Регулятор напряжения на полевом транзисторе: Идеи на тему «Регулятор напряжения» (80+) в 2021 г

Содержание

Советы по управлению затвором мощного полевого транзистора

Непосредственное управление от контроллера ШИМ

В большинство современных микросхем контроллеров встроен выходной управляющий каскад. Обычно он содержит двухтактную схему на двух транзисторах. Этот выход можно использовать для непосредственного управления затвором мощного полевого транзистора, как показано на рис. 1.

Рис. 1. Мощный ПТ управляется непосредственно от выхода контроллера ШИМ

 

Непосредственное подключение можно использовать в тех случаях, когда управляющая схема подключена к той же самой «земле», что и силовая часть, и уровень мощности относительно невелик.

Судя по справочным данным, ток в несколько ампер можно получить прямо с выхода контроллера ШИМ. Этого вполне достаточно для управления маломощными устройствами. Однако вход полевого транзистора имеет большую емкость. Кроме того, пытаться полностью использовать весь выходной ток контроллера, как правило, — плохая идея.

Это может привести к увеличению электромагнитных помех из–за быстрого включения и выключения, непомерным потерям на обратное восстановление в выпрямителе и шумам в самом контроллере ШИМ. В результате могут возникать случайные сбои в работе и дрожание тактовой частоты.

Лучшее решение — ограничить выходной ток контроллера ШИМ при помощи схемы, показанной на рис. 2. В ней используются два резистора: один для управления временем включения, а другой — для управления временем выключения. (Обычно мы выключаем устройство быстрее, чем включаем, для защиты от коротких импульсов тока.) Диод служит для разделения этих двух функций, но в некоторых случаях, когда критично быстродействие схемы, можно обходиться без него.

Рис. 2. Схема, с помощью которой можно ограничить выходной ток контроллера ШИМ

 

В маломощных преобразователях мы обычно включаем ПТ медленно. Не надо бояться экспериментов с величиной сопротивления резистора Ron. Автор использует в своих проектах значения от 1 Ом до 1 кОм.

Сформулированное им правило разработки заключается в том, чтобы увеличивать сопротивление, одновременно наблюдая за осциллограммами переключения и рассеиваемой мощностью ПТ. Если температура начинает заметно возрастать, нужно уменьшить величину сопротивления вдвое. Вы будете удивлены, увидев, как медленно можно включать ПТ в обратноходовом преобразователе, работающем в режиме прерывистых токов, без значительных потерь на переключение.

Выключение должно быть быстрым, чтобы обеспечить быстрый спад импульса тока. Экспериментируйте с разными значениями сопротивления, вместо того, чтобы просто использовать величины, приведенные в руководствах по применению. Более подробную информацию о том, насколько быстро можно управлять ПТ, можно найти в работе[3].

 

Специализированные драйверы затворов

При увеличении мощности преобразователя становится ясно, что сопротивления резисторов в затворе ПТ необходимо уменьшить, чтобы минимизировать потери на переключение. Для схем большой мощности в промышленности, как правило, используют микросхемы драйверов с большими выходными токами.

При этом уменьшается влияние помех на контроллер ШИМ, и, кроме того, получается более удачная разводка печатной платы. В продаже имеется множество хороших драйверов. Можно даже создать собственный мощный двухтактный драйвер, если необходимо увеличить производительность при снижении цены. Для устройств большой мощности используют отдельную схему драйвера затвора для достижения быстрого переключения (рис. 3). Резисторы в затворе также имеются.

Рис. 3. Отдельная схема драйвера затвора для быстрого переключения

 

Изолированные драйверы затворов

Для получения очень высоких мощностей разработчики начинают использовать такие топологии, как двухключевой прямоходовый преобразователь, полумостовой или мостовой преобразователи. Во всех этих топологиях необходимо применять плавающий ключ.

Существуют решения этой задачи с использованием полупроводниковых компонентов, но только для низковольтных применений. Интегральные драйверы верхнего плеча не предоставляют разработчику достаточной гибкости, а также не обеспечивают такого уровня защиты, изоляции, устойчивости к переходным процессам и подавления синфазных помех, который дает хорошо спроектированный и изготовленный трансформатор для управления затвором.

На рис. 4 показан самый примитивный способ получения плавающего управления затвором. Выход микросхемы драйвера подключен через разделительный конденсатор к небольшому трансформатору (обычно тороидальному для лучшей производительности). Вторичная обмотка подключена непосредственно к затвору ПТ, и любые замедляющие резисторы должны располагаться со стороны первичной обмотки трансформатора. Обратите внимание на стабилитроны в затворе для защиты от переходных процессов. На выходе драйвера необходимо использовать ограничительные диоды, ими нельзя пренебрегать, даже если при первых испытаниях не возникли проблемы с реактивными токами в трансформаторе.

Рис. 4. Простейшая изолированная схема для управления затвором

В простейшей изолированной схеме для управления затвором используется трансформатор, как показано на рис. 4. Ограничительные диоды необходимы для защиты от реактивных токов, а разделительный конденсатор предотвращает насыщение трансформатора. Конденсатор дает сдвиг уровня выходного напряжения драйвера, который зависит от относительной длительности управляющих импульсов.

Схема, представленная на рис. 4, обеспечивает отрицательное напряжение на вторичной обмотке на интервалах времени, когда ПТ выключен. Это значительно увеличивает устойчивость к синфазным помехам, что особенно важно для мостовых схем.

Однако недостаток отрицательного смещения — это уменьшение положительного напряжения, открывающего ПТ. При небольшой относительной длительности импульсов положительный импульс большой. При относительной длительности, равной 50%, половина имеющегося напряжения драйвера теряется. При большой относительной длительности положительного напряжения может не хватить для полного открывания ПТ.

Схемы с трансформаторной развязкой наиболее эффективны при относительной длительности от 0 до 50%. К счастью, именно это и нужно для прямоходовых, мостовых и полумостовых преобразователей.

Обратите внимание: на рис. 5 показано, как напряжение на разделительном конденсаторе смещается под действием низкочастотных колебаний, наложенных на выходные импульсы драйвера.

Эти колебания должны тщательно подавляться для обеспечения безопасной работы. Обычно для борьбы с этим явлением увеличивают емкость конденсатора, что уменьшает Q для низкочастотных составляющих. Необходимо проверить работу схемы при всех возможных переходных процессах, особенно при старте, когда конденсатор разряжен.

Рис. 5. Колебания, возникающие в разделительном конденсаторе и влияющие на работу трансформатора

 

Осторожно: схема восстановления постоянной составляющей!

Иногда разработчик может столкнуться с высоковольтной схемой, в которой требуется изолированное управление затвором при относительной длительности импульсов около 100%. Раньше для таких применений рекомендовали схему, показанную на рис. 6. Но ее применение может приводить к повреждению источника питания при выключении.

Рис. 6. Высоковольтная схема с восстановлением постоянной составляющей

Диод и конденсатор на стороне вторичной обмотки восстанавливают постоянную составляющую на затворе и обеспечивают управление затвором при значениях относительной длительности до 90% и более.

Однако у этой схемы есть серьезный недостаток, и использовать ее без очень тщательного анализа не рекомендуется.

Эта схема хорошо работает в установившемся режиме (рекомендуется нагрузочный резистор в затворе), но когда контроллер ШИМ выключается, разделительный конденсатор остается подключенным через трансформатор на неопределенный период времени. Это может привести к насыщению трансформатора, как показано на рис. 6б. Когда трансформатор насыщается, вторичная обмотка замыкается накоротко, и конденсатор на стороне вторичной обмотки может включить ПТ. Насыщение можно предотвратить, если использовать сердечник с зазором и конденсатор небольшой емкости, но при этом увеличится реактивный ток, необходимый для управления затвором, а это вызывает другие проблемы.

 

Изолированное управление затвором для мостовых преобразователей

Мостовые и полумостовые преобразователи — это устройства, в которых требуется очень надежная изолированная схема управления. В то время как один из ключей закрыт, ключ на другой стороне моста будет открыт.

В результате на выключенном устройстве будет присутствовать большое синфазное напряжение.

На рис. 7 показана схема, рекомендуемая для полумостового преобразователя. В ней управлять затворами должны два трансформатора. Не пытайтесь использовать только один трансформатор и схему с тремя состояниями, как советуют в некоторых руководствах по применению!

Рис. 7. Для управления затворами в полумостовых преобразователях рекомендуются два отдельных трансформатора

В мостовом преобразователе, показанном на рис. 8, также требуются два трансформатора для управления затворами. Двойные вторичные обмотки в каждом трансформаторе используются для управления парами ПТ в диагонально противоположных плечах моста. Для обоих типов мостов схемы управления затворами должны тщательно тестироваться во время переходного процесса при включении, когда возникают большие пиковые токи, и отрицательные напряжения на затворах невелики.

Рис. 8. Схема мостового преобразователя с двумя трансформаторами для повышения надежности

В схеме моста с фазовым сдвигом (рис. 9) для управления затворами также используются два трансформатора. Но обратите внимание на отличие: каждая сторона моста работает с фиксированной относительной длительностью 50%, что позволяет использовать один трансформатор с двумя вторичными обмотками противоположной полярности. Это одна из немногих схем, где можно применять биполярную схему управления затвором без снижения надежности. Но выбросы, возникающие во время переходных процессов при выключении, не должны приводить к открытию транзисторов. Обратите внимание на полярность вторичных обмоток.

Рис. 9. Мост с фазовым сдвигом с двунаправленными трансформаторами в каждом плече

 

Заключение

Схема управления затвором — критически важная часть проекта преобразователя. Убедитесь в том, что вы используете правильную схему, и не копируйте вслепую схемы из руководства по применению. Трансформаторы в цепях управления затворами придают вашему проекту такую степень надежности, которую невозможно получить при использовании полупроводниковых решений. Если вы разрабатываете очень мощное устройство, то это важнейшая составляющая. Добавление активных элементов для того, чтобы, согласно общепринятому мнению, увеличить скорость переключения, обычно не дает улучшения общей производительности, но вносит новые возможности для потенциальных отказов. Делайте вашу схему управления затвором как можно более простой.

Литература
  1. Balogh L. Design and Application Guide for High Speed MOSFET Gate Drive Circuits. Texas Instruments Application Note.
  2. Ridley R. Six Reasons for Power Supply Instability. www.switchingpowermagazine.com
  3. Ridley R. Power Supply Stress Testing. www.switchingpowermagazine.com
  4. www.ridleyengineering.com

Фазоимпульсный регулятор на полевом транзисторе

:: РЕГУЛЯТОР МОЩНОСТИ НА МИКРОКОНТРОЛЛЕРЕ ::

Источник: http://samodelnie.ru/publ/samodelnye_pribory/reguljator_moshhnosti_na_mikrokontrollere/5-1-0-220

Радиосхемы. – Регуляторы напряжения с компаратором

материалы в категории

Чаще всего для регулировки напряжения применяются простые фазовые регуляторы,  рассчитанные только для  изменения напряжения на активной нагрузке, но однако у них есть целый ряд недостатков: большая зависимость от сетевого напряжения и его пульсаций а также ограниченный диапазон регулировки.

Часто требуется расширить область использования схем, ввести  дополнительные режимы работы, например режим стабилизации напряжения или тока на выходе, режим плавного включения, стабилизации яркости ламп или рабочей температуры  электронагревательных приборов  и т.д.

  Ранее описанные схемы для этого малопригодны, т.к.  изменение фазового угла  в них производится путём изменения сопротивления  переменного резистора.

Можно, конечно, вместо переменного резистора установить фоторезистор и путём  изменения напряжения на освещающей фоторезистор лампе накаливания менять фазовый угол управления, или вместо резистора  установить полевой транзистор и  величиной напряжения на его затворе управлять фазовым углом.

  Эти способы имеют право на существование  и иногда используются , но чаще применяется  схема  с использованием формирователя пилообразного напряжения и компаратора. Такое устройство приведено ниже.

Схемы регуляторов напряжения на компараторах

Узел на транзисторах  VT1, VT2  позволяет получить короткий импульс  в момент перехода через “ноль” положительных и отрицательных волн сетевого напряжения.

На коллекторе транзистора VT3 формируется пилообразное напряжение с амплитудой около 4 В (при указанных на схеме номиналах R4 иC1), которое поступает на  неинвертирующий вход компаратора DA1.1 для сравнения  с  напряжением задатчика R6.

  В момент  начала превышения напряжения пилы над заданием на выходе компаратора появляется  положительный уровень, который поступает на узел формирования  сигнала управления симистором  (С2, DA1.2, VT4, C3).

  На управляющий вход симистора поступают короткие отрицательные импульсы, привязанные к началу полупериодов  сетевого напряжения  и задержанные на заданный фазовый угол.

  В этой  схеме можно использовать  переменные резисторы (R6) с практически любым сопротивлением, необходимо только  подобрать резистор R5- на фазовых характеристиках это никак не сказывается.  Сфера применения данного устройства  гораздо шире ранее описанных конструкций.  С помощью этого  регулятора можно менять напряжение на коллекторных электродвигателях и сварочных или обычных трансформаторах, что плохо получается у более простых конструкций.

При большом уровне помех в сети, например при работе сварочного аппарата,  узел формирования пилообразного напряжения лучше выполнить на оптроне, как показано на  второй схеме.

В конструкции можно применять практически любые оптроны – диодные и транзисторные,  двойные или одиночные.

В случае применения одиночных оптронов, например TLP521, PC817, АОТ101 и других, можно использовать два оптрона, включенных по приведённой схеме или  один оптрон, включенных  в диагональ маломощного диодного моста, готового или собранного на любых диодах, например 1N4148, КД521,  КД102 и т. д.

   В схему добавлен дополнительный конденсатор C2, который при указанном номинале позволяет  плавно,  в течении 1 – 2 сек,  увеличить напряжение на нагрузке от нуля до заданного уровня – этот режим очень полезен для включения ламп накаливания, особенно галогеновых.

  Если устройство используется  для регулировки напряжения на маломощных  устройствах  симистор можно заменить на  BT134-800, BT136-800, BT138-800 и т.д., а транзистор VT4 (первая схема) , VT2 ( вторая схема)  на КТ3102   или  любой аналог.  При регулировке напряжения сварочных аппаратов  используются симисторы, способные регулировать ток 50 А и более.

Автор Кравцов В.Н. http://kravitnik.narod.ru/
Обсудить на форуме

Источник: http://radio-uchebnik.ru/shem/9-istochniki-pitaniya/343-regulyatory-napryazheniya-s-komparatorom

Стабилизатор напряжения на полевом транзисторе – схема

Простая схема для регулировки и стабилизации напряжения показана на рисунке. Такую схему можно выполнить даже неопытному в электронике любителю. На вход подается 50 вольт, при этом на выходе получается 15,7 В.

Схема стабилизатора.

Главной деталью этого прибора стал полевой транзистор. В его качестве можно применять IRLZ 24 / 32 / 44 и аналогичные ему полупроводники. Чаще всего их изготавливают в корпусе ТО – 220 и D2 Pak. Его стоимость составляет менее одного доллара. Этот мощный полевик имеет 3 вывода. Он имеет внутреннее строение металл–изолятор–полупроводник.

Стабилизатор на микросхеме ТL 431 в корпусе ТО – 92 обеспечивает настраивание величины выходного напряжения. Мощный полевой транзистор мы оставили на охлаждающем радиаторе и проводами припаяли к монтажной плате.

Напряжение на входе для такой схемы 6-50 В. На выходе получаем от 3 до 27 В, с возможностью регулировки переменным сопротивлением на 33 кОм. Ток выхода большой, и составляет величину до 10 А, зависит от радиатора.

Выравнивающие конденсаторы С1, С2 емкостью от 10 до 22 мкФ, С2 – 4,7 мкФ. Без таких деталей схема будет функционировать, однако не с таким качеством, как необходимо. Нельзя забывать про допустимое напряжение электролитических конденсаторов, которые должны быть установлены на выходе и входе. Мы взяли емкости, которые выдерживают 50 В.

Такой стабилизатор способен рассеивать мощность не выше 50 Вт. Полевик необходимо монтировать на радиатор охлаждения. Его площадь целесообразно выполнять не меньше 200 см2. При установке полевика на радиатор нужно промазать место касания термопастой, для лучшего теплоотвода.

Можно применять переменный резистор на 33 кОм типа WH 06-1. Такие резисторы имеют возможность точной настройки сопротивления. Они бывают импортного и отечественного производства.

Для удобства монтажа на плату припаивают 2 колодки, вместо проводов. Так как провода быстро отрываются.

Вид платы дискретных компонентов и переменного сопротивления вида СП 5-2.

Стабильность напряжения в результате получается неплохой, а напряжение выхода колеблется на несколько долей вольта долгое время. Монтажная плата получается компактных размеров и удобна в работе. Дорожки платы окрашены зеленым цапонлаком.

Мощный стабилизатор на полевике

Рассмотрим сборку схемы стабилизатора, предназначенного для блока питания большой мощности. Здесь улучшены свойства прибора с помощью мощного электронного ключа в виде полевого транзистора.

При разработке мощных силовых стабилизаторов любители чаще всего применяют специальные серии микросхем 142, и ей подобные, которые усилены несколькими транзисторами, подключенными по параллельной схеме. Поэтому получается силовой стабилизатор.

Схема такой модели прибора изображена на рисунке. В нем использован мощный полевик IRLR 2905. Он служит для переключения, однако в этой схеме он применен в линейном режиме. Полупроводник имеет незначительное сопротивление и обеспечивает ток до 30 ампер при нагревании до 100 градусов. Он нуждается в напряжении на затворе до 3 вольт. Его мощность достигает 110 ватт.

Полевиком управляет микросхема TL 431. Стабилизатор имеет следующий принцип действия. При подсоединении трансформатора на вторичной обмотке возникает переменное напряжение 13 вольт, которое выпрямляется выпрямительным мостом. На выравнивающем конденсаторе значительной емкости появляется постоянное напряжение 16 вольт.

Это напряжение проходит на сток полевого транзистора и по сопротивлению R1 идет на затвор, при этом открывая транзистор. Часть напряжения на выходе через делитель попадает на микросхему, при этом замыкая цепь ООС.

Напряжение прибора повышается до тех пор, пока входное напряжение микросхемы не дойдет границы 2,5 вольт. В это время микросхема открывается, уменьшая напряжение затвора полевика, то есть, немного закрывая его, и прибор работает в режиме стабилизации.

Емкость С3 делает быстрее выход стабилизатора на номинальный режим.

Величина напряжения выхода устанавливается 2,5-30 вольт, путем выбора переменным сопротивлением R2, его величина может меняться в больших пределах. Емкости С1, С2, С4 дают возможность стабильному действию стабилизатора.

Для такого прибора наименьшее падение напряжения на транзисторе составляет до 3 вольт, хотя он способен работать при напряжении около нуля. Такой недостаток возникает поступлением напряжения на затвор. При малом падении напряжения полупроводник не будет открываться, так как на затворе должно быть плюсовое напряжение по отношению к истоку.

Для снижения падения напряжения цепь затвора рекомендуется подключать от отдельного выпрямителя на 5 вольт выше, чем напряжение выхода прибора.

Хорошие результаты можно получить при подключении диода VD 2 к мосту выпрямления. При этом напряжение на конденсаторе С5 повысится, так как падение напряжения на VD 2 станет ниже, чем на диодах выпрямителя. Для плавного регулирования напряжения выхода постоянное сопротивление R2 нужно заменить переменным резистором.

Величину выходного напряжения определяют по формуле: U вых = 2,5 (1+R2 / R3). Если применить транзистор IRF 840, то наименьшее значение напряжения управления на затворе станет 5 вольт.

Емкости выбирают танталовые малогабаритные, сопротивления – МЛТ, С2, Р1. Выпрямительный диод с небольшим падением напряжения.

Свойства трансформатора, моста выпрямления и емкости С1 подбирают по нужному напряжению выхода и тока.

Полевик рассчитан на значительные токи и мощность, для этого необходим хороший теплоотвод. Транзистор служит для монтажа на радиатор путем пайки с промежуточной пластиной из меди. К ней припаивают транзистор с остальными деталями. После монтажа пластину размещают на радиаторе. Для этого пайка не нужна, так как пластина имеет значительную площадь контакта с радиатором.

Если использовать для наружной установки микросхему П_431 С, сопротивления Р1, и чип-конденсаторы, то их располагают на печатной плате из текстолита. Плату паяют к транзистору. Настройка прибора сводится к монтажу нужного значения напряжения. Необходимо проконтролировать прибор и проверить его, имеется ли самовозбуждение на всех режимах.

Простой, мощный регулируемый стабилизатор напряжения

(3

Источник: http://ostabilizatore.ru/stabilizator-naprjazhenija-na-polevom-tranzistore.html

Регулятор мощности 12в

Устройство представляет собой бесконтактный прерыватель тока в нагрузке, питающейся напряжением 12-18V, при токе не более 10А. Частоту прерывания можно плавно регулировать в двух пределах «х1» от 0,2Гц до 2 Гц и «х2» от 0,4 Гц до 4 Гц.

Схема отличается точным равенством интервалов выключенного и включенного состояния нагрузки. Представлена схема (рис.1) на сайте radiochipi.

ru состоит из мощного ключа на р-канальных полевых транзисторах VT1 и VT2, включенных параллельно, и источника управляющих импульсов на микросхеме D1.

 Конечно, можно было источник управляющих импульсов сделать на основе мультивибратора на логических элементах, например, микросхемы К561ЛА7, но в таком случае, чтобы обеспечить симметричность выходных импульсов потребуется еще одна микросхема D триггер или счетчик.

В данном же случае, в одной микросхеме есть как мультивибратор, так и счетчик.

К тому же, счетчик 14-разрядный, поэтому мультивибратор может работать на значительно более высокой частоте, чем частота прерывания нагрузки, что благоприятно сказывается на стабильности частоты заданной RC-цепью. Частота мультивибратора задается RC цепью C1R2R3.

Плавная регулировка частоты осуществляется переменным резистором R2. Частота импульсов делится счетчиком. В положении переключателя S1 «х1» коэффициент деления составляет 16384, а в положении «х1» 8192.

Далее импульсы с выхода счетчика через переключатель S1 поступают на ключ на мощных полевых транзисторах VT1 и VT2. Транзисторы р-канальные, поэтому открываются они отрицательным относительно истока напряжением.

Резистор R4 несет две функции, во первых, он снижает ток заряда емкости затвора полевых транзисторов, снижая этим пиковую нагрузку на выход микросхемы, а во-вторых, он совместно со стабилитроном VD2 ограничивает напряжение на затворах VT1 и VT2 чтобы оно не превышало 12V.

Максимальное напряжение питания микросхемы D1 составляет 15V, а напряжение питания данного устройства может достигать 18V и даже больше.

Чтобы ИМС D1 не вышла из строя в этом случае, напряжение на ней ограничивается стабилитроном VD1 и резистором R5.

А диод VD3 защищает конденсатор С2 от разрядки в том случае, если при включении нагрузки ключом на VT1 и VT2 будет наблюдаться провал в напряжении питания.

Регулятор на полевых транзисторах

Очень заманчиво в полевых условиях в качестве источника света использовать прожектор или светильник сделанный на базе автомобильной фары. Еще лучше, если яркость этого осветительного прибора можно будет регулировать плавно в очень широких пределах.

 Ток потребления стандартной лампы автомобильной фары мощностью 65 W составляет 5,5А. А ток 100W лампы уже более 8А.

Конечно, можно сделать линейный регулятор на очень мощном транзисторе с огромным радиатором, но куда более эффективным будет регулятор с широтно-импульсным способом регулировки мощности.

В отличие от линейного его выходные транзисторы всегда будут либо закрыты полностью либо открыты полностью, а это значит что сопротивление их каналов в открытом состоянии будет минимальное и, следовательно, мощность на них падать тоже будет минимальная.

Отсюда и большой КПД, и более легкий температурный режим. Схема (рис.2) в части выходного каскада и питания аналогична схеме прерывателя тока (рис.1). Различие в схеме управления.

Здесь на микросхеме типа К561ЛА7 сделан мультивибратор, скважность выходных импульсов которого можно в очень широких пределах регулировать с помощью переменного резистора R1.

Частота импульсов неизменная и составляет около 400 Гц. Регулируя переменный резистор R1 изменяем соотношение длительностей положительных и отрицательных полуволн за счет различия сопротивлений R составляющих частото-задающей RCцепи, коммутируемых диодами VD4 и VD5.

 Практически регулировать мощность можно от 90% до 10% от максимального значения.  Собственно мультивибратор выполнен на элементах D1.1 и D1.2. С выхода элемента D1.2 импульсы поступают на усилитель мощности, сделанный на оставшихся двух элементах микросхемы D1 D1.3 и D1.4.

Эти элементы соединены параллельно. С их выходов импульсы через резистор R4 поступают на затворы полевых транзисторов.

В данной схеме сопротивление R4 уменьшено, чтобы обеспечить больше скорость открывания транзисторов и этим самым снизить их нагрев в момент переходного процесса между закрытым и открытым состоянием.

В связи с этим увеличивать напряжение питания схемы выше 15V не рекомендуется, так как это приведет к повышенной нагрузке на выходы элементов D1.3 и D1.4 микросхемы D1.

Регулятор мощности с прерывателем

Если объединить эти два устройства получится схема (рис.З), с помощью которой можно будет не только прерывать ток в нагрузке постоянного тока, но и регулировать мощность этой нагрузки. Например, регулировать яркость и частоту мигания сигнального прожектора.

В этом случае две управляющие схемы из схемы прерывателя (рис.1) и схемы регулятора мощности (рис.2) объединяются. Причем первая схема управляет второй. Происходит это следующим образом. Усилитель мощности на элементах D1.3 и D1.

4 выполнен на двух соединенных параллельно элементах микросхемы К561ЛА7, то есть, это элементы «2И-НЕ».

Если на один из входов такого элемента подать логический ноль, то на выходе элемента устанавливается логическая единица независимо от того какой логический уровень будет на его втором входе.

Схема же выходного ключа выполнена на полевых транзисторах VT1 и VT2. Транзисторы р-канальные, поэтому открываются они отрицательным относительно истока напряжением, то есть, логическим нулем.

А при подаче на их затворы логической единицы они закрываются.

Таким образом, выделяем по одному из входов элементов D1. 3 и D1.4, соединяем их вместе и через переключатель S1 подаем на них управляющие импульсы от генератора прерывания, выполненного на микросхеме D2.

Теперь при единице на выходе S1 нагрузка включается, а при нуле выключается. Чтобы можно устройством пользоваться как в режиме прерывания, так и без прерывания, переключатель S1 сделан на три положения.

В положении «0» прерывания не будет, и нагрузка будет работать постоянно.

В этом положении выводы 9 и 13 элементов D1.3 и D1.4 соединяются через переключатель S1 с плюсовым полюсом питания микросхемы, то есть, на них подается логическая единица. В этом режиме прерыватель отключен, и работает только регулятор мощности.

 Мощность регулируется резистором R1, частота прерывания резистором R6, режим работы переключателем S1. Включенные параллельно транзисторы VT2, VT3 типа IRF9540 можно заменить на IR9Z34, КП785А, КП784А. Микросхему CD4060B заменить можно любым аналогом «хх4060».

Микросхему К561ЛА7 можно заменить на К176ЛА7 или CD4011, либо любым аналогом «хх4011».

Стабилитрон КС515А можно заменить на КС215Ж, КС508Б, 1N4744A, TZMC15. Стабилитрон КС213Ж можно заменить на КС213Б, 1N4743A, BZX/BZV55C13.

 В качестве светодиода HL1 можно использовать любой из серий АП307, КИПМ15, КИПД21, КИПД35, L1503, L383 или другой индикаторный. Принципе, можно вообще отказаться от него, просто тогда не будет индикации включенного состояния нагрузки.

 При работе с током нагрузки до 10 А полевые транзисторы нужно установить на общий теплоотвод с площадью охлаждающей поверхности не менее 70 см².

Автор

Источник: http://www.radiochipi.ru/regulyator-moshhnosti-na-polevyh-tranzistorah/

Симисторный диммер с фазоимпульсным регулированием

Симисторный диммер с фазоимпульсным регулированием — это тиристорный регулятор мощности, предназначенный, в частности, для регулирования яркости свечения ламп накаливания в бытовых электроосветительных приборах (люстрах, бра, торшерах и т. п.). Его можно встраивать в настенные выключатели в жилых помещениях

Анализ схем промышленно выпускаемых диммеров (в основном китайского производства) показал, что фазосдвигающая цепь в них питается нестабилизированным напряжением.

Это приводит к тому, что момент открывания динистора в каждом полупериоде, а значит, и симистора, зависит от напряжения сети, что, в свою очередь, является причиной заметных перепадов мощности нагрузки диммера при колебаниях напряжения сети.

Это ограничивает сферу применения подобных устройств.

Выручить в этой ситуации мог бы диодный мост, включённый на входе регулятора (диод VD2 придётся изъять), но разместить мощные диодный мост и тринистор в стандартной нише выключателя проблематично, не говоря уже об отсутствии в зоне монтажа активной конвекции воздуха. Наличие в цепи нагрузки пяти элементов надёжности устройству тоже не добавляет.

К тому же лампы в светильниках, перегорая, часто вызывают замыкание цепи, хоть и кратковременное, но вполне достаточное для выведения из строя переключательного элемента.

Каждый раз заменять этот элемент и выпрямительный мост весьма накладно как в плане трудозатрат, так и денежных расходов.

 Фазоимпульсные регуляторы мощности с мощным симистором в качестве переключательного элемента отличают более высокий КПД и малое число элементов в цепи нагрузки. схема показана на рис.

На транзисторах VT1 и VT2 собран аналог динистора, в который введён диод VD1. Это позволило использовать транзистор VT2 в роли замыкателя диагонали теперь уже маломощного выпрямительного моста VD3—VD6, включённого в цепь управляющего электрода симистора VS1.

 В начале полупериода напряжения сети оба транзистора, диод VD1 и симистор закрыты, а конденсатор С1 разряжен. Увеличивающееся напряжение создаёт ток через резисторы R9, R8, диоды моста, резистор R7 и стабилитрон VD2. Падения напряжения на резисторе R9 пока недостаточно для открывания симистора.

Стабилитрон VD2, включённый последовательно с балластным резистором R7, ограничивает напряжение между точками А и Б на уровне 12 В.

Через резисторы R3, R4 начинает заряжаться конденсатор С1. Как только напряжение на нём превысит напряжение на резисторе R6, начнёт открываться транзистор VT1. Падение напряжения на резисторе R2 приоткроет транзистор VT2, из-за чего начнёт уменьшаться напряжение на его коллекторе. В результате этого начинает уменьшаться напряжение на резисторе R6.

Возникает положительная ОС, действие которой приводит к лавинообразному открыванию обоих транзисторов аналога динистора. Как только падение напряжения на транзисторе VT2 станет меньше, чем на резисторе R6, откроется диод VD1, ещё более ускоряя открывание аналога динистора и снижая тем самым мощность, рассеиваемую на транзисторе VT2.

Оба транзистора в конце процесса входят в насыщение.

Выходная диагональ диодного моста VD3—VD6 оказывается замкнутой, ток через резисторы R8 и R9 увеличивается и открывается симистор VS1, подключая нагрузку к сети на оставшуюся часть полупериода. Скорость зарядки конденсатора С1, а значит, и момент открывания транзистора VT1 зависят от положения движка переменного резистора R4, которым и регулируют мощность, выделяющуюся в нагрузке.

Если сопротивление цепи R3R4 окажется настолько большим, что конденсатор не успеет зарядиться до напряжения, необходимого для открывания аналога динистора, он останется закрытым. Но в конце полупериода конденсатор С1 всё равно разрядится транзистором VT1 вследствие того, что напряжение на резисторе R6 к этому моменту уменьшится до нулевого.

Такая привязка момента начала зарядки конденсатора С1 к началу полупериода необходима для того, чтобы исключить эффект «гистерезиса». Который может возникнуть при регулировании мощности резистором R4. Этот эффект проявляется в «затягивании» регулировочной характеристики.

При повороте ручки регулятора из положения минимальной мощности на малый угол мощность в нагрузке увеличивается скачком.

 Резистор R1 ограничивает ток разрядки на безопасном для транзисторов уровне, растягивая разрядный импульс во времени для более уверенного открывания симистора, a R8 ограничивает ток через его управляющий электрод.

Резистор R2 предотвращает самопроизвольное срабатывание аналога динистора из-за увеличения тока коллектора транзистора VT2 при его разогревании. Резистор R9 удерживает симистор закрытым (если он ещё не был открыт) на пиках сетевого напряжения.

Максимальная мощность нагрузки регулятора при обеспечении эффективного охлаждения симистора и транзистора VТ2 — 1 кВт

Большая часть деталей устройства смонтирована на печатной плате из фольгированного стеклотекстолита толщиной 1 мм. Чертёж платы представлен на рис.

Все резисторы, кроме R4, — МЛТ; R4 — любой малогабаритный, умещающийся в отведённом ему пространстве. Поскольку все детали регулятора находятся под напряжением сети, необходимо при его установке и пользовании учитывать это обстоятельство. В частности, ручка переменного резистора R4 должна быть изготовлена из изоляционного материала.

Резисторы R8, R9 распаивают на выводах симистора, устанавливаемого вне платы. Если мощность нагрузки превышает 600 Вт, симистор следует снабдить теплоотводом в виде пластины размерами 20x20x1 мм из меди. Конденсатор С1 — КМ-6, К73-17 или К73-9

Диоды КД105В можно заменить на КД105Г или другие на обратное напряжение не менее 400 В.

Транзистор КТ361В заменим любым из этой серии (с коэффициентом h31E>50), а КТ538А — на КТ6135А или, в крайнем случае, на КТ940А, у которого ограниченный запас по напряжению коллектор—эмиттер (h31E>20).

Разъём Х1 — любой малогабаритный, с двумя контактами, рассчитанный на сетевое напряжение; можно использовать два одноконтактных. Подойдут также и винтовые соединительные зажимы.

Налаживания регулятор не требует

, но, возможно, будет целесообразно подобрать точнее резистор R3 по достижению максимальной яркости ламп. В крайнем левом (по схеме) положении движка резистора R4.

Собранную плату устанавливают в нишу предварительно демонтированного стенного выключателя. Снаружи нишу закрывают декоративной лицевой панелью. На которой закрепляют переменный резистор R4 — он будет служить и включателем освещения, и регулятором яркости. Устройство можно смонтировать также в подставке торшера или настольной лампы.

Источник: http://varikap.ru/simistornyj-dimmer-s-fazoimpulsnym-regulirovaniem/

Мощный регулятор нагрузки 220в на IGBT транзисторе, управляемый программно

Для регулировки в широких приделах мощности удобно использовать широтно импульсную модуляцию (ШИМ).

Схема в пояснениях не нуждается. Это драйвер с развязкой, для управление IGBT транзистором. Само управление реализовано программно. Однако – КТ940 не лучший выбор. Но что было у меня под рукой – то и поставил. Работает, 2 Квт электрическую плитку тянет, транзистор 40N60 холодный. Что и требовалось.

На схемах выше 3 варианта. Самый правый мне нравится больше. И тот и другой проверил, разница между ними в управлении и надежности. У левого – при подаче логической 1 (с порта, на анод оптопары, не забудьте поставить токоограничивающий резистор! скажем в 500ом) 40n60 закрывается.

В схеме регулятора который посередине переменного напряжения – наоборот, открывается. Еще форма импульса получше. Q? – практически любой полевой, с током не менее 50ма. D1 – светодиод. То же желательно с током не менее 50ма. Еще вариант – зашунтировать его резистором, 20-50ом.

Транзисторы КТ940 – даалеко не лучший выбор, в этой схеме работают практически на пределе. Желательно поставить КТ815, КТ817. Ну у меня их нет..

Самый правый вариант схемы – уменьшена задержка в переходных процессах. Из за ПОС. Так же добавлены защитные диоды. Хоть и в самом IGBT стоит диод, но веры ему нет. Продублировал на всякий.

Для питания схемы используется внешний источник (у меня 16в, переделанная зарядка от мобильника).

Ниже фотографии устройства с работой на 30 ом нагрузку (при 300в. на мосту это, 3Квт мощности). То же работает и почти не греется.

А можно обойтись простейшей схемой, с симистором и оптопарой. Например такой:

В качестве оптического симистора подойдет: MOC3023, MOC3042, MOC3043, MOC3052, MOC3062, MOC3083 и т.п. Но на всякий случай ознакомтесь с даташитом. Управляемый симистор: например из серии BT138-600, BT136-600 и т.д.

При применении симистора нужно быть готовым к появлению значительных помех (если нагрузка будет мощная, индуктивная и управляющий элемент (MOCxxxx) без Zero Crossing). Еще, желательно триак держать включенным четное число полу-периодов. Иначе он начинает “выпрямлять” ток в сети. А это недопустимо (см. ГОСТы).

Сам ШИМ сделан программно, управление LPT-порт, потом гальваническая развязка с помощью оптопары (на схеме 4N25, а по факту 4N33). На схеме не показан резистор, между оптопарой и выходом LPT порта 510ом.

Часть индо-кода в С++:

a_tm_pow=(y_tm_pow*pow_shim)/100; b_tm_pow=y_tm_pow-a_tm_pow; // главный цикл ШИМ for (i=0; i

Источник: http://jivisam. ru/page/moshhnyj-reguljator-220v-na-igbt-tranzistore

Регулятор мощности на MOSFETах

электроника для дома

Регуляторы мощности переменного тока с фазоимпульсным управлением получили широкое распространение как в устройствах промышленной автоматики, так и в радиолюбительских конструкциях. Регулирующим элементом таких устройств является триодный тиристор, момент (угол) открывания которого регулируется подачей импульса или уровня напряжения на управляющий электрод,

а закрывание происходит в момент уменьшения тока, протекающего через тиристор, до нуля (при активной нагрузке — в момент перехода сетевого напряжения через ноль).

Такое управление называется неполным, поскольку можно регулировать только угол открывания тиристора, а момент закрывания не регулируется.

Разработанные в последние годы мощные полевые транзисторы с изолированным затвором (MOSFET) позволяют построить несложный ключ для коммутации переменного тока с полным управлением, т. е. открыванием и закрыванием ключа.

Схема регулятора мощности представлена на рис.1. Силовой ключ выполнен на транзисторах VT1, VT2, включенных встречно-последовательно.

Наличие в каждом транзисторе внутреннего защитного диода, включенного параллельно каналу в обратной полярности (анодом к истоку, катодом к стоку), позволяет обеспечивать протекание тока в нагрузке при положительных и отрицательных полупериодах сетевого напряжения.

На трех логических элементах микросхемы DD1 выполнен генератор импульсов с регулируемой скважностью. Частота импульсов — около 2 кГц (значительно выше частоты сетевого напряжения). При наличии высокого уровня на выходе инвертора DD1.

3 транзисторный ключ открыт, и ток протекает через нагрузку.

При этом в положительный полупериод ток протекает через открытый канал транзистора VT1 и защитный диод транзистора VT2, а в отрицательный полупериод — наоборот, через защитный диод транзистора VT1 и открытый канал транзистора VT2. Если же на выходе DD1.

3 — низкий уровень, то оба транзистора закрыты, и нагрузка обесточена. Временные диаграммы работы регулятора показаны на рис.2. Очевидно, что изменение скважности импульсов позволяет изменять мощность нагрузки от нуля до максимального значения, соответствующего полному напряжению сети.

Питание микросхемы DD1 производится от однополупериодного выпрямителя с параметрическим стабилизатором, собранным на элементах R2 VD3, VD4, С2 Следует обратить внимание, что стабилизатора напряжения соединен с истоками полевых транзисторов и с общим проводом микросхемы, поэтому напряжение на затворы транзисторов подается относительно их истоков

Преимущество данного способа регулирования мощности перед фазоимпульсным состоит в том, что коммутация нагрузки происходит со значительно большей частотой, чем в регуляторах на тиристорах, это позволяет регулировать мощность для малоинерционных нагрузок.

Указанные на схеме полевые транзисторы IRF840 имеют следующие параметры: ток стока — 8 А, максимальное напряжение между стоком и истоком — 500 В, сопротивление канала в открытом состоянии — 0,85 Ом, рассеиваемая мощность — 125 Вт. Эти транзисторы можно заменить на IRF740, IRFP450, IRFP460, IRFPC50, IRFPC60, IRFP350, IRFP360 BUZ80.

Перед установкой в устройство следует убедиться, что транзистор имеет защитный диод (это легко сделать с помощью омметра).

Максимальная мощность нагрузки определяется предельным током открытого транзистора, при этом мощность, выделяющаяся на открытом канале, не должна превышать предельно допустимую Частота генератора в случае необходимости может быть изменена подбором емкости С1.

Литература

1. Колдунов А Транзисторы MOSFET. — Радиомир, 2004, N4 С 26

2 Семенов Б.Ю Силовая электроника для любителеи и профессионалов — М. СОЛОН-Р 2001

А.ЕВСЕЕВ,

г.Тула.

Источник: http://radiopolyus.ru/elektronika-dlya-doma/38-prochee/123-regulyator-moshhnosti-na-mosfetax

Сетевой регулятор мощности на MOSFET-транзисторах с фазоимпульсным управлением

Читать все новости ➔

В сетевых регуляторах мощности в основном применяют фазоимпульсное управление, когда момент открывания полупроводникового ключа (тиристора, симистора) задерживается относительно момента перехода сетевого напряжения через ноль, а закрывание происходит, когда ток через прибор становится меньше тока удержания. Особенность регулятора мощности, рассмотренного в этой статье, в том, что силовые ключи на MOSFET-транзисторах открываются при переходе сетевого напряжения через ноль, а закрываются после формирования временной задержки 555-м таймером.

С появлением мощных полевых высоковольтных транзисторов с изолированным затвором (MOSFET) появилась возможность разрабатывать схемы регуляторов с применением их в качестве полупроводниковых ключей. Одна из таких конструкций описана в [1]. Но в этой схеме не применяется фазоимпульсное управление.

В конструкции, предложенной в [2], рассмотрен сетевой регулятор на мощном триаке типа ВТ136-600Е с фазоимпульсным управлением. При сопоставлении этих двух схем возникла мысль взять самое лучшее из рассматриваемых конструкций и создать новую на мощных полевых транзисторах с фазоимпульсным управлением на 555-м таймере. В результате была разработана схема, показанная на рис.1.

Рис. 1

Схема управления ключами /Т2 и /ТЗ типа IRF840 взята из [2], только 555-й таймер в этой схеме обеспечивает не задержку включения, как в [2], а формирование времени включенного со­стояния полупроводниковых ключей VТ2 и VТЗ. Длительность включённого состояния транзисто­ров можно определить по формуле:

Твкл=1,1(R8+R9)-(С2+СЗ).

Диоды VD7 и VD8 – это двухсторонний диодный ограничитель напряжения на затворах полевых транзисторов VT2, VТЗ. Питание таймера DА2 ор­ганизованно так, как предложено в статье [3], с по­мощью ограничителя на стабилитроне VD10 и ре­зисторах R12, R1З и выпрямителя VD9, С5.

Конструкция и детали

В предлагаемой схеме необходимо использо­вать заведомо исправные радиоэлементы. По­стоянные резисторы типа МЛТ, не менее указанной на схеме мощностью. Переменный резистор типа СПЗ-4аМ.

Элементы, обведенные на схеме пунк­тирной линией, относятся к схеме формирования импульса при переходе сетевого напряжения че­рез ноль.

Схема выполнена на SMD-элементах ти­поразмера 1206, исключая оптрон DA1 и диоды мо­ста VD1-VD4, но вместо КД102Б в этих позициях можно использовать SMD-диоды типа GS1K.

Детали формирования импульса при переходе сетевого напряжения через ноль установлены на плате из одностороннего фольгированного стекло­текстолита размерами 36×36 мм (фото 1). Оптрон запаян в отверстия с обратной стороны этой платы.

Фото 1

Чертеж печатной платы формирователя и рас­положение деталей на ней показано на рис.2.

Рис. 2

Остальные элементы, исключая мощные транзи­сторы VТ2, VТЗ и элементы R14, НL1,VD11, разме­щены на второй плате из одностороннего фольги­рованного стеклотекстолита размерами 66×36 мм (фото 2).

Фото 2

Чертеж этой платы показан на рис.3, а расположение деталей на ней – на рис.4.

Рис. 3

Рис. 4

Конденсаторы С2 и СЗ типа К73-17 или К73-9. Электролитический конденсатор С5 импортный, например, фирмы НIТАNО. Диоды VD7, VD8 мож­но заменить отечественными типа КД522Б. Светодиод может быть любого цвета свечения, как им­портный, так и отечественный. Он устанавливается в отверстие на лицевой панели конструкции.

Полевые транзисторы можно применить типа КП707В или иные, импортные, с характеристика­ми, соответствующими применяемой нагрузке. Элементы R14 и VD11 монтируются непосред­ственно на выводах розетки устройства.

Внутри корпуса установлена общая плата из стеклотекстолита размерами 80×110 мм. На пла­те имеются отверстия для крепления радиатора. Радиатор использован от устройства регулировки температуры РТ-3. Размеры радиатора 70×40 мм. Радиатор имеет 8 ребер высотой 20 мм.

На ради­аторе через изоляционные прокладки из слюды закреплены транзисторы VТ2, VТЗ. Выводы тран­зисторов соединены с платой (фото 3) проводом МГТФ. Силовые цепи выполнены двойным прово­дом этого типа.

Плата формирования импульса при переходе сети через ноль смонтирована с обрат­ной стороны общей платы, напротив радиатора. Плата управления транзисторами установлена на втулки над переменным резистором R8. Монтаж внутри корпуса также выполнен проводом МГТФ.

Вся конструкция расположена в корпусе устрой­ства регулировки температуры РТ-3.

Фото 3

Налаживание

При наличии осциллографа, контролируя на­пряжение на выводе 3 таймера, необходимо про­верить длительность импульса, при вращении руч­ки резистора R8.

Длительность должна меняться в пределах от 2 мс до 9,8 мс, но ни в коем случае она не должна превышать 10 мс, что может нарушить правильность запуска схемы.

Времязадающие ре­зисторы R8, R9 и конденсаторы С2, СЗ имеют раз­брос параметров. Поэтому при налаживании воз­никнет необходимость подбора R9, С2 и СЗ.

Все пайки и замены элементов необходимо производить только при извлеченной вилки сете­вого шнура из розетки бытовой сети. В противном случае, можно получить поражение электрическим током, так как элементы конструкции находятся под потенциалом сети.

При отсутствии осциллографа настрой­ку схемы можно провести, включив вместо нагрузки лампу накаливания мощностью 40… 100 Вт, контролируя накал нити нака­ла. При минимальном напряжении нить на­кала светит еле заметным темно-красным цветом.

При полностью выведенной ручке регуляторе вправо лампа накаливания должна светить в полный накал. Впрочем, при желании, можно сузить диапазон ре­гулировки. Работа этого регулятора прове­рялась совместно с электроплиткой мощ­ностью 1 кВт.

Литература

  1. Белоусов О. Регулятор напряжения на МОSFЕТ-транзисторах // Электрик. – 2012. -№12-С.64-66.
  2. Белоусов О. Сетевой регулятор напряжения на 555-м таймере // Радиоаматор. – 2013. – №5 – С.26-28.
  3. Калашник В. Мощный коммутатор с опторазвязкой // Электрик. – 2013. – №5 – С.51, 52.

Источник: http://meandr.org/archives/26882

Регулятор мощности на IRF840

Представленный регулятор предназначен для регулирования температуры жала паяльника на номинальное напряжение от 100 до 220 В, но может работать и с другими нагрузками. В качестве регулирующего элемента использован мощный переключательный полевой транзистор IRF840.

Данный транзистор имеет высокое рабочее напряжение сток-исток до 500 В и ток стока до 8 А при температуре корпуса 25 °С (5 А при 100 °С).

Импульсный же ток может достигать 32 А, а допустимое напряжение затвор-исток ±20 В, рассеиваемая мощность составляет 125 Вт, сопротивление открытого канала 0,85 Ом, а ток закрытого канала всего 25 мкА.

Для управления транзистора, требуется очень малая статическая мощность, благодаря чему регулятор получается весьма экономичным.

Нагрузка подключена последовательно с регулирующим элементом. Поскольку транзистор содержит встроенный защитный диод, включенный параллельно каналу (катодом к стоку), регулирование мощности потребляемой нагрузкой, возможно изменять от 50 до 100% от номинальной, чего вполне достаточно для паяльника.

На логических элементах DD1.1-DD1.4, резисторах R1-R4, конденсаторе C1 и диоде VD2 собран формирователь управляющих транзистором импульсов. При этом элементы DD1.1, DD1.2 и резистор R4 включены по схеме триггера Шмитта, а включенные параллельно элементы DD1.3, DD1.4 представляют собой буфер-инвертор. Питается формирователь от параметрического стабилизатора напряжения R5VD1.

Диод VD3 — развязывающий, он не дает возможности разряжаться конденсатору C2 в минусовые полупериоды сетевого напряжения, тем самым поддерживая стабильным напряжение питания микросхемы. Диоды VD4, VD5 защищают выход логических элементов буфера от импульсных сетевых наводок со стороны полевого транзистора VT1.

При положительной полуволне сетевого напряжения (плюс — на правом по схеме выводе резистора R5) на стабилитроне VD1 будет около 10В и конденсатор С2 через диод VD3 зарядится примерно до 9 В. Это напряжение используется для питания микросхемы DD1.

Одновременно через резисторы R1,R2 сравнительно медленно заряжается конденсатор С1. Когда напряжение на нем достигнет уровня 30…40% от напряжения питания микросхемы, триггер Шмитта переключится, на выходе элемента DD1.

1 высокий уровень сменится низким, на выходе буфера появится высокий уровень (около 9 В), поэтому полевой транзистор VT1 откроется и с этого момента напряжение поступит на нагрузку.

Отрицательная полуволна сетевого напряжения через защитный диод полевого транзистора беспрепятственно проходит к нагрузке, хотя транзистор и закрыт.

Поскольку стабилитрон оказывается включенным в прямом направлении, на нем будет напряжение около 0,7 В и конденсатор С1 быстро разрядится через диод VD2.

На входе триггера Шмитта появляется низкий уровень, триггер переключается в прежнее состояние, низкий уровень на выходе буфера закрывает транзистор.

Чем больше сопротивление резистора R1, тем медленнее заряжается конденсатор C1 и тем позднее от момента появления положительной полуволны открывается транзистор. Таким образом, изменяя сопротивление резистора R1, можно регулировать эффективное напряжение на нагрузке.

Кроме указанной на схеме, можно применить микросхемы К561ЛА7, К564ЛА7, К564ЛЕ5, К561ЛН2. Стабилитрон Д814В можно заменить на Д814Г, КС510А; диоды КД522Б на КД102Б, КД103А, КД503А, КД510А, КД521А. Переменный резистор — СПО-0,15, СП4-1а.

Не забывайте, что детали устройства находятся под сетевым напряжением! Это требует продуманности конструкции и осторожности при эксплуатации.

При налаживании регулятора может потребоваться подборка переменного резистора R1 или конденсатора C1 с тем, чтобы регулирование мощности было плавным, без «мертвых зон». На это время удобно в качестве нагрузки использовать маломощную лампу накаливания.

Регулятор может работать и при меньшем питающем напряжении вплоть до 30 В. В этом случае надо подобрать резистор R5 таким, чтобы напряжение питания микросхемы было стабильным. Если оно будет меньше напряжения стабилизации стабилитрона, то постепенно, шагами не более 10%, уменьшают сопротивление резистора R5 до тех пор, пока напряжение не восстановится до нормального уровня.

Если ток нагрузки регулятора будет превышать 2 Ампера, транзистор придется снять с платы и установить на теплоотвод. Необходимо отметить, что описанный регулятор нагружает сеть несимметрично, т. е.

для плюсовой и минусовой полуволн сетевого напряжения потребляемая мощность различна. Эксплуатировать такую сетевую нагрузку, если ее мощность превышает 50 Вт, запрещено государственными нормативами.

Чтобы обеспечить симметричность нагрузки регулятора, достаточно включать его в сеть через мостовой выпрямитель, собранный из диодов соответствующей мощности (плюсовой вывод моста должен быть подключен к правому по схеме выводу резистора R5). При этом через нагрузку будет протекать пульсирующий однополярный ток, но для нагревательных приборов и ламп накаливания это значения не имеет.

Кроме этого, потребуется обеспечить разрядку конденсатора C1 в конце каждого полупериода. Для этого нужно стабилитрон VD1 шунтировать резистором сопротивлением 10 кОм (уточнить при налаживании). Оно должно быть как можно большим, но таким, чтобы в положении движка резистора R1, соответствующем минимальной мощности в нагрузке, транзистор не открывался.

Источник: https://kiloom.ru/sxema/regulyator-moshhnosti-na-irf840.html

   Сегодня имеется достаточно много простых схем регуляторов мощности. Каждая имеет свои преимущества и недостатки. Рассматриваемая сегодня выбрана мной не случайно. Итак, попал ко мне советский электрокамин. На верхней крышке имелось отверстие под ручку встроенного регулятора мощности, которого там не оказалось.

По счастливой случайности мне через некоторое время попался рабочий экземпляр такого же камина. В качестве регулятора там оказалась на первый взгляд довольно сложная схема на двух тиристорах и множеством очень мощных резисторов.

Её повторение не имело смысла, хотя у меня и есть доступ к практически любым советским радиодеталям, так как это обошлось бы в разы дороже, чем тот вариант, который изготовлен сейчас. Для начала камин был подключён к сети напрямую, ток потребления оказался 5,6 А, что соответствует паспортной мощности камина 1,25 кВт.

Но зачем тратить столько энергии, тем более что она не дешёвая, и не всегда нужно включать обогреватель на полную мощность. Поэтому было принято решение приступить к поискам мощного регулятора мощности. У себя в закромах нашёл уже готовую схему от китайского пылесоса, на симисторе ВТА.  Этот регулятор являлся фазовым, т.е.

такой тип регуляторов пропускает не всю полуволну сетевого синусоидального напряжения, а только её часть, тем самым ограничивая мощность, подводимую к нагрузке. Регулировка осуществляется открытием симистора при нужном фазовом угле.

   Преимущества фазового регулятора:

  • простота изготовления
  • дешевизна
  • лёгкая управляемость

   Недостатки:

  • при простой схеме нормальная работа наблюдается только с нагрузками типа ламп накаливания
  • при мощной активной нагрузке появляется неприятный гул (дребезг), который может возникать как в самом симисторе, так и на нагрузке (нагревательная спираль)
  • создаёт множество радиопомех

   Было принято решение использовать другой тип регулятора – дискретный. Такие регуляторы открывают симистор на период целой полуволны напряжения, но количество пропущенных полуволн ограничивается. Например, на рисунке сплошная часть графика – прошедшие сквозь симистор полуволны, пунктиром – не прошедшие, то есть в это время симистор был закрыт.

   Преимущества дискретных регуляторов:

  • меньший нагрев симистора
  • отсутствие звуковых эффектов даже при достаточно мощной нагрузке
  • отсутствие радиопомех
  • отсутствие загрязнения электросети

   Далее была найдена следующая схема, которая привлекала своей простотой и удобством управления.

Принципиальная схема ступенчатого регулятора мощности

   При первом включении на индикаторе светится 0. Включение и отключение происходит одновременным нажатием и удержанием двух кнопок. Регулировка больше/меньше – каждой кнопкой по отдельности.

Если не нажимать ни одну из кнопок, то после последнего нажатия через 2 часа регулятор отключится сам, индикатор будет моргать на ступени последнего рабочего уровня нагрузки. При отключении от сети запоминается последний уровень, который будет установлен при следующем включении.

Регулировка происходит от 0 до 9 и далее от А до F. То есть всего 16 ступеней регулировки.

   При изготовлении платы первый раз применил ЛУТ, и не правильно отзеркалил при распечатке, поэтому контроллер перевёрнут вверх-ногами 🙂 Индикатор тоже не совпал, поэтому припаял его проводками. Когда рисовал плату, по ошибке разместил стабилитрон после диода, пришлось его впаять на другой стороне платы.

   На рисунке указан симистор ВТ136, но и ВТА12 прекрасно работает с указанными номиналами деталей. Радиатор возможно великоват, можно было поставить и по меньше, но другого у меня не оказалось.

При первом включении у меня на индикаторе моргал 0, на нажатие кнопок не было реакции. Проблема решилась установкой конденсатора по питанию на 1000 мкФ, вместо 220. В течении месяца использования никаких проблем в работе не выявлено.

Схема, прошивка, печатная плата в архиве.

Поделитесь полезными схемами

   Берем две пальчиковые батарейки и через резистор в 5 ом подключаем к диоду. Минус напрямую подключаем к среднему выводу диода, плюс сначала левому , потом правому выводу (можно и наоборот) и смотрим, пока лазер слегка не засветится красным светом. 
    Налаживания особо не требуется. Если все собрано верно схема работает сразу после первого включения.  
    Схема из себя представляет достаточно мощный двухтактный преобразователь напряжения. Сигнал поступает с пульта управления на маломощный усилитель низкой частоты, который выполнен на микросхеме LM386.
    На 555 серии есть неограниченное количество схем как для новичков и любителей, так и для профессионалов. На основе этого таймера можно собрать сигнализации, датчики, генераторы, преобразователи напряжения и частоты, высоковольтные устройства, звуковые и световые игрушки и даже усилители мощности звуковой частоты.
    Для получения большой выходной мощности 12-ти вольт от автомобильного аккумулятора явно мало, поэтому нужен преобразователь напряжения. Он позволит получить двуполярное питание +-60В с мощностью порядка 400Вт.

Регулятор напряжения 220в для трансформатора своими руками

Всем привет! В прошлой статье я расказывал, как сделать регулятор напряжения для постоянного тока. Сегодня мы сделаем регулятор напряжения для переменного тока 220в. Конструкция довольно-таки проста для повторения даже начинающими. Но при этом регулятор может брать на себя нагрузку даже в 1 киловатт! Для изготовления данного регулятора нам понадобится несколько компонентов:

1. Резистор 4.7кОм млт-0.5 (пойдет даже 0.25 ватт).
2. Перменный резистор 500кОм-1мОм, с 500ком будет регулировать довольно плавно, но только в диапазоне 220в-120в. С 1 мОм – будет регулировать более жестко, тоесть будет регулировать промежутком в 5-10вольт, но зато диапазон возрастет, возможно регулировать от 220 до 60 вольт! Резистор желательно ставить со встроеным выключателем (хотя можно обойтись и без него, просто поставив перемычку).
3. Динистор DB3. Взять такой можно из ЛСД экономичных ламп. (Можно заменить на отечественный Kh202).
4. Диод FR104 или 1N4007, такие диоды встречаются практически в любой импортной радиотехнике.
5. Экономичные по току светодиоды.
6. Симистор BT136-600B или BT138-600.
7. Винтовые клемники. (обйтись можно и без них, просто припаяв провода к плате).
8. Небольшой радиатор (до 0,5кВт он не нужен).
9. Пленочный конденсатор на 400вольт, от 0.1 микрофарадп, до 0.47 микрофарад.

Схема регулятора переменного напряжения:

Приступим к сборке устройства. Для начало вытравим и пролудим плату. Печатная плата – её рисунок в LAY, находится в архиве. Более компактный вариант, представленный товарищем sergei – тут.

Далее припаяем симистор, и переменный резистор.

Затем паяем конденастор. На фото конднесатор со стороны лужения, т.к у моего экземпляра конденсатора были слишком коротки ножки.

Паяем динистор. У динистора полярности нет, так-что вставляем его как вам угодно. Припаиваем диод, резистор, светодиод, перемычку и винтовой клемник. Выглядит оно примерно так:

И в конце концов последний этап – это ставим на симистор радиатор.

А вот фото готового устройства уже в корпусе.

Регулятор какой-нибуть дополнительно настройки не требует. Видео работы данного устройства:

Хочу заметить, что ставить его можно не только в сеть 220В на обычные приборы и электроинструменты, но и на любой другой источник переменного тока с напряжением от 20 до 500В (ограничивается предельными параметрами радиоэлементов схемы). С вами был [PC]Boil-:D

Обсудить статью РЕГУЛЯТОР ПЕРЕМЕННОГО НАПРЯЖЕНИЯ

Устройства, позволяющие управлять работой электрических приборов, подстраивая их под оптимальные характеристики для пользователя, прочно вошли в обиход. Одним из таких приспособлений является регулятор мощности. Применение таких регуляторов востребовано при использовании электронагревательных и осветительных приборов и в устройствах с двигателями. Схемотехника регуляторов разнообразна, поэтому порой бывает затруднительно подобрать себе оптимальный вариант.

Простейший регулятор энергии

Первые разработки устройств, изменяющие подводимую к нагрузке мощность, были основаны на законе Ома: электрическая мощность равняется произведению тока на напряжение или произведению сопротивления на ток в квадрате. На этом принципе и сконструирован прибор, получивший название — реостат. Он располагается как последовательно, так и параллельно подключённой нагрузке. Изменяя его сопротивление, регулируется и мощность.

Ток, поступая на реостат, разделяется между ним и нагрузкой. При последовательном включении контролируются сила тока и напряжение, а при параллельном — только значение разности потенциалов. В зависимости от материала, из которого изготовлено сопротивление, реостаты могут быть:

  • металлическими;
  • жидкостными;
  • угольными;
  • керамическими.

Согласно закону сохранения энергии, забранная электрическая энергия не может просто исчезнуть, поэтому в резисторах мощность преобразуется в теплоту, и при большом её значении должна от них отводиться. Для обеспечения отвода используется охлаждение, которое выполняется с помощью обдува или погружением реостата в масло.

Реостат — довольно универсальное приспособление. Единственный, но существенный его минус — это выделение тепла, что не позволяет выполнить устройство с небольшими размерами при необходимости пропускать через него мощность большой величины. Управляя силой тока и напряжения, реостат часто используется в маломощных линиях бытовых приборов. Например, в аудиоаппаратуре для регулировки громкости. Выполнить такой регулятор тока своими руками совсем несложно, в большей мере это касается проволочного реостата.

Для его изготовления понадобится константовая или нихромовая проволока, которая наматывается на оправку. Регулирование электрической мощности происходит путём изменения длины проволоки.

Виды современных устройств

Развитие полупроводниковой техники позволило осуществить управление мощностью, используя радиоэлементы с коэффициентом полезного действия от восьмидесяти процентов. Это дало возможность их комфортно применить в сети с напряжением 220 вольт, не требуя при этом больших систем охлаждения. А появление интегральных микросхем и вовсе позволило достичь миниатюрных размеров всего регулятора в целом.

На сегодняшний момент производство выпускает следующие типы приборов:

  1. Фазовые. Используются для управления яркости свечения ламп накаливания или галогенных ламп. Другое их название — диммеры.
  2. Тиристорные. В основе работы лежит использование задержки включения тиристорного ключа на полупериоде переменного тока.
  3. Симисторные. Мощность регулируется вследствие изменения количества полупериодов напряжения, которые действуют на нагрузку.
  4. Регулятор хода. Позволяет плавно изменять электрическую мощность, подаваемую на электродвигатель.

При этом регулировка происходит независимо от формы входного сигнала. По своему виду расположения приборы управления разделяются на портативные и стационарные. Они могут выполняться как в независимом корпусе, так и интегрироваться в аппаратуру. К основным параметрам, характеризующим регуляторы электрической энергии, относят:

  • плавность регулировки;
  • рабочую и пиковую подводимую мощность;
  • диапазон входного рабочего сигнала;
  • КПД.

Таким образом, современный регулятор электрической мощности представляет собой электронную схему, использование которой позволяет контролировать количество энергии, пропускаемой через него.

Тиристорный прибор управления

Принцип действия такого прибора не отличается особой сложностью. В основном тиристорный преобразователь используется для управления устройствами малой мощности. Типовая схема тиристорного регулятора мощности состоит непосредственно из самого тиристора, биполярных транзисторов и резисторов, устанавливающих их рабочую точку, и конденсатора.

Транзисторы, работая в ключевом режиме, формируют импульсный сигнал. Как только значение напряжения на конденсаторе сравнивается с рабочим, транзисторы открываются. Сигнал подаётся на управляющий вывод тиристора, открывая и его. Конденсатор разряжает

Все своими руками Транзисторный ключ переменного тока

Опубликовал admin | Дата 22 октября, 2014

     

     Для коммутации нагрузок в цепях переменного тока в последнее время все чаще стали применяться схемы с использованием мощных полевых транзисторов. Этот класс приборов представлен двумя группами. К первой отнесены биполярные транзисторы с изолированным затвором – БТИЗ. Западная аббревиатура – IGBT.

Во вторую, самую многочисленную вошли традиционные полевые (канальные) транзисторы. К этой группе относятся и транзисторы КП707 (см. таблицу 1), на которых и собран коммутатор нагрузки для сети 220 вольт.

Первична сеть переменного тока очень опасная вещь во всех отношениях. Поэтому существует много схемных решений, позволяющих избежать управления нагрузками в сети напрямую. Ранее для этих целей использовались разделительные трансформаторы, в настоящее время им на смену пришли разнообразные оптроны.

     Схема, ставшая уже типовой, показана на рисунке 1.

Данная схема позволяет гальванически развязать управляющие цепи и цепь первичной сети 220 вольт. В качестве развязывающего элемента применен оптрон TLP521. Можно применить и другие импортные или отечественные транзисторные оптроны. Схема простая и работает следующим образом. Кода напряжение на входных клеммах равно нулю, светодиод оптрона не светится, транзистор оптрона закрыт и не шунтирует затвор мощных коммутирующих транзисторов. Таким образом, на их затворах присутствует открывающее напряжение, равное напряжению стабилизации стабилитрона VD1. В этом случае транзисторы открыты и работают по очереди, в зависимости от полярности напряжения в данный момент времени. Допусти, на выходном выводе схемы 4 присутствует плюс, а на клемме 3 – минус. Тогда ток нагрузки потечет от клеммы 3 к клемме 5, через нагрузку к клемме 6, далее через внутренний защитный диод транзистора VT2, через открытый транзистор VT1 к клемме 4. При смене полярности питающего напряжения, ток нагрузки потечет уже через диод транзистора VT1 и открытый транзистор VT2. Элементы схемы R3, R3, C1 и VD1 не что иное, как безтрансформаторный источник питания. Номинал резистора R1 соответствует входному напряжению пять вольт и может быть изменен при необходимости.

Вся схема выполнена в виде функционально законченного блочка. Элементы схемы установлены на небольшой П-образной печатной плате, показанной на рисунке 2.

Сама плата одним винтом крепится к пластине из алюминия с размерами 56×43х6 мм, являющейся первичным теплоотводом. К ней же через теплопроводную пасту и слюдяные изолирующие прокладки с помощью винтов с втулками крепятся и мощные транзисторы VT1 и VT2. Угловые отверстия сверятся и в плате и в пластине и служат, при необходимости, для крепления блока к другому более мощному теплоотводу.

Скачать рисунок печатной платы.

Скачать “Транзисторный ключ переменного тока” Klych_707.rar – Загружено 1 раз – 9 КБ

Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».

Просмотров:17 285


МОЩНЫЙ БЛОК ПИТАНИЯ НА ПОЛЕВОМ ТРАНЗИСТОРЕ


   Используя в схеме стабилизатора мощный полевой транзистор, можно собрать простой стабилизатор, тем не менее имеющий очень хорошие параметры. В предлагаемом стабилизаторе БП стоит полевой транзистор IRLR2905. Он имеет в открытом состоянии сопротивление канала всего 0,02 Ома, а так-же обеспечивает ток до 30 А. Мощность, рассеиваемая транзистором, может превышать 100 Вт. Принципиальная схема одного из вариантов такого стабилизатора приведена на рисунке, клик — для увеличения. 

Работа БП на ПТ

   Переменное напряжение поступает на выпрямитель и сглаживающий фильтр, и далее на сток полевого транзистора и через резистор R1 на затвор, открывая транзистор. Часть выходного напряжения через резисторный делитель подается на вход микросхемы, замыкая цепь ООС. Напряжение на выходе стабилизатора возрастает вплоть до того момента, пока напряжение на входе управления микросхемы DA1 не достигнет порогового, около 2,5 В. В этот момент микросхема открывается, понижая напряжение на затворе, таким образом, устройство входит в режим стабилизации. Чтобы получить плавную регулировку выходного напряжения (например для лабораторного блока питания) резистор R2 нужно заменить переменным.

Налаживание схемы

   Установить нужное выходное напряжение резистором. Проверить стабилизатор на отсутствие самовозбуждения с помощью осциллографа. Если самовозбуждение возникает, то параллельно конденсаторам CI, С2 и С4 следует подключить керамические конденсаторы емкостью 0,1 мкФ.

Детали стабилизатора

   Микросхема КР142ЕН19 заменима на более современную TL431. Конденсаторы любые малогабаритные. Параметры трансформатора, выпрямителя — диодного моста и электролитического конденсатора фильтра выбирают исходя из необходимого напряжения и тока. Транзистор обязательно посадить на эффективный теплоотвод. Возможно потребуется использование кулера.


Поделитесь полезными схемами




УСТРОЙСТВО ТРАНСФОРМАТОРА

   Схема включения, устройство и принцип действия стандартного сетевого трансформатора на входное напряжение 220 В.



Полевые транзисторы (современные)


дюйм 1945 г. у Шокли появилась идея сделать твердотельное устройство. полупроводников. Он рассудил, что сильное электрическое поле может вызвать электрический ток внутри соседнего полупроводника. Он попытался построить один, затем Уолтер Браттейн попытался построить его, но это не сработало.

Три года спустя Браттейн и Бардин построили первый рабочий транзистор, германиевый точечный транзистор, который выпускался как серия «А».Шокли тогда разработан переходной (сэндвич) транзистор, который был изготовлен в течение нескольких лет после этого. Но в 1960 году ученый из Белла Джон Аталла разработал новый дизайн, основанный на первоначальных теориях Шокли о полевом эффекте. К концу 1960-х производители перешли из интегральные схемы переходного типа к полевым устройствам. Cегодня, большинство транзисторов являются полевыми транзисторами. Вы используете миллионы из них сейчас.

МОП-транзисторы

Большинство современных транзисторов — это «МОП-полевые транзисторы», или металлооксидные полупроводниковые полевые транзисторы. Они были разработан в основном Bell Labs, Fairchild Semiconductor и сотнями Кремниевой долины, японских и других производителей электроники.

Полевые транзисторы названы так потому, что слабый электрический сигнал, проходящий через один электрод, создает электрическое поле через остальную часть транзистора. Это поле меняется с положительного на отрицательное, когда входящий сигнал делает и управляет вторым током, проходящим через остальные транзистора. Поле модулирует второй ток, чтобы имитировать первый — но он может быть существенно больше.

Как это работает

На дне транзистора расположена П-образная секция. (хотя он более плоский, чем истинная буква «U») полупроводника N-типа с избытком электронов.В центре буквы U находится секция, известная как «база», сделанная из P-типа (положительно заряженная) полупроводник со слишком малым количеством электронов. (Собственно, N- и P-типы можно перевернуть, и устройство будет работать точно так же, за исключением того, что дырки, а не электроны, вызывают ток.)

Три электрода прикреплены к верхней части этого полупроводниковый кристалл: один к средней положительной секции и по одному в каждое плечо U.Путем подачи напряжения на электроды на U ток будет течь через него. Сторона, где электроны входящий известен как источник, и сторона, где электроны выходит называется стоком.

Если больше ничего не произойдет, ток будет течь от с одной стороны на другую. Из-за того, как электроны ведут себя при переход между полупроводниками N- и P-типа, однако ток не будет течь особенно близко к базе.Он путешествует только через тонкий канал посередине U.

К основанию прикреплен электрод, клин из полупроводника P-типа посередине, отделенный от остальная часть транзистора тонким слоем оксида металла, например в виде диоксида кремния (играющего роль изолятора). Этот электрод называется «затвор». Слабый электрический сигнал, который мы хотим усилить, проходит через гейт.Если заряд, проходящий через ворота, отрицательный, он добавляет больше электронов к базе. Поскольку электроны отталкиваются друг от друга, электроны в U отойдите как можно дальше от базы. Это создает зона обеднения вокруг базы — целая область, где электроны не может путешествовать. Канал посередине U через который может течь, становится еще тоньше. Добавьте достаточно отрицательный заряд к базе и канал полностью перещипнется, остановка всего тока.Это как наступить на садовый шланг чтобы остановить поток воды. (Раньше транзисторы управлялись эту зону истощения, используя то, как движутся электроны, когда два полупроводниковые пластины кладут рядом друг с другом, создавая то, что известен как соединение P-N. В MOS-FET переход P-N заменен оксидом металла, который оказалось, что массовое производство микрочипов проще.)

А теперь представьте, если заряд проходит через ворота положительный.Положительное основание притягивает много электронов — внезапно территория вокруг базы, которая раньше была нейтральной зоной открывается. Канал для тока через U становится больше, чем было изначально, и может течь гораздо больше электричества через.

Переменный заряд на базе, поэтому меняется сколько тока проходит через U. Входящий ток может использоваться как кран для включения или выключения тока по мере его прохождения остальной транзистор.

С другой стороны, транзистор можно использовать в и более сложным способом — в качестве усилителя. Текущий путешествие через U становится больше или меньше в идеальной синхронизации с зарядом, входящим в базу, что означает, что он имеет идентичный шаблон как исходный слабый сигнал. А со второй ток подключен к другому источнику напряжения, это может быть сделано, чтобы быть больше.Ток, проходящий через U-образный идеальная копия оригинала, только в усилении. Транзистор используется таким образом для стереоусиления в динамиках и микрофонах, а также для усиления телефонных сигналов при их перемещении по Мир.

Сноска на Шокли

Шокли наблюдал за ростом Кремниевой долины, но мог не похоже, чтобы войти в Землю Обетованную, которую он вообразил.Он никогда удалось сделать полевые транзисторы, в то время как другие компании проектировали, росли и процветали. Фред Зейтц назвал Шокли Моисей из Кремниевой долины «.

Другие типы транзисторов:
— Точечный Транзистор
— Переходный («Сэндвич»). Транзистор

Ресурсы:
Как все работает Дэвида Маколея
Научная энциклопедия Ван Ностранда
— The Полевой транзистор
— Интервью, Уолтер Браун, 3 мая 1999 г.


Авторские права 1999 г., ScienCentral, Inc. и Американский институт физики.Нет часть этого веб-сайта может быть воспроизведена без письменного разрешения. Все права защищены.

Полевой транзистор

»Примечания по электронике

JFET — полевой транзистор, активный электронный компонент, который является одной из рабочих лошадок в электронной промышленности, обеспечивая хороший баланс между стоимостью и производительностью.


Полевой транзистор, полевой транзистор, руководство включает:
Основы полевых транзисторов Характеристики полевого транзистора JFET МОП-транзистор МОП-транзистор с двойным затвором Силовой MOSFET MESFET / GaAs полевой транзистор HEMT & PHEMT Технология FinFET


Переходный полевой транзистор или JFET широко используется в электронных схемах.Полевой транзистор с переходным эффектом — это надежный и полезный электронный компонент, который можно очень легко использовать в различных электронных схемах, от усилителей с полевыми транзисторами до переключающих схем с полевыми транзисторами.

Переходный полевой транзистор находится в свободном доступе, а полевые транзисторы JFET можно купить за очень небольшие деньги. Это делает их идеальными для использования во многих схемах, где требуется хороший баланс между стоимостью и производительностью.

Полевые транзисторы

доступны в течение многих лет, и хотя они не обеспечивают чрезвычайно высокий уровень входного сопротивления постоянному току, как у полевых МОП-транзисторов, они, тем не менее, очень надежны, прочны и просты в использовании.Это делает эти электронные компоненты идеальным выбором для многих конструкций электронных схем. Также доступны компоненты как с выводами, так и с устройствами для поверхностного монтажа.

Основы JFET

В основном полевой транзистор или полевой транзистор состоит из секции кремния, проводимость которой контролируется электрическим полем. Часть кремния, через которую протекает ток, называется каналом и состоит из кремния одного типа, N-типа или P-типа.

Соединительный полевой транзистор, символ цепи JFET

Соединения на обоих концах устройства известны как исток и сток.Электрическое поле для управления током прикладывается к третьему электроду, известному как затвор.

Поскольку только электрическое поле управляет током, протекающим в канале, говорят, что устройство работает от напряжения и имеет высокое входное сопротивление, обычно много МОм. Это может быть явным преимуществом по сравнению с биполярным транзистором, работающим от тока и имеющим гораздо более низкий входной импеданс.

Работа JFET

Junction FET — это устройство, управляемое напряжением.Другими словами, напряжения, появляющиеся на затворе, контролируют работу устройства.

Устройства с N-каналом и P-каналом работают одинаково, хотя носители заряда инвертированы, то есть электроны в одном и дырки в другом. Случай для N-канального устройства будет описан, так как это наиболее часто используемый тип.

Junction FET, JFET работает ниже насыщения

Толщина этого слоя изменяется в соответствии с величиной обратного смещения на переходе.Другими словами, при небольшом обратном смещении обедненный слой проходит только немного в канал и остается большая площадь для проведения тока.

Когда на затвор прикладывается большое отрицательное смещение, слой обеднения увеличивается, распространяясь дальше в канал, уменьшая площадь, по которой может проходить ток.

С увеличением смещения обедненный слой в конечном итоге будет увеличиваться до такой степени, что он простирается прямо через канал, и канал считается отрезанным.

Когда в канале протекает ток, ситуация несколько меняется. При отсутствии напряжения на затворе электроны в канале (при условии, что канал n-типа) будут притягиваться положительным потенциалом на стоке и будут течь к нему, позволяя току течь внутри устройства и, следовательно, во внешней цепи.

Величина тока зависит от ряда факторов и включает площадь поперечного сечения канала, его длину и проводимость (т.е.е. количество свободных электронов в материале) и приложенное напряжение.

Из этого видно, что канал действует как резистор, и по его длине будет падение напряжения. В результате это означает, что p-n-переход становится все более смещенным в обратном направлении по мере приближения к стоку. Следовательно, слой истощения становится толще ближе к сливу, как показано.

По мере увеличения обратного смещения затвора достигается точка, в которой канал почти перекрывается обедняющим слоем.Однако полностью канал никогда не закрывается. Причина этого в том, что электростатические силы между электронами заставляют их распространяться, давая обратный эффект увеличению толщины обедненного слоя.

После определенного момента поле вокруг электронов, текущих в канале, успешно противодействует дальнейшему увеличению обедненного слоя. Напряжение, при котором слой обеднения достигает своего максимума, называется напряжением отсечки.

Применение схемы JFET

JFET

— очень полезные электронные компоненты, поэтому они используются во многих конструкциях электронных схем.Они предлагают ряд явных преимуществ, которые можно использовать во многих схемах.

  • Простое смещение
  • Высокое входное сопротивление
  • Низкий уровень шума

Учитывая их характеристики, полевые транзисторы JFET используются во многих схемах, от усилителей до генераторов, от логических переключателей до фильтров и многих других приложений.

Структура и изготовление JFET

JFET могут быть как N-канальными, так и P-канальными устройствами. Их можно сделать очень похожими способами, за исключением того, что области N и P в приведенной ниже структуре поменяны местами.

Часто устройства изготавливаются на более крупной подложке, а сам полевой транзистор изготавливается, как показано на схеме ниже.

Типичная структура полевого транзистора

Существует несколько способов изготовления полевых транзисторов. Для кремниевых устройств сильно легированная подложка обычно действует как второй затвор.

Активная область n-типа может быть затем выращена с использованием эпитаксии, или она может быть сформирована путем диффузии примесей в подложку или ионной имплантацией.

В случае использования арсенида галлия подложка образована полуизолирующим внутренним слоем.Это снижает уровни любых паразитных емкостей и позволяет получить хорошие высокочастотные характеристики.

Какой бы материал ни использовался для полевого транзистора, расстояние между стоком и истоком важно и должно быть минимальным. Это сокращает время прохождения, когда требуются высокочастотные характеристики, и обеспечивает низкое сопротивление, что жизненно важно, когда устройство должно использоваться для питания или коммутации.

Ввиду их популярности, JFET доступны в различных пакетах.Они широко доступны в виде свинцовых электронных компонентов в популярном пластиковом корпусе TO92, а также в ряде других. Затем, как устройства для поверхностного монтажа, они доступны в пакетах, включая SOT-23 и SOT-223. Вероятно, наиболее широко используются JFET в качестве устройств для поверхностного монтажа. Наиболее крупномасштабное производство осуществляется с использованием технологии поверхностного монтажа и сопутствующих устройств для поверхностного монтажа.

Хотя JFET менее популярен, чем MOSFET и меньше JFET, он по-прежнему является очень полезным компонентом.Предлагая высокий входной импеданс, простое смещение, низкий уровень шума и низкую стоимость, он обеспечивает высокий уровень производительности, который может использоваться во многих ситуациях.

Другие электронные компоненты:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор FET Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты».. .

Полевой транзистор — определение полевого транзистора по The Free Dictionary

Недавно появились сообщения о многих фотоприемниках на основе полевых транзисторов (FET), работающих в видимой инфракрасной области. Это указывает на то, что линеаризация полевого транзистора, предложенная в [4], не работает должным образом. В отличие от стандартных транзисторов, которые похожи на управляющие Как сказал Шон Роммель, доцент кафедры электротехники и микроэлектроники, когда машина движется над холмом, туннельный полевой транзистор больше похож на туннель через холм.Gaggero-Sager, «Исследование электронных свойств полевого транзистора, легированного атомным слоем GaAs (ALD-FET), под действием гидростатического давления», Phys. Используя технологию биполярного полевого транзистора GaAs (BiFET), усилители мощности достигают КПД добавленной мощности (PAE) составляет 45 процентов при максимальной выходной мощности 670 мВт. Компания Infineon Technologies AG (FSE: IFX / OTCQX: IFNNY) сегодня представила силовой MOSFET 30 В (полевой транзистор с металлическим оксидом и полупроводником) с самым низким в мире RDS (на ) для сильноточных автомобильных приложений.Идеальные диодные схемы позволяют сегодняшним разработчикам заменить кремниевые диоды на N-канальный полевой транзистор с низким сопротивлением (N-FET). Токио, Япония, 12 сентября 2005 г. — (JCN Newswire) — Корпорация Toshiba (TSE: 6502) объявила о разработке. силового полевого транзистора (FET) из нитрида галлия (GaN), который намного превосходит рабочие характеристики полевого транзистора из арсенида галлия (GaAs), широко используемого в базовых станциях для наземной и спутниковой микроволновой связи. Durafet III — это твердотельный pH-электрод на основе Хорошо зарекомендовавшая себя технология ISFET (ионно-селективный полевой транзистор) компании Honeywell.Durafet III — это твердотельный pH-электрод, созданный на основе технологии ионно-селективных полевых транзисторов Honeywell. Согласно TMHU, каждый новый погрузчик, как и существующая линейка электрических портативных штабелеукладчиков компании, спроектирован с использованием металлооксидных полупроводниковых полевых транзисторов ( MOSFET) и технологии привода электродвигателя с раздельным возбуждением (SEM), «что приводит к повышению эффективности батареи, плавному ускорению и улучшенному управлению оператором». Сочетание как полевого транзистора с металлооксидным полупроводником (MOSFET), так и тиристора выключения затвора ( GTO), этот продукт можно легко интегрировать в последовательные и параллельные соединения.

Полевой транзистор

Полевые транзисторы

Функция полевых транзисторов аналогична биполярным транзисторам (особенно того типа, который мы обсудим здесь), но есть несколько отличий. У них есть 3 клеммы, как показано ниже. Два основных типа полевых транзисторов — это полевые МОП-транзисторы с каналом «N» и «P». Здесь мы будем обсуждать только канал N. Фактически, в этом разделе мы будем обсуждать только наиболее часто используемый N-канальный MOSFET в режиме улучшения (полевой транзистор с металлическим оксидом и полупроводником).Его схематический символ находится ниже. Стрелки показывают, как НОЖКИ реального транзистора соответствуют условному обозначению.

Current Control:
Терминал управления называется воротами. Помните, что через базовый вывод биполярного транзистора проходит небольшой ток. Затвор на полевом транзисторе практически не пропускает ток при работе с постоянным током.При управлении затвором с помощью высокочастотных импульсных сигналов постоянного или переменного тока может протекать небольшой ток. «Включение» транзистора (a.k.a. порог) напряжение варьируется от одного полевого транзистора к другому, но составляет примерно 3,3 вольта по отношению к источнику.

Когда полевые транзисторы используются в секции аудиовыхода усилителя, Vgs (напряжение от затвора до источника) редко превышает 3,5 В. Когда полевые транзисторы используются в импульсных источниках питания, Vgs обычно намного выше (от 10 до 15 вольт). Когда напряжение затвора превышает примерно 5 вольт, он становится более эффективным (что означает меньшее падение напряжения на полевом транзисторе и, следовательно, меньшее рассеивание мощности).

Обычно используются полевые МОП-транзисторы, потому что их легче использовать в сильноточных приложениях (например, в импульсных источниках питания в автомобильных аудиоусилителях). Если используется биполярный транзистор, часть тока коллектор / эмиттер должна протекать через переход базы. В ситуациях с высоким током, когда имеется значительный ток коллектора / эмиттера, ток базы может быть значительным. Полевые транзисторы могут работать при очень небольшом токе (по сравнению с биполярными транзисторами). Единственный ток, который течет из схемы возбуждения, — это ток, протекающий из-за емкости.Как вы уже знаете, когда к конденсатору подается постоянный ток, возникает первоначальный скачок, а затем ток прекращается. Когда затвор полевого транзистора приводится в действие высокочастотным сигналом, схема управления по существу видит только конденсатор небольшой емкости. Для низких и промежуточных частот схема возбуждения должна обеспечивать небольшой ток. На очень высоких частотах или когда задействовано много полевых транзисторов, схема возбуждения должна обеспечивать больший ток.

Примечание:
Затвор полевого МОП-транзистора имеет некоторую емкость, что означает, что он будет удерживать заряд (сохранять напряжение).Если напряжение затвора не разряжено, полевой транзистор будет продолжать проводить ток. Это не означает, что вы можете заряжать его и ожидать, что полевой транзистор будет продолжать проводить бесконечно долго, но он будет продолжать проводить до тех пор, пока напряжение на затворе не станет ниже порогового напряжения. Вы можете убедиться, что он отключился, если вы подключите понижающий резистор между затвором и истоком.

Сильноточные клеммы:
«Управляемые» клеммы называются истоком и стоком. Это клеммы, отвечающие за пропускание тока через транзистор.

Пакеты транзисторов:
В полевых МОП-транзисторах используются те же «корпуса», что и в биполярных транзисторах. Наиболее распространенным в автомобильном стереоусилителе в настоящее время является корпус TO-220 (показан выше).


Транзистор в цепи:
На этой диаграмме показаны напряжения на резисторе и полевом транзисторе с 3 различными напряжениями затвора. Вы должны увидеть, что на резисторе нет напряжения, когда напряжение затвора составляет около 2,5 вольт. Это означает, что ток не течет, потому что транзистор не открыт.Когда транзистор частично включен, на обоих компонентах наблюдается падение напряжения (напряжения). Когда транзистор полностью открыт (напряжение затвора около 4,5 В), полное напряжение питания подается на резистор, и падение напряжения на транзисторе практически отсутствует. Это означает, что оба вывода (исток и сток) транзистора имеют по существу одинаковое напряжение. Когда транзистор полностью включен, нижний вывод резистора эффективно заземлен.

Напряжение на затворе Напряжение на резисторе Напряжение на транзисторе
2.5 вольт без напряжения примерно 12 вольт
3,5 В менее 12 вольт менее 12 вольт
4,5 В примерно 12 вольт напряжение практически отсутствует

В следующей демонстрации вы можете увидеть, что к лампе подключен полевой транзистор. Когда напряжение ниже примерно 3 вольт, лампа полностью выключена. Нет тока, протекающего через лампу или полевой транзистор.Когда вы нажимаете кнопку, вы можете видеть, что конденсатор начинает заряжаться (на это указывает восходящая желтая линия и точка пересечения кривой зарядки конденсатора с белой линией, идущей слева направо. Когда полевой транзистор начинает включаться, напряжение на стоке начинает падать (обозначено падающей зеленой линией и точкой, где зеленая кривая пересекается с белой линией). Когда напряжение затвора приближается к пороговому напряжению (~ 3,5 В), напряжение на лампе начинает снижаться. увеличение.Чем больше он увеличивается, тем ярче становится лампа. После того, как напряжение на затворе достигнет примерно 4 вольт, вы увидите, что лампочка полностью горит (на ее выводах есть полные 12 вольт). Напряжение на полевом транзисторе практически отсутствует. Вы должны заметить, что полевой транзистор полностью выключен при напряжении ниже 3 вольт и полностью включен после четырех вольт. Любое напряжение затвора ниже 3 В практически не влияет на полевой транзистор. Выше 4 вольт мало влияет.


Расчетные параметры

Напряжение затвора:
Как вы уже знаете, полевой транзистор управляется напряжением затвора.Для этого типа полевого МОП-транзистора максимальное безопасное напряжение затвора составляет ± 20 вольт. Если на затвор (относительно источника) будет подано более 20 вольт, это приведет к разрушению транзистора. Транзистор будет поврежден, потому что напряжение будет проходить через изолятор, который отделяет затвор от части стока / истока полевого транзистора.

Сила тока:
Как и биполярные транзисторы, каждый полевой транзистор предназначен для безопасной передачи определенного количества тока. Если температура полевого транзистора выше 25 ° C (приблизительно 77 градусов Фаренгейта), «безопасные» токонесущие способности транзистора будут уменьшены.Безопасная рабочая зона (S.O.A) продолжает уменьшаться при повышении температуры. Когда температура приближается к максимальной безопасной рабочей температуре, номинальный ток транзистора приближается к нулю.

Напряжение:
полевых транзисторов будут повреждены, если будет превышено указанное максимальное напряжение сток-исток. Информационный листок можно получить у производителя. Технический паспорт предоставит вам всю информацию, необходимую для его использования.

Рассеиваемая мощность: полевые транзисторы
похожи на биполярные транзисторы по корпусам и рассеиваемой мощности, и вы можете вернуться по этой ссылке на страницу биполярных транзисторов для получения дополнительной информации.Нажмите кнопку «назад», чтобы вернуться.

Полевые транзисторы — Основы электроники: Полупроводниковые приборы Видеоурок

Обзор Стенограммы Файлы упражнений Просмотр в автономном режиме

Детали курса

Расширьте свое понимание того, как создавать электронные схемы, научившись работать с полупроводниковыми компонентами.В этом курсе вы вместе с инженером-электриком Бэрроном Стоуном расскажете, как создавать схемы с использованием трех распространенных типов полупроводниковых компонентов: диодов, транзисторов и операционных усилителей. Баррон начинает свой курс с объяснения того, что такое диоды и как использовать диоды для управления направлением тока, протекающего через цепь. Он показывает вам, как использовать диоды для защиты ваших схем от сигналов большой амплитуды, обратного тока и обратного напряжения. Затем он переходит к работе с транзисторами, демонстрируя, как их можно использовать для управления величиной тока, протекающего через схему, и исследует распространенные типы транзисторов, такие как BJT и MOSFET.Бэррон завершает курс рассмотрением одного из самых полезных электронных компонентов — операционных усилителей. Он показывает вам, как использовать операционные усилители для подачи двойного напряжения, сравнения двух сигналов, усиления сигналов, фильтрации сигналов и т. Д.

Инструктор

  • Бэррон Стоун

    Инженер | Инструктор | Ветеран

    Бэррон Стоун — инженер-электрик, имеющий опыт работы как с цифровым оборудованием низкого уровня, так и с программным обеспечением высокого уровня.

    Он получил степень бакалавра электротехники в Университете Райса и степень магистра электротехники в Технологическом институте ВВС. Несколько лет он проработал инженером по приложениям и инженером по маркетингу продукции в National Instruments, где разрабатывал маркетинговые и обучающие материалы для модульных приборов NI FlexRIO на базе FPGA. Сегодня Бэррон служит офицером в ВВС США.

    Узнать больше Видеть меньше

Навыки, описанные в этом курсе

Зрители этого курса

33 459 человек посмотрели этот курс

Связанные курсы

Добро пожаловать

«

— [Инструктор] В отличие от биполярных переходных транзисторов, которые работают за счет смещения пары P-N переходов, полевые транзисторы включаются и выключаются с помощью электрического поля для управления поведением полупроводникового материала, делая его более или менее проводящим.Существует два основных типа полевых транзисторов: переходные полевые транзисторы, называемые полевыми транзисторами, и металл-оксидные полупроводниковые полевые транзисторы или полевые МОП-транзисторы. Между полевыми транзисторами типа JFET и полевыми МОП-транзисторами много общего, но полевые МОП-транзисторы используются более широко, поскольку они имеют более высокий входной импеданс, чем полевые транзисторы, поэтому в этом курсе я сосредоточусь в первую очередь на полевых МОП-транзисторах. Физическая структура полевого МОП-транзистора начинается с пластины из легированного полупроводникового материала, называемой корпусом. В этом примере я буду использовать полупроводниковый материал P-типа для корпуса.Рядом с каждым концом корпуса откладывается небольшой участок противоположно легированного материала, называемый лункой, и в этом случае эти лунки представляют собой материал N-типа. Один из этих колодцев связан с…

.

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *