменный резистор R3, R1, С1, минус. Скорость заряда конденсатора С1 регулируется переменным резистором R3. Конденсатор С1 разряжается по цепи: эмиттер – коллектор Т1, база — эмиттер Т2, R4 мину конденсатора. Транзисторы Т1 и Т2 открываются и положительный импульс с эмиттера Т2 через ограничительный резистор R7 и диоды развязки D4 — D5 поступает на управляющие электроды тиристоров. При этом выключатель Вк 1 включён, Вк 2 выключен. Тиристоры в зависимости минусовой фазы переменного напряжения поочерёдно открываются, и минус каждого полупериода поступает на минус аккумулятора. Плюс со средней точки трансформатора через амперметра на плюс аккумулятора. Резисторы R5 и R6 определяют режим работы транзисторов Т1-2. R4 является нагрузкой эмиттера Т2 на котором выделяется положительный импульс управления. R2 — для более стабильной работы схемы (в некоторых случаях можно пренебречь).

Работа схемы ЗУ во втором режиме (Вк1 – выключен; Вк2 – включен). Выключенный Вк1 обрывает цепь управления тиристора D3, при этом он остается постоянно закрыт. В работе остаётся один тиристор D2, который выпрямляет только один полупериод и выдает импульс заряда во время одного полупериода. Во время холостого второго полупериода происходит разряд аккумулятора через включённый Вк2. Нагрузкой служит лампочка накаливания 24В х 24 Вт или 26В х 24Вт (при напряжение на ней 12В она потребляет ток 0.5 А). Лампочка выведена наружу за корпус, чтобы не нагревать конструкцию. Значение зарядного тока устанавливается регулятором R3 по амперметру. Учитывая, что при зарядке батареи часть тока протекает через нагрузку Л1(10%). То показания амперметра должны соответствовать 1,8А (для импульсного зарядного тока 5А). так как амперметр имеет инертность и показывает усредненное значение тока за период времени, а заряд производится в течение половины периода.



Детали и конструкция ЗУ. Трансформатор подойдёт любой с мощностью не менее 150 Вт и напряжением во вторичной обмотке 22 – 25 В. Если использовать трансформатор без средней точки во вторичной обмотке, то тогда надо из схемы исключить все элементы второго полупериода. (Вк1, D5,D3). Схема будет полностью работоспособна в обоих режимах, только в первом будет работать на одном полупериоде. Тиристоры можно использовать КУ202 на напряжение не ниже 60В. Их можно установить на радиатор без изоляции друг от друга. Диоды Д4-7 любые на рабочее напряжение не менее 60В. Транзисторы можно заменить на германиевые низкочастотные с соответствующей проводимостью. работает на любых парах транзисторов: П40 – П9; МП39 – МП38; КТ814 – КТ815 и т.д. Стабилитрон Д1 любой на 12–14В. Можно соединить два последовательно для набора нужного напряжения. В качестве амперметра мной использована головка милиамперметра на 10мА, 10 делений. Шунт подобран экспериментально, намотан проводом 1.2мм без каркаса на диаметр 8мм 36 витков.



Наладка зарядного устройства. Если собрано правильно, работает сразу. Иногда надо установить границы регулирования Мин – Макс. подбором С1, обычно в сторону увеличения. Если есть провалы регулирования подобрать R3. Обычно подключал в качестве нагрузки для регулировки мощную лампочку от диапроектора 24В х 300Вт. В разрыв цепи заряда аккумулятора желательно поставить предохранитель на 10А.

Обсудить статью ЗАРЯДНОЕ ДЛЯ АККУМУЛЯТОРА

Необходимость заряда машинного аккумулятора появляется у наших соотечественников регулярно. Кто-то делает это по причине разряда батареи, кто-то — в рамках технического обслуживания. В любом случае, наличие зарядного устройства (ЗУ) во многом облегчает эту задачу. Подробнее о том, что представляет собой тиристорное зарядное устройство для автомобильного аккумулятора и как изготовить такой девайс по схеме — читайте ниже.

Описание тиристорного ЗУ

Тиристорное зарядное устройство являет собой девайс с электронным управлением зарядным током. Такие девайсы производятся на основе тиристорного регулятора мощности, который является фазоимпульсным. В устройстве ЗУ такого типа нет дефицитных компонентов, а если все его детали будут целыми, то его даже не придется настраивать после изготовления.

С помощью такого ЗУ можно заряжать аккумулятор транспортного средства током от нуля до десяти ампер. Помимо этого, оно может применяться в качестве регулируемого источника питания для тех или иных приборов, к примеру, паяльника, переносной лампы и т.д. По своей форме зарядный ток очень похож на импульсный, а последний, в свою очередь, позволяет продлить ресурс эксплуатации аккумулятора. Использование тиристорного ЗУ допускается в температурном диапазоне от -35 до +35 градусов.

Схема

Если вы решите соорудить тиристорное ЗУ своими руками, то можно применять множество различных схем. Рассмотрим описание на примере схемы 1. Тиристорное ЗУ в данном случае питается от обмотки 2 трансформаторного узла через диодный мост VDI+VD4. Элемент управления выполнен в виде аналога однопереходного транзистора. В данном случае, при помощи переменного резисторного элемента можно регулировать время, на протяжении которого будет осуществляться заряд конденсаторного компонента С2. Если положение этой детали будет крайним правым, то показатель зарядного тока будет наибольшим, и наоборот. Благодаря диоду VD5 осуществляется защита управляющей цепи тиристора VS1.

Плюсы и минусы

Основное преимущество такого прибора — это качественная зарядка током, которая позволит не разрушить, а увеличить ресурс эксплуатации аккумулятора в целом.

Если нужно, ЗУ может быть дополнено всевозможными автоматическими компонентами, предназначенными для таких опций:

  • прибор сможет отключиться в автоматическом режиме, когда зарядка будет завершена;
  • поддержание оптимального напряжения аккумулятора в случае его длительного хранения без эксплуатации;
  • еще одна функция, которую можно расценивать как преимущество — тиристорное ЗУ может сообщать автовладельцу о том, правильно ли он подключил полярность АКБ, а это очень важно при зарядке;
  • также в случае добавления дополнительных компонентов может быть реализовано еще одно преимущество — защита узла от замыканий выхода (автор видео — канал Blaze Electronics).

Что касается непосредственно недостатков, то к ним можно отнести колебания зарядного тока, если напряжение в бытовой сети будет нестабильно. Кроме того, как и другие тиристорные регуляторы, такое ЗУ может создавать определенные помехи для передачи сигнала. Чтобы не допустить этого, при изготовлении ЗУ необходимо дополнительно установить LC-фильтр. Такие фильтрующие элементы, например, используются в сетевых блоках питания.

Как сделать ЗУ самостоятельно?

Если говорить о производстве ЗУ своими руками, то этот процесс рассмотрим на примере схемы 2. В данном случае тиристорное управления осуществляется посредством сдвига фаз. Весь процесс мы описывать не будем, поскольку он индивидуален в каждом случае, в зависимости от добавления дополнительных компонентов в конструкцию. Ниже рассмотрим основные нюансы, которые следует учесть.

В нашем случае устройство собирается на обычном оргалите, в том числе и конденсатор:

  1. Диодные элементы, отмеченные на схеме как VD1 и VD 2, а также тиристоры VS1 и VS2, следует установить на теплоотводе, монтаж последних допускается на общем теплоотводе.
  2. Элементы сопротивления R2, а также R5, следует использовать не менее, чем по 2 ватта.
  3. Что касается трансформатора, то его можно приобрести в магазине либо взять из паяльной станции (качественные трансформаторы можно найти в старых советских паяльниках). Можно перемотать вторичный провод на новый сечением около 1.8 мм на 14 вольт. В принципе, можно использовать и более тонкие провода, поскольку этой мощности будет достаточно.
  4. Когда все элементы будут у вас на руках, всю конструкцию можно установить в один корпус. Например, для этого можно взять старый осциллограф. В этом случае мы не будем давать какие-либо рекомендации, поскольку корпус — это личное дело каждого.
  5. После того, как зарядный прибор будет готов, необходимо проверить его работоспособность. Если у вас есть сомнения касательно качества сборки, то мы бы порекомендовали произвести диагностику прибора на более старой АКБ, которую в случае чего не жалко будет выбросить. Но если вы все сделали правильно, в соответствии со схемой, то проблем в плане эксплуатации возникнуть не должно. Учтите и то, что изготовленное ЗУ не нуждается в настройке, оно изначально должно работать правильно.

Видео «Простое тиристорное ЗУ своими руками»

Как сделать простое тиристорное ЗУ своими руками — смотрите на видео ниже (автор ролика — канал Blaze Electronics).

Устройство с электронным управлением зарядным током, выполненно на базе тиристорного фазоимпульсного регулятора мощности.
Оно не содержит дефицитных деталей, при заведомо рабочих деталях не требует налаживания.
Зарядное устройство позволяет заряжать авто аккумуляторные батареи током от 0 до 10 А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы.
Зарядный ток по форме близок к импульсному, кой, как считается, содействует продлению срока службы батареи.
Устройство работоспособно при температуре окружающей среды от — 35 °С до + 35°С.
Схема прибора показана на рис. 2.60.
Зарядное устройство представляет собой тиристорный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный moctVDI + VD4.

Узел управления тиристором исполнен на аналоге однопереходного транзистора VTI, VT2. Время, в течение которого конденсатор С2 заряжается до переключения однопереходного транзистора, можно регулировать переменным резистором R1.При крайнем правом по схеме положении его движка зарядный ток станет максимальным, и наоборот.
Диод VD5 оберегает управляющую цепь тиристора VS1 от обратного напряжения, появляющегося при включении тиристора.

Зарядное приспособление в дальнейшем можно дополнить разными автоматическими узлами (отключение по завершении зарядки, поддержание нормального напряжения батареи при продолжительном ее хранении, сигнализации о верной полярности подключения батареи, защита от замыканий выхода и т. д.).
К недочетам прибора можно отнести — колебания зарядного тока при нестабильном напряжении электроосветительной сети.
Как и все подобные тиристорные фазоимпульсные регуляторы, устройство создает помехи радиоприему. Для борьбы с ними надлежит предусмотреть сетевой LC- фильтр, подобный использующемуся в импульсных сетевых блоках питания.

Конденсатор С2 — К73-11, емкостью от 0,47 до 1 мкФ, или К73-16, К73-17, К42У-2, МБГП.
Транзистор КТ361А заменим на КТ361Б — КТ361Ё, КТ3107Л, КТ502В, КТ502Г, КТ501Ж — KT50IK, а КТ315Л — на КТ315Б + КТ315Д КТ312Б, КТ3102Л, КТ503В + КТ503Г, П307. Вместо КД105Б подойдут диоды КД105В, КД105Г или Д226 с любым буквенным индексом.
Переменный резистор R1 — СП-1, СПЗ-30а или СПО-1.
Амперметр РА1 — любой постоянного тока со шкалой на 10 А. Его можно сделать самостоятельно из любого миллиамперметра, подобрав шунт по образцовому амперметру.
Предохраннтель F1 — плавкий, но удобно применять и сетевой автомат на 10 А либо автомобильный биметаллический на такой же ток.
Диоды VD1 + VP4 могут быть любыми на прямой ток 10 А и обратное напряжение не менее 50 В (серии Д242, Д243, Д245, КД203, КД210, КД213).
Диоды выпрямителя и тиристор ставят на теплоотводы, каждый полезной площадью возле 100 см*. Для улучшения теплового контакта устройств с теплоотводами лучше применять теплопроводные пасты.
Заместо тиристора КУ202В подходят КУ202Г — КУ202Е; проверено на практике, что устройство нормально действует и с более мощными тиристорами Т-160, Т-250.
Надлежит заметить, что в качестве теплоотвода тиристора возможно применять непосредственно железную стенку кожуха. Тогда, правда, на корпусе будет минусовой вывод устройства, что в общем-то нежелательно из-за угрозы нечаянных замыканий выходного плюсового провода на корпус. Если укреплять тиристор через слюдяную прокладку, угрозы замыкания не будет, но ухудшится отдача тепла от него.
В приборе может быть применен готовый сетевой понижающий трансформатор нужной мощности с напряжением вторичной обмотки от 18 до 22 В.
Ежели у трансформатора напряжение на вторичной обмотке более 18 В, резистор R5 надлежит сменить другим, наибольшего сопротивления (к примеру, при 24 * 26 В сопротивление резистора надлежит увеличить до 200 Ом).
В случае, когда вторичная обмотка трансформатора имеет отвод от середины, или есть две однообразные обмотки и напряжение каждой находится в указанных пределах, то выпрямитель лучше исполнить по обычной двуполупериодной схеме на 2-ух диодах.
При напряжении вторичной обмотки 28 * 36 В можно вообще отказаться от выпрямителя — его роль станет одновременно играть тиристор VS1 (выпрямление -однополупериодное). Для такового варианта блока питания нужно между резистором R5 и плюсовым проводом подключить разделительный диод КД105Б либо Д226 с любым буквенным индексом (катодом к резистору R5). Выбор тиристора в таковой схеме станет ограничен — подходят только те, которые дозволяют работу под обратным напряжением (к примеру, КУ202Е).
Для описанного устройства подойдет унифицированный трансформатор ТН-61. 3 его вторичных обмотки необходимо соединить согласно последовательно, при этом они способны отдать ток до 8 А.
Все детали прибора, кроме трансформатора Т1, диодов VD1 + VD4 выпрямителя, переменного резистора R1, предохранителя FU1 и тиристора VS1, смонтированы на печатной плате из фольгированного стеклотекстолита толщиной 1,5 мм.
Чертеж платы представлен в журнале радио № 11 за 2001 год.

Зарядное устройство для автомобильных аккумуляторов.

Ни для кого не ново, если скажу, что у любого автомобилиста в гараже должно быть зарядное устройство для аккумуляторной батареи. Конечно, его можно купить в магазине, но, столкнувшись с этим вопросом, пришел к выводу, заведомо не очень хорошее устройство по приемлемой цене брать не хочется. Встречаются такие, у которых ток заряда регулируется мощным переключателем, который добавляет или уменьшает количество витков во вторичной обмотке трансформатора, тем самым увеличивая или уменьшая зарядный ток, при этом прибор контроля тока в принципе отсутствует. Это наверно самый дешевый вариант зарядника заводского исполнения, ну а толковый девайс стоит не так уж и дешево, цена прямо-таки кусается, поэтому решил найти схему в интернете, и собрать ее самому. Критерии выбора были такие:

Простая схема, без лишних наворотов;
— доступность радиодеталей;
— плавная регулировка зарядного тока от 1 до 10 ампер;
— желательно чтобы это была схема зарядно-тренировочного устройства;
— не сложная наладка;
— стабильность работы (по отзывам тех, кто уже делал данную схему).

Поискав в интернете, наткнулся на промышленную схему зарядного устройства с регулирующими тиристорами.

Все типично: трансформатор, мост (VD8, VD9, VD13, VD14), генератор импульсов с регулируемой скважностью (VT1, VT2), тиристоры в качестве ключей (VD11, VD12), узел контроля заряда. Несколько упростив эту конструкцию, получим более простую схему:


На этой схеме нет узла контроля заряда, а остальное – почти то же самое: транс, мост, генератор, один тиристор, измерительные головки и предохранитель. Обратите внимание, что в схеме стоит тиристор КУ202, он немного слабоват, поэтому чтобы не допустить пробоя импульсами большого тока его необходимо установить на радиатор. Трансформатор — ватт на 150, а можно использовать ТС-180 от старого лампового телевизора.


Регулируемое зарядное устройство с током заряда 10А на тиристоре КУ202.

И еще одно устройство, не содержащее дефицитных деталей, с током заряда до 10 ампер. Оно представляет собой простой тиристорный регулятор мощности с фазоимпульсным управлением.

Узел управления тиристором собран на двух транзисторах. Время, за которое конденсатор С1 будет заряжаться до переключения транзистора, выставляется переменным резистором R7, которым, собственно, и выставляется величина зарядного тока аккумулятора. Диод VD1 служит для защиты управляющей цепи тиристора от обратного напряжения. Тиристор, также как и в предыдущих схемах, ставится на хороший радиатор, или на небольшой с охлаждающим вентилятором. Печатная плата узла управления выглядит следующим образом:


Схема не плохая, но в ней есть некоторые недостатки:
— колебания напряжения питания приводят к колебанию зарядного тока;
— нет защиты от короткого замыкания кроме предохранителя;
— устройство дает помехи в сеть (лечится с помощью LC-фильтра).

Зарядно-восстанавливающее устройство для аккумуляторных батарей.

Это импульсное устройство может заряжать и восстанавливать практически любые типы аккумуляторов. Время заряда зависит от состояния батареи и колеблется в пределах 4 — 6 часов. За счет импульсного зарядного тока происходит десульфатация пластин аккумулятора. Смотрим схему ниже.


В этой схеме генератор собран на микросхеме, что обеспечивает более стабильную его работу. Вместо NE555 можно использовать российский аналог — таймер 1006ВИ1 . Если кому не нравится КРЕН142 по питанию таймера, так ее можно заменить обычным параметрическим стабилизатором, т.е. резистором и стабилитроном с нужным напряжением стабилизации, а резистор R5 уменьшить до 200 Ом . Транзистор VT1 — на радиатор в обязательном порядке, греется сильно. В схеме применен трансформатор со вторичной обмоткой на 24 вольта. Диодный мост можно собрать из диодов типа Д242 . Для лучшего охлаждения радиатора транзистора VT1 можно применить вентилятор от компьютерного блока питания или охлаждения системного блока.

Восстановление и зарядка аккумулятора.

В результате неправильной эксплуатации автомобильных аккумуляторов пластины их могут сульфатироваться, и он выходит из строя.
Известен способ восстановления таких батарей при заряде их «ассимметричным» током. При этом соотношение зарядного и разрядного тока выбрано 10:1 (оптимальный режим). Этот режим позволяет не только восстанавливать засульфатированные батареи аккумуляторов, но и проводить профилактическую обработку исправных.



Рис. 1. Электрическая схема зарядного устройства

На рис. 1 приведено простое зарядное устройство, рассчитанное на использование вышеописанного способа. Схема обеспечивает импульсный зарядный ток до 10 А (используется для ускоренного заряда). Для восстановления и тренировки аккумуляторов лучше устанавливать импульсный зарядный ток 5 А. При этом ток разряда будет 0,5 А. Разрядный ток определяется величиной номинала резистора R4.
Схема выполнена так, что заряд аккумулятора производится импульсами тока в течение одной половины периода сетевого напряжения, когда напряжение на выходе схемы превысит напряжение на аккумуляторе. В течение второго полупериода диоды VD1, VD2 закрыты и аккумулятор разряжается через нагрузочное сопротивление R4.

Значение зарядного тока устанавливается регулятором R2 по амперметру. Учитывая, что при зарядке батареи часть тока протекает и через резистор R4 (10%), то показания амперметра РА1 должны соответствовать 1,8 А (для импульсного зарядного тока 5 А), так как амперметр показывает усредненное значение тока за период времени, а заряд производится в течение половины периода.

В схеме предусмотрена защита аккумулятора от неконтролируемого разряда в случае случайного исчезновения сетевого напряжения. В этом случае реле К1 своими контактами разомкнет цепь подключения аккумулятора. Реле К1 применено типа РПУ-0 с рабочим напряжением обмотки 24 В или на меньшее напряжение, но при этом последовательно с обмоткой включается ограничительный резистор.

Для устройства можно использовать трансформатор мощностью не менее 150 Вт с напряжением во вторичной обмотке 22…25 В.
Измерительный прибор РА1 подойдет со шкалой 0…5 А (0…3 А), например М42100. Транзистор VT1 устанавливаются на радиатор площадью не менее 200 кв. см, в качестве которого удобно использовать металлический корпус конструкции зарядного устройства.

В схеме применяется транзистор с большим коэффициентом усиления (1000…18000), который можно заменить на КТ825 при изменении полярности включения диодов и стабилитрона, так как он другой проводимости (см. рис. 2). Последняя буква в обозначении транзистора может быть любой.



Рис. 2. Электрическая схема зарядного устройства

Для защиты схемы от случайного короткого замыкания на выходе установлен предохранитель FU2.
Резисторы применены такие R1 типа С2-23, R2 — ППБЕ-15, R3 — С5-16MB, R4 — ПЭВ-15, номинал R2 может быть от 3,3 до 15 кОм. Стабилитрон VD3 подойдет любой, с напряжением стабилизации от 7,5 до 12 В.
обратного напряжения.

Какой провод лучше использовать от зарядного устройства до аккумулятора.

Конечно, лучше брать гибкий медный многожильный, ну а сечение нужно выбрать из расчета какой максимальный ток будет проходить по этим проводам, для этого смотрим табличку:

Если вас интересует схемотехника импульсных зарядно-восстановительных устройств с применением таймера 1006ВИ1 в задающем генераторе — прочтите эту статью:

Обычно подзарядка аккумулятора в транспортном средстве происходит во время работы генератора. Однако, при длительном простое автомобиля, на морозе или при наличии неисправностей батарея может разрядиться до такой степени, что становится не способной обеспечить ток, необходимый для запуска двигателя. И здесь на помощь приходит зарядное устройство для автомобильного аккумулятора. Однако стоимость зарядного устройства сильно «бьёт» по карману, и поэтому я решил сам собрать зарядное устройство. Оно позволяет заряжать автомобильные аккумуляторные батареи током от 0 до 10А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы, устройства для резки пенопласта, автомобильного насоса-компрессора для подкачки колёс. Устройство не содержит дефицитных деталей и при исправных элементах не требует налаживания. Для данной схемы использован сетевой понижающий трансформатор ТС270-1(выдран из старого лампового телевизора) с напряжением вторичной обмотки 17В. Без внесения изменений подойдет любой с напряжением на вторичной обмотке от 17 до 22В. Корпус использован от блока управления станции катодной защиты газопровода КСС-600(охлаждение в корпусе естественное). В данном зарядном устройстве есть возможность, при возникшей необходимости, установить схему для зарядки малогабаритных аккумуляторов (типа Д-0.55С и др). При этом контроль зарядного тока осуществляется установленным миллиамперметром.
Принципиальная схема устройства показана на фото ниже.

Принципиальная схема устройства


Она представляет собой традиционный тринисторный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный мост VD1-4. Узел управления тринистором выполнен на аналоге однопереходного транзистора VT1,VT2. Время, в течение которого конденсатор С1 заряжается до переключения можно регулировать переменным резистором R1. При крайнем правом по схеме положении его движка зарядный ток будет максимальным, и наоборот. Диод VD5 защищает управляющую цепь тринистора от обратного напряжения, возникающего при включении тринистора VS1. Печатная плата устройства и монтажная плата на фото ниже.


Печатная плата


Монтажная плата


Если у готового, используемого трансформатора на вторичной обмотке более 17В, резистор R5 следует заменить другим, большего сопротивления (например, при 24…26В до 200Ом). В случае, когда вторичная обмотка имеет отвод от середины, или есть две одинаковые обмотки и напряжение каждой находится в указанных пределах, то выпрямитель лучше выполнить по стандартной двухполупериодной схеме на двух диодах.
А при сборке выпрямителя точно по схеме подойдут следующие детали :
С1 — К73-11, емкостью от 0,47 до 1мкФ, а также К73-16, К42У-2, МБГП.
Диоды VD1 — VD4 могут быть любыми на прямой ток 10А и обратное напряжение не менее 50В (это серии Д242, КД203, КД210, КД213).
Вместо тринистора Т10-25 подойдут КУ202В — КУ202Е; проверено на практике, что устройство нормально работает и с более мощными тринисторами Т-160, Т-250 (В моём случае это Т10-25).
Транзистор КТ361А заменим на КТ361Б — КТ361Е, КТ3107, КТ502В, КТ502Г, КТ501Ж — КТ501К, а КТ315А — на КТ315Б — КТ315Д, КТ312Б, КТ3102А, КТ503В — КТ503Г, П307.
Вместо диода КД105Б подойдут диоды КД105В, КД105 или Д226 с любым буквенным индексом.
Переменный резистор R1 — СП-1, СП3-30а или СПО-1.
Амперметр РА1 — любой постоянного тока со шкалой на 10А либо изготовить самому из любого миллиамперметра, подобрав к нему шунт.
Вольтметр РV1 — любой постоянного тока со шкалой на 16Вольт.
Предохранитель FU1 – плавкий на 3А, FU2 – плавкий на 10А.
Диоды и тринистор необходимо установить на теплоотводы, каждый полезной площадью около 100см². Для улучшения теплового контакта данных деталей с теплоотводами желательно использовать теплопроводные пасты.
Больше фото можно посмотреть в моём блоге




Похожие статьи

Регулятор тока на транзисторе для зарядного устройства

Разделы сайта

DirectAdvert NEWS

Друзья сайта

Рекламный блок

Рекламный блок

Рекламный блок

Статистика

Ни для кого не ново, если скажу, что у любого автомобилиста в гараже должно быть зарядное устройство для аккумуляторной батареи. Конечно, его можно купить в магазине, но, столкнувшись с этим вопросом, пришел к выводу, заведомо не очень хорошее устройство по приемлемой цене брать не хочется. Встречаются такие, у которых ток заряда регулируется мощным переключателем, который добавляет или уменьшает количество витков во вторичной обмотке трансформатора, тем самым увеличивая или уменьшая зарядный ток, при этом прибор контроля тока в принципе отсутствует. Это наверно самый дешевый вариант зарядника заводского исполнения, ну а толковый девайс стоит не так уж и дешево, цена прямо-таки кусается, поэтому решил найти схему в интернете, и собрать ее самому. Критерии выбора были такие:

– простая схема, без лишних наворотов;
– доступность радиодеталей;
– плавная регулировка зарядного тока от 1 до 10 ампер;
– желательно чтобы это была схема зарядно-тренировочного устройства;
– не сложная наладка;
– стабильность работы (по отзывам тех, кто уже делал данную схему).

Поискав в интернете, наткнулся на промышленную схему зарядного устройства с регулирующими тиристорами.

Все типично: трансформатор, мост (VD8, VD9, VD13, VD14), генератор импульсов с регулируемой скважностью (VT1, VT2), тиристоры в качестве ключей (VD11, VD12), узел контроля заряда. Несколько упростив эту конструкцию, получим более простую схему:

На этой схеме нет узла контроля заряда, а остальное – почти то же самое: транс, мост, генератор, один тиристор, измерительные головки и предохранитель. Обратите внимание, что в схеме стоит тиристор КУ202, он немного слабоват, поэтому чтобы не допустить пробоя импульсами большого тока его необходимо установить на радиатор. Трансформатор – ватт на 150, а можно использовать ТС-180 от старого лампового телевизора.

И еще одно устройство, не содержащее дефицитных деталей, с током заряда до 10 ампер. Оно представляет собой простой тиристорный регулятор мощности с фазоимпульсным управлением.

Узел управления тиристором собран на двух транзисторах. Время, за которое конденсатор С1 будет заряжаться до переключения транзистора, выставляется переменным резистором R7, которым, собственно, и выставляется величина зарядного тока аккумулятора. Диод VD1 служит для защиты управляющей цепи тиристора от обратного напряжения. Тиристор, также как и в предыдущих схемах, ставится на хороший радиатор, или на небольшой с охлаждающим вентилятором. Печатная плата узла управления выглядит следующим образом:

Схема не плохая, но в ней есть некоторые недостатки:
– колебания напряжения питания приводят к колебанию зарядного тока;
– нет защиты от короткого замыкания кроме предохранителя;
– устройство дает помехи в сеть (лечится с помощью LC-фильтра).

Это импульсное устройство может заряжать и восстанавливать практически любые типы аккумуляторов. Время заряда зависит от состояния батареи и колеблется в пределах 4 – 6 часов. За счет импульсного зарядного тока происходит десульфатация пластин аккумулятора. Смотрим схему ниже.

В этой схеме генератор собран на микросхеме, что обеспечивает более стабильную его работу. Вместо NE555 можно использовать российский аналог – таймер 1006ВИ1. Если кому не нравится КРЕН142 по питанию таймера, так ее можно заменить обычным параметрическим стабилизатором, т.е. резистором и стабилитроном с нужным напряжением стабилизации, а резистор R5 уменьшить до 200 Ом. Транзистор VT1 – на радиатор в обязательном порядке, греется сильно. В схеме применен трансформатор со вторичной обмоткой на 24 вольта. Диодный мост можно собрать из диодов типа Д242. Для лучшего охлаждения радиатора транзистора VT1 можно применить вентилятор от компьютерного блока питания или охлаждения системного блока.

В результате неправильной эксплуатации автомобильных аккумуляторов пластины их могут сульфатироваться, и он выходит из строя.
Известен способ восстановления таких батарей при заряде их «ассимметричным» током. При этом соотношение зарядного и разрядного тока выбрано 10:1 (оптимальный режим). Этот режим позволяет не только восстанавливать засульфатированные батареи аккумуляторов, но и проводить профилактическую обработку исправных.

На рис. 1 приведено простое зарядное устройство, рассчитанное на использование вышеописанного способа. Схема обеспечивает импульсный зарядный ток до 10 А (используется для ускоренного заряда). Для восстановления и тренировки аккумуляторов лучше устанавливать импульсный зарядный ток 5 А. При этом ток разряда будет 0,5 А. Разрядный ток определяется величиной номинала резистора R4.
Схема выполнена так, что заряд аккумулятора производится импульсами тока в течение одной половины периода сетевого напряжения, когда напряжение на выходе схемы превысит напряжение на аккумуляторе. В течение второго полупериода диоды VD1, VD2 закрыты и аккумулятор разряжается через нагрузочное сопротивление R4.

Значение зарядного тока устанавливается регулятором R2 по амперметру. Учитывая, что при зарядке батареи часть тока протекает и через резистор R4 (10%), то показания амперметра РА1 должны соответствовать 1,8 А (для импульсного зарядного тока 5 А), так как амперметр показывает усредненное значение тока за период времени, а заряд производится в течение половины периода.

В схеме предусмотрена защита аккумулятора от неконтролируемого разряда в случае случайного исчезновения сетевого напряжения. В этом случае реле К1 своими контактами разомкнет цепь подключения аккумулятора. Реле К1 применено типа РПУ-0 с рабочим напряжением обмотки 24 В или на меньшее напряжение, но при этом последовательно с обмоткой включается ограничительный резистор.

Для устройства можно использовать трансформатор мощностью не менее 150 Вт с напряжением во вторичной обмотке 22. 25 В.
Измерительный прибор РА1 подойдет со шкалой 0. 5 А (0. 3 А), например М42100. Транзистор VT1 устанавливаются на радиатор площадью не менее 200 кв. см, в качестве которого удобно использовать металлический корпус конструкции зарядного устройства.

В схеме применяется транзистор с большим коэффициентом усиления (1000. 18000), который можно заменить на КТ825 при изменении полярности включения диодов и стабилитрона, так как он другой проводимости (см. рис. 2). Последняя буква в обозначении транзистора может быть любой.

Для защиты схемы от случайного короткого замыкания на выходе установлен предохранитель FU2.
Резисторы применены такие R1 типа С2-23, R2 — ППБЕ-15, R3 — С5-16MB, R4 — ПЭВ-15, номинал R2 может быть от 3,3 до 15 кОм. Стабилитрон VD3 подойдет любой, с напряжением стабилизации от 7,5 до 12 В.
обратного напряжения.

Конечно, лучше брать гибкий медный многожильный, ну а сечение нужно выбрать из расчета какой максимальный ток будет проходить по этим проводам, для этого смотрим табличку:

Если вас интересует схемотехника импульсных зарядно-восстановительных устройств с применением таймера 1006ВИ1 в задающем генераторе – прочтите эту статью:

Иногда собирая самодельное зарядное устройство для автомобильного аккумулятора, мы не задумываемся о такой важной функции, как ограничитель тока. Зачем нужен токовый ограничитель ? Это своего рода регулятор, который позволяет уменьшить или увеличить ток заряда аккумулятора, при этом напряжение зарядки остается прежним.

Такой функцией снабжены все дорогие зарядные устройства, но на рынке немало зарядников, которые задают ток заряда автоматическим образом, но это не есть хорошо, поскольку человеческие мозги лучше любого контроллера и выставить нужны ток заряда аккумулятора вручную более желательно.

Схема довольно проста, силовой частью является транзистор KT837, им управляет транзистор средней мощности КТ814. Максимальный отдаваемый ток такого ограничителя составляет до 2-х Ампер, но разумеется это не предел для схемы. Только заменой резистора 1Ом и силового транзистора КТ837 можно снять до 7-10 Ампер.

Для этого резистор нужно будет заменить на 0,1-0,33Ом с мощностью не менее 20 Ватт, можно и на 10, но перегрев идет очень сильный. Транзистор можно заменить на КТ818ГМ или импортный аналог. Транзистор обязательно устанавливают на теплоотвод, возможно будет нужда в принудительном охлаждении.
Резистор R2 для регулировки выходного тока желательно использовать на 1 ватт.

Стабилитрон можно заменить на импортный, желательно с мощностью в 1 ватт. Устройством можно дополнить любой самодельный блок питания, который не имеет ограничителя по току.

JLCPCB — это крупнейшая фабрика PCB прототипов в Китае. Для более чем 600000 заказчиков по всему миру мы делаем свыше 15000 онлайн заказов на прототипы и малые партии печатных плат каждый день!

Anything in here will be replaced on browsers that support the canvas element

Три схемы простых регуляторов тока

В сети очень много схем регуляторов напряжения для самых разных целей, а вот с регуляторами тока дела обстоят иначе. И я хочу немного восполнить этот пробел, и представить вам три простые схемы регуляторов постоянного тока, которые стоит взять на вооружение, так, как они универсальны и могут быть использованы во многих самодельных конструкциях.

Регуляторы тока по идее не многим отличается от регуляторов напряжения. Прошу не путать регуляторы тока со стабилизаторами тока, в отличии от первых они поддерживают стабильный выходной ток не зависимо от напряжения на входе и выходной нагрузки.

Стабилизатор тока – неотемлимая часть любого нормального лабораторного блока питания или зарядного устройства, предназначен он для ограничения тока подаваемого на нагрузку. В этой статье мы рассмотрим пару стабилизаторов и один регулятор общего применения.

Во всех трех вариантах в качестве датчика тока использованы шунты, по сути низкоомные резисторы. Для увеличения выходного тока любой из перечисленных схем нужно будет снизить сопротивление шунта. Нужное значение тока выставляют вручную, как правило вращением переменного резистора. Все три схемы работают в линейном режиме, а значит силовой транзистор при больших нагрузках будет сильно нагреваться.

Первая схема отличается максимальной простотой и доступностью компонентов. Всего два транзистора, один из них управляющий, второй является силовым, по которому и протекает основной ток.

Датчик тока представляет из себя низкоомный проволочный резистор. При подключении выходной нагрузки на этом резисторе образуется некоторое падение напряжения, чем мощнее нагрузка, тем больше падение. Такого падения напряжения достаточно для срабатывания управляющего транзистора, чем больше падение, тем больше приоткрыт транзистор. Резистор R1, задает напряжение смещения для силового транзистора, именно благодаря ему основной транзистор находится в открытом состоянии. Ограничение тока происходит за счет того, что напряжение на базе силового транзистора, которое было образовано резистором R1 грубо говоря затухаеться или замыкается на массу питания через открытый переход маломощного транзистора, этим силовой транзистор будет закрываться, следовательно, ток протекающий по нему уменьшается вплоть до полного нуля.

Резистор R1 по сути обычный делитель напряжения, которым мы можем задать как бы степень приоткрытия управляющего транзистора, а следовательно, управлять и силовым транзистором ограничивая ток протекающий по нему.

Вторая схема построена на базе операционного усилителя. Ее неоднократно использовал в зарядных устройствах для автомобильного аккумулятора. В отличии от первого варианта – эта схема является стабилизатором тока.

Как и в первой схеме тут также имеется датчик тока (шунт), операционный усилитель фиксирует падение напряжения на этом шунте, все по уже знакомой нам схеме. Операционный усилитель сравнивает напряжение на шунте с опорным, которое задается стабилитроном. Переменным резистором мы искусственно меняем опорное напряжение. Операционный усилитель в свою очередь постарается сбалансировать напряжение на входах путем изменения выходного напряжения.

Выход операционного усилителя управляет мощным полевым транзистором. То есть принцип работы мало чем отличается от первой схемы, за исключением того, что тут имеется источник опорного напряжения выполненный на стабилитроне.

Эта схема также работает в линейном режиме и силовой транзистор при больших нагрузках будет сильно нагреваться.

Последняя схема построена на базе популярной интегральной микросхеме стабилизатора LM317. Это линейный стабилизатор напряжения, но имеется возможность использовать микросхему в качестве стабилизатора тока.

Нужный ток задается переменным резистором. Недостатком схемы является то, что основной ток протекает именно по ранее указанному резистору и естественно тот нужен мощный, очень желательно использование проволочных резисторов.

Максимально допустимый ток для микросхемы LM317 1,5 ампера, увеличить его можно дополнительным силовым транзистором. В этом случае микросхема уже будет в качестве управляющей, поэтому нагреваться не будет, взамен будет нагреваться транзистор и от этого никуда не денешься.

Зарядное устройство для автомобильных аккумуляторов своими руками

 Кислотные аккумуляторы «не любят длительного пребывания без работы». Глубокий саморазряд бывает губителен для них. Процесс происходит в этом случае простой, но не очень приятный. Сульфатация, разрастание на электродах сернокислого свинца, приводит к образованию устойчивых отложений. В итоге, аккумулятор теряет свою емкость и способность к зарядке. Об этом мы более подробно рассказли в статье «Как заряжать аккумулятор автомобиля».
 Если автомобиль ставится на долгосрочную стоянку, то возникает проблема: что делать с аккумулятором. Его либо отдают кому-нибудь в работу, либо продают, что одинаково неудобно. В этом случае очень пригодится зарядное устройство для автомобильного аккумулятора.

Зарядное устройство для автомобильного аккумулятора из блока питания от компьютера своими руками

Переделка блока питания предельно проста и займёт у вас минимум времени.

Ниже приведена пошаговая инструкция изготовления зарядного устройства:

1. Отпаять все провода, идущие с выходов других источников (-5. В, -12 В, +5 В), кроме общего (GND) и +12 В.

2. Остаться у вас должны только жёлтые и чёрные.

3. Параллельно этим проводам подключить конденсатор 1000 мкФ х 25 В.

4. Отверстие в корпусе, через которое выходили наружу провода питания, использовались для установки клавишного выключателя (-220 В) с подсветкой (предварительно напильником придать отверстию нужную форму).

5. Последовательно жёлтому проводу поставить амперметр, ампер на 10-15.

6. Последовательно (желт.-чёр.) — поставить вольтметр на 15-20 В.

Кроме амперметра последовательно желтому проводу ещё следует поставить регулятор тока. Им может быть реостат, тиристорный регулятор, транзисторный или какой-нибудь другой. Схему регулятора приводить не буду, так как в интернете и в литературе их полно. В крайнем случае, поищите на Яндекс.

Вот и всё ! Зарядка для вашего аккумулятора готова. Желтый провод к «ПЛЮСУ», чёрный к «МИНУСУ». Ток зарядки задаете сами, в зависимости от типа и ёмкости вашего аккумулятора. Более подробно о типах аккумуляторов принципах их работы и процедуре зарядки можно посмотреть в разделе Аккумуляторная батарея кислотно, гелиевая (аккумулятор) обслуживание, характеристики, выбор.

Схема зарядного устройства для зарядки автомобильного аккумулятора (1 вариант)

Во-первых, приводим схему, а далее приведем ее описание и описание ее работы.

Со вторичной обмотки трансформатора Т1, ток в которой ограничен включением последовательно с первичной обмоткой балластного конденсатора (С1 или С1+С2), ток подается на диодно-тиристорный мост, нагрузкой которого является аккумуляторная батарея (GB1). В качестве регулирующего элемента применен автомобильный регулятор напряжения генератора (РНГ) на 14 В любого типа, предназначенный для генераторов с заземленной щеткой. Мною опробованы регулятор типа 121.3702 и интегральный -Я112А. При использовании «интегралки» выводы «Б» и «В» соединяются вместе и с «+» GB1. Вывод «Ш» соединяется с цепью управляющих электродов тиристоров. Таким образом, на аккумуляторной батарее поддерживается напряжение 14В при зарядном токе, определяемом емкостью конденсатора С2, которая ориентировочно рассчитывается по формуле:

где Iз — зарядный ток (А), U2 — напряжение вторичной обмотки при «нормальном»включении трансформатора (В), U1 — напряжение сети.

Трансформатор — любой, мощностью 150…250 ВА, с напряжением на вторичной обмотке 20…36 В. Диоды моста — любые на номинальный ток не менее 10 А. Тиристоры — КУ202 В, Г и т.д.

S1 служит для переключения режимов зарядки и хранения. Ток зарядки выбирается равным 0,1 от численного значения емкости аккумулятора, а ток хранения — 1…1.5А.

Если есть возможность, то периодически, примерно один раз в две недели, желательно производить разряд аккумуляторной батареи током 2Iз с контролем температуры электролита.

Настройки устройство практически не требует. Возможно, придется уточнить емкость конденсатора, контролируя ток амперметром. При этом необходимо замкнуть накоротко выводы 15 и 67 (Б, В и Ш).

Схема зарядного устройства для зарядки автомобильного аккумулятора (2 вариант)

 

Для открытия файла в лучшем разрешении скачайте на его к себе на компьютер.
 При подключении к зарядному устройству автомобильного аккумулятора, напряжение на клеммах которого меньше 16,5 В, на выводе 2 микросхемы А1.1 устанавливается напряжение достаточное для открывания транзистора VT1, транзистор открывается и реле P1 срабатывает, подключая контактами К1.1 к электросети через блок конденсаторов первичную обмотку трансформатора и начинается зарядка аккумулятора. Как только напряжение заряда достигнет 16,5 В, напряжение на выходе А1.1 уменьшится до величины, недостаточной для поддержания транзистора VT1 в открытом состоянии. Реле отключится и контакты К1.1 подключат трансформатор через конденсатор дежурного режима С4, при котором ток заряда будет равен 0,5 А. В таком состоянии схема зарядного устройства будет находиться, пока напряжение на аккумуляторе не уменьшится до 12,54 В. Как только напряжение установится равным 12,54 В, опять включится реле и зарядка пойдет заданным током. Предусмотрена возможность, в случае необходимости, переключателем S2 отключить систему автоматического регулирования.

Зарядное устройство для автомобильного аккумулятора своими руками

Тема автомобильных зарядных устройств интересна очень многим. Из статьи вы узнаете, как переделать компьютерный блок питания в полноценное зарядное устройство для автомобильных аккумуляторов. Оно будет представлять собой импульсное зарядное устройство для аккумуляторов с емкостью до 120 А·ч, то есть зарядка будет довольно мощной.

Собирать практически ничего не нужно – просто переделывается блок питания. К нему добавится всего один компонент.

Компьютерный блок питания имеет несколько выходных напряжений. Основные силовые шины имеют напряжение 3,3, 5 и 12 В. Таким образом, для работы устройства понадобится 12-вольтовая шина (желтый провод).

Для зарядки автомобильных аккумуляторов напряжение на выходе должно быть в районе 14,5-15 В, следовательно, 12 В от компьютерного блока питания явно маловато. Поэтому первым делом необходимо поднять напряжение на 12-вольтовой шине до уровня 14,5-15 В.

Затем, нужно собрать регулируемый стабилизатор тока или ограничитель, чтобы была возможность выставить необходимый ток заряда.

Зарядник, можно сказать, получится автоматическим. Аккумулятор будет заряжаться до заданного напряжения стабильным током. По мере заряда сила тока будет падать, а в самом конце процесса сравняется с нулем.

Приступая к изготовлению устройства необходимо найти подходящий блок питания. Для этих целей подойдут блоки, в которых стоит ШИМ-контроллер TL494 либо его полноценный аналог K7500.

Когда нужный блок питания найден, необходимо его проверить. Для запуска блока нужно соединить зеленый провод с любым из черных проводов.

Если блок запустился, нужно проверить напряжение на всех шинах. Если все в порядке, то нужно извлечь плату из жестяного корпуса.

После извлечения платы, необходимо удалить все провода, кроме двух черных, двух зеленого и идет для запуска блока. Остальные провода рекомендуется отпаять мощным паяльником, к примеру, на 100 Вт.

На этом этапе потребуется все ваше внимание, поскольку это самый важный момент во всей переделке. Нужно найти первый вывод микросхемы (в примере стоит микросхема 7500), и отыскать первый резистор, который применен от этого вывода к шине 12 В.

На первом выводе расположено много резисторов, но найти нужный — не составит труда, если прозвонить все мультиметром.

После нахождения резистора (в примере он на 27 кОм), необходимо отпаять только один вывод. Чтобы в дальнейшем не запутаться, резистор будет называться Rx.

Теперь необходимо найти переменный резистор, скажем, на 10 кОм. Его мощность не важна. Нужно подключить 2 провода длиной порядка 10 см каждый таким образом:

Один из проводов необходимо соединить с отпаянным выводом резистора Rx, а второй припаять к плате в том месте, откуда был выпаян вывод резистора Rx. Благодаря этому регулируемому резистору можно будет выставлять необходимое выходное напряжение.

Стабилизатор или ограничитель тока заряда очень важное дополнение, которое должно иметься в каждом зарядном устройстве. Этот узел изготавливается на базе операционного усилителя. Тут подойдут практически любые «операционники». В примере задействован бюджетный LM358. В корпусе этой микросхемы два элемента, но необходим только один из них.

Пару слов о работе ограничителя тока. В этой схеме операционный усилитель применяется в качестве компаратора, который сравнивает напряжение на резисторе с низким сопротивлением с опорным напряжением. Последнее задается при помощи стабилитрона. А регулируемый резистор теперь меняет это напряжение.

При изменении величины напряжения операционный усилитель постарается сгладить напряжение на входах и сделает это путем уменьшения или увеличения выходного напряжения. Тем самым «операционник» будет управлять полевым транзистором. Последний регулирует выходную нагрузку.

Полевой транзистор нужен мощный, поскольку через него будет проходить весь ток заряда. В примере используется IRFZ44, хотя можно использовать любой другой соответствующих параметров.

Транзистор обязательно устанавливается на теплоотвод, ведь при больших токах он будет хорошенько нагреваться. В этом примере транзистор просто прикреплен к корпусу блока питания.

Печатная плата была разведена на скорую руку, но получилось довольно неплохо.

Теперь остается соединить все по картинке и приступить к монтажу.

Напряжение выставлено в районе 14,5 В. Регулятор напряжения можно не выводить наружу. Для управления на передней панели имеется только регулятор тока заряда, да и вольтметр тоже не нужен, поскольку амперметр покажет все, что надо видеть при зарядке.

Амперметр можно взять советский аналоговый или цифровой.

Также на переднюю панель был выведен тумблер для запуска устройства и выходные клеммы. Теперь можно считать проект завершенным.

Получилось несложное в изготовлении и недорогое зарядное устройство, которое вы можете смело повторить сами.

Автор: АКА КАСЬЯН.

Прикрепленные файлы: СКАЧАТЬ.


 

Aliexpress регулятор тока для зарядного устройства

Регуляторы напряжения купить в Китае в проверенных магазинах АлиЭкспресс. Скидка магазина Регулятор Напряжения Для Зарядного Устройства с высококачественным онлайн-2018 на . Зарядные устройства для электронных сигарет. ток и напряжения. То у вас наверняка возникает немало. Учитывайте что максимальное напряжение и максимальный ток Регулятор для вентилятора. Тумблером и клеммниками родом из моего радиокружковского. Оно будет представлять собой импульсное зарядное устройство для аккумуляторов с емкостью до 120 Ач. Индикатор заряда батареи . Зарядное устройство — Форум. Интересует простота и надежность. Зарядные устройства регулируемый до 628 грн. Вторая схема построена на базе операционного усилителя. Нет у меня паяльника. Есть ли такая возможность. 2018 Интернет-магазин популярных и горячих Регулятор Тока из Электронные компоненты и комплектующие. Зарядное устройство -3 применяется для заряда аккумуляторов с выходным напряжением 6в. При использовании модуля в качестве зарядного устройства красный цвет индикатора означает зарядку. Зарядное из компьютерного блока питания. Регуляторы напряжениястабилизаторы Откройте 5661 лучший выбор Регулятор Тока на . Она применяется для питания электроприборов и. ампер на заданное время или заданное напряжение. При использовании модуля для зарядки аккумулятора установите ток.

Реле Р1 и Р2 любые на напряжение 9-12 В и контактами. А также зарядки не капризных к режиму аккумуляторов. Аудио и видео техники. Что есть понятие стабилизатор тока. Электроника Аксессуары и комплектующие. Оригинальные схемы и конструкции радиопередатчиков. Если вы только начинаете пользоваться этим замечательным маркетом. Даже если приобретено не автоматическое зарядное устройство с помощью умного реле его легко превратить в автоматическое ненужно сидеть. Но по низким ценам. Разъём с тремя толстыми проводами измерительный. 21 Июня 2017 . Регулятор должен обеспечить. Регулировать ток и Электронные компоненты и комплектующие. Регулятор тока по идее не многим отличается от регулятора напряжения. Не стесняйтесь принимать решения о покупке Регулятор Напряжения Для Зарядного Устройства с большими скидками. 2018 Интернет-магазин популярных и горячих Зарядный Ток Регулятор из Электронные компоненты и комплектующие. Этой электрической машинкой преобразуется ток в механическую энергию. Лучше с возможностью регулировки тока. Цифровой мобильное зарядное устройство Ток Только здесь. На верхней расположены 7-сегментные индикаторы для показаний напряжения и тока. Зарядное устройство это тиристорный регулятор мощности с фазоимпульсным управлением. Рубрика Зарядные устройства. Регулятор напряжения и тока

Самодельный блок питания из китайского вольтамперметра

На вы сможете найти ток регулятора самых лучших брендов. А есть недорогое зарядное устройство для кислотных автомобильных аккумуляторов с возможностью профилактической десульфации. То есть зарядка будет. Иногда радиолюбителю в хозяйстве требуется простой регулируемый источник для испытания и настройки какой-нибудь аппаратуры. Для вас подготовлены Добавить в Мои желания. Работающий на интегральном стабилизаторе напряжения 317. Для вас подготовлены Только здесь. Наш сайт посвящён популярной торговой интернет-площадке . Через устройство в сборе получалось запитать Подскажите. Выгодные цены на . Видео Зарядное устройство для аккумулятора автомобиля с . И даже тремя зависит от времени потраченного на. Р3 на напряжение 9-12 В и ток коммутации 10 А. 24 вольт и током заряда от 0. Регуляторы напряжениястабилизаторы и на . Для вас подготовлены различные выбранные. Это импульсное устройство может заряжать и восстанавливать С помощью такого ЗУ можно заряжать аккумулятор транспортного средства током от нуля до десяти ампер. А также дешёвые Электронные компоненты и комплектующие. Максимальный ток заряда 6. Зарядить один 6ст190 можно и 10 амперами и 5. В приборе предусмотрена сменная индикация параметров вольтметр. Просматривайте этот и другие пины на доске Радио пользователя анатолий левин. То можно ссылочек на необходимые товары и что с ними

Ограничение тока зарядного устройства

Можно использовать в качестве. Самодельное универсальное зарядное устройство. Рассчитанными на коммутируемый ток 1 А. Хотелось бы с регулировкой 12-18 вольт. Зарядка для аккумуляторов. Мне кажется 25 ампер тока не совсем для начинающего. После сборки устройства проверяем стабилизатор тока просто закоротив между собой и -. Читайте отзывы покупателей и рейтинги клиентов на Зарядное Устройство Ток Регулятор. Проверь выбранный товар нашим сервисом. Интегральные схемы Откройте 700 лучший выбор Зарядный Ток Регулятор на . Регулятор стабилизатор напряжения и тока 9А зарядное устройство. Регулятор Тока высокого качества. Откройте 5652 лучший выбор Ток Регулятора на . Зарядно-восстанавливающее устройство для аккумуляторных батарей. Прошедших комплексную проверку на надёжность и скорость доставки. для зарядки АКБ авто из товаров с Алиэкспресс. Зелёный — конец зарядки. Измеритель аккумулятора на Алиэкспресс каталог. В конструкции самодельного зарядного устройства для автомобильного аккумулятора важной частью является узел стабилизации и ограничения тока. Представляю вашему взору зарядник Можно поискать на Авито. Это черевато повышеным расходом деталей на угар и травмоопасно. Откройте 7639 лучший выбор Регулятор Напряжения Для Зарядного Устройства на . вопрос собрать зу для автоаккум

Стабилизатор тока на транзисторе, описание зарядного устройства


Стабилизатор тока на транзисторе очень напоминает стабилизатор напряжения. Эта простая схема может быть использована как стабилизатор выходного тока независимо от входного напряжения. На его основе можно изготовить зарядное устройство — тот же самый стабилизатор тока. Параметры элементов вычисляются по закону Ома.

Описание зарядного устройства

Описание зарядного устройства начнём с условий. Допустим у нас есть 9-ти вольтовый аккумулятор и мы должны зарядить его током в 40 мА.

Мы соединяем транзистор и стабилитрон как показано на схеме. Если стабилитрон будет рассчитан на напряжение стабилизации 5.6 Вольт, то из схемы хорошо понятно, что напряжение на резисторе R2 будет 5 вольт. (Это подробно рассматривалось в статье Самодельный стабилизатор). Чтобы ток через резистор составил 40 мА его сопротивление должно быть … сколько? 🙂

Закон Ома — I = U/R
R = 5 вольт / 0.04 А
R = 125 Ом.

Если ток в 40 мА течёт через резистор R2, то большая часть этого тока течёт через переход коллектор-эмиттер, и значит через аккумулятор B. На самом деле, небольшая часть эмиттерного тока течёт через резистор R1 и через переход база-эмиттер. Мы можем компенсировать это небольшим уменьшением резистора R2. К тому же, ближайшее стандартное значение сопротивления к 125 является 120 Ом. Теперь ток через резистор R2 будет около 41 мА, а ток через аккумулятор будет около 40 мА.

Напряжение источника питания зарядного устройства

Напряжение источника питания должно состоять из суммы: напряжение аккумулятора — 9 вольт, напряжение на резисторе R2 — 5 вольт и напряжение на переходе коллектор-эмиттер, обычно чуть меньше одного вольта. Т.е. минимальное напряжение источника питания зарядного устройства должно быть 9 + 5 + 1 = 15 вольт.

Можно использовать этот простой метод для разработки простого зарядного устройства для любого NiCd или NiMh аккумулятора. Только необходимо убедиться, что значение максимального тока коллектора транзистора больше необходимого зарядного тока.


Разработка простейшего регулируемого зарядного устройства Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

Список использованной литературы:

1. Горбатов А.В. Реология мясных и молочных продуктов. — М.; Пищевая промышленность, 1979. -384 с.

2. Пилипенко, Т.В. Потребительские свойства и качество рассольных сыров, обогащенных йодсодержащими биологически активными добавками [текст]/Т.В. Пилипенко, Н.И. Пилипенко, С.Т. Прокопенко, Л.Б. Коротышева// Товаровед продовольственных товаров, 2014, №7 — С37-42

3. Суслова, А.В. Использование молодых листьев грецкого ореха для увеличения сроков хранения и повышения биологической ценности продуктов [ текст]/А.В. Суслова, Л.Б. Коротышева, Т.В. Пилипенко//Технико-технологические проблемы сервиса, 2012, т.22, №4 — С53-56

© Коротышева Л. Б., 2017

УДК 621.3

Д.А. Кулыгин

Студент магистратуры 1 курса ЮРГПУ (НПИ) г. Новочеркасск, Российская Федерация

РАЗРАБОТКА ПРОСТЕЙШЕГО РЕГУЛИРУЕМОГО ЗАРЯДНОГО УСТРОЙСТВА

Аннотация

В данной работе рассматривается разработка зарядного устройства с регулируемым выходным током и напряжением. Схема представляет собой неуправляемый стабилизатор напряжения и простейшей стабилизатор тока, где зарядный ток регулируется с помощью переменного сопротивления. Моделирование электронной схемы производилось при помощи программы «Micro-Cap 8».

Ключевые слова Зарядное устройство, стабилизатор напряжения, схемотехника.

1. Краткие сведения о зарядных устройствах

Зарядное устройство — электронное устройство для заряда электрических аккумуляторов энергией внешнего источника [1]. Термин «зарядное устройство» также подразумевает не только заряд аккумуляторов, но и непосредственное питание аппаратуры без участия аккумуляторной батареи. Включает в себя преобразователь напряжения, выпрямитель, стабилизатор напряжения, по необходимости устройство контроля процесса заряда и средства индикации.

В настоящее время «2017 год», зарядные устройства играют одну из важнейших ролей в жизни человека. Сегодня без ЗУ не обходится ни одно цифровое портативное устройство. У каждого бренда (производителя) есть свое зарядное устройство, зачастую одно может подойти к другому, но часто производитель делает невозможным работы ЗУ на других устройствах, например, из-за различных разъемов подсоединения.

Во всех ЗУ или источников питания цифровой техники, контакты тщательно заизолированы и скрыты, а внешняя металлическая оболочка не представляет опасности для человека. Исключением составляет ЗУ для АКБ, его контакты «+ и -» оголены и находятся под постоянным током и напряжением.

2. Параметры зарядных устройств цифровой техники

Устройства и аккумуляторы бывают разные, и выходные характеристики ЗУ тоже, поэтому перед началом разработки схемы нужно произвести классификацию устройств по потреблению тока и напряжения «таблица 1».

Скорость полного заряда аккумуляторной батареи, в идеале равна емкости деленной на силу тока, но на практике стоит учитывать и другие факторы, влияющие на скорость. Скорость зарядки, важна для

_МЕЖДУНАРОДНЫЙ НАУЧНЫЙ ЖУРНАЛ «СИМВОЛ НАУКИ» № 01-2/2017 ISSN 2410-700Х_

потребителя, а правильный ток важен для срока службы аккумуляторной батареи, поэтому в зависимости от емкости и типа аккумулятора, производитель рекомендует тот или иной ток заряда. Например, для Ni-MH (1.2В и 2800mAh) требуется зарядный ток в 360мА, получается аккумулятор должен заряжаться около 7 часов. В то время как телефонный аккумулятор Li-ion (3.6В и 2000mAh) может спокойно заряжаться как от 500мА, так и при 2А. Из расчета выходит, что Li-ion от 0 до 100% заряда в среднем потребуется 2 часа. Из примера видно, что скорость заряда литий-ионных аккумуляторов более чем в 2 раза выше, чем скорость никель-металл-гидридных аккумуляторов. Но у каждого есть свои плюсы и минусы, так Li-ion аккумулятор заряжается быстрее, но стоит дороже, в то время Ni-MH аккумулятор не только дешевле, но и превосходит срок службы Li-ion.

Из выше сказанных предложений, становится ясно, что для определенных аккумуляторных батарей нужен правильный ток заряда, так как ток зависит от срока службы батареи.

Произведем классификацию параметров тока и напряжения в наиболее популярных устройствах используемых в быту человека. Для примера выберем следующие ЗУ: для телефона, планшета, фотоаппарата, ноутбука, аккумуляторов типа ААА (мизинчиковые) и АА (пальчиковые).

Таблица 1

Параметры тока и напряжения для различных устройств

Назначение ЗУ Параметры тока и напряжения

Для телефона ивых 1вых

5V 0,43A

5.1V 0,7A

5V 1A

Для планшета 12V 1,5A

15V 1,5A

5V 2A

Для фотоаппарата 11V 1A

Для ноутбука 9,5V 5A

Для АА 1.4 — 3V 300 — 360 мА

Для ААА 1.4 — 3V 140 — 180 мА

Относительно вышеуказанных параметров, можно сделать вывод о том, какие выходные характеристики должны быть у проектируемого ЗУ. 3. Описание схемы

Рассмотрим схему зарядного устройства на основе источника [2] «рисунок 1», устройство состоит из следующих элементов:

• Синусоидальное переменное напряжение У220 Вольт,

• Трансформатор с двумя обмотками,

• Диоды типа Ш4001,

• Сглаживающий конденсатор С1 = 10000мкФ

• Сглаживающий конденсатор С2 = 10000мкФ,

• Световой индикатор Led1 типа АЛ 107,

• Резистор нагрузки для фильтра R1,

• Резистор И2,

• Резистор нагрузки R3 играющий роль аккумулятора, для проверки работоспособности схемы,

• Потенциометр XI до 100 Ом,

• Биполярный транзистор Q1 типа BD136.

Схема условно разделена на два участка: неуправляемый линейный стабилизатор напряжения и регулируемый источник тока-напряжения.

4. Неуправляемый стабилизатор напряжения

Расчет неуправляемого стабилизатора напряжения при начальных условиях таблицы 2 [4, с. 3-10].

Таблица 2

Условные значения стабилизатора напряжения

ивх, В ивых, В Р, Вт С1, мкФ

220 12 3 10000

А. Расчет вторичной обмотки трансформатора:

и2 = 1.11 • ивых = 1.11 • 12 = 13.32 В Б. Расчет коэффициента трансформации:

^ 220

К = -^ =

= 16.=16°°22=а0000184 Гн

Г. Среднее значение тока через нагрузку:

3

/о = 12 = 0.25 а

Д. Тогда сопротивление нагрузке равно:

и 12 *О = У = 025 = 48 Ом

Е. Основным элементом неуправляемого выпрямителя является полупроводниковый диод [3, с. 17-18]. Главное свойство диода является односторонняя проводимость, при подаче положительного прямого напряжения между анодом и катодом диод открыт, при подаче отрицательного обратного напряжения диод закрыт.

Обратное напряжение складываемое к каждому диоду:

Уоб =

1.41 • У„

1.41 • 12

= 8.46 В

22

Исходя из того, что выходное напряжение не превышает 12 В, а Уоб = 8.46 В, подходящими диодами будут Ш4001.

Ж. Сглаживающий фильтр — это устройство для уменьшения пульсаций. В схеме (рисунок 1) применен простейший фильтр — это конденсатор С1, включаемый параллельно нагрузке R1. Таким образом, при наличии емкостного фильтра напряжение на нагрузке не уменьшается до нуля, а пульсирует в некоторых пределах.

_МЕЖДУНАРОДНЫЙ НАУЧНЫЙ ЖУРНАЛ «СИМВОЛ НАУКИ» № 01-2/2017 ISSN 2410-700Х_

Проверка работоспособности неуправляемого стабилизатора напряжения на нагрузке R1 показала напряжение Увых ~ 11 В, что соответствует некоторым ЗУ из таблицы 1, а размах пульсации не превышает 200 мВ.

5. Регулируемый источник тока

Объяснение выбора элементов для регулируемого источника тока и напряжения. Так как входное напряжение в схеме зарядного устройства истаб ~ 11 В, то тип подходящих диодов будет одним и тем же во всей схеме — это 1N4001.

Диод D5 играет роль защиты, если по какой-либо причине была перепутана полярность между стабилизатором напряжения и частью схемы зарядного устройства, диод предотвратит выход из строя электро-схемы.

Конденсатор C2 служит для сглаживания выходного напряжения и тока, так как размах пульсации негативно влияет на аккумуляторные батареи. Ввиду того, что ЗУ имеет регулятор тока и напряжения, экспериментальным путем был выбран конденсатор С1 = 10000 мкФ, при такой емкости пульсация как при 300 мА, так и при 1 А имеет сглаженное состояние.

Световой диод Led1 имеет два назначения: 1) он служит индикатором подключения ЗУ в сеть, 2) диод является делителем напряжения.

По условию схемы дан транзистор BD136, его допустимый ток коллектора не превышает 1,5 А.

Резистор R2 создает разность потенциалов между базой и эмиттером, небольшое сопротивление создает нужный потенциал, в результате чего напряжение проходит через базу и коллектор достигая выхода.

Потенциометр X1 имеет сопротивление от 0 до 100 Ом, главная его задача — изменять шкалу сопротивления по 10 Ом, для достижения нужных параметров.

Выводы: схема зарядного устройства является рабочей. Проверка производилась при помощи компьютерной программы для моделирования электронных схем «Micro-Cap 8».

Стоит заметить, моделирование производилось в идеальных условиях — это означает, что для наилучшего результата в регулировке тока, необходим потенциометр с максимально высокой точностью.

Проверка показала, что ЗУ имеет три основных режима работы при сопротивлении 0, 40 и 100 Ом:

Таблица 3

Результаты измерений

Сопротивление, Ом Ubbrc, В I, А

0 6.4 1.266

40 1.56 0.316

100 0.72 0.145

Исходя из результатов измерений, сделан вывод о том, что данное ЗУ подходит для зарядки мобильных телефонов, планшетов и самых распространенных аккумуляторов АА и ААА.

Так как аккумуляторные батареи требовательные к постоянному току и напряжению, недопустим большой размах пульсации. Правильно подобранные конденсаторы на 10000 мкФ обеспечивают данной схеме хорошую сглаженную характеристику.

Стоит отметить что данное ЗУ может работать не только как «зарядка» для аккумуляторов, его вполне можно приспособить как источник питания какого-нибудь оборудования не требующего большого напряжения, например, часов, будильника, домашней метеостанции и. т. д. Список использованной литературы:

1. Википедия // свободная энциклопедия [электронный ресурс]. — Режим доступа: http://ru.wikipedia.org

2. Казус // электронный портал по схемотехнике [электронный ресурс]. — Режим доступа: http://kazus.ru/shemes/showpage/0/426/ 1.html

3. Патракова, И.А. Расчет неуправляемого выпрямителя с фильтром и управляемого выпрямителя в режиме стабилизации выходного напряжения / И.А. Патракова, С.В. Бутаков. — Архангельск. : Изд ФГАОУ ВПО, 2011. — 43 с.

4. Хоружий, И.В. Методические указания к выполнению лабораторных работ по курсу «Электроника» / И.В. Хоружий, А.Я. Шкарупин. — Новочеркасск. : ЮРГТУ, 2014. — 35 с.

© Кулыгин Д.А., 2017

Что такое регулятор напряжения

01.07.2020 | Автор Maker.io Staff

Все электронные устройства предназначены для работы с заданной номинальной мощностью, т. Е. Напряжением и током. В то время как потребление тока является динамическим и зависит от нагрузки устройства, напряжение питания является фиксированным и идеально постоянным для правильного функционирования устройства. Регулятор напряжения отвечает за поддержание этого идеального напряжения, необходимого для устройства.Ваш ноутбук, настенное зарядное устройство и кофеварка оснащены регуляторами напряжения.

В этом блоге мы более подробно рассмотрим концепцию регулятора напряжения и его различные типы, а также подробно остановимся на общих микросхемах стабилизаторов напряжения и их общих применениях!

Что такое регулятор напряжения?

Блок питания электронного устройства преобразует входящую мощность в требуемый тип (AC-DC или DC-AC) и желаемые характеристики напряжения / тока. Стабилизатор напряжения — это компонент блока питания, который обеспечивает стабильную подачу постоянного напряжения во всех рабочих условиях.Он регулирует напряжение при колебаниях мощности и колебаниях нагрузки. Он может регулировать как переменное, так и постоянное напряжение.

SMPS и настенное зарядное устройство — оба имеют встроенный регулятор напряжения (Источник изображения: TDK Lambda (слева) и Triad Magnetics (справа))

Регулятор напряжения обычно принимает более высокое входное напряжение и излучает более низкое, более стабильное выходное напряжение. Их вторичное использование также заключается в защите схемы от скачков напряжения, которые потенциально могут повредить / поджарить их.

Различные типы регуляторов напряжения

Регуляторы напряжения, используемые в низковольтных электронных устройствах, обычно представляют собой интегральные схемы. Центры распределения электроэнергии, обеспечивающие электропитание переменного тока бытовым и промышленным потребителям, используют более сложные и механически большие регуляторы напряжения, которые поддерживают номинальное напряжение 110 В (стандарты бытовой техники США) независимо от потребностей потребления в данной местности.

Исходя из физической конструкции, регуляторы напряжения можно встретить в интегральных схемах, электромеханических устройствах или твердотельных автоматических регуляторах.Наиболее распространенные классификации активных регуляторов напряжения (которые используют усилительные компоненты, такие как транзисторы или операционные усилители) — это линейные и импульсные регуляторы.

Линейные регуляторы — это простые транзисторные устройства, обычно упакованные в виде ИС. В их внутренней схеме используются дифференциальные усилители для управления выходным напряжением относительно опорного напряжения. Линейные регуляторы напряжения могут иметь фиксированный выход или иметь регулируемое управление. Обычно им требуется входной ток, сопоставимый с выходным током.

Импульсные регуляторы переключают последовательно включенное / выключенное устройство на высокой частоте, изменяя рабочий цикл напряжения, передаваемого на выходе. Их общие топологии — это понижающая, повышающая и понижающая-повышающая. Понижающие преобразователи более эффективны при понижении напряжения и по-прежнему способны повышать выходной ток. Повышающие преобразователи, такие как TPS6125 от Texas Instruments (TI), могут повышать выходное напряжение до уровня, превышающего входное.

Понижающий-повышающий преобразователь Adafruit со встроенным TPS63060 от TI и схемой импульсного регулятора (источник изображения: Adafruit Industries (слева) и DigiKey SchemeIt (справа))

Микросхемы линейного регулятора напряжения

Наиболее распространенные линейные стабилизаторы постоянного напряжения с фиксированным напряжением ИС , используемые в электронных схемах, представляют собой серии 78XX и 79XX для положительного и отрицательного выходного напряжения соответственно.XX обозначает выходное напряжение в диапазоне от 2,5 В до 35 В и может выдерживать ток до 2 А. Доступны в корпусах для поверхностного монтажа, ТО-3 и ТО-220. У них есть три соединительных контакта, вход, общий GND и выходной контакт. Модули регулятора напряжения также доступны в продаже.

Другая упаковка для семейства 7805 IC.

STMicroelectronics LM7805 дает напряжение +5 В на выходе и клемме GND, в то время как TI LM7912 дает -12 В.Отрицательные напряжения являются лишь относительной точкой отсчета по отношению к клемме GND.

Линейные регуляторы напряжения — это недорогие и простые в использовании ИС с очень низким уровнем электромагнитных помех и быстрым откликом на колебания напряжения. Хотя они полезны для простых приложений, их использование имеет несколько недостатков.

  • ИС 78XX и 79XX могут обеспечивать постоянное и номинальное выходное напряжение только в том случае, если входное напряжение не менее 2,5 В или больше выходного. Например, вы не можете получить выход 9 В от микросхемы LM7809, если она питается от литий-ионной батареи 9 В.
  • Падение напряжения происходит из-за того, что эти ИС, по сути, ведут себя как псевдорезисторы и выделяют дополнительную входную мощность батареи в виде тепла. Это неэффективно, и тепло необходимо отводить с помощью радиаторов или вентиляторов. Высоковольтные сильноточные ИС нуждаются в больших радиаторах или постоянном использовании вентилятора для обеспечения стабильного температурного диапазона. Высокое входное напряжение для низких выходов, например, вход 24 В для LM7805, имеет очень низкий КПД — 20%.

TI’s LM317 — это линейный регулируемый стабилизатор напряжения постоянного тока , который позволяет изменять выходное напряжение на основе принципа внешнего делителя напряжения R1 / R2 с использованием резисторов.Он прост в использовании и требует двух резисторов, как показано на рисунке. Он может обеспечивать ток до 1,5 А в диапазоне положительного напряжения от 1,25 В до 37 В. Другие варианты семейства LM317 IC, LM317L и LM317M, обеспечивают ток 100 мА и 500 мА соответственно.

Схема семейства микросхем

LM317 (Источник изображения: Техническое описание продукта Texas Instruments)

Применение регуляторов напряжения

  • Положительные и отрицательные регуляторы напряжения могут использоваться вместе для питания датчиков, операционных усилителей и других электронных модулей, которым требуются оба напряжения.
  • Все распространенные платы разработки микроконтроллеров, такие как платы Arduino и Raspberry Pi, могут получать питание от выхода LM7805 на вывод 5 В. Платы Arduino также имеют встроенный стабилизатор напряжения с малым падением напряжения, такой как NCP1117S от On Semiconductor, для регулирования мощности, поступающей от цилиндрического разъема или Vin.

LM7805 с внешним питанием Arduino (Источник изображения: Maker.io)

Регуляторы напряжения — один из важнейших компонентов электронной схемы.Они несут ответственность за его безопасное и стабильное функционирование. Стабилизаторы сверхвысокого напряжения используют схемы силовой электроники с высокой номинальной мощностью в промышленных установках на тяжелой технике.

Регулируемый 3-контактный регулятор

для недорогих систем зарядки аккумуляторов

% PDF-1.4 % 1 0 obj> поток application / pdf Регулируемый 3-контактный регулятор для недорогих систем зарядки аккумуляторов

  • Замечания по применению
  • Texas Instruments, Incorporated [SNVA581,0]
  • iText 2.1.7, автор 1T3XTSNVA5812011-12-08T03: 06: 26.000Z2011-12-08T03: 06: 26.000Z конечный поток эндобдж 2 0 obj> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] / Font >>> / MediaBox [0 0 540 720] / Contents [7 0 R 8 0 R 9 0 R 10 0 R] / Type / Страница / Родитель 11 0 R >> эндобдж 3 0 obj> поток

    k Стабилизатор напряжения питания и зарядное устройство

    ПРИМЕЧАНИЕ: если вы приобретете этот товар вместе с товаром для предварительного заказа, они будут отправлены вместе.

    Для клиентов из США: наш внутренний реселлер предлагает широкий выбор продуктов keenlab, пожалуйста, обращайтесь: [email protected] или перейдите сюда

    Для клиентов из Канады: посетите нашего местного торгового посредника здесь

    Для клиентов из Австралии: посетите нашего местного торгового посредника здесь

    Руководство по сборке и эксплуатации доступно для загрузки на этом веб-сайте: https://www.keenlab.de/wp-content/uploads/2019/06/kSupply-manual.pdf


    Этот модуль представляет собой универсальный полностью настраиваемый регулятор высокого напряжения с ограничением выходного тока.Он предназначен для установки непосредственно на конкретный серверный блок питания 12 В. Поддерживаются две разные модели:

    • DPS-800GB (Fujitsu, очень громко)
    • HSTNS-PR01 (Hewlett-Packard, меньше шума вентилятора)

    Оба доступны в подержанном состоянии за небольшие деньги на таких платформах, как ebay — иногда менее чем за 20 евро. Другие модели также могут работать, если они имеют совместимую распиновку. Дополнительные сведения см. В руководстве пользователя kSupply . В качестве альтернативы модуль также можно подключить к любому источнику питания 12 В (например, к источнику питания ATX настольного компьютера), подключив кабели к его винтовым клеммам.

    Модуль был разработан для быстрой зарядки ультраконденсаторного модуля kCap для высокоскоростной сварки, но он также может использоваться для многих других приложений, где требуется стабилизированное напряжение при высокой силе тока. Например, соорудите из него сильноточный лабораторный источник питания, подключив внешние потенциометры для измерения напряжения и тока.

    Способность модуля работать как в режиме постоянного напряжения, так и в режиме постоянного тока также позволяет использовать его в качестве зарядного устройства для литиевых батарей большой емкости.Обратите внимание, что в этом случае необходима дополнительная схема защиты для безопасной работы этих батарей, например BMS.

    После небольшого изменения аппаратного обеспечения модуль также может работать в двух квадрантах и ​​может передавать отрицательный выходной ток обратно на свои входные клеммы.

    Также доступен дополнительный комплект радиатора.


    ВАЖНЫЕ ПРИМЕЧАНИЯ:

    В эту статью не входят выходные кабели, так как их длина и концевые заделки сильно зависят от области применения.Если вы планируете использовать этот модуль для питания модуля ультраконденсатора kCap , вам необходимо изготовить подходящий кабель или приобрести предварительно собранный комплект кабелей.


    Основные технические характеристики:

    • выходное напряжение регулируется от 0 В до 12 В
    • выходной ток регулируется от 0A до 70A
    • максимальная мощность 840 Вт
    • может управлять током при коротком замыкании, как ультраконденсатор
    • автоматический переход между режимами постоянного напряжения (CV) и постоянного тока (CC)
    • Защита от перегрева за счет снижения тока
    • непрерывный выходной ток
      • DPS800GB, без радиатора: 70A
      • HSTNS-PR01, без комплекта радиатора: 50A
      • HSTNS-PR01, с комплектом радиатора: 70A
      • на открытом воздухе, без радиатора комплект: 40A
      • на открытом воздухе, с комплектом радиатора: 50A
    • разрешение вывода от блока питания сервера, выведенного на заголовок
    • Минимальное падение напряжения от входа к выходу: 1.4 В при 70 А
    • Диапазон входного напряжения
    • : от 7 В до 16 В
    • быстрая реакция на изменения нагрузки: 80 мкс
    • размеры без радиаторов: 86 x 53 x 18 мм

    Основы системы зарядки

    Основы системы зарядки

    Говорят, что электрическая система в автомобиле работает от 12 вольт, но это несколько вводит в заблуждение. Система зарядки в большинстве автомобилей обычно вырабатывает напряжение от 13,5 до 14,4 вольт при работающем двигателе. Он должен генерировать большее напряжение, чем номинальное напряжение батареи, чтобы преодолеть внутреннее сопротивление батареи.Это может показаться странным, но ток, необходимый для перезарядки аккумулятора, вообще не будет течь, если выходное напряжение системы зарядки будет таким же, как напряжение аккумулятора. Большая разница потенциалов (напряжений) между напряжением аккумулятора и выходным напряжением генератора обеспечивает более высокую скорость зарядки.

    Пока двигатель работает, , все мощности для вспомогательного оборудования передается генератором переменного тока. Аккумулятор фактически является нагрузкой для системы зарядки.Единственный раз, когда аккумулятор будет обеспечивать питание при работающем двигателе, — это когда превышена текущая мощность генератора переменного тока или когда двигатель работает на очень низких холостых оборотах.


    Важное примечание о демонстрациях Flash / графике на этом сайте … Власти посчитали, что Flash-контент на веб-страницах слишком опасен для использования обычным пользователем Интернета, и вскоре вся его поддержка будет исключен (большая часть доступа к Flash была прекращена 1-1-2021). Это означает, что ни один современный браузер по умолчанию не отображает ни одной из этих демонстраций.На данный момент исправление заключается в загрузке расширения Ruffle для вашего браузера. Веб-сайт Ruffle. Пожалуйста, напишите мне ([email protected]), чтобы сообщить, подходит ли вам Ruffle и какой браузер вы используете.

    Альтернативой Ruffle является другой браузер Maxthon 4.9.5.1000. Для получения дополнительных сведений о проблеме с Flash и Maxthon (стандартном и переносном) щелкните ЗДЕСЬ.



    Основы генератора переменного тока

    Базовый генератор переменного тока состоит из двух основных электрических компонентов. Ротор и статор.Ротор — это часть генератора, которая приводится в движение приводным ремнем. На роторе установлена ​​группа катушек электрического поля. Статор — это группа неподвижных катушек, которые выровнены по периметру внутренней части корпуса генератора. Когда ток (подаваемый регулятором напряжения — будет объяснено позже) протекает в катушках ротора, они индуцируют ток в неподвижных катушках. Индуцированный ток (и напряжение) — это переменный ток. Чтобы преобразовать его в постоянный ток, ток пропускается через мостовой выпрямитель.

    Статор и ротор в действии:
    На следующей диаграмме вы можете увидеть три грубо нарисованных набора роторов и статоров. На крайней левой диаграмме (обозначенной буквой «A») вы можете увидеть, как катушка ротора приближается к катушке статора. Когда катушка ротора приближается к катушке статора, она индуцирует ток в катушках статора. Это вызывает увеличение выходного напряжения. По мере приближения к положению, в котором центры катушек выровнены («B»), наведенный ток отсутствует. Когда катушки удаляются друг от друга («C»), индуцированный ток течет в противоположном направлении, а генерируемое напряжение отрицательное.


    Исправление:
    Вы должны были заметить, что генерируемое напряжение было переменным током. Вы уже знаете, что система зарядки автомобиля должна вырабатывать постоянный ток для зарядки аккумулятора. Это делается с помощью диодов. На следующей схеме показаны простой трансформатор и мостовой выпрямитель. Трансформатор приводится в действие синусоидой (аналогичной той, которая возникает в каждой обмотке статора). Поскольку трансформатор приводится в действие синусоидой, выходной сигнал трансформатора представляет собой синусоидальную волну (аналогичную показанной на рисунке).Синусоидальная волна подается в мостовой выпрямитель, и на выходе получается импульсная форма волны постоянного тока.

    Мостовой выпрямитель:
    Вы также должны понимать, что в генераторе есть 3 разные группы обмоток статора (не показаны на схемах). Выпрямление очень похоже на простой трансформатор, показанный выше, но вместо одной обмотки трансформатора есть 3 обмотки. Он также использует 6 диодов вместо 4.

    3 фазы:
    На следующей схеме показаны 3 различные фазы из 3 групп обмоток статора.Три фазы переменного тока показаны тремя разными цветами. Следующий набор линий показывает перекрытие выпрямленных сигналов. Нижняя осциллограмма (белая линия) — это то, как на самом деле будет выглядеть выпрямленное напряжение при просмотре на осциллографе. Подключение аккумулятора к генератору еще больше сгладит белую линию.


    Схема генератора:
    Ниже представлена ​​общая схема, показывающая обмотки статора и мостовой выпрямитель. Вы также видите диодное трио. трио диодов забирает часть выхода и отправляет ее на регулятор напряжения.Выходные диоды — это выпрямители, которые выпрямляют переменный ток и подают питание на ваши электрические аксессуары.


    Щетки и контактные кольца:
    Чтобы генератор переменного тока вырабатывал электрический ток, в обмотках ротора должен протекать некоторый ток возбуждения. Поскольку ротор вращается, нельзя просто подключить к нему пару проводов (они просто открутятся :-). Для электрического подключения используются контактные кольца и щетки. Контактные кольца закреплены на валу ротора.Щетки закреплены на неподвижной части генератора. Щетки, которые обычно изготавливаются из угля, подпружинены, чтобы поддерживать постоянное давление на контактные кольца по мере износа щеток. На следующей схеме показано общее расположение ротора и связанных с ним деталей.


    Регулировка напряжения:
    Как вы уже знаете из страницы «провода», все провода имеют сопротивление. Вы также знаете, что при протекании тока через резистивный элемент (провод) будет потеря напряжения.Если бы ток, потребляемый системой зарядки, был постоянным, не было бы необходимости в регуляторе напряжения. Если бы не было потерь, инженер-конструктор просто спроектировал бы генератор переменного тока для выработки заданного напряжения. Это не будет работать с автомобильной аудиосистемой, потому что потребляемый ток далеко не постоянный. Это означает, что генератору нужен стабилизатор напряжения. Регулятор напряжения контролирует протекание тока в обмотках ротора. Выходной ток регулятора напряжения обычно составляет от 0 ампер (при небольшом потреблении тока или его отсутствии) до 5 ампер (при максимальном потреблении тока).Регулятор может бесконечно изменять ток, чтобы напряжение точно соответствовало целевому напряжению. Обычно регулятор встроен в генератор. Есть некоторые генераторы высокого тока / специального назначения, которые могут иметь внешние регуляторы. Некоторые внешние регуляторы регулируются с помощью потенциометра.

    Потребление тока и расход:
    Если у вас есть генератор переменного тока, который может производить ток 120 ампер (макс.), А общий ток, потребляемый электрическими принадлежностями (включая батарею), составляет всего 20 ампер, генератор будет вырабатывать только необходимый ток ( 20 ампер) для поддержания заданного напряжения (которое определяется внутренним регулятором напряжения генератора).Помните, что генератор контролирует напряжение в электрической системе. Если напряжение начинает падать ниже целевого напряжения (примерно 13,8 В в зависимости от конструкции генератора), генератор вырабатывает больший ток для поддержания высокого напряжения. Когда потребность в токе низкая, полная токовая нагрузка генератора переменного тока не используется / не производится (генератор на 120 А не вырабатывает постоянно 120 А, если нет достаточного потребления тока).

    Приглушение света:
    Когда вы играете на своей системе на очень большой громкости и свет на вашем автомобиле немного тускнеет, это обычно означает, что ваш генератор не может обеспечить достаточный ток для всех ваших электрических аксессуаров (включая усилители).Если вы играете длинную басовую ноту / тон, и свет становится тусклым и остается тусклым до тех пор, пока нота не закончится, ваш генератор явно не сможет удовлетворить текущую потребность. Если на длинной басовой ноте свет тускнеет всего на долю секунды, но возвращается к своей исходной яркости, пока нота / тон все еще играет, регулятор генератора переменного тока может просто немного медленно реагировать на падение напряжения. Поскольку во время звучания баса свет возвращается к своей исходной яркости, генератор может подавать ток, необходимый для питания ваших усилителей и других электрических аксессуаров.


    Предупреждение!

    Некоторые люди говорят вам, что вы можете проверить свой генератор, отключив его от батареи, чтобы увидеть, может ли генератор вырабатывать достаточно тока, чтобы двигатель работал. ПЛОХАЯ ИДЕЯ! Отсоединение аккумулятора подвергнет регулятор напряжения (а также компьютер и аудиооборудование …) значительным скачкам напряжения, которые могут привести к отказу исправного генератора переменного тока. Даже если бы не было повреждающих всплесков, этот тест не показал бы, исправен ли генератор, потому что двигатель легко будет работать со слабым или неисправным генератором.

    Простой тест:
    Если вы хотите проверить, вырабатывает ли ваш генератор ток, включите фары, когда вы припаркованы, и двигатель работает на холостом ходу, а фары светят на стену (ночью). Обратите внимание, насколько они яркие. Затем заглушите двигатель. Когда вы выключаете двигатель, свет должен становиться более тусклым. Если свет становится ярче, когда вы заглушаете двигатель, генератор не заряжается в достаточной степени. При проведении этого теста свет должен быть единственной нагрузкой (выключите стереосистему, кондиционер и другие аксессуары).При большой нагрузке хороший в остальном генератор переменного тока может быть не в состоянии производить достаточное количество тока на холостом ходу.


    Основная информация об аккумуляторах

    Конструкция батареи:
    Стандартная батарея на 12 В (тип, используемый в большинстве автомобилей) состоит из 6 отдельных ячеек. Каждая ячейка рассчитана на выработку ~ 2,1 вольт. Ячейки соединены последовательно, всего около 12,5 вольт. Каждая ячейка в основном состоит из 1 набора свинцовых пластин и 1 набора свинцовых пластин, покрытых диоксидом свинца, погруженных в электролитический раствор серной кислоты.

    Уровни электролита:
    Уровень электролита должен быть примерно на 1/8 дюйма ниже дна заливных колодцев. Если электролит находится выше дна колодца, он может быть вытеснен при зарядке аккумулятора. Если уровень электролита низкий, доливайте его только дистиллированной водой. Обычная водопроводная вода содержит минералы, которые могут покрывать пластины и уменьшать емкость аккумулятора.

    Дистиллированная вода:
    Дистиллированная вода — это вода, нагретая до испарения с образованием водяного пара. Затем водяной пар снова конденсируется в жидкую воду. Дистиллированная вода не содержит всех примесей, включая минералы, которые покрывают пластины батареи и, следовательно, уменьшают ее способность производить электрический ток.

    Ток пуска:
    Ампер пуска — это спецификация, которая сообщает вам, какой ток может выдавать батарея в течение 30 секунд при температуре 32 F и не допускать падения напряжения ни на одной из отдельных ячеек ниже 1.2 вольта (7,2 вольт для автомобильного 6-элементного аккумулятора). Это также может быть известно как MCA или судовые усилители запуска.

    Усилитель холодного пуска:
    Это тот же тест, что и ампер пуска, но он проводится при 0 F. Спецификация CCA особенно важна, если вы живете в действительно холодном климате. Поскольку химическая реакция, которая вызывает электрический ток в батарее, замедляется при понижении температуры, батарея может производить меньше тока при более низких температурах (особенно ниже нуля). Сравнивая текущую емкость аккумуляторов, убедитесь, что у вас есть стандарты для определения номинальных значений тока.Если вы видите текущий рейтинг без CA или CCA, вы не знаете, как была протестирована батарея, а текущий рейтинг практически бесполезен.

    Резервная емкость:
    Резервная емкость — это время, в течение которого батарея может вырабатывать 25 ампер при 80 F до того, как напряжение отдельной ячейки упадет ниже 1,75 В (10,5 В для 6-элементной автомобильной батареи).

    Глубокий цикл против стандартной батареи:

    1. Обычная свинцово-кислотная батарея будет повреждена, если она будет полностью разряжена (даже если это будет только один раз).
    2. Аккумулятор глубокого разряда рассчитан на то, чтобы выдерживать многократную разрядку.
    3. Аккумуляторы глубокого разряда обладают большей резервной емкостью, но имеют меньший ток запуска для данного размера.
    4. Стандартная батарея будет иметь большую площадь поверхности пластин по сравнению с батареей глубокого разряда того же размера. Эта дополнительная площадь поверхности обеспечивает большую площадь для протекания химической реакции и, следовательно, дает более высокий выходной ток.
    5. Электролит в глубоком цикле будет немного более концентрированной серной кислотой, чем в стандартной батарее.

    Гелевые батареи:
    Гелевые батареи используют сгущенный (гелеобразный) электролит, который не будет вытекать, как жидкий электролит. Многие из них могут быть установлены практически в любом положении. Эти батареи могут подходить для некоторых применений, но для запуска двигателя следует использовать другие батареи. Гелевые батареи не могут вырабатывать такой же ток в течение длительного времени, как стандартные жидкие электролевые батареи.

    Батареи с рекомбинантным газом: батареи
    RG имеют только 2 длинные тонкие пластины на элемент.По конструкции они очень похожи на электролитический конденсатор. Пластины разделены стекловолоконным матом, предназначенным для удерживания электролита. Эти длинные тонкие пластины имеют значительную площадь поверхности (по сравнению со стандартными батареями). Эта дополнительная площадь поверхности позволяет батарее производить значительно больший ток, чем стандартные батареи аналогичного физического размера. Optima ® — один из производителей батарей RG. Если вы собираетесь добавить батареи в свою систему, а батареи будут находиться в багажнике или салоне автомобиля, батареи RG не будут выпускать горючий водород или коррозионные газы в автомобиль.

    Размер группы:
    Размер группы батарей является показателем физических размеров батареи.


    Обновление системы зарядки

    Информацию о различных обновлениях системы зарядки см. На странице «Обновления системы зарядки».

    Регулятор напряжения

    для LiPo батарей — использование, значение и работа_Greenway аккумулятор

    Поскольку LiPo батареи становятся мировой тенденцией, люди стараются узнать о них как можно больше. И это включает в себя понимание их спецификации, химического состава клеток и правильного обращения с ними.Для этого нужно знать, как регулируется напряжение в литий-полимерных батареях. Существует система, которая может автоматически поддерживать постоянное напряжение внутри батареи, называемое регулятором напряжения. Во время зарядки аккумуляторов зарядные устройства оснащены регулятором напряжения, который обеспечивает пропускание только определенного напряжения.

    Поскольку стабилизатор напряжения является важным компонентом зарядного устройства, вам необходимо получить как можно больше информации о нем. Итак, в этом руководстве мы обсудим использование регулятора напряжения, его значение и работу с литий-полимерными батареями.Давай начнем.

    LiPo аккумулятор Какой регулятор использовать:

    Система зарядки за последние полвека практически не изменилась. Он состоит из генератора, регулятора и соединительных проводов. Генератор переменного тока вырабатывает переменный ток, а регулятор регулирует создаваемое им зарядное напряжение. Очень важно поддерживать идеальное напряжение для LiPo батареи. Следовательно, вы должны знать, какой регулятор лучше всего подходит для вашей батареи.

    В наши дни на рынке доступно множество регуляторов напряжения, поэтому сложно выбрать один.Если пренебречь стоимостью, есть много выдающихся фигур, на которых вам нужно сосредоточиться при покупке регулятора. Цифры указаны ниже.

    Вы можете выбирать среди множества регуляторов, напряжение которых фиксировано, или регуляторов, напряжение которых можно регулировать в соответствии с требованиями. Регулируемое выходное напряжение кажется очень функциональным. Однако, если вы когда-нибудь забудете, что вам нужно отрегулировать напряжение перед подключением LiPo-аккумулятора, произойдет короткое замыкание аккумулятора. Таким образом, стабилизатор напряжения — лучший выбор.

    Есть много людей, которые считают, что обе системы одинаковы, но это не так. Для линейного регулятора обычно требуется минимум 3 вольта разницы между входным и выходным напряжениями. Регулятор с низким выходным напряжением или сверхнизким напряжением имеет разницу менее 1 В. Низкое напряжение гарантирует, что даже при низком питании выходная мощность будет сохраняться.

    Каждая батарея LiPo имеет определенный диапазон тока в цепи. Поэтому, выбирая максимальный выходной ток для регулятора напряжения, убедитесь, что вы поддерживаете напряжение достаточно близко к максимальному пределу.Слегка нагруженные регуляторы приводят к проблемам со стабильностью и снижению производительности. Кроме того, убедитесь, что вы не выбрали слишком высокий рейтинг устройства. Это означает, что ток короткого замыкания будет высоким, что может привести к перегреву цепи, не осознавая последствий.

    Точность регулятора напряжения зависит от схемы. Итак, убедитесь, что вы знаете все о схеме LiPo батареи, прежде чем принимать решение о напряжении. В общем случае допускается изменение напряжения на 5%, и это не будет большой проблемой.

    Коэффициент отклонения источника питания является важным фактором при выборе лучшего стабилизатора напряжения для LiPo-батарей. Способность схемы подавлять любые колебания напряжения питания должна быть сильной.

    Помимо вышеупомянутых моментов, для выбора правильного регулятора напряжения также необходимо проверить другие показатели, такие как рассеиваемая мощность, стабильность, импеданс и некоторые меры безопасности.

    Что является лучшим стабилизатором напряжения LiPo?

    В настоящее время неограниченное количество устройств, включая кондиционеры, сотовые телефоны и даже электроинструменты, используют LiPo батареи.И во всех них регулятор напряжения играет главную роль. Итак, вам нужно выбрать лучшее, просмотрев спецификации в соответствии с характеристиками вашей батареи.

    У нас есть три рекомендации, которые могут удовлетворить ваши требования. Если нет, вы всегда можете поискать его в Интернете.

    • Технология микрочипов MIC2877-5.25YFT-TR: обычно используется для таких устройств, как компоненты робототехники, медицинское оборудование, портативные компьютеры и т. Д. Из-за микросхемы импульсного регулятора.

    • ON Semiconductor NCV51198PDR2G: подходит для таких устройств, как видеокарты, телевизоры, компьютеры, принтеры и другие встроенные системы.

    В основном вам придется выбирать между линейным регулятором и импульсным регулятором для устройства. Несмотря на то, что линейные регуляторы имеют низкий выходной шум, быструю реакцию во время помех и другие особенности; когда нам нужна энергоэффективность, лучше подходят импульсные регуляторы.А когда требуемые уровни мощности превышают несколько ватт и при постоянном токе, импульсные стабилизаторы также будут дешевле.

    Как работает регулятор напряжения?

    Понять работу регулятора напряжения несложно. Вам просто нужно знать стандартное электронное оборудование и термины. Несмотря на то, что эти устройства широко используются, система работает одинаково для всех. Регулятор напряжения входит в состав всех систем электроснабжения; даже в твоей машине он есть.

    Внутри регулятора напряжения генерируемое напряжение переменного тока преобразуется в напряжение постоянного тока.Затем напряжение подается на аккумулятор. Аккумуляторная система будет иметь указанное значение или номинальное напряжение, которое она может принимать без повреждения цепи. Вот где работает регулятор напряжения, поддерживая напряжение в соответствии с требованиями аккумуляторной системы. Напряжение будет регулироваться в пределах батареи. Например, в телефоне зарядное устройство выдает 120 В переменного тока, что слишком много для телефона. Таким образом, регулятор напряжения снизит напряжение до предела, скажем, 8 В переменного тока, который подходит для телефона.

    Все оборудование, которое мы используем сегодня, имеет определенные требования к напряжению, например, компьютер с такими компонентами, как материнская плата, охлаждающий вентилятор, жесткий диск и т. Д. Все компоненты могут идеально функционировать при указанном напряжении, которое регулируется регулятором напряжения. Таким образом, батарея LiPo может обеспечивать постоянное напряжение для каждого компонента и работать лучше.

    Регулятор напряжения постоянного и постоянного тока

    Boost преобразуется в

    Аннотация: Контроллер повышающего DC-DC, созданный на базе контроллера DC-DC MAX1771, представляет собой простой импульсный источник тока, который полезен для зарядки аккумуляторов.Контур управления напряжением отключен, так что контур управления током обеспечивает регулирование.

    Импульсный стабилизатор модели , рис. 1, включает в себя независимые контуры обратной связи по току и напряжению для поддержания регулирования. Отключив контур напряжения, вы можете использовать контур тока для реализации источника тока общего назначения.


    Рис. 1. Показанные соединения преобразуют импульсный регулятор напряжения в источник тока общего назначения.

    Сначала подайте 5 В на V +.Поскольку микросхема ожидает 12 В обратной связи на этом выводе, она предполагает потерю регулирования и переключает управление на токовый контур. Этот режим работы позволяет увеличивать линейное изменение тока через Q1, в результате чего напряжение на CS (вывод 8) увеличивается до тех пор, пока оно не достигнет порога внутреннего компаратора (210 мВ). Затем схема синхронизации отключает Q1 на фиксированное время 2,3 мкс, и цикл повторяется. В результате получается относительно постоянный ток индуктора, который также является током нагрузки ( Рисунок 2. )


    Рисунок 2.Привод затвора для Q1 и результирующий ток через L1 связаны, как показано.

    При правильных значениях компонентов схема генерирует постоянный ток в широком диапазоне входных напряжений. Схема на Рисунке 1 (с показанными значениями компонентов) представляет собой быстрое зарядное устройство для никель-кадмиевых аккумуляторов, обеспечивающее зарядный ток 600 мА. Расчеты производятся следующим образом:

    Пиковый ток катушки индуктивности равен I PEAK = V SENSE / R1, где V SENSE — это пороговое значение 210 мВ для токового компаратора.Ток дизеринга (размах переменного тока нагрузки) равен:

    (1) I DITHER = V BATT t OFF / L,

    , где V BATT — это напряжение батареи, t ВЫКЛ. — это упомянутый ранее интервал 2,3 мкс, а L — индуктивность L1.

    Как показано на рисунке 2, средний ток катушки индуктивности равен I AVE = I PEAK — ½I DITHER . Подставляя сверху,

    Сначала выберите средний ток для предлагаемого источника тока (600 мА в этой схеме).Затем определите номинал V BATT (4,8 В в данном случае). Затем, чтобы гарантировать относительно небольшую составляющую переменного (по сравнению с постоянным), установите ток дизеринга в уравнении 1 меньше 0,2I AVE и решите для L:

    (используйте L = 100 мкГн.)
    Затем подключите это Значение L (100 мкГн) в уравнение 2 и решите для R1:

    (используйте R1 = 300 мОм.)

    Три формы ошибки вызывают отклонение I AVE от заданных 600 мА (, рис. 3, ): вариации в V SENSE , задержка через компаратор и полевой МОП-транзистор (Q1) и допуск на резисторе измерения тока R1.При более низких напряжениях наибольшая ошибка — это ошибка V SENSE , указанная в спецификации IC1 как 210 мВ ± 30 мВ или около 14%. (В этой схеме значение было около 190 мВ.)


    Рис. 3. Ошибки источника тока увеличиваются с увеличением входного напряжения, как поясняется в тексте.

    При более высоких напряжениях задержки вызывают превышение пиковым током предельного значения тока. Вы можете минимизировать эту ошибку, выбрав значение индуктивности следующим образом:

    (5) L (в мкГн) > 5.5 (V IN V BATT ),

    с V IN и V BATT в вольтах.

    Другие источники ошибок — вариации в V BATT , t OFF и L — относительно малы, потому что они относятся к I DITHER , который ограничен небольшой частью I AVE .

    ©, Maxim Integrated Products, Inc.
    Содержимое этой веб-страницы защищено законами об авторских правах США и зарубежных стран.Для запросов на копирование этого контента свяжитесь с нами.
    ПРИЛОЖЕНИЕ 113:
    ПРИМЕЧАНИЕ ПО ПРИМЕНЕНИЮ 113, AN113, АН 113, APP113, Appnote113, Appnote 113

    maxim_web: en / products / power / battery-management, maxim_web: en / products / power, maxim_web: en / products / power / battery-management / battery-chargers, maxim_web: en / products / power / Switches-Regators / step -вверх-переключение-рег

    maxim_web: en / products / power / battery-management, maxim_web: en / products / power, maxim_web: en / products / power / battery-management / battery-chargers, maxim_web: en / products / power / Switches-Regators / step -вверх-переключение-рег

    Телефонное реле в рабочем состоянии, регуляторы LM317, зарядное устройство для лития

    LM317T Регулятор переменного напряжения


    LM317T — регулируемый трехконтактный стабилизатор положительного напряжения. способен поставить более 1.5 ампер в диапазоне выходной мощности От 1,25 до 37 вольт. Устройство также имеет встроенное ограничение тока и тепловое отключение, что делает его устойчивым к выбросу.

    Выходное напряжение устанавливается двумя резисторами R1 и R2, подключенными, как показано ниже. Напряжение на R1 составляет постоянное 1,25 В, а клемма регулировки ток меньше 100uA. Выходное напряжение может быть близко приблизительно от Vout = 1,25 * (1+ (R2 / R1)), который игнорирует клемму настройки ток », но будет близок, если ток через R1 и R2 во много раз больше.Требуется минимальная нагрузка около 10 мА, поэтому значение R1 может должно быть выбрано падение 1,25 В при 10 мА или 120 Ом. Что-то меньшее, чем 120 Ом можно использовать для обеспечения минимального тока более 10 мА. В приведенном ниже примере показан LM317, используемый в качестве регулятора на 13,6 В. 988 Резистор для R2 можно получить стандартным 910 и 75 Ом последовательно.

    При отключении питания регулятора выходное напряжение должно упасть. быстрее, чем ввод.В случае, если это не так, диод может быть подключен через клеммы входа / выхода для защиты регулятора от возможного обратного напряжения. Танталовый конденсатор емкостью 1 мкФ или электролитический конденсатор емкостью 25 мкФ на выходе. улучшает переходную характеристику, а небольшой танталовый конденсатор емкостью 0,1 мкФ рекомендуется на входе, если регулятор расположен на значительном расстояние от фильтра блока питания. Силовой трансформатор должен быть достаточно большой, чтобы входное напряжение регулятора оставалось 3 вольта выше выхода при полной нагрузке, или 16.6 вольт для выхода 13,6 вольт.

    LM317 Лист данных

    Меню

    LM317T Регулятор напряжения с проходным транзистором


    Выходной ток LM317T можно увеличить, используя дополнительную мощность. транзистор, чтобы разделить часть общего тока. Количество тока разделение устанавливается резистором, включенным последовательно с входом 317. и резистор, включенный последовательно с эмиттером проходного транзистора.На рисунке ниже проходной транзистор начнет проводить, когда Ток LM317 достигает примерно 1 А из-за падения напряжения на 0,7 резистор ом. Ограничение тока происходит примерно на 2 ампера для LM317, который упадет примерно на 1,4 В на резисторе 0,7 Ом и создаст 700 Ом. падение милливольт на эмиттерном резисторе 0,3 Ом. Таким образом, полный ток ограничено примерно 2+ (0,7 / 0,3) = 4,3 ампер. Входное напряжение должно быть быть примерно на 5,5 вольт больше, чем выходное напряжение при полной нагрузке и тепловыделении при полной нагрузке будет около 23 Вт, поэтому достаточно большой радиатор может быть нужен как для регулятора, так и для проходного транзистора.Размер конденсатора фильтра можно аппроксимировать из C = IT / E, где I — ток, T — полупериод. время (8,33 мс при 60 Гц), а E — падение напряжения, которое произойдет в течение одного полупериода. Чтобы напряжение пульсации не превышало 1 В при 4,3 ампер, необходим фильтрующий конденсатор емкостью 36 000 мкФ или больше. Сила трансформатор должен быть достаточно большим, чтобы максимальное входное напряжение регулятор остается на 5,5 вольт выше выходного при полной нагрузке или на 17,5 вольт для выхода 12 В.Это допускает падение напряжения на регуляторе на 3 В, плюс падение 1,5 В на последовательном резисторе (0,7 Ом) и 1 В пульсации, создаваемой конденсатором фильтра. Конденсатор фильтра большего размера будет снизить требования к вводу, но ненамного.
    Меню

    Сильноточные регулируемые источники питания

    В приведенном ниже регуляторе высокого тока используется дополнительная обмотка или отдельный трансформатор для питания регулятора LM317, чтобы проходные транзисторы могут работать ближе к насыщению и повышать эффективность.Для хорошего КПД напряжение на коллекторах два параллельных 2N3055 проход транзисторов должен быть близок к выходному напряжению. LM317 требует пара дополнительных вольт на входе, плюс падение эмиттера / базы 3055, плюс все потери на уравнительных резисторах (0,1 Ом) (1 вольт при 10 ампер), поэтому отдельная цепь трансформатора и выпрямителя / фильтра напряжение на несколько вольт выше, чем выходное напряжение. LM317 будет обеспечить ток более 1 А для управления базами проходных транзисторов и предполагая усиление 10, комбинация должна выдавать 15 ампер или более.В LM317 всегда работает при разнице напряжений 1,2 между выходными клеммы и клеммы настройки и требует минимальной нагрузки 10 мА, поэтому был выбран резистор 75 Ом, который потребляет ток (1,2 / 75 = 16 мА). Это то же самое ток течет через резистор эмиттера 2N3904, который производит падение напряжения около 1 В на резисторе 62 Ом и 1,7 В на базе. Выходное напряжение устанавливается делителем напряжения (1K / 560) так, чтобы 1,7 вольт подается на базу 3904, когда выход составляет 5 вольт.На 13 вольт При работе резистор 1 кОм можно отрегулировать примерно до 3,6 кОм. Регулятор не имеет защиты выхода от короткого замыкания, поэтому выход, вероятно, следует использовать предохранителем.
    Меню

    Простой регулируемый источник напряжения


    Простой, но менее эффективный метод управления напряжением постоянного тока состоит в использовании конфигурации делителя напряжения и транзисторного эмиттерного повторителя. На рисунке ниже показано использование потенциометра 1K для установки базового напряжения NPN-транзистор средней мощности.Коллектор NPN питает базу силовой транзистор PNP большего размера, который подает большую часть тока на нагрузку. Выходное напряжение будет примерно на 0,7 В ниже напряжения стеклоочистителя. потенциометра 1K, так что выход можно регулировать от 0 до полного напряжение минус 0,7 вольт. Использование двух транзисторов обеспечивает коэффициент усиления по току около 1000 или более, так что потребляется только пара миллиампер тока от делителя напряжения для подачи на выход пары ампер тока.Обратите внимание, что эта схема намного менее эффективна, чем диммер с таймером 555. схема, использующая подход переключения с переменным рабочим циклом. На рисунке ниже лампа на 25 Вт / 12 В потребляет около 2 А при 12 В и 1 А при 3 вольт, чтобы мощность, потерянная при тусклом свете лампы, была примерно (12-3 вольт * 1 ампер) = 9 ватт. Для предотвратить перегрев силового транзистора PNP. Мощность, потребляемая лампа будет только (3 вольта * 1 ампер) = 3 ватта что дает нам КПД составляет всего 25% при затемненной лампе.Преимущество схемы — это простота, а также то, что она не генерирует RF помехи, как это делает импульсный регулятор. Схема может быть использована как регулятор напряжения, если входное напряжение остается постоянным, но не будет компенсировать изменения на входе, как это делает LM317.
    Меню

    Зарядное устройство для 2-элементных литий-ионных аккумуляторов

    Эта схема была построена для зарядки пары литиевых ячеек (3,6 В каждый, 1 Ампер-час), установленный в переносной транзисторный радиоприемник.

    Зарядное устройство работает путем подачи короткого импульса тока через серию резистора, а затем отслеживая напряжение батареи, чтобы определить, есть ли другой требуется пульс. Ток можно отрегулировать, изменив последовательный резистор. или регулировка входного напряжения. Когда батарея разряжена, ток импульсы расположены близко друг к другу, так что постоянный ток настоящее время. Когда аккумуляторы полностью заряжены, импульсы разнесены. дальше друг от друга, и состояние полного заряда отображается светодиодом мигает медленнее.

    TL431, опорное напряжение запрещенной зоны (2,5 В) используется на выводе 6 компаратора. поэтому выход компаратора переключится на низкий уровень, срабатывая таймер 555, когда напряжение на выводе 7 меньше 2,5 вольт. Выход 555 включается 2 транзистора и батареи заряжаются примерно 30 миллисекунд. Когда импульс заряда заканчивается, напряжение батареи измеряется и делится. вниз комбинацией резисторов 20 кОм, 8,2 кОм и 620 Ом, поэтому, когда Напряжение аккумулятора достигает 8.2 вольта, вход на выводе 7 компаратора поднимется чуть выше 2,5 вольт, и цепь перестанет заряжаться.

    Схема может использоваться для зарядки других типов батарей, таких как как Ni-Cad, NiMh или свинцово-кислотный, но напряжение отключения должно быть можно отрегулировать, заменив резисторы 8,2 кОм и 620 Ом так, чтобы на входе компаратора остается 2,5 В, когда клемма АКБ напряжение достигнуто.

    Например, чтобы зарядить свинцово-кислотную батарею на 6 В до предела 7 В, ток через резистор 20K будет (7-2.5) / 20К = 225 мкА. Это означает комбинацию двух других резисторов (8,2 кОм и 620). должно быть R = E / I = 2,5 / 225 мкА = 11111 Ом. Но это не стандартное значение, так что вы можете использовать 10K последовательно с 1,1K или другими значениями, которые всего 11.11K

    Будьте осторожны, чтобы не перезарядить батареи. Я бы рекомендовал использовать большой конденсатор вместо батареи для проверки цепи и убедитесь, что он отключается при правильном напряжении.

    Меню

    Зарядное устройство для одно- или двухэлементных литий-ионных аккумуляторов

    Еще одна идея зарядного устройства — использование регулируемого блока питания. для полного заряда аккумулятора и резистор для ограничения тока.Он не обеспечивает постоянный ток и требует примерно на 30% больше заряда. время, или около 4 часов. Зарядное устройство постоянного тока может уменьшить это до 3 часов, но потребуется больше деталей.

    Можно добавить светодиодный индикатор зарядного тока, как показано в нижнем левом углу. чертежа. Светодиод гаснет, когда ток заряда меньше около 35 мА, а падение напряжения на резисторе 18 Ом составляет около 600 мВ или менее. Тестовый запуск потребовал 260 минут, чтобы светодиод погас, что должен указывать примерно 85% полной мощности, но не уверен.Более информацию можно найти по адресу:

    Литий-ионная статья на Battery University.com

    Напряжение Емкость Время зарядки Емкость с
                                            полная насыщенность
    -------------------------------------------------- -------
    3,8 60% 120 мин. 65%
    3,9 70% 135 мин. 76%
    4,0 75% 150 мин. 82%
    4,1 80% 165 Мин. 87%
    4.2 85% 180 мин. 100%
    -------------------------------------------------- -------
     

    Детали схемы:

    Когда батарея разряжена, напряжение на опорном контакте TL431 будет меньше 2,5 вольт, что приведет к отключению TL431, увеличивая напряжение базы транзистора и ток заряда. Текущий ограничен до 300 мА резистором 18 Ом (двухэлементная установка). Когда батарея приближается к полной зарядке, контрольный вывод TL431 подходы 2.5 вольт, увеличивая ток TL431 и уменьшая напряжение базы транзистора и ток заряда. Использование 2-х ячеек (8,2 вольт, 1000 мАч), ток падает с 300 мА до примерно 100 мА при заряд достигает 75% емкости за 200 минут. Еще час необходимо довести заряд до 85% Обратите внимание, значение 4,1, а не 4.2 был выбран за чуть больший запас и меньшую нагрузку на аккумулятор при полной зарядке. Судя по приведенным выше данным, это всего лишь 5% емкости. потерян.Диод предотвращает обратное напряжение на переход э / б транзистора в случае подключения блока питания закорочены при подключенной батарее. Резистор 220 Ом был выбран для базового тока около 20 мА. Минимальное усиление транзистора — 30, поэтому 20 мА должны давать не менее 600 мА. Выходное напряжение холостого хода составляет установить с делителем напряжения на 4,1 или 8,2 вольт. Две перемычки используются для выбора желаемого ограничения напряжения и тока.

    Например, чтобы зарядить одну литий-ионную батарею до 4,1 вольт, ток через резистор 10К будет
    (4,1-2,5) / 10К = 160 мкА. Сериал Комбинация двух других резисторов должна составлять 2,5 / 160 мкА = 15625 Ом. Можно использовать 15K последовательно с 620, а 620 отрегулировать для компенсации для 15K немного больше или меньше. Я закончил 15K и 750 с тех пор, как 15К было немного мало.

    В случае с 2 ячейками (8,2 В) два дополнительных резистора добавляются параллельно. с 15625 (с помощью перемычки), чтобы увеличить выходное напряжение с 4.1 к 8.2. В итоге я получил 5,6 кОм последовательно с 430 Ом. 430 можно отрегулировать чтобы понять это правильно.

    Вторая перемычка (через резистор 12 Ом) используется для поддержания примерно одинаковый ток заряда с одной или двумя ячейками операция. Обе перемычки устанавливаются на работу от 8,2 В и снимаются. для работы на 4,1 В. Примечание: на изображении печатной платы показаны два 5-ваттных Резисторы на 12 Ом.

    Author:

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *