Расчет светодиодов онлайн калькулятор: Расчет резистора для светодиода, калькулятор расчёта сопротивления

Содержание

Расчет резистора для светодиода, калькулятор расчёта сопротивления

Светодиод имеет очень небольшое внутреннее сопротивление, если его подключить напрямую к блоку питания, то сила тока будет достаточной высокой, чтобы он сгорел. Медные или золотые нити, которыми кристалл подключается к внешним выводам, могут выдерживать небольшие скачки, но при сильном превышении перегорают и питание прекращает поступать на кристалл. Онлайн расчёт резистора для светодиода производится на основе его номинальной рабочей силы тока.

Содержание

  • 1. Онлайн калькулятор
  • 2. Основные параметры
  • 3. Особенности дешёвых ЛЕД

Онлайн калькулятор

Предварительно составьте схему подключения, чтобы избежать ошибок в расчётах. Онлайн калькулятор покажет вам точное сопротивление  в Омах. Как правило окажется, что резисторы с таким номиналом не выпускаются, и вам будет показан ближайший стандартный номинал. Если не удаётся сделать точный подбор сопротивления, то используйте больший номинал. Подходящий номинал можно сделать подключая сопротивление параллельно или последовательно. Расчет сопротивления для светодиода можно не делать, если использовать мощный переменный или подстроечный резистор. Наиболее распространены типа 3296 на 0,5W. При использовании питания на 12В, последовательно можно подключить до 3 LED.

Резисторы бывают разного класса точности, 10%, 5%, 1%. То есть их сопротивление может погрешность в этих пределах в положительную или отрицательную сторону.

Не забываем учитывать и мощность токоограничивающего резистора, это его способность рассеивать определенное количество тепла.  Если она будет мала, то он перегреется и выйдет из строя, тем самым разорвав электрическую цепь.

Чтобы определить полярность можно подать небольшое напряжение или использовать функцию проверки диодов на мультиметре. Отличается от режима измерения сопротивления, обычно подаётся от 2В до 3В.

Основные параметры

Отличие характеристик кристаллов для дешевых ЛЕД

Так же при расчёте светодиодов следует учитывать разброс параметров, для дешевых они будут максимальны, для дорогих они будут более одинаковыми.  Чтобы проверить этот параметр, необходимо включить их в равных условиях, то есть последовательно. Уменьшая тока или напряжение снизить яркость до слегка светящихся точек. Визуально вы сможете оценить, некоторые будут светится ярче, другие тускло.  Чем равномернее они горят, тем меньше разброс. Калькулятор расчёта резистора для светодиода подразумевает, что характеристики светодиодных чипов идеальные, то есть отличие равно нулю.

Напряжение падения для распространенных моделей маломощных до 10W может быть от 2В до 12В. С ростом мощности увеличивается количество кристаллов в COB  диоде, на каждом есть падение. Кристаллы включаются цепочками последовательно, затем они объединяются в параллельные цепи. На мощностях от  10W до 100W снижение растёт с 12В до 36В.

Этот параметр должен быть указан в технических характеристиках LED чипа  и зависит от назначения:

  • цвета синий, красный, зелёный, желтый;
  • трёхцветный RGB;
  • четырёхцветный RGBW;
  • двухцветный, теплый и холодный белый.

Особенности дешёвых ЛЕД

Прежде чем подобрать резистор для светодиода на онлайн калькуляторе, следует убедится в параметрах диодов. Китайцы на Aliexpress продают множество led, выдавая их за фирменные. Наиболее популярны модели  SMD3014, SMD 3528, SMD2835, SMD 5050, SMD5630, SMD5730. Всё самое плохое обычно делается под брендом Epistar.

Например, чаще всего китайцы обманывают на SMD5630 и SMD5730. Цифры в маркировке обозначают лишь размер корпуса 5,6мм на 3,0мм. В фирменных такой большой корпус используется для установки мощных кристаллов на 0,5W , поэтому у покупателей диодов СМД5630 напрямую ассоциируется с мощностью 0,5W. Хитрый китаец этим пользуется, и в корпус 5630 устанавливает дешевый и слабенький кристалл в среднем на 0,1W , при этом указывая потребление энергии 0,5W.

Китайские светодиодные лампы кукурузы

Наглядным примером будут автомобильные лампы и светодиодные кукурузы, в которых поставлено большое количество слабеньких и некачественных ЛЕД чипов. Обычный покупатель считает, чем больше светодиодов чем лучше светит и выше мощность.

Автомобильные лампы на самых слабых лед 0,1W

Чтобы сэкономить денежку, мои  светодиодные коллеги ищут приличные ЛЕД на Aliexpress. Ищут хорошего продавца, который обещает определённые параметры, заказывают , ждут доставку месяц. После тестов оказывается, что китайский продавец обманул, продал барахло. Повезёт, если на седьмой раз придут приличные диоды, а не барахло.  Обычно сделают 5 заказов, и не добившись результата и идут делать заказ в отечественный магазин, который может сделать обмен.

Калькулятор светодиодов. Расчет ограничительных резисторов для одиночных светодиодов и светодиодных массивов • Электротехнические и радиотехнические калькуляторы • Онлайн-конвертеры единиц измерения

Калькулятор нарисует принципиальную и монтажную схему одного светодиода с ограничительным резистором или светодиодного массива, состоящего из нескольких параллельных ветвей светодиодов, с последовательно включенным ограничительным резистором. Если вы только начинаете изучать электронику или учитесь в техническом университете, вы можете использовать этот калькулятор для изучения светодиодов. Если же вы не в первый раз разрабатываете массив светодиодов, воспользуйтесь им для проверки своих расчетов. И конечно, этот и другие калькуляторы на TranslatorsCafe.com пригодятся всем, кто хочет изучить технический английский, так как все они есть и в английской версии.

Пример: Рассчитать последовательно-параллельный массив, состоящий из 30 красных светодиодов с прямым напряжением 2 В и прямым током 20 мА для напряжения источника 12 В.

Входные данные

Напряжение источника питания

VsВ

Напряжение источника питания должно быть выше прямого напряжения светодиода и менее 250 В.

Прямой ток светодиода

IfмА

Для питания мощных светодиодов необходимо использовать стабилизаторы тока, а не ограничительные резисторы.

Выберите тип светодиода

Выберите тип светодиодаинфракрасныйкрасныйзелёныйжёлтыйоранжевый/янтарныйсинийбелыйдругой

или Прямое напряжение светодиода

VfВ

Количество светодиодов в массиве

Nt

Количество светодиодов в цепи последовательно включенных светодиодов с ограничительным резистором. Если этот параметр не задан, он будет рассчитан автоматически.

N

s

Число светодиодов в цепи последовательно включенных светодиодов не должно быть больше {0} для заданных напряжения источника питания и прямого напряжения светодиода.

Выходные данные

Такая схема имеет слишком низкий КПД из-за большой мощности, рассеиваемой на одном или нескольких ограничительных резисторах.

Массив {0} x {1}, всего светодиодов {2}

Число светодиодов в одной цепи {0}

Принципиальная схема

Монтажная схема

Номинал и максимальная рассеиваемая мощность резистора для последовательной цепи с максимальным для данного напряжения питания количеством светодиодов:

Общая мощность, рассеиваимая на всех ограничительных резисторах:

Общая мощность, рассеиваемая всеми светодиодами:

Общая мощность, потребляемая массивом светодиодов:

Ток, потребляемый от источника питания:

Количество светодиодов в матрице:

Количество последовательных ветвей, соединенных параллельно:

Количество светодиодов в последовательной ветви с макс. количеством светодиодов:

Количество светодиодов в дополнительной ветви с количеством светодиодов, меньшим максимального:

Определения и формулы для расчета

Одиночный светодиод

Светодиод (светоизлучающий диод) — полупроводниковый источник излучения в оптическом диапазоне с двумя или более выводами. Монохромные светодиоды обычно имеют два вывода, двухцветные — два или три вывода, трехцветные снабжены четырьмя выводами. Светодиод излучает свет, если к его вывода приложено определенное прямое напряжение.

Обычный инфракрасный светодиод и его условное обозначение на принципиальных схемах (на российских принципиальных схемах светодиоды изображают без разрыва проводника). Квадратный кристалл светодиода установлен на отрицательном электроде (катоде). К положительному электроду (аноду) кристалл подключается с помощью тонкого проводника.

Для подключения светодиода к источнику питания можно использовать простую схему с последовательно включенным токоограничительным резистором. Резистор необходим в связи с тем, что падение напряжение на светодиоде является постоянным в относительно широком диапазоне рабочих токов.

Цвета светодиодов, материал полупроводника, длина волны и падение напряжения
ЦветМатериал полупроводникаДлина волныПадение напряжения
ИнфракрасныйАрсенид галлия (GaAs)850-940 нм
КрасныйАрсенид-фосфид галлия (GaAsP)620-700 нм1.6—2.0 В
ОранжевыйАрсенид-фосфид галлия (GaAsP)590-610 нм2.0—2.1 В
ЖелтыйАрсенид-фосфид галлия (GaAsP)580-590 нм2.1—2.2 В
ЗеленыйФосфид алюминия-галлия (AlGaP)500-570 нм1.9—3.5 В
СинийНитрид индия-галлия (InGaN)440-505 нм2.48—3.6 В
БелыйДиоды с люминофором или трехцветные RGBШирокий спектр2.8—4.0 В

Поведение светодиодов и резисторов в схемах отличается. В соответствии с законом Ома, резисторы имеют линейную зависимость падения напряжения от протекающего через них тока:

Вольтамперные характеристики типичных светодиодов различных цветов

Если напряжение на резисторе увеличивается, ток также пропорционально увеличивается (здесь мы предполагаем, что величина сопротивления резистора остается постоянной). Светодиоды ведут себя не так. Их поведение соответствует поведению обычных диодов. Вольтамперные характеристики светодиодов разного цвета приведены на рисунке. Они показывают, что ток через светодиод не прямо пропорционален падению напряжения на светодиоде. Видно, что имеется экспоненциальная зависимость тока от прямого напряжения. Это означает, что при небольшом изменении напряжения ток может измениться очень сильно.

Если прямое напряжение на светодиоде невелико, его сопротивление очень большое и светодиод не горит. При превышении указанного в технических характеристиках порогового уровня светодиод начинает светиться и его сопротивление быстро падает. Если приложенное напряжение превышает рекомендуемую величину прямого напряжения, которое может быть в пределах 1,5—4 В для светодиодов различных цветов, ток через светодиод резко растет, что может привести к выходу его из строя. Для ограничения этого тока, последовательно со светодиодом включают резистор, который ограничивает ток таким образом, что он не превышал рабочий ток, указанный в характеристиках светодиода.

Формулы для расчетов

Светодиод в прямоугольном корпусе с плоским верхом применяется, например, для индикаторов уровня

Ток через ограничительный резистор

Rs можно рассчитать по формуле закона Ома, в которой из напряжения питания Vs вычитается прямое падение напряжения на светодиоде Vf:

Здесь Vs напряжение источника питания в вольтах (например, 5 В от шины USB), Vf прямое падение напряжения на светодиоде и I прямой ток через светодиод в амперах. Значения Vf и If приводятся в технических характеристиках светодиода. Типичные значения Vf показаны выше в таблице. Типичный ток индикаторных светодиодов 20 мА.

После расчета сопротивления резистора, из ряда номиналов сопротивлений выбирается ближайшее большее стандартное значение. Например, если расчет показывает, что нужен резистор Rs = 145 ом, мы (и калькулятор) выберем резистор Rs = 150 ом.

Токоограничительный резистор рассеивает определенную мощность, которая рассчитывается по формуле

Оранжевые светодиоды обычно используются в маршрутизаторах для указания скорости обмена 10/100 Мбит/с. Зеленые светодиоды горят при скорости 1000 Мбит/с

Для надежной работы резистора его мощность выбирается вдвое выше расчетой. Например, если по формуле получилось 0,06 Вт, мы выберем резистор на 0,125 Вт.

А теперь рассчитаем эффективность работы нашей схемы (ее КПД), который покажет какой процент мощности, отдаваемой источником питания, потребляется светодиодом. На светодиоде рассеивается такая мощность:

Тогда общее потребление будет равно

КПД схемы включения светодиода с ограничительным резистором:

Для выбора источника питания необходимо рассчитать ток, который он должен отдавать в схему. Это делается по формуле:

Светодиодная лента со светодиодами типа 5050; цифры 50 и 50 означают длину и ширину микросхемы в миллиметрах; токоограничительные резисторы 150 ом уже установлены на ленте последовательно со светодиодами

Светодиодные массивы

Одиночный светодиод можно зажигать с помощью токоограничительного резистора. Однако для питания светодиодных массивов, которые все чаще используются для освещения, подсветки в телевизорах и компьютерных мониторах, в рекламе и для других целей, необходимы специализированные источники питания. Мы все привыкли к источникам, выдающим стабилизированное напряжение питания. Однако, для питания светодиодов нужны источники, в которых стабилизируется ток, а не напряжение. Однако и с такими источниками ограничительные резисторы все равно устанавливают.

Если нужно изготовить светодиодный массив, используют несколько последовательных светодиодных цепей, соединенных параллельно. Для цепи из последовательных светодиодов необходим источник питания с напряжением, которое превышает сумму падений напряжений на отдельных светодиодах. Если его напряжение выше этой суммы, необходимо включить в цепь один токоограничительный резистор. Через все светодиоды течет одинаковый ток, что (до определенной степени) позволяет получить одинаковую яркость.

Однако если один из светодиодов в цепи откажет так, что он будет в обрыве (именно такой отказ чаще всего и происходит), вся цепочка светодиодов погаснет. В некоторых схемах и конструкциях для предотвращения таких отказов вводят особый шунт, например, ставят стабилитрон параллельно каждому диоду. Когда диод сгорает, напряжение на стабилитроне становится достаточно высоким и он начинает проводить ток, обеспечивая работу исправных светодиодов. Этот подход хорош для маломощных светодиодов, однако в схемах, предназначенных для наружного освещения, нужны более сложные решения. Конечно, это приводит к увеличению стоимости и габаритов устройств. Сейчас (в 2018 году) можно наблюдать, что светодиодные фонари на улицах, при планируемом сроке службы в 10 лет служат не более года. То же относится и к бытовым светодиодным лампам, в том числе и производителей с известными именами.

Полоса светодиодов, используемая для подсветки телевизионного ЖК -дисплея. Такая полоска устанавливается с двух сторон панели дисплея. Данная конструкция позволяет делать очень тонкие дисплеи. Отметим, что телевизионные ЖК-дисплеи со светодиодной подсветкой, которые обычно продаются под названием LED TV, то есть «светодиодные телевизоры» таковыми на самом деле не являются. В настоящих светодиодных телевизорах (OLED TV) используются светодиодные графические экраны на органических светодиодах и стоят они значительно дороже телевизоров с ЖК-дисплеем.

При расчете требуемого сопротивления токоограничительного резистора Rs, все падения напряжения на каждом светодиоде складываются. Например, если падение напряжения на каждом из пяти соединенных последовательно горящих светодиодов составляет 2 В, то полное падение напряжение на всех пяти будет 2 × 5 = 10 В.

Несколько идентичных светодиодов можно соединять и параллельно. У параллельно соединенных светодиодов прямые напряжения Vf должны быть одинаковыми — иначе в них не будут протекать одинаковые токи и их яркость будет различной. Если светодиоды соединяются параллельно, очень желательно ставить токоограничительный резистор последовательно с каждым из них. При параллельном соединении отказ одного светодиода, при котором он будет в обрыве, не приведет к выходу из строя всего массива — он будет работать нормально. Другой проблемой параллельного соединения является выбор эффективного источника питания, обеспечивающего большой ток при низком напряжении. Такой источник питания будет стоить намного больше, чем источник той же мощности, но на высокое напряжение и меньший ток.

В этом обычном уличном фонаре 8 параллельных цепей из пяти последовательно соединенных мощных светодиодов питаются от источника питания со стабилизацией тока с высоким КПД. Отметим, что две цепи в этом фонаре (слева вверху и справа внизу), установленном всего несколько месяцев назад, уже сгорели, так как в каждой из них светодиоды соединены последовательно, а схемы для предотвращения отказов отсутствуют или не работают.

Расчет токоограничительных резисторов

Если количество светодиодов в последовательной цепи NLEDs in string (обозначенное Ns в поле ввода) введено, то максимальное количество светодиодов в цепи последовательно соединенных светодиодов NLEDs in string max определяется как

Если количество светодиодов в последовательной цепи NLEDs in string (обозначенное Ns в поле ввода) введено, то максимальное количество светодиодов в цепи последовательно соединенных светодиодов NLEDs in string max определяется как

Светодиоды типа 3014 (3,0 × 1,4 мм) для поверхностного монтажа, используемые для боковой подсветки ЖК-панели телевизора.

Количество цепей с максимальным количество светодиодов в цепи Nstrings:

Количество светодиодов в дополнительной цепи с остатком светодиодов Nremainder LEDs :

Если Nremainder LEDs = 0, то дополнительной цепи не будет.

Определим сопротивление токоограничительного резистора в цепи с максимальным количеством светодиодов:

Определим сопротивление токоограничительного резистора в цепи с количеством светодиодов меньше максимального:

Общая мощность PLED, рассеиваемая всеми светодиодами:

Мощность, потребляемая всеми резисторами:

Гибкие светодиодные дисплеи на железнодорожной станции; в таких дисплеях используются группы светодиодов в качестве отдельных пикселей. В связи с высокой яркостью светодиодов и их хорошей видимостью при ярком солнечном свете, такие дисплеи часто можно увидеть на наружной рекламных щитах и дорожных указателях маршрута. Светодиодные дисплеи также можно использовать для освещения и в этой роли их часто используют в фонарях с регулируемой цветовой температурой для видео и фотосъемки.

Номинальная мощность резисторов определяется с учетом двойного запаса k = 2, который обеспечивает надежную работу резистора. Выбираем из ряда значений мощности : 0.125; 0.25; 0.5; 1, 2, 3, 4, 5, 8, 10, 16, 25, 50 W резистор с мощностью вдвое выше, чем расчетная.

Рассчитаем общую мощность, потребляемую всеми резисторами:

Рассчитаем общую мощность, потребляемую светодиодным массивом:

Рассчитаем ток, который должен обеспечить источник питания:

И наконец, рассчитаем КПД нашего массива:

Возможно, вас заинтересуют конвертеры Яркости, Силы света and Освещенности.

Автор статьи: Анатолий Золотков

Калькулятор светодиодов

Я уже прочитал статью, сразу перейти к калькулятору.

Для устойчивой работы светодиоду необходим источник постоянного напряжения и стабилизированный ток, который не будет превышать величины, допустимые спецификой конкретного светодиода. Если необходимо подключить светодиоды индикаторные, рабочий ток которых не превышает 50-100мА, можно ограничить ток посредством резисторов. Если речь идет о питании мощных светодиодов с рабочими токами от сотен миллиампер до единиц ампер, то не обойтись без специальных устройств – драйверов (подробнее об этих устройствах читайте в статье "Драйвера для светодиодов", готовые модели драйверов можно увидеть здесь.). Далее рассмотрим варианты, когда требуемый ток небольшой и обойтись резисторами все же можно.

Резисторы являются пассивными элементами – ток они просто ограничивают, но никак не стабилизируют. Сила тока будет меняться с изменением напряжения в соответствии с законом Ома. Ограничивается ток резистором банальным преобразованием «лишнего» электричества в тепло по формуле

P = I2R, где P - выделяемое тепло в ваттах, I - сила тока в цепи в амперах, R - сопротивление в омах.

Устройство при этом, естественно, греется. Способность резистора рассеивать тепло не безгранична и, при превышении допустимого тока, он сгорит. Допустимая рассеиваемая мощность определяется корпусом резистора. Это нужно учитывать при планировании подключения светодиодов и выбирать элементы с, как минимум, двойным запасом прочности.

Схема подключения одного светодиода

Если необходимо подключить один светодиод, то сопротивление резистора можно рассчитать, в соответствии с законом Ома, по простой формуле:

R = (U - UL) / I, где R - требуемое сопротивление в омах, U - напряжение источника питания, UL - падение напряжения на светодиоде в вольтах, I - нужный ток светодиода в амперах.

Очень часто нужно подключить не один, а несколько светодиодов. В этом случае возможно их последовательное или параллельное подключение.

Схема последовательного подключения светодиодов

Падение напряжения на последовательно соединенных светодиодах суммируется, через каждый из них протекает одинаковый ток. Напряжение источника питание должно быть больше, чем суммарное падение напряжения.

Рассчитывается сопротивление резистора по такому же принципу, как и в случае одного светодиода, только учитывается падение напряжения не на одном светляке, а суммарно для всей цепочки.

Последовательное подключение удобно тем, что требует минимум дополнительных деталей, кроме того, от источника питания не требуется большой ток. Но при большом количестве светодиодов может потребоваться существенное напряжение. Кроме того, если один из последовательной цепочки сгорит, то цепь оборвется и светить перестанут все светодиоды. Также при таком варианте подключения важно использовать совершенно одинаковые светодиоды, иначе их разные параметры будут служить источником дисбаланса. В итоге они могут либо светить неравномерно, либо значительно быстрее выходить из строя.

Схема параллельного подключения светодиодов

Параллельное подключение равносильно одновременному подключению отдельных светодиодов, которым совсем «не обязательно знать» о наличии других светодиодов. При этом напряжение источника питания должно превышать падение напряжения на одном светодиоде. Сила тока каждого светодиода может регулироваться индивидуально, выбором сопротивления подсоединенного к нему резистора. Важно, чтобы источник питания «знал», сколько светодиодов к нему подключено, поскольку общая сила тока, которую потребуется от него предоставить, равна сумме токов, протекающих через все светодиоды. Если один из светодиодов выйдет из строя, со свечением остальных ничего не произойдет, поскольку работают они индивидуально. Учтите, что это не относится к параллельным светодиодам, которые питаются от токоограничивающего драйвера! Драйвер стабилизирует ток, выход из строя одной из веток приведет к общему снижению тока. Это снижение драйвер немедленно компенсирует, что приведет к повышению тока на оставшихся ветках. А они могут это и не пережить. По аналогичной причине следует избегать подключения нескольких параллельных светодиодов через один токоограничивающий резистор.

Схема правильного и неправильного параллельного подключения светодиодов

Сопротивление каждого резистора при параллельном подключении светодиодов рассчитывается, повторюсь, так же, как и при подключении одного светодиода.

Параллельное подключение светодиодов не требует высокого напряжения питания, но при его использовании необходимо обеспечить достаточную силу тока. Требуется большее количество деталей, но можно одновременно подключить светодиоды с разными параметрами. Также большее количество токоограничивающих резисторов, которые будут выделять тепло, даст более низкий общий КПД схемы по сравнению с последовательным подключением.

Быстро рассчитать сопротивление резистора при подключении одного или нескольких одинаковых светодиодов поможет предложенная ниже форма онлайн-калькулятора светодиодов.

Расчет резистора для светодиода

Тип подключения:

Выбрано: Один светодиод

Общая потребляемая мощность:

Общий ток источника питания:

На резисторах рассеивается:

На светодиодах рассеивается:

КПД схемы:

Требуемая мощность резисторов - очень большая!!

Выбирайте резисторы с номиналом не меньше рассчитанного!

Онлайн калькулятор для расчет светодиодных светильников и светодиодного освещения.

Этот калькулятор поможет Вам рассчитать, какое количество светильников будет необходимо установить на Вашем объекте, для достижения необходимого уровня освещенности.

Замена классических светильников на светодиодные позволяет существенно экономить на электричестве. Благодаря эффективности приборов потребление электроэнергии снижается до 70%. При этом цена светильников оправдана быстрой окупаемостью – в большинстве случаев, затраты на закупку и установку возвращаются в течение первого же года эксплуатации. Для грамотного определения количества светильников, места их размещения необходимо верно рассчитать суммарный световой поток. Специалисты «Центра светодиодного освещения» начинают проект с подробного расчета освещенности, который помогает правильно подобрать и установить светодиодное оборудование в конкретном помещении.

Что влияет на расчет led-освещенности производственных помещений

В зависимости от типа помещения, его площади и назначения определяется индивидуальный уровень освещенности. В производственных машинных цехах, зонах, где работают люди, и торговых помещениях этот показатель отличается. Существуют установленные нормы для конкретных зданий. Они определяются исходя из параметров:

  • разряд зрительных работ;
  • характеристика зрительных работ;
  • минимальный размер объекта различия;
  • контраст объекта различия с фоном;
  • характеристика фона.

Нарушение норм может привести к производственным травмам или даже летальному исходу. При расчете учитываются также условия работы – наличие влаги, пыли, концентрация взрывоопасных веществ, строительные характеристики помещения. Светодиодные светильники подходят для освещения всех типов помещений благодаря их безопасности, простоте установки, экономичности и долговечности.

Расчет освещенности светодиодными светильниками

Необходимый уровень освещенности в помещениях зависит от высоты и площади. На показатели также влияет тип освещения – основной, локальный, резервный. Государственные стандарты четко определяют уровень освещенности для помещения разной площади и назначения. Их можно узнать из отраслевых справочников или по данным калькулятора расчета светодиодного освещения на нашем сайте.

Зная рекомендуемый уровень освещенности помещения и световой поток одной лампы, легко рассчитать число необходимых светильников.

Методы расчета параметров led-освещенности на производственном объекте:

  1. Метод коэффициента использования светового потока. Применяют при использовании всех типов светильников для расчета равномерного освещения горизонтальной поверхности.
  2. Удельной мощности. С помощью метода предварительно определяют мощность установки для освещения.
  3. Точечный метод используют для расчета освещения при установке светильников прямого света.

Простой способ быстро рассчитать количество светильников без сложных формул –воспользоваться калькулятором на сайте «Центра светодиодного освещения». Для определения числа приборов достаточно знать размеры помещения, его тип, выбрать подходящий светильник на сайте. Система самостоятельно рассчитает нужное количество осветительных приборов, исходя из установленных норм освещенности и характеристик светильников.

Как выбрать светодиодные светильники для помещения

При самостоятельном выборе осветительных приборов нужно учитывать параметры оборудования, которые влияют на качество света. Основные характеристики светильников:

  1. Тип рассеивателя влияет на интенсивность и равномерность распределения света. Он может быть матовым или прозрачным. Матовый создает мягкий рассеянный свет, но снижает интенсивность. Его лучше использовать для установки на рабочих местах и в небольших комнатах. Прозрачный не задерживает световой поток и подходит для освещения больших площадей.
  2. Цветовая температура. Её часто обозначают маркировкой: W-белый, WW-теплый белый, CW-холодный белый. Теплый свет светодиодов используют для зон отдыха, нейтральный белый подходит для работы, холодный белый для складов, промышленных зон, ресторанов, кухонных помещений, санузлов.
  3. Величина светового потока зависит от количества светодиодов, их эффективности и потребляемой мощности. При использовании ламп холодного света обычно эффективность выше, чем в приборах с теплым светом.

Чтобы создать комфортное равномерное освещение в помещении, нужно продумать расположение led-светильника исходя из его светового потока. Чем выше этот показатель, тем дальше должны располагаться друг от друга приборы. Эффективный угол освещения светодиодов – около 120 градусов. Монтировать оборудование нужно таким образом, чтобы свет был равномерным и без перепадов.

Возможные неточности и погрешности при расчете освещенности

После самостоятельной замены классических светильников на светодиодные может оказаться, что света недостаточно. Качество света ухудшается, когда стены, потолок и пол в помещении окрашены в разные цвета. Темный фон уменьшает интенсивность светового потока, поэтому при расчетах светодиодного освещения нужно учитывать коэффициент отражения. Его показатели:

  • 0% – черный фон;
  • 10% – темный фон;
  • 30% – серый фон;
  • 50% – светлый фон;
  • 70% – белый фон.

Существуют таблицы для определения освещенности поверхности при разном типе поверхностей. Её величина соответствует нормам и стандартам для конкретного помещения.

Расчет освещенности объекта в «Центре светодиодного освещения»

Компания помогает оснастить светильниками любые офисы и бизнес-центры, крупные торговые центры, промышленные цеха. Для этого специалист готов бесплатно выехать на объект, произвести осмотр и предварительные замеры. На их основе инженер готовит светотехнический расчет, в котором учитывается тип помещения, назначение, архитектурные особенности. После расчета освещенности определяется место размещения, вид светодиодных светильников и их количество.

Мы гарантируем эффективность выбранного оборудования и качественную установку светильников. В процессе эксплуатации осветительные приборы не теряют своих качеств, обеспечивают равномерный свет, который соответствует всем стандартам.

Расчет резистора для светодиодов: примеры, онлайн калькулятор

При подключении светодиодов небольшой мощности чаще всего используется гасящий резистор.  Это наиболее простая схема подключения, которая позволяет получить требуемую яркость без использования дорогостоящих драйверов. Однако, при всей ее простоте, для обеспечения оптимального режима работы необходимо провести расчет резистора для светодиода.

Светодиод как нелинейный элемент

Рассмотрим семейство вольт-амперных характеристик (ВАХ) для светодиодов различных цветов:

Эта характеристика показывает зависимость тока, проходящего через светоизлучающий диод, от напряжения, приложенного к нему.

Как видно на рисунке, характеристики имеют нелинейный характер. Это означает, что даже при небольшом изменении напряжения на несколько десятых долей вольта, ток может измениться в несколько раз.

Однако при работе со светодиодами обычно используют наиболее линейный участок (т.н. рабочую область) ВАХ, где ток изменяется не так резко. Чаще всего производители указывают в характеристиках светодиода положение рабочей точки, то есть значения напряжения и тока, при которых достигается заявленная яркость свечения.

На рисунке показаны типовые значения рабочих точек для красных, зеленых, белых и голубых светодиодов при токе 20 мА. Здесь можно заметить, что led разных цветов при одинаковом токе имеют разное падение напряжения в рабочей области. Эту особенность следует учитывать при проектировании схем.

Представленные выше характеристики были получены для светоизлучающих диодов, включенных в прямом направлении. То есть отрицательный полюс питания подключен к катоду, а положительный – к аноду, как показано на картинке справа:

Полная же ВАХ выглядит следующим образом:

Здесь видно, что обратное включение бессмысленно, поскольку светодиод не будет излучать, а при превышении некоторого порога обратного напряжения выйдет из строя в результате пробоя. Излучение же происходит только при включении в прямом направлении, причем интенсивность свечения зависит от тока, проходящего через led. Если этот ток ничем не ограничивать, то led перейдет в область пробоя и перегорит. Если нужно установить рабочий светодиод или нет, то Вам будет полезна статья подробно раскрывающая все способы проверки led.

Как подобрать резистор для одиночного светодиода

Для ограничения тока светоизлучающего диода можно использовать резистор, включенный таким образом:

Теперь определяем, какой резистор нужен. Для расчета сопротивления используется формула:

где U пит  — напряжение питания,

U пад- падение напряжения на светодиоде,

I — требуемый ток светодиода.

При этом мощность, рассеиваемая на резисторе, будет пропорциональна квадрату тока:

Например, для красного светодиода Cree C503B-RAS типовое падение напряжения составляет 2.1 В при токе 20 мА. При напряжении питания 12 В сопротивление резистора будет составлять

Из стандартного ряда сопротивлений Е24 подбираем наиболее близкое значение номинала – 510 Ом. Тогда мощность, рассеиваемая на резисторе, составит

Таким образом, потребуется гасящий резистор номиналом 510 Ом и мощностью рассеивания 0.25 Вт.

Может сложиться впечатление, что при низких напряжениях питания можно подключать led без резистора. На этом видео наглядно показано, что произойдет со светоизлучающим диодом, включенного таким образом, при напряжении всего 5 В:

Светодиод сначала будет работать, но через несколько минут просто перегорит. Это вызвано нелинейным характером его ВАХ, о чем говорилось в начале статьи.

Никогда не подключайте светодиод без гасящего резистора даже при низком напряжении питания. Это ведет к его выгоранию и, в лучшем случае, к обрыву цепи, а в худшем – к короткому замыканию.

Расчет резистора при подключении нескольких светодиодов

Подключить несколько led можно двумя способами: последовательно и параллельно. Схемы включения показаны ниже. Не забудьте почитать более подробно про способы подключения светодиодов.

При последовательном соединении используется один резистор, задающий одинаковый ток всей цепочке led. При этом следует учитывать, что источник питания должен обеспечивать напряжение, превышающее общее падение напряжения на диодах. То есть при соединении 4 светодиодов с падением 2.5 В потребуется источник напряжением более 10 В. Ток при этом для всех будет одинаковым. Сопротивление резистора в этом случае можно рассчитать по формуле:

где  — напряжение питания,

— сумма падений напряжения на светодиодах,

— ток потребления.

Так, 4 зеленых светодиода Kingbright L-132XGD напряжением 2.5 В и током 10 мА при питании 12 В потребуют резистора сопротивлением

При этом он должен рассеивать мощность

При параллельном подключении каждому светоизлучающему диоду ток ограничивает свой резистор. В таком случае можно использовать низковольтный источник питания, но ток потребления всей цепи будет складываться из токов, потребляемых каждым светодиодом. Например, 4 желтых светодиода BL-L513UYD фирмы Betlux Electronics с потреблением 20 мА каждый, потребуют от источника ток не менее 80 мА при параллельном включении. Здесь сопротивление и мощность резисторов для каждой пары «резистор – led» рассчитываются так же, как при подключении одиночного светодиода.

Обратите внимание, что и при последовательном, и при параллельном соединении используются источники питания одинаковой мощности. Только в первом случае потребуется источник с большим напряжением, а во втором – с большим током.

Нельзя подключать параллельно несколько светодиодов к одному резистору, т.к. либо они все будут гореть очень тускло, либо один из них может открыться чуть раньше других, и через него пойдет очень большой ток, который выведет его из строя.

Программы для расчета сопротивления

При большом количестве подключаемых led, особенно если они включены и последовательно, и параллельно, рассчитывать сопротивление каждого резистора вручную может быть проблематичным.

Проще всего в таком случае воспользоваться одной из многочисленных программ расчета сопротивления. Очень удобным в этом плане является онлайн калькулятор на сайте cxem.net:

https://cxem.net/calc/ledcalc.php

Он включает в себя небольшую базу данных самых распространенных светодиодов, поэтому необязательно вручную набирать значения падения напряжения и тока, достаточно указать напряжение питания и выбрать из списка нужный светоизлучающий диод. Программа рассчитает сопротивление и мощность резисторов, а также нарисует схему подключения или принципиальную схему.

Например, с помощью этого калькулятора был рассчитан резистор для трех светодиодов CREE XLamp MX3 при напряжении питания 12 В:

Также программа обладает очень полезной функцией: она подскажет цветовую маркировку требуемого резистора.

Еще одна простая программа для расчета сопротивления разработана Сергеем Войтевичем. Скачать программу можно по этой ссылке.

Здесь уже вручную выбирается способ подключения светодиодов, напряжение и ток. Программа не требует установки, достаточно распаковать ее в любую директорию.

Заключение

Гасящий резистор – самый простой ограничитель тока для светодиодной цепи. От его подбора зависит ток, а значит, интенсивность свечения и долговечность led. Однако следует помнить, что при больших токах на резисторе будет выделяться значительная мощность, поэтому для питания мощных светодиодов лучше применять драйверы.

Расчет резистора для светодиода: онлайн калькулятор

Питание светодиодов не такой простой вопрос, как может показаться. Они крайне чувствительны к режиму, в котором работают и не терпят перегрузок. Самое главное, что нужно запомнить – полупроводниковые излучающие диоды питают стабильным током, а не напряжением. Даже идеально стабилизированное напряжение не обеспечит поддержки заданного режима, это следствие внутренней структуры и принципа действия полупроводников. Тем не менее при грамотном подходе светодиоды можно подключать к питанию через токоограничивающий или добавочный резистор. Его расчет сводится к элементарному подбору такого сопротивления, на котором будут падать лишние Вольты при заданной величине тока. Давайте рассмотрим, как рассчитать его номинал вручную или воспользоваться онлайн калькулятором.

Хоть и главным параметром для питания светодиода является ток, но есть и такой, как падение напряжения. Это величина необходимая для того, чтобы он зажегся. Отталкиваясь от нее проводят вычисления ограничительного резистора.

Типовые напряжения LED разных типов:

Цвет Напряжение, В
Белый 2.8-3.2 для маломощных, 3.0 и выше для мощных (более 0.5 Вт)
Красный 1.6-2.0
Зеленый 1.9-4.0
Синий 2.8-3.2
Желтый, оранжевый 2.0-2.2
ИК До 1.9
УФ 3.1-4.4

Внимание! Если вы не можете найти документацию на имеющийся элемент – при использовании онлайн калькулятора возьмите данные из этой таблицы.

Чтобы сократить теорию, давайте сразу на практике рассчитаем сопротивление для подключения белого светодиода к бортовой цепи автомобиля 12В. Её фактическое значение при заведенном двигателе доходит до 14,2 В, а иногда и выше, значит его и берем для расчетов.

Тогда расчёт сопротивления для светодиода выполняют по закону Ома:

R=U/I

На светодиоде должно упасть усреднено 3 Вольта, значит нужно компенсировать:

Uрез=14,2-3=11,2 В

У обычного 5 мм светодиода номинальный ток равен 20 мА или 0,02 А. Рассчитываем сопротивление резистора, на котором должно упасть 11,2 В при заданном токе:

R=11,2/0,02=560 Ом или ближайший в большую сторону

Чтобы добиться стабильного питания и яркости в цепь питания дополнительно устанавливают стабилизатор L7805 или L7812 и проводят расчет относительно питающих 5 или 12 Вольт соответственно.

Как рассчитать резистор для подключения светодиода к сети 220 Вольт? Такой вопрос возникает, когда нужно сделать какую-то индикацию или маячок. Расчёт сопротивления в этом случае выглядит так:

Uрез=220-3=217 В

R=217/0,02=10850 Ом

Так как любой диод пропускает ток в одном направлении, то обратное напряжение приведет к тому, что он выйдет из строя. Значит параллельно светодиоду устанавливают еще один такой же или шунтирующий обычный маломощный выпрямительный диод, например, 1n4007.

С помощью нашего онлайн калькулятора можно рассчитать сопротивление для одного или нескольких соединенных последовательно или цепи параллельных светодиодов:

Если светодиодов несколько, тогда:

  • Для последовательного соединения резистор рассчитывают с учетом суммы падений на каждом элементе.
  • Для параллельного соединения сопротивление рассчитывают с учетом суммы токов каждого светоизлучающего диода.

Также нельзя забывать о мощности резистора, например, во втором примере с подключением цепи к сети 220В на нем будет выделяться мощность равная:

P=217*0,02=4,34 Вт

В данном случае это будет довольно крупный резистор. Чтобы уменьшить эту мощность, можно еще сильнее ограничить ток, например, в 0,01А, что снизит эту мощность в двое. В любом случае номинальная мощность сопротивления должна быть больше той, которая будет выделяться в процессе его работы.

Для долгой и стабильной работы излучателя при подключении к сети используйте в расчетах напряжение слегка выше номинального, то есть 230-240 В.

Если вам сложно посчитать или вы не уверены в чем-то, тогда наш онлайн калькулятор для расчета резистора для светодиода быстро подскажет вам, какой нужен резистор из стандартного размерного ряда, а также его минимальную мощность.

Расчет ограничивающего ток резистора для светодиода, формулы и калькулятор

Часто при изготовлении разнообразных устройств возникает необходимость использовать светодиоды и светодиодные индикаторы. Будем полагать что вы знаете что такое светодиод и какие они бывают.

Подключение светодиода к источнику питания выполняется, как правило, через ограничивающий ток резистор (гасящий резистор). Ниже описаны принципы и формулы для расчета гасящего резистора, а также небольшой калькулятор для быстрого подсчета.

Расчет гасящего резистора для светодиода

Первым делом разберемся как выполнить расчет сопротивления гасящего резистора, от чего оно зависит и какой мощности должен быть резистор для питания светодиода от источника питания.

Рис. 1. Схема подключения светодиода к источнику питания через резистор.

Как видим из схемы, ток (I) через резистор и светодиод протекает один и от же. Напряжение на резисторе равно разнице напряжений питания и напряжения на светодиоде (VS-VL). Здесь нам нужно рассчитать сопротивление резистора (R), при котором через цепь будет протекать напряжение I, а на светодиоде будет напряжение VL.

Допустим что мы будем питать светодиод от батареи напряжением 5В, как правило такое питающее напряжение используется при питании микроконтроллерных схем и другой цифровой техники.

Вычислим значение напряжения на гасящем резисторе, для этого нам нужно знать падение напряжения на светодиоде, это можно выяснить по справочнику для конкретного светодиода.

Примерные значения падения напряжения для светодиодов (АЛ307 и другие маломощные в подобном корпусе):

  • красный - 1,8...2В;
  • зеленый и желтый - 2...2,4В;
  • белые и синие - 3...3,5В.

Допустим что мы будем использовать синий светодиод, падение напряжения на нем - 3В.

Производим расчет напряжения на гасящем резисторе:

Uгрез = Uпит - Uсвет = 5В - 3В = 2В.

Для расчета сопротивления гасящего резистора нам нужно знать ток через светодиод. Номинальный ток конкретного типа светодиода можно узнать по справочнику. У большинства маломощных светодиодов (наподобии АЛ307) номинальный ток находится в пределах 10-25мА.

Допустим что для нашего светодиода номинальный ток для его достаточно яркого свечения составляет 20мА (0,02А). Получается что на резисторе будет гаситься напряжение 2В и проходить ток 20мА. Выполним расчет по формуле закона Ома:

R = U / I = 2В / 0,02А = 100 Ом.

В большинстве случаев подойдет маломощный резистор с мощностью 0,125-0,25Вт (МЛТ-0,125 и МЛТ-0,25). Если же ток и напряжение падения на резисторе будет очень отличаться то не помешает произвести расчет мощности резистора:

P = U * I = 2В * 0,02А = 0,04 Вт.

Таким образом, 0,04 Вт явно меньше номинальной мощности даже для самого маломощного резистора МЛТ-0,125 (0,125 Вт).

Произведем расчет для красного светодиода (напряжение 2В, ток 15мА).

Uгрез = Uпит - Uсвет = 5В - 2В = 3В.

R = U / I = 3В / 0,015А = 200 Ом.

P = U * I = 3В * 0,015А = 0,045 Вт.

Простой калькулятор для расчета гасящего резистора

Теперь вы знаете как по формулам рассчитать гасящий резистор для питания светодиода. Для облегчения расчетов написан несложный онлайн-калькулятор:

Форму прислал Михаил Иванов.

Заключение

При подключении светодиодов не нужно забывать что они имеют полярность. Для определения полярности светодиода можно использовать мультиметр в режиме прозвонки или же омметр.

Использование гасящих резисторов оправдано для питания маломощных светодиодов, при питании мощных светодиодов нужно использовать специальные LED-драйверы и стабилизаторы.

Калькулятор светодиодных резисторов

- Инструменты для электротехники и электроники

Обзор

Каждый светоизлучающий диод (LED) имеет ток, с которым они могут безопасно работать. Превышение этого максимального тока даже на короткое время приведет к повреждению светодиода. Таким образом, ограничение тока через светодиод с помощью последовательного резистора - обычная и простая практика. Обратите внимание, что этот метод не рекомендуется для сильноточных светодиодов, которым нужен более надежный стабилизатор тока переключения.

Этот калькулятор поможет вам определить номинал резистора, который нужно добавить последовательно со светодиодом для ограничения тока. Просто введите указанные значения и нажмите кнопку «Рассчитать». В качестве бонуса он также рассчитает мощность, потребляемую светодиодом.

Уравнение

$$ R = \ frac {V_ {s} -V_ {led} * X} {I_ {led}} $$

Где:

$$ V_ {s} $$ = Напряжение питания

$$ I_ {led} $$ = ток светодиода. Обычный рабочий диапазон обычных светодиодов 3 мм и 5 мм составляет 10-30 мА.Если доступ к таблице данных светодиода невозможен, хорошим предположением будет 20 мА.

$$ V_ {led} $$ = падение напряжения светодиода. Падение напряжения на светодиоде зависит от цвета, который он излучает. Вот аккуратная таблица каждого цвета и соответствующего им падения напряжения:

$$ X $$ = количество светодиодов в серии

Цвет Падение напряжения (В)
красный 2
зеленый 2,1
синий 3.6
белый 3,6
желтый 2,1
оранжевый 2,2
янтарь 2,1
инфракрасный 1,7
прочие 2

Бонус: идентификация светодиодных клемм

Светодиод имеет положительный (анодный) вывод и отрицательный (катодный) вывод. Схематический символ светодиода аналогичен диоду (как показано выше), за исключением двух стрелок, направленных наружу.Анод (+) отмечен треугольником, а катод (-) отмечен линией.

Более длинный вывод светодиода почти всегда является положительным (анод), а более короткий - отрицательным (катодом). Кроме того, если вы посмотрите внутрь светодиода, то меньшая из металлических частей соединена с анодом, а большая - с катодом (см. Диаграмму выше).

Дополнительная литература

Учебник - Схемы простых серий

Учебник - Создание простых резисторных схем

Учебник - Светодиоды

Извините, эта страница не существует.Сообщите нам, где была неправильная ссылка. Спасибо.
Вот наша карта сайта:
  • Контакты
  • Как сделать заказ и другая полезная информация
    • Время выполнения
    • Гарантии на продукцию
    • Как заказать
    • Варианты оплаты
    • Варианты доставки
      • Тарифы на доставку UPS / DHL / TNT
      • Зоны страны доставки
    • Образцы политики
  • Прейскуранты нашей продукции
    • Прейскурант светодиодных диодов
    • Прейскурант светодиодной продукции
    • Прейскурант на ЖК-модули
    • Прейскурант радиаторов
    • Прейскурант болельщиков
    • Прейскурант модулей Пельтье
  • Онлайн-каталог нашей продукции
    1. ЖК-модули
      1. ЖК-модули Алфавитно-цифровые Жёлтый ЗЕЛЕНЫЙ
      2. ЖК-модули Буквенно-цифровые СИНИЙ
      3. Графические ЖК-модули
      4. Панельные счетчики
      5. Мультиметры
      6. Прейскурант LCM и счетчиков
      7. Упаковка LCM и счетчиков
    2. Охлаждение
      1. Термоэлектрические модули охлаждения Petlier
      2. Радиаторы
      3. Вентиляторы
      4. Подробная информация об упаковке
    3. Сверхяркие светодиоды
      1. 1.Светодиоды 8мм
      2. 3мм светодиоды
      3. Светодиоды 4,8 мм, угол XL
      4. 5 мм светодиоды InGan (белый, синий, чистый зеленый)
      5. 5 мм GaAlInP (красный, желтый) светодиоды
      6. Светодиоды 8 мм
      7. 10мм светодиоды
      8. Светодиоды 5 мм и 8 мм 100 мА 0,5 Вт
      9. Двухцветные светодиоды 3 мм и 5 мм
      10. Мигающие светодиоды
      11. Плоские светодиоды
      12. Овальные светодиоды
      13. ИК-светодиоды и модуль ИК-приемника
      14. X-типы: дешевое светодиодное издание
        • Пакеты для светодиодных метелок
      15. 7-сегментный светодиодный дисплей
      16. светодиодов RGB
      17. Светодиоды SMD
      18. COB СВЕТОДИОДЫ
      19. Силовые светодиоды 1Вт, 3Вт, 5Вт, 10Вт, 20Вт
      20. Светодиодные лампы Piranha 0.2 Вт
      21. Детали светодиодной упаковки
      22. Таблица преобразования старых / новых светодиодных номеров
      23. Калькулятор светодиодного резистора
    4. Светодиодная продукция
      1. Светодиодные ленты
      2. Светодиодные ленты - Акционная распродажа
      3. Светодиодные ленты X-типа
      4. Светодиодные модули
      5. Светодиодные лампы - Распродажа
      6. Светодиодные трубки
      7. Аксессуары для светодиодов
      8. Держатели для светодиодов в сквозные отверстия 3 ~ 10 мм
      9. Светодиодная продукция Подробная информация об упаковке
      10. Прейскурант светодиодной продукции
  • Найдите наш сервер в Интернете
  • Акции и акции
  • Производство только для китайского рынка
  • Наши старые страницы * 2001? 003

Калькулятор светодиодного резистора

Используйте этот калькулятор светодиодного резистора, чтобы определить подходящее сопротивление для вашей светодиодной цепи, состоящей из одного или нескольких светодиодов.


Калькулятор работы светодиодного резистора

Каждый светодиод имеет определенный диапазон рабочего тока, превышающий номинальный уровень тока, который он может повредить. Для защиты или ограничения тока мы просто используем последовательно включенный резистор.

Этот калькулятор светодиодных резисторов поможет вам подобрать правильное значение резистора для светодиода в вашей светодиодной цепи, вам просто нужно ввести значения Напряжение источника (V s ), Прямой ток светодиода (I f ) и Светодиод прямого напряжения (V f ).

Прямое напряжение или падение напряжения на светодиоде заранее определено (показано в таблице ниже), поскольку оно зависит от цвета, излучаемого светодиодом, типичное значение падения напряжения составляет 2 В.

Цвет

Падение напряжения (Vf)

Красный

2

Зеленый

2.1

Синий

3,6

Белый

3,6

Желтый

2,1

Оранжевый

2,2

Янтарь

2.1

Инфракрасный

1,7

Уравнение

Для математического определения значения вы можете использовать приведенное ниже уравнение:

Где,

В с = Напряжение источника измеряется в вольтах.

В f = прямое напряжение светодиода или падение напряжения, если вы не знаете падение напряжения на светодиоде, вы можете использовать 2 В, поскольку это типичное значение для падения напряжения светодиода.

I f = прямой ток светодиода, если вы не знаете прямой ток светодиода вашего светодиода, вы можете использовать 20 мА, поскольку это типичное значение для прямого тока светодиода.

N = количество светодиодов, подключаемых последовательно.

Светодиодный калькулятор

. Расчет токоограничивающих резисторов для одиночного светодиода и светодиодной матрицы • Электрические, радиочастотные и электронные калькуляторы • Онлайн-преобразователи единиц

Определения и формулы, используемые для расчета

Одинарный светодиод

Светодиод (LED) представляет собой полупроводниковый свет. источник с двумя или более отведениями.Монохромные светодиоды обычно имеют два вывода, двухцветные светодиоды могут иметь два или три вывода, а трехцветные светодиоды и RGB-светодиоды обычно имеют четыре вывода. Светодиод излучает свет, когда на его выводы подается подходящее напряжение.

Обычный инфракрасный светодиод и его электронный символ. Квадратный полупроводниковый кристалл устанавливается на отрицательный (катодный) вывод. Тонкий провод соединяет квадратный полупроводниковый кристалл с положительным (анодным) выводом.

Для питания одного светодиода используется простая схема светодиода с последовательным токоограничивающим резистором.Резистор необходим, потому что падение напряжения на светодиоде примерно постоянно в широком диапазоне рабочих токов.

Цвета светодиодов, материалы, длина волны и падение напряжения
Цвет Материал полупроводника Длина волны Падение напряжения
Инфракрасный Арсенид галлия (GaAs) –940 нм
Красный Фосфид арсенида галлия (GaAsP) 620–700 нм 1.От 6 до 2,0 В
Янтарный Фосфид арсенида галлия (GaAsP) 590–610 нм 2,0 до 2,1 В
Желтый Фосфид арсенида галлия (GaAsP) 580–590 нм От 2,1 до 2,2 В
Зеленый Фосфид алюминия-галлия (AlGaP) 500–570 нм от 1,9 до 3,5 В
Синий Нитрид индия-галлия (InGaN) 440–505 нм 2 .48–3,6 В
Белый Светодиоды RGB или люминофор Широкий спектр 2,8–4,0 В

Светодиоды и резисторы в схемах ведут себя по-разному. Поведение резистора линейно, в соответствии с законом Ома

Вольт-амперные характеристики типичного светодиода разных цветов

Если напряжение на резисторе увеличивается, пропорционально увеличивается и ток (мы предполагаем, что номинал резистора остается неизменным). тем же).С другой стороны, светодиоды ведут себя иначе. Они ведут себя как обычные диоды в соответствии с показанной на рисунке кривой вольт-амперной характеристики светодиодов разных цветов. Кривые показывают, что ток через светодиод не прямо пропорционален напряжению на нем. Ток через светодиод экспоненциально зависит от прямого напряжения. Это означает, что только небольшое изменение напряжения вызовет большое изменение тока.

Когда прямое напряжение светодиода небольшое, его сопротивление очень велико.Если напряжение достигает характерного значения прямого напряжения, указанного в технических характеристиках, светодиод «включается», и его сопротивление быстро падает. Если приложенное напряжение немного больше, чем прямое напряжение светодиода, прямое напряжение превышает рекомендуемое значение, которое может составлять от 1,5 до 4 В для светодиодов разных цветов. В этом случае сила тока быстро возрастает и диод может выйти из строя. Чтобы ограничить этот ток, последовательно со светодиодом подключается резистор, чтобы поддерживать ток на определенном уровне, указанном в технических характеристиках светодиода.

Расчеты

Прямоугольный светодиод с плоской вершиной, используемый в таких приложениях, как отображение гистограмм

Значение последовательного токоограничивающего резистора R s можно рассчитать по формуле закона Ома, в которой напряжение питания V s компенсируется прямым падением напряжения на диоде V f :

где V s - напряжение источника питания (например, 5 В USB-питание) в вольтах, V f - прямое падение напряжения светодиода в вольтах, а I - ток светодиода в амперах.И V f , и I f можно найти в спецификациях производителя светодиодов. Типичные значения V f показаны в таблице выше. Типичный ток светодиодов, используемых для индикации, составляет 20 мА.

После того, как номинал резистора вычислен, из предпочтительных номеров резисторов выбирается ближайшее более высокое стандартное значение. Например, если наш расчет показывает, что нам нужен резистор R s = 145 Ом, мы возьмем резистор R sp = 150 Ом.

Токоограничивающий резистор рассеивает некоторую мощность, которая рассчитывается как

Оранжевые светодиоды, обычно используемые в маршрутизаторах для отображения скорости 10/100 Мбит / с; зеленые светодиоды показывают скорость 1000 Мбит / с

Обычно мощность резистора выбирается близкой к удвоенной величине, рассчитанной здесь. Например, если значение мощности составляет 0,06 Вт, мы выберем резистор с номинальной мощностью 0,125 или 1/8 Вт.

Теперь мы рассчитаем КПД, который покажет, какая часть общей мощности потребляется в схеме используется светодиод.Мощность, рассеиваемая светодиодом:

Общая потребляемая мощность

Эффективность цепи светодиода

Чтобы выбрать источник питания, мы рассчитаем ток, потребляемый от источника питания:

Светодиодная лента с 5050 диодов; цифры 50 и 50 указывают длину и ширину чипа в миллиметрах; резисторы на 150 Ом предварительно установлены на полосе.

Светодиодные матрицы

Один светодиод можно управлять с помощью токоограничивающего резистора.Светодиодные матрицы, которые все чаще используются для освещения помещений, подсветки компьютерных мониторов и телевизоров, а также для других целей, требуют специализированных источников питания. Все мы привыкли к источникам питания со стабилизацией напряжения. Однако источники питания для управления светодиодами должны стабилизировать их ток, а не напряжение. В любом случае в светодиодных массивах всегда используются токоограничивающие резисторы.

Если для приложения необходимо более одного светодиода, можно использовать цепочки из нескольких светодиодов, соединенных последовательно. Для цепочки светодиодов, соединенных последовательно, напряжение источника должно быть больше или равно сумме напряжений на отдельных светодиодах.Если он больше, то можно использовать один токоограничивающий резистор на цепочку. Ток через каждый диод идентичен, что обеспечивает равномерную яркость. Как правило, лучше, если все последовательно соединенные светодиоды будут одного типа.

Однако в случае отказа одного светодиода в разомкнутом состоянии, который является наиболее распространенным режимом отказа, вся цепочка светодиодов гаснет. В некоторых конструкциях для предотвращения этого используется специальное устройство защиты от шунта. Для этого можно использовать стабилитроны, включенные параллельно каждому светодиоду.Этот подход хорош для маломощных светодиодов, но для мощных светодиодов, используемых, например, в уличном освещении, этот подход нерентабелен, и необходимо использовать более сложные шунтирующие устройства защиты. Конечно, это увеличивает затраты и требования к пространству. В настоящее время (2018 г.) можно наблюдать, что светодиодные уличные фонари с плановым сроком службы 10 лет служат не более года. То же касается и бытовых светодиодных ламп, в том числе ламп известных производителей.

Эта светодиодная лента используется для подсветки ЖК-панели телевизора; две такие планки устанавливаются с двух сторон от панели экрана.Такая конструкция позволяет использовать самые тонкие дисплеи. Обратите внимание, что телевизоры с ЖК-панелями со светодиодной подсветкой обычно продаются как светодиодные телевизоры. Настоящие светодиодные телевизоры используют OLED-дисплеи.

При расчете необходимого сопротивления токоограничивающего резистора R s необходимо учитывать все падения напряжения на каждом светодиоде. Например, если падение напряжения на каждом светящемся светодиоде составляет 2 В и мы подключили пять светодиодов последовательно, то общее падение напряжения на всех пяти будет 5 × 2 = 10 В.

Несколько одинаковых светодиодов также могут быть подключены параллельно. Параллельные светодиоды должны иметь согласованное прямое напряжение В, f , в противном случае через них не будет одинакового тока, и, следовательно, их яркость будет разной. Для параллельного подключения светодиодов рекомендуется последовательно с каждым диодом подключить токоограничивающий резистор. При параллельном подключении отказ одного диода из-за обрыва цепи не приведет к потере света всего набора диодов - он будет работать в обычном режиме.Другой проблемой полностью параллельного подключения является выбор эффективного низковольтного и сильноточного источника питания, который при той же номинальной мощности может быть более дорогим, чем обычные источники питания для более высоких напряжений и более низких токов.

В этом обычном светодиодном светильнике для уличного освещения 8 цепочек по 5 мощных светодиодов, всего 40 светодиодов, приводятся в действие эффективным источником постоянного тока; обратите внимание, что две гирлянды (верхняя левая и нижняя правая) темные в этом приспособлении, установленном всего пару месяцев назад, потому что в каждой из них вышел из строя один диод и устройства защиты не используются или не работают

Расчет токоограничивающих резисторов

Если количество светодиодов в последовательной строке N светодиодов в строке (обозначено как N s в поле ввода) не введено, то оно будет определено здесь. максимальное количество светодиодов в последовательной цепочке N светодиодов в цепочке max для данного напряжения источника питания В с и прямого напряжения светодиодов В f :

Если количество Светодиоды в последовательной строке N Светодиоды в строке (обозначается как N s в поле ввода), затем максимальное количество светодиодов в последовательной строке N светодиодов в строке max определяется как

А 3014 (3.0 × 1,4 мм) SMD-светодиод, используемый в ЖК-телевизоре со светодиодной подсветкой

Количество строк с максимальным количеством светодиодов в строке N строк :

количество светодиодов в оставшейся более короткой строке N светодиоды остатка :

Если N светодиодов остатка = 0, то дополнительной строки не будет.

Сопротивление токоограничивающего резистора для цепочек с макс. количество светодиодов:

Сопротивление токоограничивающего резистора для цепочек с меньшим количеством светодиодов, чем макс.количество светодиодов :

Общая мощность P Светодиод , рассеиваемая всеми светодиодами :

Мощность , рассеиваемая резисторами :

Гибкие светодиоды

общественное место; светодиодный дисплей использует матрицу светодиодов в качестве пикселей; из-за очень высокой яркости светодиодов они обычно используются на открытом воздухе в качестве рекламных щитов или достопримечательностей на шоссе, которые видны при ярком солнечном свете.Светодиодные дисплеи также могут обеспечивать общее освещение и часто используются в качестве фото- и видеосвета с переменной цветовой температурой

Номинальная мощность определяется с коэффициентом безопасности k = 2, что обеспечивает надежную работу резистора. Выберите номинальную мощность резистора, которая в два раза превышает расчетную мощность из следующих значений: 0,125; 0,25; 0,5; 1, 2, 3, 4, 5, 8, 10, 16, 25, 50 Вт.

Расчет общей мощности P R , рассеиваемой всеми резисторами :

Расчет общей мощности P всего , рассеиваемое массивом :

Расчет тока , потребляемого массивом от источника питания :

Расчет эффективности массива :

Вас также может заинтересовать преобразователи яркости, силы света и освещенности.

Эту статью написал Анатолий Золотков

Извините, эта страница не существует. Сообщите нам, где была неправильная ссылка. Спасибо.
Вот наша карта сайта:
  • Контакты
  • Как сделать заказ и другая полезная информация
    • Время выполнения
    • Гарантии на продукцию
    • Как заказать
    • Варианты оплаты
    • Варианты доставки
      • Курьерская доставка
      • Зоны страны доставки
    • Образцы политики
  • Прейскуранты нашей продукции
    • Прейскурант на светодиоды для сквозных отверстий
    • Прейскурант на другие светодиоды
    • Прейскурант светодиодной продукции
  • Онлайн-каталог наших светодиодов и светодиодной продукции
    1. Светодиоды для сквозных отверстий
      1. 1.Светодиоды 8мм
      2. 3мм светодиоды
      3. Светодиоды 4,8 мм, угол XL
      4. 5 мм светодиоды InGan (белый, синий, чистый зеленый)
      5. 5 мм GaAlInP (красный, желтый) светодиоды
      6. Светодиоды 8 мм
      7. 10мм светодиоды
      8. Светодиоды 5 мм и 8 мм 100 мА 0,5 Вт
      9. Двухцветные светодиоды 3 мм и 5 мм
      10. Мигающие светодиоды
      11. Плоские светодиоды
      12. Овальные светодиоды
      13. ИК-светодиоды и модуль ИК-приемника
      14. X-типы: дешевое светодиодное издание
        • Пакеты для светодиодных метелок
      15. Детали светодиодной упаковки
      16. Таблица преобразования старых / новых светодиодных номеров
      17. Калькулятор светодиодного резистора
    2. 7-сегментный светодиодный дисплей
    3. Светодиоды прочие
      1. светодиодов RGB
      2. Светодиоды SMD
      3. COB СВЕТОДИОДЫ
      4. Силовые светодиоды 1Вт, 3Вт, 5Вт, 10Вт, 20Вт
      5. Светодиодные лампы Piranha 0.2 Вт
      6. Подробная информация об упаковке
    4. Светодиодная продукция
      1. Светодиодные ленты
      2. Светодиодные ленты - Акционная распродажа
      3. Светодиодные модули
      4. Светодиодные лампы - Распродажа
      5. Светодиодные трубки
      6. Аксессуары для светодиодов
      7. Держатели для светодиодов в сквозные отверстия 3 ~ 10 мм
      8. Светодиодная продукция Подробная информация об упаковке
      9. Прейскурант светодиодной продукции
  • Акции и акции

Инструмент для расчета резисторов серии LED - Apogeeweb

В электронике простейшая схема для питания светодиода использует источник напряжения с последовательно включенным резистором и светодиодом.Чтобы найти необходимый последовательный резистор, введите напряжение отдельного светодиода, желаемый ток и общее напряжение питания.

Следующие важные формулы для проектирования электроники:

Закон Ома

Для расчета резистора

где

V S - напряжение источника, измеренное в вольтах (В).
V f - падение напряжения на светодиоде, измеренное в вольтах (В).
I f - ток через светодиод, измеренный в амперах (Ампер / А).
R - сопротивление, измеряемое в Ом (Ом).

Этот калькулятор основан на калькуляторе закона Ома , но учитывает падение напряжения на светодиодах. Кроме того, ток через светодиод равен току резистора, потому что ток постоянный. Таким образом, вы сможете подобрать подходящий резистор для светодиодных светильников.

Люди тоже спрашивают (Q&A)

1. Как рассчитать резистор в серии светодиодов?
Значение правильного резистора для последовательных светодиодов - это напряжение питания (давление) за вычетом общего давления, потребляемого всеми выключенными светодиодами (падение напряжения на одном светодиоде, раз на общее количество светодиодов), этот ответ затем делится на ток светодиода (поток электронов), необходимый для схемы.

2. Должен ли резистор стоять до светодиода?
Неважно! Резистор может быть установлен до или после светодиода, и он все равно будет его защищать.Видите ли ... ток, который выходит из батареи, всегда равен току, который течет обратно в батарею. Ток через резистор такой же, как ток через светодиод.

3. Нужен ли резистор для светодиода? Резисторы
в схемах светоизлучающих диодов (СИД): СИД (светоизлучающий диод) излучает свет, когда через него проходит электрический ток. Балластный резистор используется для ограничения тока через светодиод и предотвращения его возгорания. Если источник напряжения равен падению напряжения светодиода, резистор не требуется.

4. Есть ли резисторы на положительной или отрицательной стороне светодиода?
Поскольку этот резистор используется только для ограничения тока в цепи, его можно разместить с любой стороны светодиода. Размещение резистора на положительной (анодной) стороне резистора не будет иметь никакого эффекта, чем размещение резистора на отрицательной (катодной) стороне светодиода.

5. В светодиодные ленты встроены резисторы?
Обычно светодиодная лента имеет встроенные резисторы, и вы просто обеспечиваете 12 В или 5 В, или что-то еще, на что полоса рассчитана.

6. Светодиоды работают от постоянного или переменного тока?
В большинстве случаев светодиоды работают от источника постоянного тока. Светодиоды потребляют постоянный ток для получения света; при переменном токе светодиод будет гореть только тогда, когда ток течет в правильном направлении. Подача переменного тока на светодиод заставит его мигать и выключаться, а при высокой частоте светодиод будет гореть постоянно.

7. Куда идет резистор на светодиоде?
Резистор может быть с любой стороны светодиода, но он должен присутствовать. Когда два или более компонента подключены последовательно, ток будет одинаковым для всех, поэтому не имеет значения, в каком порядке они находятся.

8. Зачем светодиодам нужны токоограничивающие резисторы?
Токоограничивающий резистор помогает смягчить эффект увеличения напряжения благодаря своей линейной ВАХ. Кроме того, резисторы ведут себя противоположно светодиодам в зависимости от их температуры - с повышением температуры увеличивается и сопротивление.

9. Нужен ли резистор для светодиода на 12 В?
Какой резистор нужен для того, чтобы зажечь светодиод с напряжением 12 В? Обычно вы хотите минимизировать потери, поэтому вы подключаете как можно больше светодиодов последовательно, чтобы потреблять предоставленное напряжение, затем вы используете резистор, чтобы ограничить ток до правильного значения.Белые светодиоды обычно используют 3,0 вольта.

10. Какой резистор мне нужен, чтобы понизить 12В до 5В?
Поместите два резистора последовательно со вторым номиналом резистора (5/7) первого номинала резистора. Поместите резисторы между 12В и землей, и тогда вы получите 5В в точке между ними. Это очень грубый способ сделать это. Он не регулируется, поэтому выходное напряжение будет зависеть от входного напряжения.

11. Резистор какого размера следует использовать со светодиодом?

Основы: Подбор резисторов для светодиодов

12.Как рассчитать резистор для светодиода?

Мы будем использовать следующую формулу для определения номинала резистора: резистор = (напряжение батареи - напряжение светодиода) / желаемый ток светодиода. Для типичного белого светодиода, который требует 10 мА при питании от 12 В, значения следующие: (12–3,4) /. 010 = 860 Ом. Чтобы использовать несколько светодиодов параллельно, просуммируйте текущие значения.

13. Какая формула для резистора?

Уравнение резистора серии

Rtotal = R 1 + R 2 + R 3 +….. Rn и т. Д. Обратите внимание, что полное или эквивалентное сопротивление RT оказывает такое же влияние на схему, как и исходная комбинация резисторов, поскольку представляет собой алгебраическую сумму отдельных сопротивлений.

14. Что произойдет, если не использовать резистор со светодиодом?

При подключении светодиода вы всегда должны использовать токоограничивающий резистор для защиты светодиода от полного напряжения. Если подключить светодиод напрямую к 5 В без резистора, светодиод будет перегружен, некоторое время будет очень ярким, а затем перегорит.

15. Нужны ли резисторы для светодиодных лент?

Помимо светодиодов, также необходим один или несколько токоограничивающих резисторов, чтобы гарантировать, что светодиодная лента не перейдет в режим перегрузки по току. Резистор также включен последовательно со светодиодами, и его значение сопротивления рассчитывается таким образом, чтобы он также потреблял примерно 3 вольта.

16. Как рассчитывается сопротивление светодиода?

Чтобы рассчитать резистор, необходимый для простой цепи светодиода, просто снимите падение напряжения с напряжения источника, а затем примените закон Ома.

17. Как выбрать резистор для светодиода?

В следующем примере светодиод с напряжением 2 вольта и силой тока 20 миллиампер должен быть подключен к источнику питания 12 вольт. Балластный резистор можно рассчитать по формуле: резистор должен иметь сопротивление 333 Ом. Если точное значение недоступно, выберите следующее значение, которое выше.

18. Каков максимальный ток для светодиода?

20 мА

Для светодиодов стандартного диаметра 5 мм максимальный ток обычно составляет 20 мА, поэтому значения 10 мА или 15 мА подходят для многих цепей.

19. Следует ли подключать светодиодные фонари последовательно или параллельно?

Компоненты серии

имеют одинаковый ток, но колеблющиеся напряжения. Вообще говоря, в большинстве светодиодных светильников используется последовательно-параллельная комбинация. В идеале, для надежности и согласованности освещения, было бы лучше иметь одну полосу светодиодов, все последовательно подключенные к драйверу постоянного тока.

20. Как рассчитать номинал резистора для серии светодиодов?

В этом видео объясняется, как рассчитать значение сопротивления светодиодов для последовательной и параллельной цепей.Перед использованием светодиодов в цепи очень важно выбрать правильное значение сопротивления, иначе светодиод может перегореть.

Калькулятор светодиодных резисторов

Этот калькулятор светодиодных резисторов представляет собой инструмент для определения того, какой резистор следует использовать при создании различных электронных схем со светодиодами. Благодаря этим расчетам вы можете быть уверены, что не повредите диоды чрезмерным током.

Вы можете использовать этот калькулятор светодиодов для определения необходимого сопротивления и рассеиваемой мощности для одного светодиода, всех светодиодов или резистора.

Светодиодный калькулятор: обзор

Светодиоды, или светодиоды, представляют собой небольшие электронные компоненты. Когда ток подается на светодиоды, они излучают свет различных цветов, например красный, зеленый или синий. Однако, если ток, проходящий через диод, будет слишком большим, это приведет к повреждению светодиода.

Чтобы ограничить ток, проходящий через диод, обычно в схему добавляют резистор, как показано на изображении выше. Этот резистор обычно добавляется последовательно. Несмотря на то, что этот метод прост и решает многие проблемы с базовой схемой, его не следует применять для сильноточных светодиодов.

Что вам нужно знать?

Чтобы рассчитать сопротивление и рассеиваемую мощность, вам необходимо ввести несколько параметров в этот калькулятор светодиодного резистора:

  • Тип цепи. Ваши светодиоды подключены последовательно или параллельно?

  • n - количество подключенных светодиодов.

  • В - напряжение питания вашей цепи. Типичные значения - 5, 7 и 12 В для разъемов Molex и 1.5 или 9 вольт для батарей.

  • Вₒ - падение напряжения на одном светодиоде. Это значение зависит от цвета светодиода и колеблется от 1,7 В (инфракрасный) до 3,6 (белые или синие диоды).

  • Iₒ - ток через один светодиод. Обычные светодиоды требуют 20 или 30 мА.

светодиода в серии

Если вы подключаете несколько диодов последовательно или рассчитываете резистор только для одного диода, вы можете использовать следующие формулы:

  1. Сопротивление: R = (V - n * Vₒ) / Iₒ

  2. Мощность, рассеиваемая одним светодиодом: Pₒ = Vₒ * Iₒ

  3. Мощность, рассеиваемая всеми светодиодами (общая): P = n * Vₒ * Iₒ

  4. Мощность, рассеиваемая на резисторе: Pr = (Iₒ) ² * R

Светодиоды параллельно

Для светодиодов, соединенных параллельно, вычислитель резисторов светодиодов использует следующие уравнения:

  1. Сопротивление: R = (V - Vₒ) / (n * Iₒ)

  2. Мощность, рассеиваемая одним светодиодом: Pₒ = Vₒ * Iₒ

  3. Мощность, рассеиваемая всеми светодиодами (общая): P = n * Vₒ * Iₒ

  4. Мощность, рассеиваемая на резисторе: Pr = (n * Iₒ) ² * R

Хотите знать, откуда взялись эти формулы? Взгляните на калькулятор закона Ома!

.

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *